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Abstract 

Wind energy will significantly contribute to renewable power generation in the future. 

Much of the onshore wind energy potential is located at complex and forested sites. 

Remote sensing, in particular, light detection and ranging (lidar), has become a 

valuable technology to assess the wind resource at hub height of modern wind turbines. 

However, common wind profile Doppler lidars suffer from errors at complex terrain 

sites because of their measurement principle that assumes homogeneous flow between 

the measurement points. 

This dissertation answers the question about how well lidars measure at complex 

terrain sites. The five main influencing factors on the lidar error are orographic 

complexity, measurement height, surface roughness and forest, atmospheric stability 

and half-cone opening angle. Structured by five hypotheses, the impact of the different 

factors is analyzed in a model-based parameter study. 

In a novel approach, the lidar error due to orographic complexity 𝜀 is split up into the 

part 𝜀𝑐, caused by flow curvature at the measurement points of the lidar and the part 

𝜀𝑠, caused by the local speed-up effects between the measurement points. This 

approach, e.g., allows for a systematic and complete interpretation of the influence of 

the half-cone opening angle 𝜑 of the lidar. It also provides information about the 

uncertainty of simple lidar error estimations that are based on inflow and outflow 

angles at the measurement points. 

A non-dimensional approach is chosen to ensure the transferability of the acquired 

results to actual applications at real-world sites. The model-based parameter study is 

limited to two-dimensional Gaussian hills with hill height 𝐻 and hill half-width 𝐿, 

facilitating the possibility to cover a wide range of terrain complexities and variations 

of the model parameters. 𝐻/𝐿 and 𝑧/𝐿 are identified as the main scaling factors for 

the lidar error. With a potential flow model, the linearized flow model WEng and the 

RANS CFD model Meteodyn WT, three models of different complexity are used. The 

outcome of the study provides manifold findings that enable an assessment of the 

applicability of these flow models. 

Separating the lidar error 𝜀 into 𝜀𝑐 and 𝜀𝑠 shows that, depending on the 𝑧/𝐿 ratio, 

speed-up effects cause 10-30 % of the total lidar error. Therefore, a significant 

uncertainty must be assigned on simple lidar error estimation approaches, which are 

based on flow inclination angles at the measurement points and neglect this effect. 

Orographic complexity is found to be the major influencing factor on the lidar error. 

Depending on the flow model used, the lidar error is about 4-5 times larger when 

increasing the  𝐻/𝐿 ratio from 0.1 to 0.4. It is furthermore dependent on measurement 

height and reaches a maximum at a 𝑧 equal to 50-60 % of the hill half-width 𝐿. Below 

and above the maximum point, the lidar error decreases and becomes negligible at low 

and high levels above ground. The height-dependence is sensitive to 𝐻/𝐿 and 𝑧/𝐿 and 

should be assessed before a planned measurement campaign. 

Opposed effects of reduced 𝜑 are found on 𝜀𝑐 and 𝜀𝑠. This explains the small 

differences in the total lidar error for symmetric flows in the literature. Contrary to 

that, in asymmetric flow situations (e.g. forested hills), 𝜑 can significantly influence 

the lidar error. An adaption to the actual flow situation might reduce the lidar error, 

but would require a more flexible technology, such as a scanning lidar. 
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Non-linear or detached flow effects in the lee of the steep hills, induced by high surface 

roughness or forest, significantly reduce the lidar error. Therefore, potential flow and 

linearized models should not be applied at such sites, as they generally overestimate 

the lidar error. In an evaluation campaign, these findings are confirmed and the best 

results of lidar error estimation are achieved when considering the forest in the flow 

model. 

The influence of atmospheric stability in the lidar error estimations from Meteodyn 

WT is significant, particularly for stable stratification. At sites where significant 

changes in atmospheric stability occur, the lidar error is potentially overestimated by 

assuming neutral stratification. 

The dissertation clearly shows that orographic complexity, roughness and forest 

characteristics, as well as atmospheric stability, have a significant influence on lidar 

error estimation. The choice and parameterization of flow models and the design of 

methods for lidar error estimation are essential to achieve accurate results. The use of 

a RANS CFD model in conjunction with an appropriate forest model is highly 

recommended for lidar error estimations in complex terrain. If atmospheric stability 

variation at a measurement site plays a vital role, it should also be considered in the 

modeling. Under certain flow conditions, the half-cone opening angle can additionally 

affect the magnitude of the lidar error. When planning a wind farm, an accurate 

estimation of the prospective lidar error should be carried out before the measurement 

campaign. The additional uncertainty of the lidar error correction should be assessed 

in this context to make a profound decision on whether a lidar measurement is feasible 

at the given site. 
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Kurzzusammenfassung 

Die Windenergie wird in Zukunft einen wesentlichen Beitrag zur erneuerbaren 

Stromerzeugung leisten. Ein Großteil des Onshore-Windenergiepotenzials befindet 

sich an komplexen und bewaldeten Standorten. Die Fernerkundung, insbesondere light 

detection and ranging (Lidar), hat sich zu einer wertvollen Technologie zur 

Beurteilung der Windressourcen in Nabenhöhe moderner Windkraftanlagen 

entwickelt. Die gängigen Windprofil-Doppler-Lidars leiden jedoch im komplexen 

Gelände unter Fehlern, da ihr Messprinzip eine homogene Strömung zwischen den 

Messpunkten voraussetzt. 

Diese Dissertation beantwortet die Frage, wie gut Lidars an komplexen Standorten 

messen. Die fünf wichtigsten Einflussfaktoren auf den Lidarfehler sind orographische 

Komplexität, Messhöhe, Oberflächenrauigkeit und Wald, atmosphärische Stabilität 

und Öffnungswinkel des Lidars. Strukturiert durch fünf Hypothesen, wird die 

Auswirkung der verschiedenen Faktoren in einer modellbasierten Parameterstudie 

analysiert. 

In einem neuartigen Ansatz wird der Lidarfehler durch orographische Komplexität 𝜀 

in einen Teil 𝜀𝑐, verursacht durch die Strömungskrümmung an den Messpunkten des 

Lidars, und einen Teil 𝜀𝑠, verursacht durch die lokalen Beschleunigungseffekte 

zwischen den Messpunkten, aufgeteilt. Dieser Ansatz ermöglicht z.B. eine 

systematische und vollständige Interpretation des Einflusses des Öffnungswinkels. Er 

liefert auch Informationen über die Unsicherheit einfacher Lidar-Fehlerschätzungen, 

die ausschließlich auf den Strömungswinkeln an den Messpunkten basieren. 

Es wird ein nichtdimensionaler Ansatz gewählt, um die Übertragbarkeit der 

gewonnenen Ergebnisse auf tatsächliche Anwendungen an realen Standorten zu 

gewährleisten. Die modellbasierte Parameterstudie beschränkt sich auf 

zweidimensionale Gaußsche Hügel mit Hügelhöhe H und Hügelhalbbreite L, was die 

Möglichkeit bietet, ein breites Spektrum an Geländekomplexitäten und Variationen 

der Modellparameter abzudecken. H/L und z/L werden als die wichtigsten 

Skalierungsfaktoren für den Lidarfehler identifiziert. Mit einem Potentialflussmodell, 

dem linearisierten Strömungsmodell WEng und dem RANS CFD-Modell Meteodyn 

WT werden drei Modelle unterschiedlicher Komplexität verwendet. Das Ergebnis der 

Studie liefert vielfältige Ergebnisse, die eine Beurteilung der Anwendbarkeit dieser 

Strömungsmodelle ermöglichen. 

Die Aufteilung des Lidarfehlers 𝜀 in 𝜀𝑐 und 𝜀𝑠 zeigt, dass je nach z/L-Verhältnis 

Beschleunigungseffekte 10-30 % des gesamten Lidarfehlers verursachen. Daher muss 

bei einfachen Ansätzen zur Lidar-Fehlerschätzung, die auf 

Strömungsneigungswinkeln an den Messpunkten basieren und diesen Effekt 

vernachlässigen, eine signifikante Unsicherheit angenommen werden. 

Die orographische Komplexität ist der wichtigste Einflussfaktor auf den Lidarfehler. 

Abhängig vom verwendeten Strömungsmodell ist der Lidarfehler etwa 4-5 mal größer, 

wenn das H/L-Verhältnis von 0,1 auf 0,4 erhöht wird. Er ist außerdem von der 

Messhöhe abhängig und erreicht ein Maximum bei 50-60 % der Hügelhalbbreite L. 

Unter- und oberhalb des Maximalpunktes nimmt der Lidarfehler ab und wird bei 

niedrigen und großen Höhen über Grund vernachlässigbar. Die Höhenabhängigkeit ist 

abhängig von H/L und z/L und sollte vor einer geplanten Messkampagne bewertet 

werden. 
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Es zeigen sich gegenläufige Effekte von reduzierten 𝜑 auf 𝜀𝑐 und 𝜀𝑠. Dies erklärt die 

kleinen Unterschiede im gesamten Lidarfehler für symmetrische Strömungen in der 

Literatur. Im Gegensatz dazu kann 𝜑 in asymmetrischen Strömungssituationen (z.B. 

bewaldete Hügel) den Lidarfehler erheblich beeinflussen. Eine Anpassung an die 

aktuelle Strömungssituation könnte den Lidarfehler reduzieren, erfordert aber eine 

flexiblere Technologie, wie z.B. ein scannendes Lidar. 

Nichtlineare oder abgelöste Strömung im Lee von steilen Hügeln, hervorgerufen durch 

hohe Oberflächenrauheit oder Wald, reduzieren den Lidarfehler deutlich. 

Potentialströmungs- und linearisierte Modelle sollten daher an solchen Standorten 

nicht angewendet werden, da sie den Lidarfehler im Allgemeinen überschätzen. In 

einer Messkampagne werden diese Ergebnisse bestätigt und die besten Ergebnisse der 

Lidar-Fehlerschätzung bei der Berücksichtigung des Waldes im Strömungsmodell 

erzielt. 

Der Einfluss der atmosphärischen Stabilität auf die Lidar-Fehlerschätzung von 

Meteodyn WT ist signifikant, insbesondere für stabile Schichtung. An Standorten, an 

denen signifikante Veränderungen der atmosphärischen Stabilität auftreten, wird der 

Lidarfehler möglicherweise durch die Annahme einer neutralen Schichtung 

überschätzt. 

Die Dissertation zeigt deutlich, dass orographische Komplexität, Rauigkeit und 

Waldeigenschaften sowie atmosphärische Stabilität einen signifikanten Einfluss auf 

die Lidar-Fehlerschätzung haben. Die Auswahl und Parametrisierung von 

Strömungsmodellen sowie die Entwicklung von Methoden zur Lidar-Fehlerschätzung 

ist wichtig, um genaue Ergebnisse zu erzielen. Die Verwendung eines RANS-CFD-

Modells in Verbindung mit einem geeigneten Waldmodell wird für Lidar-

Fehlerschätzung in komplexem Gelände dringend empfohlen. Wenn die Variation der 

atmosphärischen Stabilität an einem Messstandort von Bedeutung ist, sollte sie auch 

bei der Modellierung berücksichtigt werden. Unter bestimmten 

Strömungsbedingungen kann der Öffnungswinkel die Größe des Lidarfehlers 

zusätzlich beeinflussen. Bei der Planung eines Windparks sollte vor der 

Messkampagne eine genaue Abschätzung der voraussichtlichen Lidarfehler 

durchgeführt werden. Die zusätzliche Unsicherheit der Lidar-Fehlerkorrektur sollte in 

diesem Zusammenhang bewertet werden, um eine fundierte Entscheidung darüber zu 

treffen, ob eine Lidarmessung am jeweiligen Standort möglich ist. 
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1 Introduction 

The introductory chapter starts with a general background and motivation for the topic 

(chapter 1.1). Then, the structure of the thesis is explained, providing an overview to 

guide the reader through the text (chapter 1.2). Following this, a profound literature 

review is presented (chapter 1.3), that serves as a basis for positioning the research 

questions and the scientific work of this thesis into the scholarly debate (chapter 1.4). 

1.1 Background and motivation 

The following subchapters provide basic information about climate change (chapter 

1.1.1)., the necessity of the energy transition to renewable energy sources and the 

political framework to enable this transition (chapter 1.1.2).Then, the need to develop 

forested, complex terrain sites for wind energy projects is explained, in order to make 

use of the available wind energy potential (chapter 1.1.3). A brief introduction to the 

research on wind conditions in complex terrain is also given, which provides a starting 

point to this topic for the reader (chapter 1.1.4). Here, also, the overall aim of this 

doctoral thesis is described. 

1.1.1 Climate change and global warming 

In its recent Synthesis Report, the Intergovernmental Panel on Climate Change (IPCC) 

states that “Warming of the climate system is unequivocal […]” (IPCC 2015, p. 2). 

Moreover, it is clearly linked to the anthropogenic emissions of greenhouse gases, 

which have led to atmospheric concentrations of carbon dioxide, methane and nitrous 

oxide, higher than in the previous 800,000 years. The negative impacts of climate 

change have already been observed all over the world (IPCC 2015). The latest 

estimates of IPCC attribute approximately 1.0°C of global warming by 2017 to human 

activities, which underlines the need to strongly decrease greenhouse gas emissions in 

the future (IPCC 2018). 

In terms of an integrated strategy for sustainable future development, the 

defossilization of electrical power generation is one of the critical aspects in order to 

avoid or at least mitigate predicted impacts and lower the risks of climate change 

(IPCC 2015). So far, 185 nations have ratified the Paris Agreement 2016, which aims 

at limiting global warming to approximately 2 °C by the end of the century (UNFCCC 

2019, 2016). To reach this goal, the share of low-carbon electricity supply has to be 

increased to more than 80 % by 2050, which includes the use of renewable energy 

(IPCC 2015, p. 26). 

1.1.2 European and German renewable energy politics 

In 2009 the European Union (EU) had set its long term goal to reduce greenhouse 

gases by 80-95 % until 2050 (European Commission 2018). Resulting from the EU 

politics, in 2016, the share of renewable electricity in the EU reached 29.6 % and has 

more than doubled within ten years. With a share of 27 % of this renewable electricity, 

onshore wind energy delivers the second largest part of electricity from renewable 

energy sources in the EU, only topped by hydropower (EEA 2018). This increase is 

according to the EU targets set up by the directive on the use of energy from renewable 

sources from 2009, aiming at a share of approx. 34 % by 2020 (European Commission 

2019; The European Parliament and the Council of the European Union 2009). 
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Following the targets of the recently released succeeding directive, the share of 

renewable electricity will increase up to 57 % until 2030. Wind power will then be the 

most essential element of the power system, delivering 26 % of EU’s electrical power 

(The European Parliament and the Council of the European Union 2018; Buck et al. 

2019). 

In 2010 the German government passed its energy concept that sets Germany’s long 

term goals to “[…] secure a reliable, economic and sustainable energy supply […]”  

(Bundesregierung 2010, p. 3). It adapts the targets of the international and European 

agreements to reduce greenhouse gas emissions by 80 to 95 % until 2050. Regarding 

the share of renewable electricity, Germany aims at 50 % until 2030 and 80 % until 

2050 (Bundesregierung 2010). In 2016 it had reached 31,6 % (BMWI 2018b). In 2017 

the share of renewable electricity in Germany passed one third, with 2017 being a 

record year regarding the installation of 5,514 MW of new onshore wind power 

capacity. About 50 % of renewable electrical power was produced by onshore wind 

energy in 2017. Estimations of the Fraunhofer Institute for Energy Economics and 

Energy System Technology IEE1 expect an increase in onshore wind power capacity 

by about 20 GW up to almost 70 GW until 2030 (Rohrig 2018). 

1.1.3 Wind energy potential 

Considering these ambitious goals, the question arises, if the overall wind energy 

potential in Europe and Germany is available to reach the aspired wind power capacity. 

One of the key findings of the European Environment Agency’s study on Europe’s 

wind energy potential was that wind energy could cover 20 times the energy demand 

of the whole European Union expected in 2020. Additionally, it is found that a 

significant share of the area available for wind power is situated in forested areas, 

which often comes together with complex mountainous or hilly terrain (EEA 2009).  

In Germany, several more detailed studies followed to find a better estimate for the 

wind energy potential regarding the quantity and type of available area, the technical 

potential and its sensitivity to restrictions due to environmental or other constraints 

(Lütkehaus et al. 2013; Callies 2014; Masurowski 2016). In his study based on high-

resolution geographic data, Callies 2014 states that more than 50 % of the available 

area for wind energy in Germany can be found in forests. Historically forested areas 

are further away from settlements, which are usually placed in valleys, surrounded by 

agricultural land (Callies 2014). 

More and more wind farms have been installed in forested terrain. In order to make 

use of the wind resources at such sites, a diversification of wind turbine characteristics 

has taken place. While there is a general increase of hub height, turbine power and 

rotor diameter, the relation of the latter two is strongly dependent on the actual site. 

Mostly large rotor diameters come together with relatively low rated power at inland 

sites with lower mean wind speeds. Additionally, to overcome the impact of the rough, 

                                                 
1 Fraunhofer IEE has become an independent Fraunhofer institute in January 2018. Previously, it has 

been founded as Fraunhofer Institute for Wind Energy and Energy System Technology IWES. The first 

project phase of “Utilization of Wind Power” started in 2009 and was managed by Dr. Doron Calllies. 

This first phase involved the erection of the 200 m high measurement mast as well as the acquisition of 

several Leosphere Windcube v1 Doppler wind lidars. The second project phase, starting as of January 

2012, was managed by the author of this thesis. It contained several measurement campaigns to compare 

lidar data to data from cup anemometry on the measurement mast. 
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forested surface, hub heights at these sites are reaching up to 160 m, increasing the 

upper tip height of the turbines to about 230 m (Rohrig 2018; Emeis 2014). 

1.1.4 Research on wind in complex and forested terrain 

These findings and developments emphasize the need to assess the usability of those 

sites for wind turbine installations and to gain a better understanding of the wind 

resources over forested and orographically complex terrain in recent years. Research 

on complex terrain has been on the agenda of European and national research programs 

for many years (TPWind 2014; ETIP Wind 2016, 2018; BMWI 2014, 2018a). Still, 

there is a need for better understanding, measuring and modeling of the wind 

conditions at complex terrain sites. To accurately assess the resources of potential wind 

energy sites, the latest German research program emphasizes the need for appropriate 

and economical methods that might replace met masts (BMWI 2018a, p. 40). The 

general aim of research on wind resource assessment is a significant reduction of the 

overall uncertainty in the predicted annual energy production from currently 10-15 % 

to well below 10 % (TPWind 2014). Having in mind the dimensions of current wind 

turbines, the only economically feasible way for this will be the extension or 

replacement of conventional, mast-based measurement techniques by novel 

technologies that can measure the wind conditions at great heights, best over the full 

rotor area (TPWind 2014; BMWI 2018a).  

Optical remote sensing, namely light detection and ranging (lidar), has proven to be 

one of the most promising measurement technologies to achieve these goals (Emeis et 

al. 2007; Emeis 2014; Bradley et al. 2015; Courtney et al. 2008). However, commonly 

used lidar devices are prone to wind speed errors in complex terrain (Bradley et al. 

(2015)).  

Building upon the current state of research on this topic (chapter 1.3), the aim of this 

thesis is to perform a systematic model-based study, that answers the question: How 

well do lidars measure at complex terrain sites and which factors are influencing the 

magnitude of the so-called “lidar error2”? 

1.2 Structure of the thesis 

The thesis starts with a general introduction to the background and motivation for the 

topic and the main research question of the thesis (chapter 1.1). The aim of the 

introduction is to point out the overall importance of the topic of wind measurements 

in complex and forested terrain. Moreover, it leads to the fundamental aim of the 

thesis. Then, chapter 1.2 explains the structure to guide the reader through the text. 

The sub-chapter lays out the “red thread” of the thesis and clarifies its design. A 

profound literature study has been part of the work within the doctoral thesis. The 

results of this are given in chapter 1.3. Based on the analysis of the available literature, 

open questions and gaps in the state of research regarding the topic of the thesis are 

identified. Chapter 1.4 then develops the research questions of the doctoral thesis based 

on a structured summary of the literature review.  

                                                 
2 In consistence with other related studies (e.g. Bingöl et al. 2009; Bradley et al. 2015; Klaas et al. 2015) 

the measurement error in wind speed due to complex terrain, that occurs for common Doppler wind 

profiling lidars, is termed as “lidar error” in the context of this thesis. This definition is detailed out in 

chapter 3.2. 
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Chapter 2 lays out the scientific structure and context of the dissertation. The aims of 

the thesis and five hypotheses are deduced in chapter 2.1. These hypotheses are used 

to structure the results and form the basis for the scientific work of this thesis. They 

are later referred to in the summary and conclusions in chapter 7. The novelty value of 

the work carried out in the context of this doctoral thesis is pointed out in chapter 2.2. 

As the theoretical background about lidar measurement principles and error sources in 

complex terrain is of fundamental importance for the work within this thesis, it is 

detailed out in chapter 3. Basic equations and definitions of variables and parameters 

of the measurement geometry are given in subchapter 3.1. The aim of subchapter 3.2 

is to explain error sources in complex terrain and provide definitions of the lidar error. 

Chapter 4 gives an overview of the methods used in this thesis. Chapters 4.1 and 4.2 

aim on presenting basic knowledge about wind flow in complex and forested terrain 

as well as the influence of atmospheric stability on wind characteristics. To estimate 

the wind flow over two-dimensional hills and to answer the research questions that are 

defined beforehand, three different models are. In order to provide the theoretical 

fundaments for the application of these models and the analyses of their results, their 

basic working principles and equations are given in chapter 4.3. The method that is 

used to carry out the systematic model-based parameter study is then elaborated in 

chapter 4.4. This chapter provides the reasons for doing a non-dimensional analysis 

and defines the non-dimensional parameters that are used. Having explained the 

methods and approach, the data basis and setup for the modeling are given in chapter 

4.5. 

The results of the parameter study are presented in chapter 5. To understand the impact 

of different model parameterization on the wind flow, the model results are illustrated 

in chapter 5.1. In the subchapters 5.1.2 and 5.1.3, the flow angles and speed-up effects 

are presented in detail as they are of major importance for the resulting lidar errors. 

Chapter 5.1 is, therefore, helping to interpret the influence of model parameterization 

on lidar errors in complex terrain. Chapter 0 then contains the results of the lidar error 

estimation for the different models. It is structured with reference to the research 

questions and hypothesis and consecutively presents the results for orographic 

complexity (chapter 5.2.1), terrain roughness (chapter 5.2.2), forest (chapter 5.2.3) and 

atmospheric stability (chapter 5.2.4) as well as for the influence of measurement height 

(chapter 5.2.5) and changing the half-cone opening angle (chapter 5.2.6). 

Having carried out the model-based study, the question remains of how well the results 

agree with real-world measurements. In chapter 6, a measurement campaign in 

complex and forested terrain is used to evaluate the model results. After a short 

description of the measurement site (chapter 6.1.1) and the data basis (chapter 6.1.2), 

an evaluation approach is described that allows to compare the non-dimensional results 

to the measured lidar error by fitting the terrain from the site to Gaussian hill shapes 

(chapter 6.2). The evaluation results are then presented in two different ways. First, 

based on mean statistics and lidar-mast deviations in dependence on wind direction 

(chapter 6.3.1). Second, following the non-dimensional approach, where the measured 

lidar errors are assigned to results from the parameter-study. Chapter 6.4 concludes the 

evaluation by presenting flow model results for lidar error estimation based on the 

actual three-dimensional terrain data at the measurement site for different 

parametrizations. 

The key findings of the thesis are summed up in chapter 7. The hypotheses formulated 

in chapter 1.4 are evaluated and contrasted to the achieved results. The aim of the 
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chapter is to provide a reasonable overview of what was found out during the course 

of the doctoral thesis. It assesses the importance of the different considered parameters 

and provides a guideline for the reader on the application of wind flow models for lidar 

error estimation in complex terrain.  

An outlook regarding open research questions and further remarks is formulated in 

chapter 8. 

1.3 Lidar wind measurements 

This subchapter gives a broad overview of the topic of lidar wind measurements. A 

short synopsis of the historical development of wind lidars describes the way to today’s 

most often used Doppler lidars (chapter 1.3.1). Then the reader is informed about the 

measurement accuracy of these lidars against conventional, mast-based anemometry 

in flat terrain (chapter 1.3.2). A short subchapter explains the differences between 

continuous-wave and pulsed Doppler lidars (chapter 1.3.3). As the issue of measuring 

the wind in complex terrain site with wind lidars is in the focus of this work, a detailed 

literature overview on that is given in chapter 1.3.4. Brief introductions to the relevant 

standards and guidelines for wind measurements (chapter 1.3.5) and alternative 

methods and approaches to overcome the challenges of complex terrain for lidars 

(chapter 1.3.6) complete the literature overview. 

1.3.1 A short history of lidar measurements 

Several publications give an overview of the history of optical remote sensing. The 

following are given exemplarily and can be used as a starting point for a more 

comprehensive literature study: An extensive description of the historical development 

of wind lidars from its very beginning in the 1930s until the first years of the 21st 

century is given in Fujii and Fukuchi 2005. Wandinger 2005 provides a concise 

introduction that also briefly summarizes the most common lidar techniques. A review 

of optical remote sensing in the context of wind energy is given by Emeis et al. 2007. 

Therein, aspects of and requirements for lidar wind measurements for wind energy 

applications are described, followed by an overview of at that time available studies. 

Lidars have been applied for atmospheric boundary layer research for a long time. 

Although there were first attempts using searchlight beams or flashlights to determine 

atmospheric conditions in the 1930s, the development of what is understood today by 

the term “lidar” started with the invention of laser technology in the 1960s (Fujii and 

Fukuchi 2005; Wandinger 2005). 

For many years CO2-lasers have been used for lidars, since they have some significant 

advantages over prior ruby or helium-neon lasers, such as eye-safety or the ability to 

operate in continuous-wave as well as in pulsed mode (Fujii and Fukuchi 2005). With 

shorter wavelengths around 1 to 1.6 µm, solid-state lasers (e.g., Nd:YAG) became an 

alternative to CO2-lasers, operating at 10.6 µm. Besides other advantages, shorter 

wavelength results in an improvement of range resolution while keeping the velocity 

resolution constant (Fujii and Fukuchi 2005). 

Today, most lidars applied for wind measurements, use wavelengths around 1.5 µm. 

Driven by the necessity to reduce costs, increase (energy) efficiency and build compact 

and mobile systems, the developments of the telecommunications industry were 

picked up (Emeis et al. 2007; Mikkelsen 2014). Those systems use so-called EDFA 
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(Erbium-doped fiber amplifiers) based lasers that are widely used, for example, for 

data transmission for telecommunication (Fujii and Fukuchi 2005). 

With the introduction of these relatively cheap, lightweight, robust and portable 

systems, lidars became an appealing tool for wind-energy-related applications 

(Courtney et al. 2008). As all of the lidar systems used within the context of this thesis 

are using the latter technology, further literature research is limited to studies about 

these systems for wind energy applications. Details on the measurement principle can 

be found in chapter 3. 

1.3.2 Lidar-mast comparisons in flat terrain 

In order to poof the accuracy of lidar wind measurements, it is mandatory to test the 

systems in flat terrain first next to a met mast. Here, the influence of the terrain on the 

wind flow can be neglected, and it is possible to assess the unbiased measurement 

accuracy of the lidar against cup anemometers. 

One of the first comparisons between a fiber-based Doppler wind lidar and a 

measurement mast on a wind energy test site was carried out by Smith et al. (2006) 

next to a mast at Høvsøre Test Station in 2004 in Denmark. The lidar used was a 

prototype of the newly developed continuous wave (CW) “ZephIR” lidar, which 

performs conical scans at a fixed elevation angle of 30°, while focusing the laser beam 

on each measurement height consecutively. The study shows high correlation 

coefficients and an error in wind speed measurements of less than 1 % for heights 

between 40 and 100 m, but the amount of data is meager (24 h) (Smith et al. 2006). 

The first production version of the QinetiQ ZephIR lidar was tested by Kindler et al. 

(2007) within an onshore and an offshore campaign in 2005, each of several months 

duration. The onshore results show an excellent agreement between lidar and mast, 

although the slope decreases from 0.99 on 60 m to 0.96 on 120 m, which is thought to 

be due to the increase of measurement volume with height. The offshore results are 

even better, leading to the overall conclusion that the ZephIR lidar is a valuable tool 

for acquiring wind data helping to understand the wind flow at flat onshore and 

offshore sites (Kindler et al. 2007). Comparably good results were also achieved in a 

test at a 124 m mast at a test site of Deutsche Windguard in 2006 (Albers 2006). 

At the end of 2006, the French company Leosphere introduced a pulsed fiber-based 

Doppler lidar called “Windcube” (Courtney et al. 2008; Cariou 2007). A prototype of 

the “Windcube” lidar was tested against a 98.7 m high measurement mast in 

Siemenswolde, close to the North Sea at a test site of Deutsche Windguard. The results 

show a very high correlation between the lidar and mast measurements at 98.7 m of 

0.996 and a slope very close to unity with the mean deviation between both 

measurement systems being -0.3 % (Albers and Janssen 2008). In another test, three 

Windcube systems were tested in parallel against the mast at Høvsøre Test Station. 

Although the amount of data is small, the results for all three units are excellent, with 

correlation coefficients above 0.999 and small deviations between lidar and mast 

(Gottschall and Courtney 2010). 

A third lidar, which is used in wind energy applications, is the SgurrEnergy “Galion” 

of which a prototype was tested in 2009 at Høvsøre Test Station. The Galion has been 

developed by the company HALO Photonics and is distributed by SgurrEnergy 

(HALO Photonics 2019). In contrast to the ZephIR and the Windcube, this device has 

the flexibility to modify the elevation angle as well. However, for a configuration 

comparable to the other two lidars, similar results are achieved within the test. The 
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lidar data correlates very well with the mast data, and for 116 m measurement height, 

the mean difference between mast and lidar is only -0.10 m/s (Gottschall et al. 2009). 

From these studies, it can be concluded that lidars can potentially be used in addition 

to or even as a replacement for masts in flat terrain. Consequently, the different 

approaches are analyzed in order to gain experience in using lidars for wind energy 

applications. 

1.3.3 Continuous-wave versus pulsed lidars 

In several studies, the specific characteristics, advantages and disadvantages of the two 

different measurement principles (CW and pulsed) are discussed. In comparison to the 

pulsed systems, the CW ZephIR lidar has two critical challenges: First, there is an 

ambiguity in the determination of wind direction since the ZephIR cannot distinguish 

between winds moving towards or away from the lidar. This ambiguity results in the 

possibility of a 180° offset in wind direction measurements. To overcome this issue 

the ZephIR is equipped with a conventional wind direction sensor in order to roughly 

measure the correct wind direction (Emeis et al. 2007; Lindelöw 2007; Courtney et al. 

2008). 

In contrast to that, the Windcube (and other pulsed lidars) apply a fixed frequency 

offset to the local oscillator, which then enables the system to determine the wind 

direction correctly (Courtney et al. 2008). Second, the measurement range is 

determined by actually focusing the laser at the desired range. Based on the assumption 

of a constant aerosol concentration with height, the bulk of the backscattered signal 

will then stem from the measurement height. A weighting function is applied to 

retrieve the radial wind speed. However, this assumption is only valid unless there is 

no cloud layer present, which would contain significantly more aerosols. Without the 

application of a correction algorithm the retrieved radial wind speed will be biased due 

to the significant backscatter from the elevated cloud layer (Courtney et al. 2008) 

Additionally, resulting from basic optical laws, the focal length, and therefore, the 

measurement volume increases proportional to the square of the measurement range, 

resulting in vast measurement volumes for the upper heights (Lindelöw 2007). The 

measurement volume of the Windcube and the ZephIR is comparable for heights 

between 100 and 120 m. Below, the ZephIR has a smaller probed volume, above it 

becomes significantly larger (Courtney et al. 2008). As all pulsed systems, the 

Windcube uses a time-of-flight method to assign the backscattered signal to the desired 

measurement heights (Emeis et al. 2007). Because of that, the measurement volume 

stays consistent at approximately 30 m independent of measurement height, and there 

is no bias due to backscatter from clouds (Courtney et al. 2008). From these 

considerations Courtney et al. (2008) conclude that the Windcube (i.e. a pulsed lidar) 

is better suited for measurements above 130 m than the ZephIR (i.e., a CW lidar). 

1.3.4 Lidar-mast comparisons in complex terrain 

As already stated above, many wind farms are planned in complex terrain. It is, 

therefore, necessary to test lidars at these sites to assess their applicability, identify 

challenges, and find solutions in order to be able to keep measurement uncertainty on 

acceptable levels. As this is one of the essential aspects of the doctoral thesis, details 

on the challenges posed by complex terrain are given in chapter 3.2. 
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All of the mentioned lidars have in common that they rely on the so-called 

“homogeneous flow assumption.” In order to be able to reconstruct the horizontal wind 

speed, the lidars measure the radial velocity at different locations in the atmosphere. 

Under the assumption of equivalent wind speed at these locations, simple 

trigonometric functions can be used to calculate the horizontal wind speed. This 

assumption is not valid for measurement sites with significant spatial changes in wind 

speed, e.g. complex terrain sites (Courtney et al. 2008; Clive, Peter J. M. 2008). As the 

measurement principles of wind sodars (sound detection and ranging) and lidars are 

generally comparable, they also face the same limitations and drawbacks in complex 

flow situations (Emeis et al. 2007). Thus, in the following paragraphs, existing studies 

from the sodar community are presented in case they describe the same problems or 

provide analyses and solutions that are relevant for lidars as well. 

One of the first relevant comparisons between a lidar and a 100 m mast was carried 

out by Antoniou et al. (2007). A ZephIR was placed at the Center For Renewable 

Energy Sources (CRES) test station in Greece, which is located in complex terrain. On 

the one hand, the results show a high correlation of 0.996 (R²) for 99 m and 78 m 

between lidar and mast, which is comparable to flat terrain sites (e.g., Smith et al. 

2006). On the other hand, a significant underestimation of the wind speed by the lidar 

is observed, with a slope of 0.943 at 99 m and 0.918 for the 78 m measurement height 

(Antoniou et al. 2007). Courtney et al. (2008) state that errors in the determination of 

mean wind speed in the order of 5-10 % is not uncommon for complex terrain sites. 

As a solution, they propose to reduce the lidar cone angle from 30° to 15° in order to 

reduce flow complexity between the measurement points. 

A first attempt to explain and model the error of monostatic remote sensing 

instruments in complex terrain (lidar and sodar) is presented by Bradley (2008). He 

applies a simple two-dimensional potential flow model to estimate the wind flow and 

uses the model results to correct the error due to the homogeneous flow assumption. 

Depending on the shape of the hill and the measurement height, he finds sodar errors 

between 5 and 20 % for a cone angle of 20°. Contrary to his hypothesis (and the one 

from Courtney et al. (2008)), there is no significant increase in the errors when 

increasing the cone angle to 30° (which is typical for most lidars) (Bradley 2008). 

Bingöl et al. (2009) study the lidar error at two complex terrain sites in Greece. Here 

the lidar errors of a ZephIR reach up to a magnitude of 10 % depending on wind 

direction and for heights between 30 and 80 m. An algorithm is implemented into 

WAsP Engineering (WEng) that uses the model results to calculate an estimation for 

the lidar error at the two sites. Although the model is simple and limited to low slopes 

only, the estimated errors fit well to the observed results for the main wind directions. 

For the wind directions with increased slope (south-west), the results do not fit very 

well, which is attributed to limitations in WEng. In a simple, two-dimensional 

analytical consideration, Bingöl et al. (2009) also show that the lidar error is not 

dependent on the cone angle, but only on the horizontal homogeneity of the flow. 

These analytical findings are verified by Foussekis (2009), who compares the results 

for the ZephIR and two Windcube lidars, one with a 30° and one with a 15° cone angle 

against a 100 m mast at the complex terrain CRES test station in Greece. Here, an 

underestimation of about 6 % is found for all three lidars, independent of measurement 

principle (CW and pulsed) and cone angle (15° or 30°). Additionally, the study states 

that the lidar error is independent of height at this site (Foussekis 2009). 
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Reacting on these results, Natural Power, the marketing company of the ZephIR lidar, 

developed a method to estimate the lidar error for complex terrain with the Reynolds-

averaged Navier-Stokes (RANS) computational fluid dynamics (CFD) code “Ventos” 

(Harris et al. 2010). They apply the method proposed by Bingöl et al. (2009) on the 

results from the CFD code for a complex terrain site in the United Kingdom. The 

estimated lidar errors are then also compared to those from a WEng simulation. Their 

results emphasize that, for the given site, WEng overestimates the lidar error, 

especially for those wind direction sectors that have the steepest slopes. The CFD code 

provides a better estimate for the inhomogeneous flow above the terrain. The authors 

conclude that these findings show the limitations of the WEng model in terms of terrain 

complexity (Harris et al. 2010). 

The approach of using RANS CFD modeling was also followed by Leosphere as they 

worked together with WindSim (Meissner and Boquet 2011) and Meteodyn WT 

(Bezault et al. 2012) to implement methods for lidar error estimation into this 

commercial software. Tests and validations of the WindSim correction module are 

reported in Meissner and Boquet (2011), Jokela et al. (2013) and Kim and Meissner 

(2017). All three studies have in common that they generally show a better agreement 

between lidar and reference data after application of the CFD correction. Bezault et al. 

(2012) present results from an estimation of the lidar error based on Meteodyn WT, 

both for a ZephIR and a Windcube data set at two different complex terrain sites. For 

these two sites, the quality of the correction is very good, correcting the slope to almost 

1.0. 

Other studies rely on different CFD software to correct for the lidar error. For example, 

Boquet et al. (2010) use a CFD model called “ARIA” to correct the lidar error at a 

complex site for three different heights (56, 78 and 100 m). For all three heights, the 

correction significantly reduces the bias between lidar and mast. 

Based on his previous study, Bradley (2012) extends his potential flow model to sodar 

and lidar data on a simple two-dimensional hill and an escarpment. Additionally, the 

results from the simple model are compared to more advanced CFD models (WindSim 

and OpenFOAM) from Behrens et al. (2012) at two different complex terrain sites in 

Scotland and New Zealand. Results show that the simple potential flow model is 

mostly sufficient to estimate the lidar error at these sites (Bradley 2012), although there 

are some cases where CFD provides better results (Behrens et al. 2012). 

In 2011 Leosphere introduced the second version of the Windcube lidar (“Windcube 

v2”), which was tested at the CRES Test Station in Greece (Foussekis 2011). For the 

Windcube v2, Leosphere introduced a proprietary method called “flow complexity 

recognition” (FCR) to correct for the lidar error in complex terrain already during the 

measurement, so that the system generates two data files: One with corrected data and 

one in default mode, with uncorrected data. At that time, the principle of this method 

was not revealed due to confidentiality (Foussekis 2011, p. 10). In default mode 

(without FCR), results are almost the same as for the previous comparison with the 

first version of the Windcube (Foussekis 2009), showing a very high correlation and a 

significant underestimation of the wind speed by the lidar due to the influence of the 

complex terrain. With FCR the bias between lidar and mast is significantly reduced 

(Foussekis 2011). FCR was also tested by Wagner and Bejdic (2014) at a complex 

terrain site in Hrgud, Bosnia and Herzegovina. Here, wind speeds are underestimated 

by 4 % in default mode. With FCR turned on, there is a slight overestimation of 1.5 %, 

which means at this site FCR over-corrects for the lidar error. According to the authors, 



 

15 

 

this has also been observed in previous studies (Wagner and Bejdic 2014). In an inter-

comparison of FCR results for sites of various complexities, this effect is also evident 

for several sites, although the magnitude of the bias is mostly reduced by FCR. It is 

interesting to note that in this study, FCR heavily over-corrects the measurement data 

at the highly-complex site by 20 %, which implicates that FCR might not be suitable 

for this site (Krishnamurthy and Boquet 2014). In 2017, Leosphere revealed the 

method behind FCR in a detailed technical report (Leosphere 2017). FCR requires 

Shuttle Radar Topography Mission (SRTM) orography data (that is stored on the 

device), the geographical coordinates of the measurement site and the north orientation 

of the lidar at the actual site. Then it uses the 3D wind field model “SWIFT” to 

calculate the wind flow in the closer proximity of the lidar to estimate the lidar error. 

It is, therefore, comparable to the other model-based correction approaches, apart from 

the fact that the model is run for each 10-minute-value instantly on the lidar. In this 

report, Leosphere also states that FCR is limited to moderately complex terrain and 

low surface roughness (Leosphere 2017). In its complexity, the model is comparable 

to WEng, which might explain its incapability to be applied at very complex and 

forested sites. 

A systematic review over the at that time available studies and open research questions 

regarding remote sensing in complex terrain is given in Bradley et al. (2015). The 

study concludes that simple models, e.g., potential flow models, can often correct for 

the lidar error acceptably well. However, as soon as recirculation or detached flow 

situations occur, more sophisticated models are needed that are capable of modeling 

those flow features. Also, more detailed characteristics of the atmospheric boundary 

layer flow (e.g., low-level jets or atmospheric stability) are so far not treated in the 

context of remote sensing in complex terrain (Bradley et al. 2015). 

1.3.5 Lidars in standards and guidelines 

Based on the above-described research and testing results and driven by the industry’s 

need for accurate wind measurements at large heights, the most relevant standards and 

guidelines have recently included instructions for the use of lidar measurements. 

Usually, the International Electrotechnical Commission (IEC) standard 61400-12-1 for 

power performance assessment of wind turbines is used for most wind energy 

applications since it precisely describes the procedures for accurate wind 

measurements (IEC 61400-12-1). Conventionally, classified and calibrated cup 

anemometers mounted on tall masts are used for the assessment of, e.g., power curves 

of wind turbines and also for wind resource assessment. In its recent version 2.0, the 

standard also allows for the use of classified and calibrated lidars, but under 

consideration of specific requirements: It limits lidar measurements to flat terrain sites, 

and it asks for an obligatory monitoring mast for the continuous tracing of the lidar 

data (IEC 61400-12-1) 

In comparison to other guidelines, these regulations can be seen as relatively 

conservative. A procedure published by the International Network for Harmonised and 

Recognised Measurements in Wind Energy (MEASNET) on the evaluation of site-

specific wind conditions allows the use of lidars also at complex terrain sites, given 

that at least one measurement mast is present at the site (Measnet 2016). The most 

progressive approach can be found in the German technical guideline on wind resource 

assessment (TR6) developed by the Fördergesellschaft Windenergie und andere 

Dezentrale Energien e.V. (FGW), that even allows the stand-alone use of lidars in 

complex terrain, without a mast being present, but under the consideration of 
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appropriate correction methods (FGW e.V. 2017). Concluding from this, it is evident 

that there are a lot of open questions and disagreements regarding the application of 

lidars and that the industry has a vital need to improve understanding and extent the 

experience on the application of lidars, especially in complex terrain. 

1.3.6 Multi-lidar measurements and alternative measurement principles 

There are other pathways to overcome the lidar error in complex terrain. One is the 

application of so-called “multi-lidar” measurements, where multiple laser beams are 

focused at the measurement point. The development of alternative measurement 

principles, that inherently avoid the homogeneous flow assumption represents another 

possibility. 

As described above, standard profiling lidars measure the radial wind speeds at 

different points in the atmosphere along the line of sight of the laser beam. Then, the 

horizontal wind speed is reconstructed under the assumption of homogeneous flow. A 

straightforward approach to overcome this assumption is to measure at one point, by 

intersecting the beams of two or more lidars from different locations. One of the first 

realizations of such a multi-lidar measurement is the “Musketeer Experiment” in the 

WindScanner.dk project, showing promising results (Vasiljevic 2014). Another 

experiment is the Kassel 2014 experiment carried out at the complex terrain test site 

of Fraunhofer IEE at Roedeser Berg. Several combinations of two or three scanning 

lidars are used to estimate the horizontal wind speed close to a sonic anemometer at 

the mast. The results are also compared to a Windcube lidar installed next to the mast. 

The study demonstrates an excellent agreement of the horizontal wind speed to the 

reference sonic anemometer at the mast (Pauscher et al. 2016). 

Additionally, the multi-lidar results correlate better to the sonic than those from the 

standard Windcube measurement, and also, the deviation in wind speed is lower 

(Pauscher et al. 2016). In the New European Wind Atlas (NEWA) project, several, 

more advanced and sophisticated multi-lidar measurement campaigns were carried out 

at different sites in Europe (Mann et al. 2017). Besides the overall aim of the project 

to generate a publically available and highly resolved wind atlas for whole of Europe, 

the database from the experiments will be made available for the validation of 

atmospheric flow models (Mann et al. 2017). Exemplarily, one of these validations is 

presented in Wagner et al. (2019), demonstrating the high flexibility and usefulness of 

lidar measurements to understand the flow over complex terrains. 

Doppler lidars like the Windcube or ZephIR are using the “coherent detection” 

approach. An alternative to this is “direct detection,” which directly uses the 

backscattered signal from aerosols or air (Emeis et al. 2007). Different methods to 

measure the wind speed based on direct detection are, e.g., described in Howard and 

Naini (2012). The cross-correlation method described there is implemented in the 

“SpiDAR” lidar, which was introduced by the Israeli company Pentalum in 2012, 

which was recently acquired by NRG Systems (NRG Systems 2018). A short 

verification campaign was carried at the Janneby test site in northern Germany by 

DNV GL. A report from this verification was provided by NRG systems, showing 

promising results at both 57 m and 100 m measurement height with a slope close to 

one and also R² values of 0.98 and 0.99 for the horizontal wind speed measurement 

(Stein 2014). 

The Merlis lidar, developed at Fraunhofer IEE within a research project, aims at a 

fully-integrated multi-lidar measurement. The first results from the development of the 
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novel approach were presented at the recent Resource Assessment Workshop of the 

Wind Europe, providing details on the project state (Khadiri-Yazami et al. 2019). 

The Physikalisch-Technische Bundesanstalt (PTB) in Germany has developed a 

bistatic lidar system that uses one laser source that is transmitted to the atmosphere 

and three receivers that are separated in space but only in a radius of 1 m around the 

transmitter (Oertel et al. 2019). Based on highly accurate components, it measures the 

wind speed vector of single particles in a minimal measurement volume (Eggert et al. 

2015). In a recent study, the bistatic lidar shows excellent agreement to a measurement 

mast in flat terrain and a Leosphere Windcube lidar. In that study, it is also compared 

to a laser Doppler anemometer in a wind tunnel showing excellent agreement. The 

authors conclude that the bistatic lidar will potentially be able to measure with high 

accuracy in flat as well as in complex terrain (Oertel et al. 2019). 

1.4 Summary of the literature review and research questions 

Vertical profiling monostatic Doppler lidars are by far the most often used lidar 

systems in wind energy applications because they are readily available, flexible and 

easy to use even at remote locations (Clifton et al. 2018; Gottschall et al. 2011; Klaas 

et al. 2015). The most promising approach to account for their lack of accuracy at 

complex terrain sites is the application of wind flow models (Bradley et al. 2015). 

The above-given literature study (e.g., Bingöl et al. 2009; Bradley 2012; Bradley et al. 

2015; Klaas et al. 2015) and the state of international standards and guidelines (FGW 

e.V. 2017; Measnet 2016; IEC 61400-12-1) reveal that there is a need for a better 

understanding of the applicability of lidars at complex terrain sites. 

Based on the findings in the literature review, five governing influencing factors on 

the lidar error in complex terrain are found: Orographic complexity, terrain roughness 

and vegetation, atmospheric stability, measurement height and half-cone opening 

angle. Summing up the results from the literature review in the introductory chapter in 

a systematic way, five main research questions can be derived with regard to these 

influencing factors. These research questions are developed in the following text. 

1.4.1 Orographic complexity 

In all available studies on lidar-mast comparisons at complex terrain sites, it is found 

that the lidar error is dependent on orographic complexity. Lidar errors measured at 

sites of different complexity and for distinct wind directions vary in magnitude and 

can either be negative or positive (e.g., Bingöl et al. 2009; Antoniou et al. 2007). The 

respective literature lacks a systematic comparison of lidar measurement accuracy 

concerning different orographic complexities. Existing experimental studies mostly 

focus on the results from a single site. Comparing different studies with sites of 

different orographic complexity is difficult, as the used anemometry and equipment, 

as well as the methods and definitions for data preparation and analysis, are usually 

not the same. In addition to that, it is not always the same type or even technology of 

wind lidar that is used for the evaluation, and the results (e.g., from pulsed and 

continuous-wave lidars) are not directly comparable.  

Resulting from this, the first research question arises: How well do lidar measurements 

perform for sites of varying orographic complexity? Alternatively, how does different 

orography (from flat to hilly terrain) influence the measurement accuracy of lidar 

measurements and what is the dependence of the lidar error on terrain inclination? 
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1.4.2 Measurement height 

As already stated in the previous chapter, there are many studies focusing on lidar 

measurements in flat and complex terrain (Antoniou et al. 2004; Bingöl 2009; 

Foussekis 2011). As those have been the standard for wind energy applications in the 

last decades, lidars are usually referenced to measurements from the mast-based cup 

or sonic anemometers within these studies to evaluate their accuracy in the wind speed 

and wind direction measurements. Nearly all studies have in common that the 

reference masts are lower than or equal to 100 m, as these are common and 

economically feasible mast heights. Contrary to that, wind turbines have been 

increasing in both hub height and rotor diameter, leading to upper tip heights of 

modern wind turbines in the range of 200 m (Rohrig 2018).  

This leads to the second research question: How do lidar measurements perform for 

greater heights? Or to be more precise: How accurate are lidar measurements at heights 

well above 100 m, i.e., at hub heights of current wind turbines (140 m) and for the 

whole rotor swept area (up to 200 m)? In the context of the complex terrain lidar error, 

the question could also be: How does measurement height affect the magnitude of the 

lidar error? Is there a decrease or an increase in the error with increasing measurement 

height? Furthermore: Is there a measurement height at which the lidar error becomes 

negligible? 

1.4.3 Terrain roughness and vegetation 

Measurement sites do not only differ in terms of orographic complexity but also in 

land cover and, therefore, terrain roughness and vegetation. Many complex terrain sites 

that are used for current wind energy projects are located in forested terrain (Callies 

2014). It is well known that terrain roughness and especially forest heavily influence 

the wind flow above the terrain (Belcher et al. 2008; Finnigan and Belcher 2004). 

Roughness elements and forest induce turbulence and shear in the wind profile or even 

enhance the formation of flow separation zones (Belcher et al. 2012; Shannak et al. 

2012). With this in mind, the assessment of the individual influence of single 

parameters of different sites on the actual lidar error is challenging. Comparing the 

accuracy of lidar measurements between sites of different orographic complexity, for 

example, is hindered by the influence of terrain roughness and vegetation. For 

example, results from Klaas et al. (2015) at a forested site show much smaller lidar 

errors than those found in Bingöl et al. (2009) or Foussekis (2011), which are both not 

forested.  

Resulting from that, the third research question is: How does different terrain 

roughness (from bare soil to bushes) influence the accuracy of lidar measurements? 

Moreover: What is the impact of forest on the magnitude of the lidar error in complex 

terrain? 

1.4.4 Atmospheric stability 

Another aspect that has not yet been treated in literature is the influence of atmospheric 

stability on lidar measurement accuracy. Although it is stated in a few studies that there 

might be an effect from this (e.g., Bradley et al. 2015), the author is not aware of any 

piece of work that examines the dependence of lidar measurement accuracy in terms 

of varying atmospheric stability in any kind.  
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Because there is a significant influence of atmospheric stability on the wind profile 

and the wind flow over or around hilly terrain (Ross et al. 2004; Leo et al. 2016), the 

fourth research question reads as follows: Is there an influence of atmospheric stability 

on lidar measurement accuracy? Or more precisely: How does stable, neutral or 

unstable stratification affect the magnitude of the lidar error? 

1.4.5 Half-cone opening angle 

Within the context of measurement height, the half-cone opening angle of the lidar is 

another factor that must be considered. With increasing measurement height, the 

distance between the measurement points of the lidar also increases significantly. 

Courtney et al. (2008) are proposing to reduce the half-cone opening angle from 30° 

to 15° in order to reduce the lidar error in complex terrain. This suggestion is 

interrogated and tested experimentally by Bingöl (2009) and Foussekis (2009), who 

come to the conclusion that the half-cone angle does not influence the lidar error. Also, 

Bradley et al. (2015) derive lidar error estimations that are solely dependent on flow 

curvature and independent of the half-cone opening angle. However, these findings 

are based on the assumption of symmetric flow and constant flow curvature. For flow 

simulations that consider surface roughness and forest as well as atmospheric stability, 

these assumptions are not necessarily valid (compare e.g. Belcher et al. (2008) and 

Ross et al. (2004)).  

The absolute distance depends on the half-cone opening angle and decreases when 

smaller angles than the standard 30° are used. The resulting research fifths question 

reads as follows: Does a smaller angle have positive effects on the lidar error, because 

the measurement points are closer together? Or, more generally: Is there an effect of 

changing the half-cone opening angle in the presence of asymmetric flow above 

forested terrain or under distinct atmospheric stability situations? 
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2 Aim of the doctoral thesis and novelty value 

Based on the research questions developed in chapter 1.4, the overall aims of the 

doctoral thesis and five hypotheses are formulated in chapter 2.1. These hypotheses 

are used as a leading thread throughout the whole thesis. The novelty value of the 

thesis and its contribution to the scholarly debate are then elaborated in chapter 2.2. 

2.1 Aims of the doctoral thesis and hypotheses 

The doctoral thesis aims at providing a guideline for lidar users in the wind energy 

sector to assess the applicability of lidars at complex terrain sites. Although there are 

some studies that compare lidar correction with different flow models in complex 

terrain, a holistic examination of the limits of these models concerning their ability to 

estimate the lidar error does not exist. 

The overall aim is a systematic expansion of knowledge and understanding of the 

applicability and limits of current Doppler lidars for wind measurements in complex 

terrain under consideration of the above-explained influencing factors (see chapter 

1.4). To understand their particular influence, it is vital to examine them separately. 

The following hypotheses, which are derived from the research questions, are going to 

be tested within the doctoral thesis, providing a clear and structured approach for the 

reader: 

A) The lidar error is dependent on orographic complexity. It increases with increasing 

terrain curvature that causes the wind flow to bend and accelerate. 

B) The lidar error is dependent on measurement height. It decreases with increasing 

height, while terrain effects on the wind flow diminish. 

C) The lidar error in complex terrain is dependent on terrain roughness. It is, in 

particular, sensitive to the presence or absence of forest. Roughness and forest 

increase shear and turbulence and facilitate flow separation effects. All these 

effects influence the flow curvature and speed-up. 

D) The lidar error in complex terrain is dependent on atmospheric stratification. It 

decreases for stable cases, which is because, in this case, the wind flow is less bent 

when passing a hill. 

E) The lidar error is dependent on the half-cone opening angle of the lidar 

measurement geometry. It decreases when the angle is decreased because the 

measurement points are closer together and the wind vectors are more similar. 

These hypotheses are again referred to in chapter 7 when they are contrasted to the 

results achieved within this doctoral thesis. However, having in mind the strong 

interdependency of the different influencing factors, they can be considered as function 

parameters spanning a four-dimensional parameter space that relates the lidar error to 

the actual measurement site. Consequently, the doctoral thesis aims at an integrated 

analysis of this interdependency, which is presented in the concluding chapter. 

2.2 Novelty value and contribution to scholarly debate 

The doctoral thesis firstly analyses the influence of the most governing factors on lidar 

errors in complex terrain in a systematic way revealing the actual influence and 

importance of each. Secondly, it combines these findings to an overall perspective that 

can be used as a practical guideline for the application of lidars in the terrain of various 

complexities. Considering the available literature, there is no comprehensive 
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assessment like this so far. The findings of Klaas et al. 2015 were a trigger to intensify 

research on model parameterization in the context of lidar error estimation, which is 

done in the parameter study within this thesis. 

Moreover, due to the model-based approach of the thesis, it can also answer questions 

of the applicability and limitations as well as the strengths and weaknesses of the 

different flow models that are used to estimate the lidar error. It, therefore, provides 

helpful guidance on the necessary complexity of the flow model to be used for lidar 

error estimation in a particular situation or at a specific site. 

Especially the work on atmospheric stability and its impact on the lidar error in 

complex terrain has not been treated in literature so far. The thesis closes a gap between 

the knowledge about the influence of atmospheric stability from a meteorological 

perspective on the one hand and its implications on the lidar error on the other hand. 

Furthermore, the lidar error estimation follows a novel approach where the lidar error 

is separated into its two main parts: Lidar error due to flow curvature effects and lidar 

error due to speed-up effects. A comparable approach was not found in the relevant 

literature. This approach gives a more detailed and structured insight into the flow 

effects that cause lidar errors in complex terrain. Especially the question, if the lidar 

half-cone opening angle is an important parameter that has to be considered, can be 

answered by this approach. 

Additionally, in the evaluation part of the thesis, the findings are compared to 

measurements from a 200 m high met mast at a complex and forested site. Considering 

the measurement height, the data quality, availability and the possibility to measure 

the directional dependence of the lidar error at a complex terrain site, there is no 

comparable study available in the literature. The met mast has been erected and 

operated within the context of the project “Windenergienutzung im Binnenland” 

(“Utilization of inland wind power”), funded by the Federal Ministry for Economic 

Affairs and Energy (BMWi), at the Fraunhofer IEE test site in complex terrain 

“Roedeser Berg.” A Doppler wind lidar was compared to the 200 m mast within the 

research project, providing a unique data basis for the examination of lidars errors up 

to great heights at a complex and forested site. This data set is used to compare the 

model-based results to real-world data in chapter 6. Results based on this dataset are 

also published in Klaas et al. (2015) and author contributions are given in Appendix 

10.4. However, the dataset is evaluated following a novel approach that puts the 

measurement results into the context of this dissertation. 

Within the frame of the European NEWA project, additional, more advanced lidar 

measurements have been carried out at the site of the 200 m mast using, e.g., long-

range scanning lidars. With these measurements, it is possible to visualize the overall 

flow pattern in main wind direction, revealing features like flow-separation that – as 

already stated above – might also influence the magnitude of lidar errors in complex 

terrain. In the outlook in chapter 8, a possible application of scanning lidars is 

described to continue the research on lidar error estimation and evaluate the findings 

of this dissertation. 
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3 Lidar measurement principle and possible error sources 

The following chapter briefly describes the fundamental physical principles that are 

used to measure the wind speed with monostatic pulsed Doppler lidars. It then explains 

the measurement principles and scanning modes (geometries) that are used in 

commercially available lidar profilers while focusing on the Leosphere Windcube that 

has been used in the experiments for this thesis. By defining the geometrical 

parameters of the measurement setup, the chapter provides the basis for analyzing the 

lidar error due to complex terrain. 

3.1 The measurement principle of monostatic pulsed Doppler wind lidars 

The Doppler Effect describes the frequency shift between emitted and received 

radiation that is observed when radiation source and receiver are moving relative to 

each other. For acoustic waves, this phenomenon was first described by Christian 

Doppler, but it occurs for electromagnetic waves (such as light) as well. By measuring 

this change in frequency, it is possible to determine the relative speed between source 

and receiver (Weitkamp 2005). 

The effect is used by monostatic pulsed Doppler wind lidars (or simply “Doppler 

lidars”) to measure the wind speed remotely: Pulsed laser light is emitted by a lidar 

placed on the ground. As the light is transmitted through the atmosphere, it is reflected 

by aerosols that move with wind speed (see Figure 3.1). A part of the light is scattered 

back to the receiver that is located inside the lidar (i.e., monostatic) (Weitkamp 2005). 

Because the speed of light and the frequency of the emitted light are precisely known, 

it is possible to determine the wind speed relative to the lidar. This speed is the 

projection of the three-dimensional wind vector to the line-of-sight of the laser beam. 

It is therefore called line-of-sight velocity 𝑣𝑙𝑜𝑠 or radial velocity 𝑣𝑟, defined positive 

for a movement toward the lidar and negative for a movement away from the lidar 

(Weitkamp 2005; Emeis et al. 2007). 

 

Figure 3.1: Schematic illustration of the Doppler Effect. A lidar is placed on the ground 

emitting light at a fixed frequency 𝒇𝟎. The light is backscattered at aerosols moving with wind 

speed. Due to the relative movement of the (fixed) lidar against the aerosols carried with the 

wind, the frequency of the light is shifted to the frequency 𝒇𝟎 + ∆𝒇. 



 

23 

 

The frequency of the light received by the measurement device is defined by 

𝑓 = 𝑓0 + ∆𝑓 = 𝑓0(1 +
2𝑣𝑟
𝑐
) (1) 

 

with 𝑓0 being the frequency of the emitted light and 𝑣𝑟/𝑐 the ratio of radial wind speed 

to the speed of light. From this equation, it becomes obvious that the frequency shift 

that has to be detected is very small. Wind speeds are usually in the range of 0 to 50 

m/s, while the speed of light is approximately 3x108 m/s. Furthermore, only a small 

portion of the emitted light is received back, increasing the challenges in signal 

processing (Weitkamp 2005). 

Pulsed Doppler lidars used for wind speed measurements are usually following the 

heterodyne detection principle. The lidar emits a pulsed beam that is then 

backscattered by aerosols in the atmosphere. The reflected light that reaches the lidar 

is mixed with a continuous wave laser that is locally oscillating in the lidar. By this, 

the system can measure the frequency difference between the emitted and received 

light (Weitkamp 2005). By adding a defined frequency offset to the local oscillator 

signal, a heterodyne lidar is also able to measure the sign of the frequency shift and, 

therefore, of the radial velocity (Courtney et al. 2008). The Leosphere Windcube lidar, 

which was used in the experiments presented within this thesis, is based on the 

heterodyne technique and operating a solid-state laser with a wavelength of 1.54 µm. 

For this system, a Doppler shift of 1.3 MHz corresponds to a radial wind speed of 

1 m/s (Pauliac 2009). Because the returned signal from a single pulse (or shot) of the 

laser contains random noise, pulsed lidars need to emit many shots and then calculate 

a time average to filter out the noise (Weitkamp 2005). The Windcube in its first 

version uses, for example, pre-defined values of 5,000 to 10,000 shots (Courtney et al. 

2008). The received signal is separated into range gates by the time-of-flight method. 

This enables the system to measure simultaneously at multiple heights with each laser 

beam (Emeis et al. 2007; Courtney et al. 2008). In a signal-processing unit, the signal 

is Fourier-transformed, and the peak of the frequency spectra is detected by the 

application of a mathematical model (Courtney et al. 2008). 

As already explained above, the radial wind speed is a projection of the three-

dimensional wind vector to the line-of-sight of the laser beam. This can 

mathematically be described by the following equation: 

𝑣𝑟 = 𝑢 sin𝜑 sin 𝜃 + 𝑣 sin𝜑 cos 𝜃 + 𝑤 cos𝜑 (2) 

 

with 𝑢, 𝑣 and 𝑤 being the three wind vector components in 𝑥, 𝑦 and 𝑧 direction, 𝜑 the 

half-cone opening angle (or prism angle) of the lidar against the vertical and 𝜃 the 

azimuth angle counted clockwise positive from the north. Here, 𝑢 is oriented along the 

positive x-axis from west to east and 𝑣 along the positive y-axis from south to north. 

The vertical wind speed 𝑤 is defined positive along the positive y-axis pointing 

upwards (compare Figure 3.2). Following this definition, radial wind speeds are 

positive for winds moving towards the lidar and negative for winds moving away from 

the lidar. 
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Figure 3.2: Lidar measurement geometry and definitions of the local coordinate system 

(𝒙, 𝒚, 𝒛) and the wind vector components (𝒖, 𝒗,𝒘) as well as the half-cone opening angle 𝝋 

and the azimuth angle 𝜽 (here for the second measurement location, 90° from the north). The 

measurement locations are numbered starting from North (N) clock-wise to West (W). The 

measurement locations are shown for an example measurement height at a plane defined by 

the circle. This measurement geometry equals the one that is used in the Leosphere Windcube 

v1. In the successive version Windcube v2, a fifths measurement location has been added with 

𝝋 = 𝟎 directly above the origin at measurement height. 

The vertical wind speed can directly be measured by a vertical laser beam at 𝜑 = 0°. 
In order to measure the horizontal wind speed components (and the wind direction), 

different scan techniques can be applied where the lidar consecutively measures radial 

wind speed at multiple measurement points in the atmosphere. From these 

measurements, the horizontal wind speed at a reconstruction point can be derived. The 

position of the reconstruction point is usually a point at the desired measurement height 

directly above the lidar location. However, particular assumptions have to be made to 

carry out this wind vector reconstruction (Weitkamp 2005). The central assumption is 

that the flow between the measurement points is homogeneous, i.e., wind speed does 

not change among the different measurement points and the reconstruction point 

(Weitkamp 2005; Courtney et al. 2008; Bingöl 2009). The implications of this 

assumption are explained in detail in chapter 3.2. 

The Windcube uses the Doppler beam swinging (DBS) scan technique, which is a 

simplification of the velocity-azimuth-display (VAD) technique (Pauliac 2009). For a 

VAD scan, the laser beam is tilted out of the vertical by a fixed angle 𝜑. Then a circular 

scan is performed, and radial wind speeds are measured at different azimuth angles 𝜃 

(Figure 3.3). Visualizing the radial wind speed against the azimuth angle then ideally 

shows a sine wave from which horizontal wind speed and wind direction can be 

approximated (Weitkamp 2005). 
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Figure 3.3: Illustration of a typical VAD scan result of the radial wind speed against the 

azimuth angle oft he measurements. Here ten measurement rounds are simulated for given 

wind speed and wind direction. Radial wind speeds are assumed to be normally distributed 

around a mean value. In this example, the wind direction is located at the maximum (or 

minimum) of the sine wave curve (270 or 90°). The horizontal wind speed can be calculated 

from the radial wind speeds at the maxima based on 𝜽 and half-cone opening angle 𝝋. An y-

offset of the curve is caused by the contribution of a vertical wind speed component. The 

illustration is based upon the one given in (Werner 2005, p. 340). 

However, in order to calculate the three wind vector components, three independent 

radial measurements are sufficient. In its simplest form, the DBS technique relies on 

two measurements tilted from the vertical to estimate the horizontal wind speed and 

one vertical measurement to directly measure the vertical wind speed (Weitkamp 

2005). The analysis within this thesis is based on the DBS scheme that is used in the 

Windcube lidars as it is the most common scheme and can easily be simplified from a 

three-dimensional to a two-dimensional case. Definitions and nomenclature are also 

presented in Klaas et al. (2015) and used throughout the whole thesis. 

Based on the above-stated definitions, the Windcube lidar uses the following equations 

to derive the three wind vector components: 

𝑢𝐿 =
𝑣𝑟4 − 𝑣𝑟2
2 sin𝜑 sin 𝜃

 

𝑣𝐿 =
𝑣𝑟3 − 𝑣𝑟1
2 sin 𝜑 cos 𝜃

 

𝑤𝐿 =
−𝑣𝑟1 + 𝑣𝑟2 − 𝑣𝑟3 + 𝑣𝑟4

4 cos 𝜑
= −𝑣𝑟5 

(3) 

 

with 𝑣𝑟,𝑖 being the four (or five) radial wind speed measurements at measurement 

points 𝑖 that are carried out by the Windcube lidar (Pauliac 2009). The measurement 
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geometry is illustrated in Figure 3.2. Assuming the lidar being oriented following the 

coordinate system, the four tilted measurements are consecutively performed in the 

north, east, south and west direction. Each pair of opposed radial wind speeds can then 

be used to calculate the related wind vector component directly. The vertical wind 

speed can be reconstructed either from all four radial wind speeds or directly from a 

fifths vertical measurement. In case of an offset against the horizontal coordinates, 

which often occurs due to practical limitations in measurement campaigns, the result 

must be corrected for this as a part of the reconstruction. 

The (horizontal) wind speed increases with height, which is usually modeled as the 

logarithmic wind profile within the surface layer, as described in Stull (1988) (see also 

chapter 4.1). A Doppler lidar emits laser pulses of a defined length, which implies that 

the returned signal corresponds to a measurement volume or probe volume along the 

line of sight of the laser beam (Weitkamp 2005). In the case of the Windcube lidar, the 

probed volume extends roughly 26 m along the beam and is constant with height 

(Courtney et al. 2008). The effects of probe volume size have been analyzed in detail, 

for example, by Pauscher et al. (2016). However, under consideration of common 

vertical wind shear values (Emeis 2018, p. 34), the effects of the vertical extent of the 

probe volume can be neglected in comparison to other, more dominating error sources 

for lidars in complex terrain which are described in the following chapter. 

3.2 Lidar error sources in complex terrain 

The homogeneous flow assumption described above is applicable for flat terrain sites 

that, in particular, do not introduce any speed-up or flow curvature effects on the mean 

wind flow (Courtney et al. 2008). The mean horizontal wind speed measured by a lidar 

agrees well with measurements from cup anemometers in that case (compare, e.g. 

Antoniou et al. 2007 and chapter 1.3.2). 

In the case of a lidar placed at a complex terrain site, the homogeneous flow 

assumption is violated. Generally speaking, the wind speed vectors at the different 

measurement points of the lidar are no longer equivalent, which introduces errors in 

the wind vector reconstruction method described above. Additionally, the wind speed 

vector at the reconstruction point itself, i.e., at measurement height above the lidar 

location, is also different from the wind speeds at the different measurement points. 

Due to the change in terrain elevation, the measurement points are at a different height 

above ground than the reconstruction point. This adds more complexity to the problem 

of wind vector reconstruction due to the vertical wind shear. 

The above-given equation for the radial wind speed can be changed in order to consider 

the inhomogeneous wind field: 

𝑣𝑟𝑖 = 𝑢𝑖 sin𝜑 sin 𝜃 + 𝑣𝑖 sin 𝜑 cos 𝜃 + 𝑤𝑖 cos𝜑 (4) 

 

with 𝑖 being the number of the measurement point with the specific wind vector 

(𝑢𝑖 𝑣𝑖 𝑤𝑖)𝑇. 
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For the case of homogeneous wind flow among the measurement points of the lidar, 

the reconstructed wind vector is equivalent to the actual wind vector above the lidar. 

At a distinct measurement height, horizontally homogeneous wind flow can be 

described mathematically by the wind speed gradient being zero in all horizontal 

dimensions: 

𝛁 ∙ 𝐕 =

(
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) (5) 

 

with 𝑽 being the wind vector (𝑢, 𝑣, 𝑤)𝑇. It can be seen that the wind vector components 

do not change horizontally in that case. As already described in the preceding chapter, 

in case of no change in terrain elevation among the measurement points and the 

reconstruction point, the vertical change in wind speed is negligible concerning the 

wind vector reconstruction. 

In the case of complex terrain and, therefore, inhomogeneous flow, all components of 

the wind speed gradient remain and contribute to the (biased) reconstructed wind 

speed. 

The effects of inhomogeneous wind flow on the accuracy of wind vector 

reconstruction can best be explained by simplifying the problem to the two-

dimensional space. Figure 3.4 a) shows the two-dimensional representation of a lidar 

placed at a flat terrain site. The local coordinate system has its origin at the lidar 

location, with 𝑥 being the positive direction for the 𝑢 component and 𝑧 being the 

positive direction for the 𝑤 component of the wind speed. In this simple case, 𝑤 = 0 

and 𝑢 is horizontally homogeneous which means it does not change along the x-

coordinate. Independent of the actual measurement height, the wind vector 

reconstruction following equation (3) will always result in the actual wind speed at the 

reconstruction point without any bias. 

Figure 3.4 b) shows a slightly more complex flow situation. Here the lidar is placed 

on a tilted plane with increasing terrain elevation in 𝑥 direction. Due to the change in 

terrain elevation, it becomes evident that the lidar measures at the same 𝑧 coordinate 

in its local coordinate system, but at a different height above ground at the two 

measurement points. Considering the flow being horizontally homogeneous in this 

case as well, the 𝑢 and 𝑤 components of the wind speed do not change in flow direction 

parallel to the plane. With the plane only being slightly tilted, it can also be assumed 

that the vertical wind shear between the left and the right measurement point can be 

approximated to be constant, resulting in a linearly increasing 𝑢 component. The 

application of equation (3) for wind vector reconstruction, in this case, will also lead 

to an unbiased result for the reconstructed wind speed compared to the actual wind 

speed at the reconstruction point. The vertical change in horizontal wind speed 

between the measurement points levels out in that case. However, in case the 

assumption of a linearly increasing horizontal wind speed is false, this case will also 

introduce bias. 
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A representative case for complex terrain is shown in Figure 3.5 c). Here the lidar is 

placed on top of a simple two-dimensional hill. Several things change in this situation, 

leading to a biased result of the wind vector reconstruction in the end. 

First, there is a nonlinear change of the u-component of the wind speed vector in x-

direction due to the influence of the terrain. Above the hill, the wind speed increases 

compared to the freestream wind speed. This effect is usually referred to as “speed-

up” and is strongly dependent on the shape of the hill and the height above ground. 

However, the lidar does not see the whole speed-up effect, as the measurement points 

are usually never located in the freestream area of the flow. The only part of the speed-

up that is relevant for wind vector reconstruction is between the measurement points 

and the reconstruction point. The influence of wind speed increase in the inflow region 

and wind speed decrease in the downflow reason can either be equivalent (symmetric) 

or not, depending on terrain complexity. The effect of speed-up must be considered a 

relevant factor for the lidar error in complex terrain. Therefore, based on the later 

definition of the lidar error in this thesis, the speed-up effects are considered 

separately. 

Second, there is a change of the w-component of the wind speed vector in x-direction 

due to the influence of the terrain. As the wind passes the hill, it first streams upwards, 

implying a positive vertical wind speed. Then there is a turning point at the top of the 

hill, after which the wind streams downwards, resulting in negative vertical wind 

speed. However, both – the positive and the negative vertical wind speed – decrease 

the radial wind speed measured by the lidar at the respective measurement points. This 

leads to an overall decrease of the reconstructed wind speed following equation (3) 

and, therefore, an underestimation of the actual wind speed at the reconstruction point 

by a lidar placed on top of a hill. 
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Figure 3.4: Two different generic flow cases with a lidar placed in flat terrain (a) and on a 

tilted plane (b). In case a), the reconstructed wind speed �̂� is equivalent to the actual wind 

speed above the lidar 𝒖𝑳 and there is no lidar error. Case b) introduces more complexity, 

adding a constant vertical wind speed component to the flow. However, its influence on the 

radial wind speed equals out. A small lidar error may be present because the two measurement 

points are located at different levels above the ground. 



 

30 

 

 

Figure 3.5: Generic flow cases (continued) with a lidar placed on a hill-top (c). As a typical 

complex terrain example, case c) shows a lidar placed on top of a hill within symmetric flow 

conditions. The changing vertical wind speed component introduces a lidar error. Additionally, 

there is a speed-up effect on the horizontal component that causes a part of the total lidar error. 

 

Figure 3.6: Illustration of a lidar placed in a curved valley. The flow is following the valley 

curvature (grey lines and arrows). In a simplified two-dimensional case the reconstructed wind 

speed �̂� underestimates the actual wind speed at the lidar location 𝒖𝑳, because of the impacts 

of the changing 𝒗-component of the horizontal wind speed along the valley. The behavior is 

similar to the hill-top flow case shown before. 
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Based on the above-given explanations, the lidar error 𝜀 for the two-dimensional case 

can be defined as follows: 

𝜀 =
�̂� − 𝑢𝐿
𝑢𝐿

= 𝜀𝑐 + 𝜀𝑠 (6) 

 

with �̂� being the reconstructed wind speed and 𝑢𝐿 the actual horizontal wind speed at 

the reconstruction point. Following this definition, an underestimation of the actual 

wind speed at the reconstruction point will lead to a negative lidar error and an 

overestimation will lead to a positive lidar error. In order to separate the two effects, 

the lidar error can be divided into a part being caused by flow curvature (𝜀𝑐) and 

another part due to speed-up effects (𝜀𝑠). As presented in the results chapter 5.2.6, this 

distinction will give insight into the influence of the half-cone angle (beam tilting 

angle) on the lidar error. 

Equation (3) for wind vector reconstruction can be rewritten for the two-dimensional 

case: 

�̂� =
𝑣𝑟,𝑖𝑛 − 𝑣𝑟,𝑜𝑢𝑡
2 sin𝜑

=
𝑉𝑖𝑛 sin(𝜑 − 𝛼) + 𝑉𝑜𝑢𝑡 sin(𝜑 + 𝛽)

2 sin𝜑
 (7) 

 

Here the radial wind speeds left and right from the lidar (inflow and outflow) are 

referenced to as 𝑣𝑟,𝑖𝑛 and 𝑣𝑟,𝑜𝑢𝑡 and the magnitude of the wind vector at the same 

points as 𝑉𝑖𝑛 and 𝑉𝑜𝑢𝑡. The inflow and outflow inclination angles of the flow are 

defined as 𝛼 and 𝛽 and combine with the half-cone opening angle (or prism angle) of 

the lidar 𝜑. 

For simplification of the above-given equation (7), the following relationship can be 

derived: 

𝑢𝐿 =
𝑢𝑖𝑛 + 𝑢𝑜𝑢𝑡

2
=
𝑉𝑖𝑛 cos 𝛼 + 𝑉𝑜𝑢𝑡 cos 𝛽

2
 (8) 

 

By making use of this equation and by defining the factor 𝑘 =
𝑉𝑜𝑢𝑡

𝑉𝑖𝑛
 equation (7) can be 

written as: 

�̂� = 𝑢𝐿(1 −
1

tan𝜑

sin 𝛼 − 𝑘 sin 𝛽

cos 𝛼 + 𝑘 cos 𝛽
) (9) 

 

Neglecting changes in the magnitude of wind speed between the two measurement 

points here (they will be considered in the second part of the error equation later) by 

assuming 𝑘 = 1, results in an equation that is independent of the actual wind speed, 

but only dependent on geometric properties of the wind flow and the lidar: 

𝜀𝑐 = −
tan

𝛼 − 𝛽
2

tan𝜑
 (10) 
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And, with 𝛼 = 𝛽, as it is the case in symmetrical flow situations the equation reduces 

to 

𝜀𝑐 = −
tan𝛼

tan𝜑
 (11) 

 

The speed-up of the horizontal wind speed component between a measurement 

location 𝑖 and the reconstruction point can be written as 

∆𝑢 =  𝑢𝐿 − 𝑢𝑖 (12) 

 

Keeping in mind that the speed-up between both, the inflow and the outflow 

measurement point and the reconstruction point have to be considered, the lidar error 

due to speed-up can be defined by 

𝜀𝑠 =
𝑢𝑖𝑛 + 𝑢𝑜𝑢𝑡

2𝑢𝐿
− 1 (13) 

 

Here the difference between inflow and outflow horizontal component of the wind 

flow is considered as 𝑢𝑖𝑛 and 𝑢𝑜𝑢𝑡. 

 

Combining equations (11) and (13) leads to the equation used for the assessment of 

the total lidar error due to complex terrain in this study: 

𝜀 = [−
tan

𝛼 − 𝛽
2

tan𝜑
] + [

𝑢𝑖𝑛 + 𝑢𝑜𝑢𝑡
2𝑢𝐿

− 1] (14) 

 

In chapter 5, the effects of complex terrain are modeled for simplified two-dimensional 

geometries. However, considering the measurement geometry of e.g. a Leosphere 

Windcube with four measurement points (compare Figure 3.2), the two-dimensional 

approach is applicable with only minor uncertainties, in case the measurement points 

are aligned along with the wind direction. The radial wind speeds at the measurement 

points perpendicular to the wind direction are then close to zero (see equation (3)). 

For real-world applications with arbitrary terrain, the three-dimensional flow field is 

relevant and must be considered in order to achieve an accurate assessment of the lidar 

error. The following text will, therefore, describe the more general, three-dimensional 

case. 

In a three-dimensional wind field, with the lidar being placed on an arbitrary three-

dimensional surface, the wind vector components do change in all three coordinates. 

The speed-up and the curvature of the flow are dependent on wind direction. Different 

terrain shapes in different flow directions will lead to different lidar errors. 

Additionally, the wind flow direction might change between the measurement points, 

while the magnitude of 𝑢 and 𝑣 are changing. A simple example for this case might be 

the flow through a curved valley: A positive y-component at the inflow that linearly 

decreases towards zero at the reconstruction point and then decreases further to 

negative values at the outflow results in an underestimation of the horizontal wind 
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speed at the reconstruction point (Figure 3.6). This behavior is equivalent to the before 

described flow over a two-dimensional hill. 

Generally speaking, the flow curvature or bending in any dimension introduces errors 

in the wind vector reconstruction. The speed-up part of the lidar error in a three-

dimensional case must be extended to the speed-up or horizontal change in wind speed 

between both pairs of opposing measurement points. Depending on the wind direction 

and terrain surface, the speed-up part will also change. 

3.3 Lidar error in the context of wind resource assessment 

As detailed out in the above chapter 3.2, lidar errors in complex terrain are systematic 

and need to be corrected before the measured wind data can be used for wind resource 

assessments (WRA) or other wind energy applications. The application of flow models 

for lidar error estimation is a common approach (see chapter 1.4). However, modeling 

the wind field with CFD comes with uncertainties that mainly depend on model 

complexity and the characteristics of the actual measurement site (e.g., Bechmann et 

al. 2011). Following from this, also the estimation of the lidar error introduces 

additional uncertainties into the WRA. The German guideline on WRA assigns 50 % 

of the estimated error as an additional uncertainty in the wind measurement (FGW e.V. 

2017) and this approach is usually followed, at least in the German wind industry.  

Increasing lidar errors, therefore, also increases the magnitude of the additional 

uncertainty. The question arises up to which magnitude of lidar error the application 

of lidars is still feasible at a certain measurement site. 

The total uncertainty in predicted annual energy production (AEP) of a planned wind 

farm is in the order of 10-15 % for flat terrain and can, in dependence of the data basis, 

exceed 15 % in complex terrain (Basse et al. 2017). In a round-robin test of the German 

Wind Energy Association about WRA at a slightly complex and partly forested site, 

the mean estimated total uncertainty was 14.8 % (Fiedler et al. 2015). Based on 

economic considerations and financial risk, the total uncertainty should be as low as 

possible because it directly affects the yield deductions and, consequently, the interest 

rates and equity capital of the project (Schorer et al. 2015; Mehnert 2017). 

Following the technical guideline TR6 (FGW e.V. 2017), the total uncertainty in a 

WRA consists of the different and independent uncertainty components of the wind 

data basis, modeling of the wind field, modeling of park efficiency, power curve and 

energy loss factors.  

The total uncertainty is calculated by the root-sum-square technique (RSS) (compare, 

e.g., Lackner et al. 2007). This method is also used here to assess the maximum 

acceptable contribution of the lidar error correction to the total uncertainty. The RSS 

of all uncertainties in a WRA, except the additional uncertainty due to lidar error 

correction, is assumed to be 12 % in AEP. The additional uncertainty is given as 50 % 

of the lidar error estimation in wind speed. It is converted to uncertainty in AEP by 

application of a common AEP factor of 2.0 (Basse et al. 2017). Table 1 then provides 

the resulting total uncertainty for different lidar errors. 

In order to keep the total uncertainty below 15%, the lidar correction must not exceed 

9 % for these assumptions. However, changing the assumptions changes this value a 

lot. E.g., changing the AEP factor in the interval from 1.5 to 2.5 (Basse et al. 2017) 

results in tolerable lidar errors is between 7% and 12%. An increased basic uncertainty 



 

34 

 

decreases the possible margin for lidar error correction. It is, therefore important to put 

the estimated lidar error into the context of the actual site and the preconditions of the 

WRA to decide on whether a lidar or a mast measurement campaign is reasonable in 

a given case. 

 

Table 1: Additional uncertainty because of lidar error correction at a complex terrain site and 

resulting total uncertainty of the wind resource assessment (WRA). The basic total uncertainty 

for zero lidar error is assumed to be 12 %. The additional uncertainty from lidar error 

correction is 50 % of the lidar error and the AEP factor used in the calculation is 2.0. 

Uncertainties are assumed to be independent. 

absolute lidar 
error [%] 

additional 
uncertainty from 
correction  [%] 

additional 
uncertainty 
in WRA  

total uncertainty 
of WRA  

uncertainty 
difference 
[%] 

0 0 0 12,0 0,0 

1 0,5 1 12,0 0,0 

2 1 2 12,2 0,2 

3 1,5 3 12,4 0,4 

4 2 4 12,6 0,6 

5 2,5 5 13,0 1,0 

6 3 6 13,4 1,4 

7 3,5 7 13,9 1,9 

8 4 8 14,4 2,4 

9 4,5 9 15,0 3,0 

10 5 10 15,6 3,6 

11 5,5 11 16,3 4,3 

12 6 12 17,0 5,0 
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4 Modeling methods and strategies 

As already described in chapter 3.2 the method of choice within this thesis to estimate 

the lidar error due to complex terrain is to model the wind flow. For this, different 

analytical and numerical flow models are available. They can be distinguished by their 

modeling approach and level of detail. 

The following chapter 4.1 will give a short introduction to the atmospheric boundary 

layer (ABL) and wind flow in complex terrain. Due to its importance for this study, 

the effects of atmospheric stability are discussed separately in chapter 4.2. As different 

models have been used within the thesis, chapter 4.3 and sub-chapters will introduce 

their methodology and characteristics. 

To achieve the aims of the doctoral thesis, a systematic model-based parameter study 

has been carried out, using the different flow models described. The approach and 

method of this study are described in chapter 4.4. 

Chapter 4.5 will then describe how the different models were set up and applied and 

also give an overview of the geographical data that has been used for flow modeling. 

4.1 Wind in complex and forested terrain 

The wind profile in the lower part of the ABL in flat terrain with homogeneous land 

cover can be described by the logarithmic wind profile. The following equation is valid 

for the surface layer or Prandtl layer that reaches up to about 100 m above ground. It 

is dominated by surface roughness effects (Stull 1988): 

𝑢(𝑧) =
𝑢∗
𝜅
ln (
𝑧 − 𝑑

𝑧0
) (15) 

 

Here 𝜅 = 0.4 is the van Kármán constant and 𝑢∗ the friction velocity. The change of 

wind speed with height can be approximated by a logarithmic function that is 

dependent on the height above ground 𝑧, surface roughness or roughness length 𝑧0 and 

– in case of the presence of forest or other obstacles – a displacement height 𝑑. Typical 

values for the roughness length are 0.01 m for grassland of 0.1 m for shrubs (compare 

Emeis 2018, p. 34; Troen 1989). The displacement height is used to shift the wind 

profile vertically. It is dependent on the density and height of the obstacles or the trees. 

Trees standing close together result in a larger displacement height (Emeis 2018; Stull 

1988). An overview of displacement height modeling in wind energy can be found in 

Dellwik et al. (2006). 

For complex terrain, this simple equation is no longer valid, as additional effects have 

to be considered to accurately model the wind profile and other wind characteristics.  

Within the context of this thesis, complex terrain is defined by the presence of at least 

one of the following two elements: 

1. Inhomogeneity in land cover (forest, grassland, bushes, clearings, …) and 

therefore surface properties 𝑧0 and 𝑑 

2. Significant variation of terrain elevation (hills, mountains, valleys, 

escarpments, …) 

This definition is, e.g., comparable to other definitions in Emeis (2018) or Clifton 

(2015). 
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To estimate the wind profiles or the overall wind field at a complex terrain site, flow 

models are needed that are able to model the influence of orography and land cover on 

the wind flow (Emeis 2018). 

Flow models used for wind energy applications differ in terms of complexity and their 

capability to model, e.g. non-linear effects as flow-separation. The linear models (e.g., 

WAsP) have been used for many years to estimate the wind resource in flat terrain or 

in gently sloping terrain. However, as more and more wind turbines are erected at 

complex and forested sites, with significant terrain elevations, RANS CFD models 

have shown to provide more accurate results (Bowen and Mortensen 1996; Palma et 

al. 2008). 

4.2 Atmospheric stability 

The state of the ABL can roughly be classified into three different atmospheric stability 

classes: A convective (or unstable) boundary layer, a stable boundary layer and a 

neutral (or dynamical) boundary layer (Stull 1988; Emeis 2018). The three different 

types and the preconditions for their occurrence are described in the following text. 

The structure of the ABL develops with the diurnal cycle. Starting with sunrise and 

increased heating of the surface, a convective boundary layer is evolving. It is growing 

with time and, due to the heating of the surface, characterized by vertical mixing 

(mixing layer), which results in low wind shear. With the beginning of sunset, the 

thermal convection ends and less turbulence is produced. The remaining layer is called 

the residual layer, which is neutrally stratified. At the same time, a stable boundary 

layer is forming at the surface, which has low turbulence intensity and large wind 

shear. Its vertical extent is growing during nighttime. After sunrise, the stable 

boundary layer is dissolved and a new convective boundary layer develops. However, 

in case of the presence of clouds and precipitation or strong winds that cancel out the 

influence of radiative heating by the sun, the diurnal variation of the ABL is less 

pronounced. In this case, a neutral boundary layer remains (Stull 1988; Emeis 2018; 

Foken 2016). 

A common approach to adapt the logarithmic wind profile to different atmospheric 

stabilities is the introduction of a stability correction function. This is, i.e., described 

for  stable and unstable stratification in Emeis (2018). A comparable approach is also 

used to determine the boundary wind profiles in the RANS CFD model Meteodyn WT, 

which is used within this dissertation to model the influence of atmospheric stability 

on the flow above a hill (Meteodyn 2014). 

4.3 Modeling of the wind flow 

The following chapter describes the three types of wind flow models that are used 

within the context of this thesis to model the flow over two-dimensional hills: 

 An inviscid, potential flow model introduced by Bradley (2008) (chapter 4.3.1) 

 A model based on a linearized version of the Navies-Stokes equations, namely 

WAsP Engineering 2.0 (chapter 4.3.1) 

 A model based on RANS equations, namely Meteodyn WT (chapter 4.3.3) 

These three models differ in complexity, computational efforts for calculations as well 

as available model parameters. The characteristics and capabilities of the three models 

are briefly described in the following sub-chapters. 
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4.3.1 Potential flow model 

Potential flow models provide a very much-simplified solution for the wind flow over 

a surface. They do not cover any kind of friction, i.e., friction induced by the ground 

due to roughness or vegetation or friction within the flow. However, for simple flow 

situations where friction on the ground is not of interest or negligible, potential flow 

solutions can provide useful approximations to more complex numeric solutions such 

as the RANS equations. One of their big advantages is that it is often possible to give 

an analytical solution for a distinct flow situation. This makes the computation of the 

flow field under different parameterizations very fast and easy (Emeis 2018; Bradley 

2008). 

A simple inviscid and two-dimensional potential flow model has been introduced by 

Bradley (2008) in the context of sodar measurements in complex terrain. It is capable 

of modeling the wind flow on a bell-shaped hill. The model is also applied and 

discussed in Bradley (2012), where it is used to study the errors of a sodar and a lidar. 

The model is used within this thesis as a reference or baseline case for the more 

complex CFD models in the parameter study presented in chapter 5. It is implemented 

in MATLAB and the equations are adapted to the measurement geometry of a two-

dimensional simplification of the Windcube lidar as described in chapter 3.2. All 

equations given in the following text are taken from this implementation but are based 

on those given in Bradley (2008) and Bradley (2012). 

The flow model is based on the well-known potential flow solution around a cylinder, 

which is placed in the center of the coordinate system used. It provides a stream 

function and a streamline function that can be used to approximate the flow over a 

bell-shaped hill very much similar to a Gaussian hill shape (Bradley 2008): 

𝜓 = 𝑈𝜂(1 −
𝑅2

𝜁2 + 𝜂2
) 

 

𝜂0 = 𝜂(1 −
𝑅2

𝜁2 + 𝜂2
) 

(16) 

 

Stream function 𝜓 and streamlines 𝜂0 are only dependent on the horizontal inflow 

speed 𝑈 and the radius of the cylinder 𝑅. The coordinates 𝜁 and 𝜂 represent the ordinate 

and abscissa of the two-dimensional coordinate system centered at the cylinder 

(compare Figure 4.1). 

The fundamental assumption of the model is that any of the streamlines resulting from 

the flow around a cylinder can be considered as the hill surface and that all streamlines 

following upwards can be seen as the flow field over this hill. Bradley (2008) then 

introduces a parameterization of the potential flow solution that links its parameters to 

those of a two-dimensional hill. 
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The streamline that represents the hill surface 𝜂0 and the radius of the central cylinder 

𝑅 are calculated from the hill height 𝐻 and the hill half-width 𝐿: 

𝜂0 = √𝐿2 +
𝐻2

4
− 𝐻 (17) 

𝑅2 = 𝐻𝐿√1 + (
𝐻

2𝐿
)
2

 (18) 

 

The horizontal and vertical wind vector component 𝑢 and 𝑤 can then be calculated by 

the following equations in which the coordinate system is centered at the location of 

the lidar, which is typically at the peak of the hill: 

𝑢(𝑥, 𝑧) = 𝑈 (1 − 𝑅2
(𝑥2 − 𝑧2)

(𝑥2 + 𝑧2)2
) 

(19) 

𝑤(𝑥, 𝑧) = 𝑈 (−2𝑅2
𝑥𝑧

(𝑥2 + 𝑧2)2
) (20) 

 

with 𝑥 = 𝜁 − 𝜁𝐿 and 𝑧 = 𝜂 − 𝜂𝐿 being the coordinates centered on the lidar location. 

The flow solution is scaled by the wind flow at the inflow of the model domain 𝑈. 

The hill surface is given by the streamline starting at 𝜂0, which represents the ground 

height of the flat terrain at the border of the model domain. Following the streamline 

at 𝜂0 gives the shape of the hill. The wind vector components can then be calculated 

for arbitrary points above that streamline. 

The set of 𝐻/𝐿 ratios that are used in the parameter study is detailed out in chapter 4.5. 

 

Figure 4.1: Geometry and definitions in the potential flow model following Bradley (2008). 

The figure has been copied from Bradley (2008) with minor adaption. In this example, the 

lidar is placed at an arbitrary point at the surface of the hill in order to illustrate the shift of the 

coordinates. 
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4.3.2 Linearized model 

WAsP Engineering (WEng) is a well-known flow model that is often used for wind 

energy applications (Mann et al. 2002). The model is a so-called “linearized” model, 

which is based on a linearized version of the Navier-Stokes equations. Since its 

publication in 1975, it was under further development (Jackson and Hunt, J. C. R. 

1975; Troen and Baas 1990; Mann et al. 2002). Its basic concept is to model the 

influence of orography (i.e., hills or valleys) as perturbations to the boundary-layer 

flow over flat terrain. Due to the simplifications that are made in the linearization, it is 

only applicable for flat and moderately complex sites. According to the 

recommendations of the developer, it should not be used in complex terrain with steep 

inclinations where flow separation might occur (Mann et al. 2002). There is no forest 

model in WEng, but a common way to represent forest is the use of a displacement 

height and increased roughness lengths (Dellwik et al. 2004). Further details on how 

the model is used within this dissertation can be found in chapter 4.5. It has also been 

used by Klaas et al. (2015) to estimate the lidar error and the work presented in this 

thesis builds upon the work for that study. 

4.3.3 RANS model 

With the increasing computational power of modern desktop PCs, the application of 

three-dimensional RANS CFD models has become more popular. RANS CFD models 

in combination with a turbulence closure, are capable of modeling the atmospheric 

boundary layer flow at complex terrain sites (Palma et al. 2008; Mann et al. 2017).  

Today there are multiple commercial and non-commercial software available that are 

used in the wind industry (Palma et al. 2008). The software Meteodyn WT, developed 

by the French company Meteodyn is used in version 5.3 within this dissertation to 

perform modeling of complex, forested terrain, also under different atmospheric 

stability conditions. Most information about the model is provided within the software 

documentation (Meteodyn 2014), a presentation from a Webinar (Meteodyn 2017) and 

a white paper provided by the software developer (Jiang et al.). Wherever possible, 

literature references to original publications of the fundamental model equations are 

given. 

In Meteodyn WT, steady-state RANS equations for incompressible flow are used in 

combination with a K-closure scheme for turbulence parameterization (Meteodyn 

2014; Hurley 1997). 

Meteodyn WT models the forest as a porous medium that introduces an additional sink 

term to the RANS equations within the forest cells. The forest height can be adapted 

and the forest density can be changed, providing the possibility to model low, medium 

and high forest density. The sink term is defined by the following equation (Meteodyn 

2014; Wilson et al. 1998): 

𝐹𝑉 = −𝜌𝐶𝑑𝑼|𝑼| (21) 

 

When the forest model is activated, the local roughness length is directly related to the 

tree-height to roughness-length ratio (Meteodyn 2014): 

𝐴 =
ℎ𝑡
𝑧0

 (22) 
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A value of 𝐴 =  20 is suggested by the developer, although it can be changed by the 

user in order to adjust the tree height. However, within the simulations carried out in 

the parameter study, the value is set to 20 (Meteodyn 2014). 

Within the forest cells, the forest model affects several parameters of the turbulence 

model. In particular, the dissipation term3  is defined as follows Wilson et al. (1998): 

𝜀 = max(𝜀𝑐𝑐, 𝜀𝑓𝑑)  𝑤𝑖𝑡ℎ {
𝜀𝑐𝑐 = 𝐶𝜇

𝜈𝑇

𝐿𝑇
2 𝑘

𝜀𝑓𝑑 = 𝐶𝑑|𝑼|𝑘
 (23) 

 

with 𝑼 being the wind vector, 𝑇 the turbulent viscosity, 𝐿𝑇 the turbulent length scale 

and 𝑘 the turbulent kinetic energy. 𝐶 is dependent on the Richardson number and 𝐶𝑑 

is the drag force coefficient, that is adapted for different atmospheric stabilities based 

on an empirical study by the software developer (Meteodyn 2014). Detailed 

information on 𝜀𝑐𝑐 and 𝜀𝑓𝑑 can be found in Wilson et al. (1998). 

There are two different forest models Meteodyn WT: the “robust” and the “dissipative” 

model. The dissipative forest model is used here, as the software developer 

recommends it. It provides better results on turbulence intensity due to the presence of 

forest (Meteodyn 2014). The forest model introduces a dissipative zone above the 

forest, and the mixing length becomes (Meteodyn 2014): 

1

𝑙
=

{
  
 

  
 

1

2
  

(1 − a)
1

2
+ a (

1

𝑙0
+
1

𝜅𝑧
)

1

𝑙0
+
1

𝜅𝑧
 

  

𝑓𝑜𝑟 𝑧 < ℎ𝑡 
 

𝑓𝑜𝑟 ℎ𝑡 < 𝑧 ≤ ℎ𝑡 + 15 𝑚  

𝑤𝑖𝑡ℎ a =  
𝑧 − ℎ𝑡
15 𝑚

 

 
𝑓𝑜𝑟 𝑧 > ℎ𝑡 + 15 𝑚 

(24) 

 

The drag force coefficient 𝐶𝑑 can be changed by the user as the forest density from the 

default setting “normal” to either “low” or “high,” which means decreasing or 

increasing the drag force coefficient for the model (Meteodyn 2014; Ross and Vosper 

2005). The 𝐶𝑑 values used in Meteodyn WT are 0.001, 0.005 and 0.01 for low, normal 

and high forest density. 

The atmospheric stability model in Meteodyn WT is considering ten different 

atmospheric stability classes (compare Table 2). Neutral stratification is given for 

stability class 2. Lower stability classes refer to unstable stratification and higher 

stability classes to stable stratification (Meteodyn 2014). 

 

 

                                                 
3 To ensure consistency of the model equations with the literature, the symbol 𝜀 is kept for the dissipation 

rate within this sub-chapter in the dissertation. However, in all other chapters, the symbol 𝜀 is referring 

to the lidar error and not to the dissipation rate. 
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Stability classification is based on the Monin-Obukhov length 𝐿∗ in the form of 

𝐿∗ = −
𝑢∗
3

𝜅(
𝑔
𝑇)(

𝑄𝐻
𝑐𝑝𝜌

)
 

(25) 

 

with 𝑐𝑝 being the specific heat, 𝑇 the air temperature, 𝑔 the gravitational constant and 

𝑄𝐻 the kinematic heat flux (Meteodyn 2014). This definition is derived based on 

Monin-Obukhov similarity theory (MOST) which provides the following relation for 

the heat flux 𝑤′𝑇′̅̅ ̅̅ ̅̅  (Foken 2016): 

𝑤′𝑇′̅̅ ̅̅ ̅̅ =
𝑄𝐻
𝜌𝑐𝑝

 (26) 

 

Details on the similarity theory can e.g. be found in Stull (1988). The Monin-Obhukov 

length can be interpreted as the height above ground “at which buoyant factors first 

dominate over mechanical (shear) production of turbulence” (Stull, p. 188). 

There are two different stability models in Meteodyn WT that set up the boundary 

conditions for the inlet wind profiles and the turbulent kinetic energy profiles in 

dependency of the chosen stability class in accordance with the MOST (Meteodyn 

2014). 

In the case of stability classes 0 to 6, the boundary layer is subdivided into a surface 

layer and a transitional layer with equations for determination of wind and turbulence 

profiles for each of the two layers. At the top of the transitional layer, the wind speed 

reaches the geostrophic wind speed that is also dependent on the stability class 

(Meteodyn 2014). 

In the case of the highest stability classes 7 to 9, a three-layer model is used that adds 

an outer layer to the two other layers (Figure 4.2). However, also the equations for the 

other two layers differ from the two-layer model in this case (Meteodyn 2014). An 

evaluation of the three-layer model is given in the webinar by Meteodyn (2017). 

Detailed equations for the boundary conditions in the stability model are given in 

Appendix 10.1. 

Apart from the boundary conditions, the turbulence model of Meteodyn WT is also 

influenced by the choice of the atmospheric stability class. In particular, the turbulent 

length scale 𝐿𝑡 is affected by the flux Richardson number 𝑅𝑖𝑓. The flux Richardson 

number is calculated from the Richardson number based on the chosen Monin-

Obukhov length, as given in Table 2. Again, detailed equations on the turbulence 

model are given in Appendix 10.1. 
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Figure 4.2: Schematic illustration of the three-layer model for high stability classes (7, 8 and 

9) in Meteodyn WT. The ABL is modeled with three layers: The surface layer up to a height 

𝒛𝒔 with constant turbulent kinetic energy (TKE), the local Monin-Obukhov-Similarity-Theory 

(MOST) layer between 𝒛𝒔 and 𝒛𝒉 with a linear decrease of TKE and the outer layer between 

𝒛𝒉 and three 𝒛𝒉 with a constant TKE again. The layer heights are dependent on the atmospheric 

stability classes. The figure is redrawn after Meteodyn (2014). 

 

Table 2: Atmospheric stability classes from Meteodyn WT (Meteodyn 2014). 

Stability class Stability 𝑳∗[m] 

0 Very unstable -80 

1 Unstable -500 

2 Neutral 10.000 

3 Slightly Stable 1.500 

4 Stable 800 

5 Stable 500 

6 Stable 300 

7 Very Stable 200 

8 Very Stable 130 

9 Strongly Stable 60 

4.4 Method of the systematic parameter study 

When applying a model for wind resource assessment, it is obligatory to find the right 

parameterization to fit the model to the considered site and measured wind profiles. 

The model is then used to perform vertical and horizontal extrapolation of a wind 

measurement (Ayotte 2008). Usually, this is achieved by making use of available 

knowledge about land-use, roughness lengths, forest heights and density from maps 

and other geodata. Additionally, the experience of the model user and expert guesses 

are used to find the most appropriate parameterization for the flow model. If possible, 
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a comparison of measured and modeled wind profiles for different parameter settings 

are carried out at one or multiple measurement locations within the area of interest 

(e.g. (Palma et al. 2008). 

However, if only lidar measurements are available at a complex terrain site, the 

measured wind profiles are likely to be affected by the complex terrain lidar error 

(compare chapter 1.3.4). It is, therefore, not possible to entirely rely on the measured 

data for model evaluation. It is necessary to estimate the uncertainty in the lidar data 

due to complex terrain before comparing it to the model. Alternatively, a correction of 

the lidar data can be carried out, but then the uncertainty of this correction must be 

estimated as well (FGW e.V. 2017; Clifton et al. 2018). 

For lidar correction, currently available literature usually states the “best” results that 

have been achieved using a specific parameter set for the given model at the prospected 

site. In these cases, the model parameterization has either been validated against a 

measured wind profile from a close-by mast. Or the lidar error estimation itself is 

validated if measurement data from a mast and a lidar at the same location is available 

(e.g., Klaas et al. 2015; Bingöl et al. 2009). 

There is no systematic evaluation available on using different parameterizations for 

modeling the lidar error with a particular model in the literature so far (compare 

chapter 1.4). Also, there is no profound uncertainty assessment regarding the accuracy 

of the lidar error estimation. One aim of this parameter study is, therefore, to raise 

awareness about the importance of the different model parameters on lidar error 

estimation. The analysis also includes the sensitivity of the lidar error correction on 

the different parameters at different terrain settings, which can be translated into 

uncertainty. 

To isolate the influence of the different parameters on the wind flow, different models 

are used in this study:  

First, a simple potential flow model (see chapter 4.3.1) is used to analyze the terrain 

effects on the wind flow over two-dimensional Gaussian hills. The model results are 

used to fix the parameter space for the hill geometries (𝐻 and 𝐿, see chapter 4.5.1) in 

order to cover all relevant effects on the lidar error. Due to its simplicity, the model 

can be run fast and for many different cases. It is used as a baseline or reference case 

to depict the influence of the diverse parameters on the results of the other, more 

complex models. 

The second model that is used, WEng, is based on linearized Navier Stokes Equations 

(chapter 4.3.1) and a very common model for wind energy applications. It is able to 

model the influence of roughness on the wind flow. There is no forest model 

implemented. The only possibility for adapting the model to a forested site is the use 

of displacement heights, which is not done in this dissertation. 

The third model, Meteodyn WT, is a RANS CFD model, that is able to model 

roughness and forests (chapter 4.3.3). It has also a simplified method to account for 

atmospheric stability. This model is more and more used for wind resource 

assessments as it more appropriate for complex and forested sites wind turbines are 

often placed in today. 

The results from the more complex models are compared to those from the potential 

flow model in chapters 5.1 and 0. By this approach, it is possible to isolate the influence 
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of the additional effects (roughness, forest, atmospheric stability) that are taken into 

account by the more complex models. 

In order to make the results applicable to, e.g. arbitrary hill geometries and 

measurement heights, the results are presented in a non-dimensional way wherever 

possible. This is especially true for the results of the lidar error estimations in chapter 

0. The lidar error 𝜀 and also its parts due 𝜀𝑐 (flow curvature) and 𝜀𝑠 (speed-up) are 

usually plotted against the ratio of measurement height over the hill half-width 𝑧/𝐿. 

By this it is possible to extract results for different measurement height as well as 

different hill dimensions from a single non-dimensional figure. The amount of terrain 

inclination is in most figures shown for groups of a constant ratio of hill height over 

the hill half-width 𝐻/𝐿. In reference to Table 3, mainly four of these groups are 

analyzed for slight slopes up to high slopes in the order of 0.3 (compare chapter 4.5.1). 

The study is limited to simplified, two-dimensional Gaussian hills. However, the 

evaluation of the results in chapter 6 shows their applicability to the situation in real 

complex terrain. 

4.5 Flow model setup 

The following chapter briefly describes the actual setup and parameterization of the 

models used in this thesis. First, the preparation of geodata for the model-based 

parameter study is described (chapter 4.5.1). This includes the generation of model 

terrain of different orographic complexity as well as the generation of roughness data. 

Second, the setup of the three models, the potential flow model, WEng and Meteodyn 

WT is given. 

4.5.1 Terrain data for the parameter study 

The parameter study is based on a set of two-dimensional, respectively, quasi-two-

dimensional Gaussian hills. The set covers four different 𝐻/𝐿 ratios (see Table 3) that 

range from low maximum terrain elevations of 0.07 to significant slopes of 0.29. The 

range of fixed L values reaches from 50 to 750 m and the minimum and maximum 𝐻 

values are 5 and 300 m, depending on the actual 𝐻/𝐿 ratio. 

This choice of absolute values is a trade-off between model resolution and calculation 

time. In the case of very small hills, a high model resolution is needed to resolve the 

influence of the hill geometry on the flow is needed. In the case of very large hills, the 

domain size has to be increased significantly in order to ensure undisturbed flow at the 

model domain borders. For WEng and Meteodyn WT, the hill geometry is 

symmetrically extended into the third dimensional, resulting in a very long ridge. 

Results are then taken from the mid-point of the geometry that can be assumed to be 

undisturbed by effects from the model domain borders. 

For the two-dimensional potential flow model (compare chapter 4.3.1), the hill shapes 

are generated from the resulting streamlines. They do not exactly match the Gaussian 

hill shapes but are – especially in the area of interest in the vicinity of the lidar 

measurement points – very similar to those. A comparison of a Gaussian hill shape 

and a hill shape for the potential flow model is shown in Figure 4.4. Because the model 

runs in the potential flow model are very fast, much more hill geometries were 

simulated with this model than with the three-dimensional RANS model or the 

linearized model. For the 𝐻/𝐿 ratios from 0.1 to 0.4 the 𝐿 values were modified 



 

45 

 

between 10 and 1000 m in 10 m steps. Additionally, 𝐿 of 2000 m and 4000 m were 

chosen. 

The results from the potential flow (see chapter 5.2.1) model were used to find the 

necessary 𝐻 for fixed 𝐿 values for the other models. In order to minimize the 

calculation efforts, the number of different hill geometries was limited so that the most 

relevant parts of the resulting lidar error plot could be mapped. That means the analysis 

process was iterative in this part. 

All geometry data was generated in MATLAB. For Weng and Meteodyn WT xyz-files 

were exported, which contain the coordinates and heights of the terrain in 5 m 

horizontal resolution and 1 cm vertical resolution (i.e., the resolution of the elevation 

values). For WEng, these files were converted to “.map”-files of height contour lines, 

a proprietary format of WAsP. 

Due to its conception, the potential flow model does not require any roughness 

information. For the other models, roughness maps have been created that contain 

constant roughness values. The roughness length 𝑧0 ranges from a very low value of 

0.005 m to a large value of 1.5 m.  

All roughness data was generated in MATLAB and exported to xyz-files that contain 

the coordinates and roughness of the terrain in 5 m horizontal resolution and 1 cm 

roughness resolution (i.e., the resolution of the roughness length 𝑧0). For WEng, these 

files were converted to “.map”-files. 

Table 4 shows the different roughness length and the surface characteristics that are 

attributed to those. The table also indicates for which purposes the roughness maps are 

used in the parameter study. While only roughness lengths up to 0.5 m are used in 

WEng, also maps with 1.0 and 1.5 m roughness length were used in Meteodyn WT. 

However, these were used in conjunction with the forest model, which translates 

roughness length into tree heights, as described in chapter 4.3.3. 

 

Table 3: Set of Gaussian hill geometries used in the parameter study. The table provides 

information about the hill height 𝐻, the hill half-width 𝐿 and the corresponding ratio 𝐻/𝐿. 

Addtionally the maximum slope (maximum terrain inclination) at the flanks of the hill is 

calculated for the four different used ratios. 

H/L L [m] 50 100 150 200 250 500 750 
Max. 

slope 

0.1 

H [m] 

5 10 15 20 25 50 75 0.07 

0.2 10 20 30 40 50 100 150 0.14 

0.3 15 30 45 60 75 150 225 0.21 

0.4 20 40 60 80 100 200 300 0.29 
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Figure 4.3: Four examples of Gaussian hills for the 𝑯/𝑳 ratios a) 0.1, b) 0.2, c) 0.3 and d) 0.4. 

The same scaling for the four plots is chosen in order to emphasize the difference in terrain 

inclination for increasing 𝑯/𝑳 ratios. 

 

Figure 4.4: Approximation of the four examples of Gaussian hills (blue line) by a streamline 

of the potential flow model (red line). 

 

Table 4: Roughness lengths 𝒛𝟎 of the different roughness maps that were used in the flow 

models. The purpose of the maps is also given, which includes the corresponding tree heights 

in Meteodyn WT. Surface characteristics were taken from Troen (1989). 

Roughness 

length [m] 

Surface 

characteristics 

Tree 

height [m] 
Used in WEng 

Used in 

Meteodyn WT 

0.005 bare soil - yes yes 

0.100 farmland - yes yes 

0.500 bushes, suburbs 10 yes 

yes  

(forest and 

roughness) 

1.000 city, forest 20 no 
yes  

(forest) 

1.500 city, forest 30 no 
yes  

(forest) 
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4.5.2 Model setup and simulation runs 

The potential flow model was run in MATLAB with the hill geometries described in 

chapter 4.5.1. Results were stored in a two-dimensional data array with a resolution of 

5 m in the vertical direction and 10 m in the horizontal direction. Streamlines were 

calculated with the built-in MATLAB function. 

For WEng, simulation projects were set up for each pair of orography and roughness 

with the heights 50, 100, 150 and 200 m. The background roughness is set to the value 

of the roughness map file that is used. Depending on the domain size, a horizontal 

resolution of either 5 or 10 m is used, in order to limit the number of cells below a 

reasonable threshold. A script originally developed by Bingöl (2009) was adapted to 

the methodology used within this thesis. The script calculates all simulation results for 

western wind direction (wind positive along the x-axis) that are needed for lidar error 

estimation and exports the results to an Excel-File. Using internal functions, the script 

calculates the wind vector components and the horizontal wind speed and the flow 

angles at the lidar measurement location at each measurement height and at the lidar 

measurement points upwind and downwind the hill for a given half-cone opening 

angle. It then calculates the lidar errors 𝜀, 𝜀𝑐 and 𝜀𝑠. There is no function available to 

calculate streamlines. As the export of wind vector components at a regularly gridded 

plane is not possible, streamlines were not calculated for this model. 

For Meteodyn, a project was set up for each orography and roughness. Additionally, 

projects were set up for three different tree heights and for three different forest 

densities. To consider atmospheric stability, for the 𝐻/𝐿 ratio of 0.3, one project for 

each orography and stability class was set up for the lowest roughness, the highest 

roughness and a medium dense forest with 20 m tree height. In total 216 simulation 

projects were set up in Meteodyn WT for the parameter study. All projects were run 

with a horizontal resolution of 8 m in the proximity of the lidar location and for western 

wind direction (positive along the x-axis). The model results were exported to tecplot-

files (a proprietary data format) and imported to MATLAB for further analyses. Lidar 

error estimation, as well as calculation of streamlines and other flow parameters, was 

carried out in MATLAB. As the lidar measurement geometry and error estimation 

were modeled in MATLAB, the half-cone opening angle and measurement heights 

were set up in MATLAB scripts and not within the Meteodyn WT projects. This 

approach allows for the possibility of quickly changing the lidar setup and 

measurement heights without running further simulations. 
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5 Estimation of lidar errors in complex terrain 

In this thesis, the method of choice to understand and analyze the impact of complex 

terrain on lidar measurement accuracy is a systematic model-based parameter study. 

The methodology for this study is given in chapter 4.4. The most relevant influencing 

factors regarding the actual measurement site, as already described in chapter 1.4, are 

orographic complexity, terrain roughness and forest cover. Atmospheric stability 

influences the lidar measurement accuracy as well because it has an impact on the 

characteristic of the wind flow. 

From the measurement device and setup point of view, the considered measurement 

height and the (usually fixed) half-cone opening angle of the lidar device are of 

relevance for the lidar measurement accuracy. 

Consequently, the following chapter contains results from the parameter study for each 

of those factors. The results are structured and presented in a way that allows the reader 

to see the individual contributions of the different parameters on the wind flow as well 

as on the lidar measurement accuracy. 

First, the results from the different flow model runs (i.e., the wind flow field) are 

described in chapter 5.1. The sub-chapter aims at analyzing the general flow features 

and their dependence on parameterization. Following the description of the lidar error 

sources in complex terrain in chapter 3.2, a particular focus is put on the inflow and 

outflow inclination angles of the wind flow at the lidar measurement points (chapter 

5.1.2) and the speed-up effects between these points and the central measurement 

location above the lidar (chapter 5.1.3).  

The results from the flow models are then used as an input for the estimation of the 

lidar measurement error due to complex terrain in chapter 0, which represents the 

central part of the results section. Here, results for the total lidar error 𝜀 and its parts 

𝜀𝑐 and 𝜀𝑠 are presented. The chapter is subdivided into one section per influencing 

factor. Starting with orographic complexity (chapter 5.2.1), first, the results from the 

simple potential flow model are presented. Then the influence of different terrain 

roughness parameterizations is illustrated in chapter 5.2.2 for both the linearized model 

WEng and the RANS CFD model Meteodyn WT. As forest and atmospheric stability 

can only be modeled within Meteodyn WT, results for different setups of these 

parameters are presented in chapters 5.2.3 and 5.2.4. 

Wherever possible, the results from the more complex model are compared to those 

from the potential flow model, which forms a basis or reference for the calculations. 

In order to analyze the applicability to the non-dimensional number 𝑧/𝐿, calculations 

for different 𝑧, i.e., different measurement heights, are presented in chapter 5.2.5. 

Finally, the impact of smaller half-cone opening angles in the lidar setup is shown in 

chapter 5.2.6. for the potential flow model and Meteodyn WT. 
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5.1 Model results for the wind flow 

The following chapter analyses the results from the different flow models that have 

been used for the parameter study. Starting with the streamlines from the potential 

flow model and the RANS CFD model Meteodyn WT in chapter 5.1.1, it illustrates 

the hill flow for different parameterizations. Due to technical reasons, there are no 

streamlines available from the linearized model. However, the most crucial flow 

features for the lidar error are the inflow and outflow angles at the lidar measurement 

points and the speed-up effects in-between. These are analyzed in the subsequent 

chapters 5.1.2 and 5.1.3 for all three, the potential flow model, the linearized model 

WEng and Meteodyn WT. Wherever possible, the streamlines, speed-up effects and 

flow angles from the WEng and Meteodyn WT are compared to those from the 

potential flow model. By this approach, it is possible to isolate the effects of roughness 

and vegetation (forest) from the orographically induced flow field. The results will 

later be used to explain and analyze the impacts of the different influencing factors on 

the lidar error in complex terrain in chapter 0. 

5.1.1 Streamlines 

To illustrate the flow that was modeled with the potential flow model, four different 

results are shown in Figure 5.1. These results represent the column with constant L of 

250 m in Table 3, each with a different 𝐻/𝐿 ratio. The corresponding hill heights are 

25, 50, 75 and 100 m. The four shown streamlines originate at 50, 100, 150 and 200 m 

above ground in the freestream at the upwind side of the hills. In order to relate the 

flow field to the dimensions of the lidar measurement geometry, two laser beams of a 

lidar placed on top of the hill are shown as well. A half-cone opening angle of 30 ° is 

used and the two measurement points mark a measurement height of 150 m above the 

lidar. For this measurement height, the ratio 𝑧/𝐿 is 0.6 for these four hill geometries. 

With reference to Figure 5.25, this is approximately the 𝑧/𝐿 ratio for which maximum 

lidar errors are found, which is described in the subsequent chapter 5.2.1. Note that 

due to the different scaling of the x- and the y-axis the opening angle appears distorted. 

First, it can be noted that the flow fields resulting from the potential flow model are 

symmetric. This is because the flow is assumed entirely frictionless. For the 𝑧/𝐿 ratio 

of 0.6, the lidar measurement points are well within the area of curved flow above the 

hilltop. With a distance of 86.6 m from the centerline, the measurement points are at 

about 0.69𝐿 apart from each other. 

With increasing hill height 𝐻 and constant hill half-width 𝐿, the flow curvature is 

significantly increasing as well. While the streamlines appear to be only slightly 

curved in Figure 5.1 a), the curvature becomes more and more severe for hills b), c) 

and d). 

Additionally, the measurement points are leaving the 150 m streamline and moving 

toward the 200 m streamline with increasing hill height. This emphasizes the 

increasing speed-up effect for the larger hills. 

In addition to the four already described hill geometries, two extreme cases have been 

chosen in Figure 5.2 and Figure 5.3. Figure 5.2 shows a small hill in comparison to the 

lidar measurement geometry (𝐻 =  15 𝑚, 𝐿 =  50 𝑚). In this case, the measurement 

points are located above the flanks of the hill. Also, it can be seen that the effects of 

the hill and the modeled flow are significant for the lower heights but rapidly decrease 

with increasing height above the ground. For the measurement height of 150 m, the 
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flow curvature has almost decreased to zero. On the other side of the hill geometry 

range, the case shown in Figure 5.3 can be found (𝐻 =  225 𝑚, 𝐿 =  750 𝑚). Here 

the measurement geometry is small when compared to the size of the hill. The 

measurement points are located close to the hilltop. Flow effects at the flanks of the 

hill have no direct impact at these points. Within the proximity of the lidar, the flow 

can be assumed to be following the hill curvature. Moreover, due to the vast extent of 

the hill, the curvature is relatively small around the hilltop. The two latter examples 

have been chosen in order to illustrate the importance of the dimension of the hill in 

relation to the distance and height of the measurement points above the lidar. 

a) 

 

b) 

 

c) 

 

d) 

 
Figure 5.1: Results from the potential flow model for 𝑳 = 𝟐𝟓𝟎 𝒎 and the four different 𝑯/𝑳 

ratios with 𝑯 = 𝟐𝟓, 𝟓𝟎, 𝟕𝟓 𝒂𝒏𝒅 𝟏𝟎𝟎 𝒎 from a) to d). The lidar position is marked at the top 

of the hills and the beams are tilted by a half-cone opening angle 𝝋 = 𝟑𝟎°. The measurement 

points are located at 𝒛 = 𝟏𝟓𝟎 𝒎 above the lidar. The points, therefore, are equal to a 𝒛/𝑳 ratio 

of 0.6. 
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Figure 5.2: Results from the potential flow model for 𝑳 = 𝟓𝟎 𝒎 and an 𝑯/𝑳 ratio of 0.3. The 

lidar position is marked at the top of the hills and the beams are tilted by a half-cone opening 

angle 𝝋 = 𝟑𝟎°. The measurement points are located at 𝒛 = 𝟏𝟓𝟎 𝒎 above the lidar. The points, 

therefore, are equal to a 𝒛/𝑳 ratio of 3. 

 

Figure 5.3: Results from the potential flow model for 𝑳 = 𝟕𝟓𝟎 𝒎 and an 𝑯/𝑳 ratio of 0.3. 

The lidar position is marked at the top of the hills and the beams are tilted by a half-cone 

opening angle 𝝋 = 𝟑𝟎°. The measurement points are located at 𝒛 = 𝟏𝟓𝟎 𝒎 above the lidar. 

The points, therefore, are equal to a 𝒛/𝑳 ratio of 0.2. 

For Meteodyn WT, the streamlines are illustrated for different roughness lengths 𝑧0 of 

0.005, 0.1 and 0.5 m for the four different 𝐻/𝐿 ratios (Figure 5.4 to Figure 5.7). The 

streamlines in these four figures are shown in the same axis scaling, to emphasize the 

influence of the 𝐻/𝐿 ratio on the flow curvature and the symmetry of the model results. 

For 𝐻/𝐿 ratios of 0.1 and 0.2, there is only a small difference between the three 

roughness parameterizations. Additionally, the results are comparable to those from 

the potential flow model. Especially for the minimal 𝐻/𝐿 of 0.1, the results from 

Meteodyn WT are almost symmetric. When the 𝐻/𝐿 ratio is increased to 0.3 and 0.4, 

the differences between the potential flow solution and Meteodyn WT are increasing. 

First, it can be noted that the results are no longer symmetric, but the flow curvature is 

different for the upwind and downwind part of the streamlines. Additionally, the 

influence of terrain roughness becomes significant. Particularly in the downwind 

section of the flow, streamlines for increased roughness lengths deviate from those for 

the lowest roughness. While for a 𝑧0 of 0.005 m, the results for the highest 𝐻/𝐿 ratio 

are still very close to the potential flow solution, the streamlines for increased 

roughness lengths are lifted upwards, which leads to an overall reduced flow curvature. 
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Figure 5.4: Streamlines in dependence of roughness length 𝒛𝟎 (𝑯/𝑳 ratio 0.1). Streamlines 

from Meteodyn WT (colored) and from the potential flow model (black) are starting at z of 

50, 100, 150 and 200 m in front of the hill. Lidar measurement points at 150 m measurement 

height with a 𝝋 of 30 ° are marked in red. 

 

 

Figure 5.5: Streamlines in dependence of roughness length 𝒛𝟎 (𝑯/𝑳 ratio 0.2). Streamlines 

from Meteodyn WT (colored) and from the potential flow model (black) are starting at z of 

50, 100, 150 and 200 m in front of the hill. Lidar measurement points at 150 m measurement 

height with a 𝝋 of 30 ° are marked in red. 
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Figure 5.6: Streamlines in dependence of roughness length 𝒛𝟎 (𝑯/𝑳 ratio 0.3). Streamlines 

from Meteodyn WT (colored) and from the potential flow model (black) are starting at z of 

50, 100, 150 and 200 m in front of the hill. Lidar measurement points at 150 m measurement 

height with a 𝝋 of 30 ° are marked in red. 

 

 

Figure 5.7: Streamlines in dependence of roughness length 𝒛𝟎 (𝑯/𝑳 ratio 0.4). Streamlines 

from Meteodyn WT (colored) and from the potential flow model (black) are starting at z of 

50, 100, 150 and 200 m in front of the hill. Lidar measurement points at 150 m measurement 

height with a 𝝋 of 30 ° are marked in red 
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Adding forest to the terrain has a significant influence on the flow field, which is 

exemplarily illustrated in Figure 5.8 and Figure 5.9 for 𝐻/𝐿 ratios of 0.2 and 0.3. The 

results shown in these two figures are based on medium forest density and each cover 

tree heights of 10, 20 and 30 m, which might all be found at a forested site in reality. 

Although the effect of small trees with 10 m height is comparable to results with a 

large roughness length of 0.5 m, the lift-up of the downwind streamlines is more 

significant. Increasing the tree heights results in even more detached streamlines from 

the actual terrain shape. Additionally, depending on tree height, the turning point of 

the streamlines is moving from the center above hilltop to the right-hand side of the 

plot, i.e., into the downwind region. In the case of trees with heights of 20 and 30 m 

and an 𝐻/𝐿 ratio of 0.3, this leads to the effect that the flow inclination is positive in 

the area of the lidar measurement points. This is contrary to the cases without forest, 

where the lidar measurement points are seeing positive inflow angles and negative 

outflow angles. 

As an example for the influence of forest density on the flow field in Meteodyn WT, 

results for a tree height of 30 m and an 𝐻/𝐿 ratio of 0.3 are shown in Figure 5.10 for 

the three different density parameterizations “low,” “medium” and “high,” which all 

correspond to different 𝐶𝑑 values in the forest model (compare chapter 4.5.2). 

It can be seen that the influence of the forest model with this tree height, even with 

low forest density, is severe when compared to the potential flow model results. The 

streamlines are lifted upwards in the downwind section and the turning point is slightly 

shifted to the right as well. The effects of forest modeling become very strong for 

medium and high forest densities. However, the results for both are very similar. The 

shape of the streamlines is significantly changed and the turning point is shifted to 

about 150 to 200 m behind the hilltop. The downwind streamlines are strongly 

detached from the hill shape. These two effects have a strong influence on flow 

curvature in the area of the lidar measurement points. 

 

Figure 5.8: Streamlines in dependence of tree height 𝒉𝒕 (𝑯/𝑳 ratio 0.2). Streamlines from 

Meteodyn WT (colored) and from the potential flow model (black) are starting at z of 50, 100, 

150 and 200 m in front of the hill. Lidar measurement points at 150 m measurement height 

with a 𝝋 of 30 ° are marked in red. 
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Figure 5.9: Streamlines in dependence of tree height 𝒉𝒕 (𝑯/𝑳 ratio 0.3). Streamlines from 

Meteodyn WT (colored) and from the potential flow model (black) are starting at z of 50, 100, 

150 and 200 m in front of the hill. Lidar measurement points at 150 m measurement height 

with a 𝝋 of 30 ° are marked in red. 

 

 

Figure 5.10: Streamlines in dependence of forest density (𝑯/𝑳 ratio 0.3). Streamlines from 

Meteodyn WT (colored) and from the potential flow model (black) are starting at z of 50, 100, 

150 and 200 m in front of the hill. Lidar measurement points at 150 m measurement height 

with a 𝝋 of 30 ° are marked in red. 
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Meteodyn WT can model different atmospheric stability classes. There are ten classes 

available. The two lowest classes 0 and 1 refer to unstable cases, class 2 to neutral 

cases and classes 3 to 9 to stable up to strongly stable cases (see chapter 4.3.3). The 

results presented in the following figures show the influence of “moderate” 

atmospheric stability classes (1 and 6 compared to 2) and “extreme” classes (0 and 9 

compared to 2). Following an analysis by Pauscher et al. (2018) about the occurrence 

of different stability classes at “Rödeser Berg” (see evaluation in chapter 6), the full 

range of these stability classes can be observed. 

For both, the moderate and the extreme classes, results are shown for a 𝐻/𝐿 ratio of 

0.3 for the low roughness case with a 𝑧0 of 0.005 m, the high roughness case with a 

roughness length of 0.5 m and a case of medium dense forest with a tree height of 

20 m. 

Starting with Figure 5.11, it can be seen that the influence of atmospheric stability 

classes 1 and 6 is minimal for the low roughness case. When looking at the high 

roughness case (Figure 5.12) and the forested case (Figure 5.13), a strong influence of 

atmospheric stability on the shape of the streamline is observed. The effects are most 

substantial for stable cases and low heights at the downwind side of the hill. Here, the 

streamlines are lifted even more upwards than in the neutral case and the flow needs a 

longer distance to recover from the influence due to the hill. For the unstable case, the 

influence on the streamlines is significantly smaller than in the stable case. However, 

for a high roughness and the forested case, the impact is still noticeable in the shape 

of the streamlines. While for the high roughness case, the streamlines are slightly lifted 

upwards compared to the neutral case, this behavior is reversed for the forested case. 

Here the streamlines for unstable conditions are below the neutral case streamlines in 

the downwind section. However, this is only the case for distances beyond 250 to 

300 m behind the hill. 

Results for the extreme stability classes “very unstable” and “strongly stable” are 

shown in Figure 5.14, Figure 5.15 and Figure 5.16 for the same hill geometries and 

parameterizations. Again, the influence in the low roughness case is minimal. 

However, for strongly stable atmospheric stability conditions, a change in the shape of 

the streamlines can be noticed. In the proximity of the hilltop, the streamlines are 

slightly shifted downwards in this case. 

For the high roughness and the forested case, the effects of extreme stability conditions 

are severe. This is particularly true for strongly stable cases, where the downwind 

streamlines are lifted upwards in the lee of the hill and no turning point or recovery 

can be seen up to 500 m distance behind the hilltop. This strong influence on the hill 

overflow changes the shape of the streamlines in this case already in the upwind 

section of the hill and will, therefore, also clearly affect inflow and outflow angles at 

the lidar measurement points. 

The results for very unstable atmospheric conditions are very similar to those with 

neutral conditions in case of both low and high roughness. A small difference can be 

noted in the upwind section of the flow for the high roughness case. For the forested 

case, the streamline in very unstable conditions are influenced and different from those 

for neutral conditions. Here, unstable conditions seem to have a contrary effect on the 

downwind side than strongly stable conditions. Streamlines are shifted downwards and 

are below those for neutral conditions at all shown heights. Resulting from that, flow 

curvature in the proximity of the lidar measurement points is increased. 
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Figure 5.11: Streamlines in dependence of atmospheric stability (𝑯/𝑳 ratio 0.3, 𝒛𝟎 of 

0.005 m). Streamlines from Meteodyn WT (colored) and from the potential flow model (black) 

are starting at z of 50, 100, 150 and 200 m in front of the hill. Lidar measurement points at 

150 m measurement height with a 𝝋 of 30 ° are marked in red. 

 

 

Figure 5.12: Streamlines in dependence of atmospheric stability (𝑯/𝑳 ratio 0.3, 𝒛𝟎 of 0.5 m). 

Streamlines from Meteodyn WT (colored) and from the potential flow model (black) are 

starting at z of 50, 100, 150 and 200 m in front of the hill. Lidar measurement points at 150 m 

measurement height with a 𝝋 of 30 ° are marked in red. 
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Figure 5.13: Streamlines in dependence of atmospheric stability (𝑯/𝑳 ratio 0.3, 𝒉𝒕 of 20 m, 

medium forest density). Streamlines from Meteodyn WT (colored) and from the potential flow 

model (black) are starting at z of 50, 100, 150 and 200 m in front of the hill. Lidar measurement 

points at 150 m measurement height with a 𝝋 of 30 ° are marked in red. 

 

 

Figure 5.14: Streamlines in dependence of atmospheric stability (𝑯/𝑳 ratio 0.3, 𝒛𝟎 of 

0.005 m). Streamlines from Meteodyn WT (colored) and from the potential flow model (black) 

are starting at z of 50, 100, 150 and 200 m in front of the hill. Lidar measurement points at 

150 m measurement height with a 𝝋 of 30 ° are marked in red. 
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Figure 5.15: Streamlines in dependence of atmospheric stability (𝑯/𝑳 ratio 0.3, 𝒛𝟎 of 0.5 m). 

Streamlines from Meteodyn WT (colored) and from the potential flow model (black) are 

starting at z of 50, 100, 150 and 200 m in front of the hill. Lidar measurement points at 150 m 

measurement height with a 𝝋 of 30 ° are marked in red. 

 

 

Figure 5.16: Streamlines in dependence of atmospheric stability (𝑯/𝑳 ratio 0.3, 𝒉𝒕 of 20 m, 

medium forest density). Streamlines from Meteodyn WT (colored) and from the potential flow 

model (black) are starting at z of 50, 100, 150 and 200 m in front of the hill. Lidar measurement 

points at 150 m measurement height with a 𝝋 of 30 ° are marked in red. 
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5.1.2 Inflow and outflow angles 

The lidar error part 𝜀𝑐 describes the lidar error in complex terrain due to flow curvature. 

Following its definition in chapter 3.2, it is only dependent on the inflow angle 𝛼 and 

the outflow angle 𝛽. To understand the results from the different models and different 

parametrizations used and link them to the estimated lidar error 𝜀𝑐, the flow inclination 

angles are illustrated in the following chapter. 

The results are presented for different 𝐻/𝐿 ratios and different 𝑧/𝐿 ratios on the y-axis 

of the figures. This presentation is analogous to the later presentation of the lidar errors 

in chapter 0. It will, therefore, help the reader to understand the impact of the 

parameterizations on the different flow features. In any case, the results are compared 

to those from the potential flow model. As these are symmetric, the magnitude of the 

outflow angle equals the inflow angle. 

From the results from WEng in Figure 5.17, it is obvious that also the results from the 

linearized model are symmetric. The results for the inflow and outflow angles are first 

shown for the four different 𝐻/𝐿 ratios for a low roughness length 𝑧0 of 0.005 m 

(Figure 5.17, left). Inflow and outflow angles for the lowest 𝐻/𝐿 ratio of 0.1 are very 

similar to those from the potential flow model for 𝑧/𝐿 up to 1.0, but only slightly 

higher in magnitude. For 𝑧/𝐿 1.5, the angles are close to zero, which is not the case 

for the reference model. 

For larger 𝐻/𝐿 ratios, the difference to the potential flow model is increasing. In 

particular, for 𝑧/𝐿 between 0.2 and 1.0, α and β a significantly larger than in the 

potential flow model. For the larger 𝑧/𝐿 ratios, the WEng results are converging 

towards the potential flow solution. However, the maximum angles of about 5° for an 

𝐻/𝐿 of 0.3 and 6° for an 𝐻/𝐿 of 0.4 is twice as high as in the potential flow model, 

although the general shape of the curves is comparable. 

The results for different roughness lengths 𝑧0 of 0.005, 0.1 and 0.5 m for WEng are 

exemplarily shown for a 𝐻/𝐿 ratio of 0.3 in Figure 5.17 (right). For 𝑧/𝐿 ratios up to 

1.5, there is a clear tendency of reduced inflow and outflow angles for increasing 

roughness lengths. This effect is largest at a 𝑧/𝐿 of 1.5. At the maximum point, the 

difference between the lowest and highest roughness length is about 0.8°. For a 𝑧/𝐿 

ratio of 0.2 there is no significant difference. It is interesting to note that for high 𝑧/𝐿 

ratios of 1.5 and 3.0 and the medium and high roughness lengths, negative inflow and 

positive outflow angles can be observed in this model, which is marked by the crossing 

points of the full and the dashed line in these cases. 

The large inflow and outflow angles for large 𝐻/𝐿 ratios can be explained by the 

fundamental assumption of attached flow in the linearized model (Bowen and 

Mortensen 1996). As no flow separation is modeled in WEng, especially the results in 

the lee of the hill show unrealistically high flow inclinations. Because the model is 

symmetric, the same results are found at the luv side of the hill. 
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Figure 5.17: Inflow angle 𝜶 (dashed) and outflow angle  (solid) in dependence of 𝑯/𝑳 ratio (left) and roughness length 𝒛𝟎 (right). Results from WEng (colored) 

and from the potential flow model (black) at 150 m measurement height and for a 𝝋 of 30°. For the left plot, the roughness length 𝒛𝟎 is 0.005 m. 
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The inflow and outflow angles based on Meteodyn WT for the low roughness cases 

are shown in Figure 5.18 (left). It can be seen that the inflow angles highly agree with 

the potential solution, in particular for 𝐻/𝐿 ratios of 0.1 and 0.2. For 𝐻/𝐿 ratios of 0.3 

and 0.4, the inflow angles are slightly smaller for 𝑧/𝐿 between 0.6 and 1.5. For the 

lowest 𝑧/𝐿 of 0.2 and 0.3 and this highest value of 3.0, the results are very similar to 

those from the potential flow solution. In contrast to that, the outflow angles are 

smaller than in the reference for most cases. The difference to the potential flow 

solution increases for increasing 𝐻/𝐿 ratios and is largest for the maximum angles 

around 𝑧/𝐿 ratios of 0.6. 

The comparison of inflow and outflow angles from Meteodyn WT for different 

roughness length is exemplarily shown for a 𝐻/𝐿 ratio of 0.3 in Figure 5.18 (right). 

Again, it can be noted that the inflow angles are very similar for all three roughness 

lengths. However, the influence of 𝑧0 on the outflow angles is significant. At 𝑧/𝐿 ratios 

of 0.6, the influence is most significant and outflow angles change from about 2° for 

the low roughness case to about 1° for the highest roughness. The asymmetry of the 

RANS CFD model increases with increasing roughness length. 

As already seen in the above-given streamline plots in chapter 5.1.1, the introduction 

of the forest has a significant impact on the flow features. This is also strongly reflected 

in the inflow and outflow angles, which are shown for the 𝐻/𝐿 ratios 0.3 for three 

different tree heights in Figure 5.19 (left). Because the turning point of the streamlines 

is shifted to the right (compare, e.g., Figure 5.9), the outflow angles for the forested 

case are significantly decreased. For the maximum tree height of 30 m in case of an 

𝐻/𝐿 ratio of 0.2 the outflow angles are even positive for most 𝑧/𝐿 ratios (see Figure 

10.1 in Appendix 10.3). For an 𝐻/𝐿 ratio of 0.3 this can be observed for almost all 𝑧/𝐿 

ratios for tree heights of 20 m and 30 m. 

Looking at the inflow angles for the forested cases, a significant increase can be seen 

for z/L ratios between 0.2 and 1.0 for both shown 𝐻/𝐿 ratios. For 𝑧/𝐿 ratios of 1.5 and 

3.0, there is no influence of tree height on the inflow angles. 

Maximum inflow and outflow angles can be seen at 𝑧/𝐿 ratios of 0.3, which is different 

from the position of the maximum values in cases without forest, where the maximum 

was found at 𝑧/𝐿 ratios of 0.6. 

The influence of forest density is shown for the 𝐻/𝐿 ratio of 0.3 and a tree height of 

30 m in Figure 5.19 (right). While there is no significant difference between medium 

and high forest densities, the inflow and outflow angles for a low forest density are 

different. The inflow angles, in this case, are generally smaller and the outflow angles 

do only cross the zero line for 𝑧/𝐿 ratios of 0.2 and 0.3.  
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Figure 5.18: Inflow angle 𝜶 (dashed) and outflow angle  (solid) in dependence of 𝑯/𝑳 ratio (left) and roughness length 𝒛𝟎 (right). Results from Meteodyn WT 

(colored) and from the potential flow model (black) at 150 m measurement height and for a 𝝋 of 30°. For the left plot, the roughness length 𝒛𝟎 is 0.005 m. 
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Figure 5.19: Inflow angle 𝜶 (dashed) and outflow angle  (solid) in dependence of tree height 𝒉𝒕 (left) and forest densities (right). Results from Meteodyn WT 

(colored) and from the potential flow model (black) at 150 m measurement height and for a 𝝋 of 30° for an 𝑯/𝑳 ratio of 0.3. For the left plot, the forest density is 

medium. For the right plot, the tree height 𝒉𝒕 is 20 m. 
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Figure 5.20 shows the flow inclination results for four different atmospheric stability 

classes (very unstable, neutral, stable, strongly stable) for a 𝐻/𝐿 ratio of 0.3 and cases 

with medium dense forest and a forest height of 30 m. Figure 10.2 and Figure 10.3 for 

the low and high roughness cases can be found in Appendix 10.3. 

For the low roughness cases, the influence of atmospheric stability on the inflow and 

outflow angles is relatively small for most 𝑧/𝐿 ratios. However, a general tendency for 

decreasing angles from unstable over neutral to stable cases can be observed for all 

𝑧/𝐿 ratios. 

In the case of high roughness and forested cases, the influence of atmospheric stability 

is more complex. For a roughness length 𝑧0 of 0.5 m and 𝑧/𝐿 ratios of 1.5 and 3.0, the 

tendency of decreasing flow angles with increasing stability can also be seen. In these 

cases, the influence is also relatively small when compared to the smaller 𝑧/𝐿 ratios. 

For strongly stable cases, the inflow angles are significantly increased for 𝑧/𝐿 ratios 

of 0.2 and 0.3, which is in contrast to the overall trend of decreasing flow angles for 

stable cases. For stable and strongly stable cases, different behavior of the outflow 

angles can also be observed for 𝑧/𝐿 ratios below 1.5. For stable cases, the outflow 

angles are around 0°, while they are about -2° for neutral cases. For unstable cases, the 

outflow angles increase from 0° for a 𝑧/𝐿 of 1.5 to about 2° for the smallest 𝑧/𝐿 ratio. 

Regarding the unstable cases, the results for 𝑧/𝐿 ratios of 0.2 and 0.3 also show 

different behavior than for the other 𝑧/𝐿 ratios. While for larger 𝑧/𝐿 ratios the unstable 

cases or very close to the neutral cases, for the lowest two ratios, positive outflow 

angles can be observed. 

The inflow angles for the forested cases are comparable to those from the high 

roughness cases. While there is a small tendency of decreasing angles when coming 

from unstable to stable cases, there is a significantly different behavior for the strongly 

stable cases at low 𝑧/𝐿 ratios. The outflow angles, on the other hand, show different 

results for the forested cases. The atmospheric stability has a significant impact on 

outflow angles for 𝑧/𝐿 ratios from 0.2 to 1.0. For these cases, neutral, stable and 

strongly stable cases show positive outflow angles. Most considerable positive outflow 

angles can be observed for the strongly stable cases. For very unstable cases, the 

outflow angles remain negative for 𝑧/𝐿 ratios of 0.2 to 1.0 and are around 0° for the 

two largest 𝑧/𝐿 ratios. 
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Figure 5.20: Inflow angle 𝜶 (dashed) and outflow angle  (solid) in dependence of 

atmospheric stability. Results from Meteodyn WT (colored) and from the potential flow model 

(black) at 150 m measurement height and for a 𝝋 of 30° for an 𝑯/𝑳 ratio of 0.3. Meteodyn 

WT results for a tree height 𝒉𝒕 of 20 m and medium forest density. 
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5.1.3 Speed-up effects 

The lidar error part 𝜀𝑠 describes the lidar error in complex terrain due to the speed-up 

between the measurement points of the lidar and the reconstruction point in the center 

above the lidar. Following its definition in chapter 3.2, it is the mean relative speed-up 

between the mentioned locations. To understand the results from the different models 

and different parametrizations used and link them to the estimated lidar error 𝜀𝑠, the 

speed-ups between the inflow measurement point and the center point, as well as 

between the outflow measurement point and the center point, are illustrated in the 

following chapter. 

The results are presented for different 𝐻/𝐿 ratios and different 𝑧/𝐿 ratios on the y-axis 

of the figures. This presentation is analogous to the later presentation of the lidar errors 

in chapter 0. It will, therefore, help the reader to understand the impact of the 

parameterizations on the different flow features. 

Starting with the linearized flow model WEng, the results for the speed-ups are shown 

for the four different 𝐻/𝐿 ratios for the low roughness cases in Figure 5.21 (left). 

Again, it can be seen that the flow model results from WEng are symmetric. For small 

𝑧/𝐿 ratios of 0.2, 0.3 and 0.6, the results are similar to those from the potential flow 

model. However, with an increasing 𝑧/𝐿 ratio, the deviation between the two models 

increases significantly. For 𝐻/𝐿 ratios of 0.3 and 0.4, this deviation is most abundant 

and the calculated speed-up effects are more than 50 % higher than in the potential 

flow solution for 𝑧/𝐿 ratios of 1.5 and 3.0. 

As discussed, e.g. in Bowen and Mortensen (1996) and Rathmann et al. (1996), 

linearized wind models usually show an overestimation of speed-up effects at complex 

terrain sites with large terrain inclination. The errors in speed-up are largest at the lee 

side of the hill because the linearized model assumes attached flow fields, following 

the shape of the terrain. These over-predictions are analyzed and compared to the 

results of RANS CFD models in a blind-test presented in Bechmann et al. (2011). 

Here, the speed-up errors in the linearized model were twice as high as the errors in 

the RANS models. 

When looking at the results for three different roughness lengths 𝑧0 Figure 5.21 (right), 

this effect is increasing for increased roughness. There is a general tendency for a 

significant increase in speed-up for all 𝑧/𝐿 ratios. The difference is largest for 𝑧/𝐿 

ratios above 1.0. Maximum speed-up effects from WEng can be observed at a 𝑧/𝐿 

ratio of 1.5, which is higher than in the potential flow model. 

 



 

68 

 

  
Figure 5.21: Inflow speed-up (dashed) and outflow speed-up (solid) in dependence of 𝑯/𝑳 ratio (left) and roughness length 𝒛𝟎 (right). Results from WEng (colored) 

and from the potential flow model (black) at 150 m measurement height and for a 𝝋 of 30°. For the left plot, the roughness length 𝒛𝟎 is 0.005 m. 
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In the following, the results for the speed-up effects from Meteodyn WT are illustrated 

for H/L ratios of 0.3. Due to technical limitations in the flow model, it can generally 

be noted, that it is difficult to compare the speed-up effects for small 𝐻/𝐿 ratios to the 

potential flow model and WEng. It was not possible to export the model results with a 

precision of more than one position after the decimal points. This resolution is too 

small to resolve the small differences between the wind speeds at the lidar 

measurement points in case of small hill inclinations and, therefore, small speed-ups. 

Figure 5.23 (left) shows the speed-ups for the four different 𝐻/𝐿 ratios for the low 

roughness cases. As the low roughness case shows the overall highest speed-up effects, 

it can be compared to the potential flow model despite the low data precision. Speed-

ups at the outflow measurement point are very similar to what was found in the 

potential flow model. At the inflow, the speed-ups are comparable for the low 𝐻/𝐿 

ratios 0.1 and 0.2. At higher 𝐻/𝐿 ratios the speed-ups in Meteodyn are significantly 

smaller than in the potential flow solution. However, fluctuations in the results are 

hindering the comparison of the inflow results. 

The speed-up effects from Meteodyn WT for the three different roughness lengths at 

a 𝐻/𝐿 ratio of 0.3 given in Figure 5.22 (right) show that they are in the same order 

than those from the potential flow model and that the shape of the curve is similar as 

well. The results are approximately symmetric. For the lowest roughness lengths, the 

most considerable speed-up effects can be observed, which is contrary to the results 

from WEng. However, the differences between the results for the three roughness 

lengths are minimal. Additionally, there is interference due to rounding errors because 

of the low data accuracy in the export function, which causes the leaps in the curves. 

The results for the forested cases with different three heights, which are shown in  

Figure 5.23 (left), indicate that also here the speed-up effects are very close to those 

from the potential flow model. Only for large tree heights of 30 m, there is a significant 

deviation at 𝑧/𝐿 ratios of 0.6 and 0.75 for both the inflow and outflow parts of the 

flow. 

When looking at the results for three different forest densities in Figure 5.23 (right), 

not much difference can be seen between low, medium and high forest densities. 

However, it is interesting to note that the previously described differences for large 

tree heights are only present for medium forest densities. 

In Figure 5.24, the results for different atmospheric stability classes on the speed-up 

effects for the forested cases with a tree height of 20 m and medium forest density are 

illustrated. Figure 10.5 and Figure 10.6 in Appendix 10.3 provide results for the low 

and high roughness cases in dependence of atmospheric stability. 

Atmospheric stability seems to have the strongest influence on speed-up, at least when 

the extreme stability cases are considered. Smallest speed-up can be observed for 

strongly stable cases and the largest speed-ups for very unstable cases. Additionally, 

the results are no longer symmetric when atmospheric stability is considered in high 

roughness and forested cases. Especially speed-ups on the downwind side are 

generally decreased for stable and strongly stable cases. Note that, in accordance to 

the literature (Emeis 2011), the speed-up effects between freestream and hilltop are 

increased for stable cases in the simulations. However, this is not the case for the 

speed-ups between the measurement points and the reconstruction point when 

compared to neutral cases (compare e.g. Figure 5.14). 
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Figure 5.22: Inflow speed-up (dashed) and outflow speed-up (solid) in dependence of 𝑯/𝑳 ratio (left) and roughness length 𝒛𝟎 (right). Results from Meteodyn WT 

(colored) and from the potential flow model (black) at 150 m measurement height and for a 𝝋 of 30°. For the left plot, the roughness length 𝒛𝟎 is 0.005 m. 
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Figure 5.23: Inflow speed-up (dashed) and outflow speed-up (solid) in dependence of tree height 𝒉𝒕 (left) and forest densities (right). Results from Meteodyn WT 

(colored) and from the potential flow model (black) at 150 m measurement height and for a 𝝋 of 30° for an 𝑯/𝑳 ratio of 0.3. For the left plot, the forest density is 

medium. For the right plot, the tree height is 20 m. 
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Figure 5.24: Inflow speed-up (dashed) and speed-up (solid) in dependence of atmospheric 

stability. Results from Meteodyn WT (colored) and from the potential flow model (black) at 

150 m measurement height and for a 𝝋 of 30° for an 𝑯/𝑳 ratio of 0.3. Meteodyn WT results 

for a tree height 𝒉𝒕 of 20 m and medium forest density. 

  



 

73 

 

5.2 Model results for the lidar error 

The results for the lidar error are presented in a non-dimensional way. For this, the 

results for the different 𝐻/𝐿 ratios are grouped and the lidar error is usually plotted 

against the ratio of height above ground 𝑧 against hill half-width 𝐿 (ratio 𝑧/𝐿). If 

reasonable, the results are shown for all four 𝐻/𝐿 ratios (0.1, 0.2, 0.3 and 0.4). In many 

cases, it makes more sense to focus on the results of one or two 𝐻/𝐿 ratios. In the latter 

case, the detailed results can be found in the appendix. The methodology for the 

parameter-study is described in more detail in chapter 4.4. 

The following chapter is divided into the parts “orographic complexity” (chapter 

5.2.1), “terrain roughness” (chapter 5.2.2), “forest height and density” (chapter 5.2.3) 

and “atmospheric stability” (chapter 5.2.4). 

The dependence of the lidar error on measurement height ℎ (respectively, the height 

above ground 𝑧) is treated separately in chapter 5.2.5, which also serves as an 

evaluation of the assumption of the applicability of the non-dimensional number 𝑧/𝐿. 

The influence of half-cone opening angle 𝜑 is discussed in chapter 5.2.6 for the 

potential flow model different model parameterizations of Meteodyn WT. 

This structure reflects the order and structure of the four main hypotheses discussed in 

chapter 1.4. 

All results presented in the following are based on 𝜑 = 30° unless otherwise noted. 

5.2.1 Orographic complexity 

As already described above, one of the big advantages of the potential flow model is 

the possibility to run it fast and easy for many different terrain parameters. Within this 

thesis, it is therefore used as a baseline or reference for the more complex models. 

In a first step, the results from the potential flow model are presented to illustrate the 

general behavior of the lidar error concerning the relevant terrain parameters hill height 

𝐻 and hill half-width 𝐿. In a subsequent step, these results are used to define the 

parameter space for the more complex models WEng and Meteodyn WT in order to 

cover the most relevant effects. Due to economic reasons, the number of simulations 

had to be limited for these models.  

Figure 5.25 shows the results for the lidar error 𝜀 versus the ratio 𝑧/𝐿 for four different 

𝐻/𝐿 ranging from 0.1 to 0.4. There is a maximum lidar error that can be found in the 

range of 𝑧/𝐿 between 0.5 and 0.6. The exact position is slightly dependent on the 𝐻/𝐿 

ratio and increases with increasing 𝐻/𝐿. The maximum lidar error significantly 

increases with increasing terrain inclination. For a 𝐻/𝐿 ratio of 0.1, it is slightly larger 

than -3 %. For a 𝐻/𝐿 ratio of 0.4, it reaches up to about -11 %. 

For lower and higher values of 𝑧/𝐿, the lidar error rapidly decreases. For better 

readability, a cutout of the relevant area is shown in Figure 5.26. Especially a decrease 

of 𝑧/𝐿 results in a strong decrease of the lidar error 𝜀. In comparison to that, the 

decrease of 𝜀 for increasing 𝑧/𝐿 is less pronounced. 

Figure 5.25 and Figure 5.26 contain two dashed lines. The -2 % line marks a typical 

uncertainty of wind measurements based on cup-anemometers as a reference (Basse et 

al. 2017). Lidar measurement errors below -2 % are in the same order as uncertainties 

of mast-based measurement. Such small errors will not add much uncertainty to the 
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wind measurement. However, because lidar errors are systematic (compare chapter 

3.3), a correction is mandatory also in case of small errors. 

The -10 % line marks an approximate upper limit for a reasonable correction of lidar 

errors in complex terrain. Details on this approximation can be found in chapter 3.3. 

For a discussion of the model results at a later point, it is recommended to keep in mind 

the range of lidar errors between -10 % and -2 %. By comparing changes in estimated 

lidar errors caused by parameter variations in the subsequent chapters to this range, it 

also becomes obvious which parameters are essential for lidar error correction and 

which are not. 

From Figure 5.25 and Figure 5.26, it can be noticed that the 2 % line is crossed for the 

steepest hills (𝐻/𝐿 of 0.4) at a 𝑧/𝐿 of about 4.5 and for the lowest slopes (𝐻/𝐿 of 0.1) 

at 𝑧/𝐿 of 1.5. For low z/L ratios (broadest hills), the three lines for 𝐻/𝐿 of 0.2, 0.3 and 

0.4 are crossing the 2 % line close together between 0.04 and 0.07. For the least 

complex hill, the lidar error already decreases below 2 % at a 𝑧/𝐿of 0.16. 

Following this, it can be concluded that for a small 𝐻/𝐿 of 0.1, only a very limited 

parameter range between 𝑧/𝐿 of 0.16 and 1.5 is relevant for correction. Additionally, 

the necessary corrections are relatively small, with maximum errors in the range of -

3 %. 

For more complex terrain and therefore larger 𝐻/𝐿, a much larger parameter space 

must be considered. Significant lidar errors can be found for large hills down to a 𝑧/𝐿 

of 0.04 and also very narrow but steep hills in the range of 𝑧/𝐿 from 2 to 4.5 for 𝐻/𝐿 

between 0.2 and 0.4. The magnitude of the lidar errors for those terrains is also much 

higher. 

The -10 % line is only crossed by the maximum error for the steepest terrain of 𝐻/𝐿 

of 0.4 cases between 𝑧/𝐿 between 0.35 and 0.9. 

Based on the above-given considerations, the relevant terrain parameter settings for 

more complex CFD calculations have been chosen (compare chapter 4.5). 

As defined in chapter 3.2, the lidar error 𝜀 can be subdivided into a part 𝜀𝑐 caused by 

flow curvature and a part 𝜀𝑠 caused by speed-up between the measurement points. 

Figure 5.27 illustrates 𝜀𝑐 and 𝜀𝑠 next to each other in the same way that 𝜀 is presented 

above. 

The general shape of the four curves is similar to that presented in Figure 5.25. The 

maximum errors 𝜀𝑐 (Figure 5.27, left) are slightly smaller compared to 𝜀. For an 𝐻/𝐿 

ratio of 0.4, the error is no longer exceeding the -10 % line. For a 𝐻/𝐿 of 0.1, the 

maximum error is about 2.5 %. The maximum error is now located between 𝑧/𝐿 of 

0.45 and 0.51. Also, the point of intersection with the 2 % line on the right-hand side 

is significantly shifted downwards. 

Looking at Figure 5.27, right, which shows the speed-up part 𝜀𝑠, it becomes obvious 

that this part is much smaller in magnitude than the curvature part. However, it reaches 

up to -1.95 % for a 𝐻/𝐿 ratio of 0.4 and also the magnitudes for 𝐻/𝐿 ratios 0.2 and 

0.3 are not negligible. The position 𝑧/𝐿 of the maximum error due to speed-up is 

between 0.9 and 1.0. The lidar error caused by speed-up, therefore, shifts the resulting 

curves for the total lidar error 𝜀 upwards. 
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Figure 5.25: Lidar error 𝜺 in dependence of the ratio 𝑯/𝑳 between 𝒛/𝑳 ratios from 0 to 5. 

Results are based on the potential flow model. The two dashed lines mark a typical uncertainty 

of wind measurements (-2 %) and a reasonable limit for acceptable lidar errors in wind 

resource assessments (-10 %). 
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Figure 5.26: Lidar error 𝜺 in dependence of the ratio 𝑯/𝑳 between 𝒛/𝑳 ratios from 0 to 2. 

Results are based on the potential flow model. The two dashed lines mark a typical uncertainty 

of wind measurements (-2 %) and a reasonable limit for acceptable lidar errors in wind 

resource estimations (-10 %). 
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Figure 5.27: Lidar error 𝜺𝒄 (left) and 𝜺𝒔 (right) in dependence of the ratio 𝑯/𝑳 between 𝒛/𝑳 

ratios from 0 to 5. Results are based on the potential flow model. Note the different scaling of 

the x-axes. 

5.2.2 Terrain roughness 

Having defined the relevant parameter space for the more advanced models WEng and 

Meteodyn WT, the influence of terrain roughness is analyzed in the following chapter. 

Wherever possible, the results are compared to those from the potential flow model 

shown in chapter 5.2.1. For WEng and Meteodyn WT, the results are composed of 

seven data points per 𝐻/𝐿 ratio that cover a 𝑧/𝐿 range from 0.2 to 3.0 with a sufficient 

resolution around the area of maximum expected lidar errors (compare simulation 

setup in chapter 4.5). 

5.2.2.1 WAsP Engineering 

Figure 5.30 shows the results from WEng for the four different 𝐻/𝐿 ratios for the low 

roughness value of 0.005 m. The results are generally relatively close to those from 

the potential flow model as a reference. Especially for 𝑧/𝐿 values between 0.2 and 0.3 

as well as for cases with 𝑧/𝐿 ≥  1.5, the results of the low roughness case are very 

close to the reference. Also, the shape of the curves is comparable to that from the 

potential flow model. 

For 𝐻/𝐿 ratios of 0.1 and 0.2, all lidar errors from WEng are smaller than or equal to 

those from the potential flow model. The maximum errors for these cases can be found 

at 𝑧/𝐿 of 0.75 with -2.6 % and -5.7 %. For a 𝐻/𝐿 ratio of 0.3 and 0.4, the lidar error 

exceeds the maximum found with the potential flow model. Here the maximum values 

are found at 𝑧/𝐿 of 0.6 with -10 % and -12 %, which is significantly larger than in the 

reference. Also, at 𝑧/𝐿 up to 1.0, the lidar errors estimated from WEng exceed those 

from the potential flow model, showing a maximum lidar error in the same 𝑧/𝐿 range 

as found in the potential flow model. Also, the estimated lidar error decreases strongly 

for smaller and larger 𝑧/𝐿. 
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Figure 5.28: Lidar error 𝜺 in dependence of the ratio 𝑯/𝑳 between 𝒛/𝑳 ratios from 0 to 3. 

Results are based on WEng (colored) and the potential flow model (black). The roughness 

length 𝒛𝟎 is set to 0.005 m. From right to left, the black lines refer to the increasing 𝑯/𝑳 ratios. 

  
Figure 5.29: Lidar error 𝜺𝒄 (left) and 𝜺𝒔 (right) in dependence of the ratio 𝑯/𝑳 between 𝒛/𝑳 

ratios from 0 to 3. Results are based on WEng (colored) and the potential flow model (black). 

The roughness length 𝒛𝟎 is set to 0.005 m. From right to left, the black lines refer to the 

increasing 𝑯/𝑳 ratios. 
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Following the same approach as in the previous chapter, the lidar error can be split up 

into the parts 𝜀𝑐 and 𝜀𝑠, giving the error part resulting from flow curvature and the part 

resulting from speed-up effects (Figure 5.29). 

In this case, the shape of both curves differs clearly from the potential flow model 

results. For 𝑧/𝐿 of 1.5 to 3 the estimated lidar error 𝜀𝑐 decreases much faster than in 

the reference. The resulting lidar errors are, therefore, significantly smaller than those 

estimated by the potential flow model. For smaller 𝑧/𝐿 the shape of the curves for 𝜀𝑐 
is comparable to that for the total error 𝜀. 

The estimated lidar error 𝜀𝑠 that is caused by speed-up effects, on the other hand, 

strongly exceeds that from the reference for all 𝑧/𝐿 from 0.6. The maximum values of 

𝜀𝑠 are found at a 𝑧/𝐿 1.5, which is significantly larger than in the potential flow model. 

The combination of the two error sources brings the total estimated lidar error from 

WEng close to that from the reference, although there are considerable deviations in 

the two error parts. However, also in WEng 𝜀𝑠 is generally much smaller than 𝜀𝑐. 

In a second step, the surface roughness length has been modified in WEng, setting 

values of 0.005 m, 0.1 m and 0.5 m. The results for 𝜀, 𝜀𝑐 and 𝜀𝑠 are shown in Figure 

5.30 and Figure 5.31 for an H/L ratio of 0.3. 

The maximum lidar error from WEng is found for 𝑧/𝐿 of 0.6 for all roughness lengths 

and exceeds the maximum from the reference by about 2 % for a 𝑧0 of 0.005 m. Larger 

roughness lengths decrease the lidar errors significantly. This dependence on 

roughness length becomes most obvious for increasing 𝑧/𝐿 values. While the lidar 

error is about 5 % for 𝑧/𝐿 of 1.5 and a very low roughness length, it decreases to about 

2 % for high roughness. For small 𝑧/𝐿 of 0.2 and 0.3, the results for the three different 

roughness lengths are comparable and all very close to the reference. 

Splitting up the lidar error into the flow curvature part 𝜀𝑐 and the speed-up part 𝜀𝑠 
again, reveals that the general shape of the error curve is dominated by 𝜀𝑐. It reaches 

up to 7.5 to 8.5 % in the maximum and then significantly decreases for larger and 

smaller hills. It is interesting to note that the decrease for small hills above 𝑧/𝐿 = 1 is 

much faster than in the potential flow model. Additionally, the lidar error 𝜀𝑐 becomes 

0 % for the lowest roughness at about 𝑧/𝐿 = 3 and even reaches positive values for 

larger roughness reaching up to +1.5 % 

The speed-up induced error 𝜀𝑠 gives a much smaller part of the total lidar error. It 

increases up to 𝑧/𝐿 of 1.5 and then slightly decreases again. The maximum value is 

about 2.25 % for low roughness and about 3 % for the highest roughness. Here, an 

increased roughness length results in larger lidar errors. A systematic increase in 𝜀𝑠 is 

found for all simulations. Again, the results for small roughness and relative large hills 

are very close to those from the potential flow model. 
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Figure 5.30: Lidar error 𝜺 in dependence of the roughness length 𝒛𝟎 between 𝒛/𝑳 ratios from 

0 to 3. Results are based on WEng (colored) and the potential flow model (black) for an 𝑯/𝑳 

ratio of 0.3. 

  
Figure 5.31: Lidar error 𝜺𝒄 (left) and 𝜺𝒔 (right) in dependence of the roughness length 𝒛𝟎 

between 𝒛/𝑳 ratios from 0 to 3. Results are based on WEng (colored) and the potential flow 

model (black) for an 𝑯/𝑳 ratio of 0.3. 
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5.2.2.2 Meteodyn WT 

Figure 5.32 to Figure 5.35 sum up the results from Meteodyn WT simulations with the 

three different roughness values 𝑧0 of 0.005 m, 0.1 m and 0.5 m for the whole set of 

terrain cases. 

First the total lidar error 𝜀 and its parts 𝜀𝑐 and 𝜀𝑠 are shown for the lowest roughness 

length 𝑧0 of 0.005 m. Each of the four different 𝐻/𝐿 sets is compared to the results 

from the potential flow model. This allows for a general comparison of the results from 

the RANS CFD model for only slightly asymmetric flow fields to the fully symmetric 

results from the inviscid model. 

The shape of the curves for the total lidar error 𝜀 for the lowest roughness length shown 

in Figure 5.28 is comparable to those from the potential flow model. However, for all 

four 𝐻/𝐿 ratios, the lidar error from Meteodyn WT is smaller when compared to the 

reference. The difference between the reference and Meteodyn WT increases for 

increasing 𝐻/𝐿 ratios. The maximum values for 𝜀 can be found at roughly the same 

𝑧/𝐿 ratios as in the reference: For 𝐻/𝐿 ratios of 0.1, 0.2 and 0.3 the maximum is less 

pronounced and located at a 𝑧/𝐿 of 0.6 to 0.75, which is a slight shift to larger 𝑧/𝐿 

than in the reference. For a 𝐻/𝐿 ratio of 0.4, the maximum can clearly be seen at a 𝑧/𝐿 

of 0.6. At these points, the total lidar error 𝜀 is -2.5 %, -5.0 %, -7.2 % and -9.6 %. 

For 𝑧/𝐿 ratios below the maximum point, there is a strong decrease of 𝜀 for 𝐻/𝐿 values 

of 0.2, 0.3 and 0.4. For the least inclined hill shape with a 𝐻/𝐿 ratio of 0.1, only a 

small decrease of the total lidar error for small 𝑧/𝐿 is found. For 𝑧/𝐿 ratios larger than 

0.75, 𝜀 is continuously decreasing. For all 𝐻/𝐿 ratios, the results from Meteodyn WT 

get closer to the reference for smaller and larger 𝑧/𝐿 ratios than at the maximum point. 
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Figure 5.32: Lidar error 𝜺 in dependence of the ratio 𝑯/𝑳 between 𝒛/𝑳 ratios from 0 to 3. 

Results are based on Meteodyn WT (colored) and the potential flow model (black). The 

roughness length 𝒛𝟎 is set to 0.005 m. From right to left, the black lines refer to the increasing 

𝑯/𝑳 ratios. 

  
Figure 5.33: Lidar error 𝜺𝒄 (left) and 𝜺𝒔 (right) in dependence of the 𝑯/𝑳 ratio between 𝒛/𝑳 

ratios from 0 to 3. Results are based on Meteodyn WT (colored) and the potential flow model 

(black). From right to left, the black lines refer to the increasing 𝑯/𝑳 ratios. 
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The results for the total lidar error 𝜀 from Meteodyn WT can also be split up into the 

error parts 𝜀𝑐 and 𝜀𝑠 (Figure 5.33 left and right). From this, the individual part of these 

two can be illustrated. 

The lidar error due to flow curvature, 𝜀𝑐, as can be seen in the left part of Figure 5.33, 

dominates the general shape of the error curves. Its maximum point is slightly below 

that of the total lidar error at a 𝑧/𝐿 of about 0.6. Maximum errors 𝜀𝑐 reach from -

2.16 %for an 𝐻/𝐿 ratio of 0.1 up to 8.0 % for the highest ratio of 0.4. As for the total 

lidar error, there are differences between the potential flow model and the results from 

Meteodyn WT, which are highest around the maximum points and then decrease for 

larger and smaller 𝑧/𝐿 ratios. The results for 𝜀𝑐 are relatively close to the reference for 

𝐻/𝐿 ratios of 0.1 and 0.2 for the whole 𝑧/𝐿 interval. 

Looking at the speed-up induced error part, 𝜀𝑠, it can be seen that the shape of the 

curves is comparable to that from the potential flow model. However, except for the 

highest 𝐻/𝐿 ratio of 0.4, there are fluctuations in the model results, which seem 

random. Having investigated the model data in detail, the reason for this could be 

identified: Due to limited precision of the exported data from the model software (one 

position after the decimal point), the calculation results are fluctuating for cases with 

minimal differences between the wind speeds at the measurement points. This is 

especially true for the low absolute values of the speed-ups between the lidar 

measurement points and for small 𝐻/𝐿 ratios where the influence of the hill geometry 

on the flow is relatively small. These fluctuations are not present in the potential flow 

model and WEng, as they both use high precision floating point numbers during the 

calculation. For Meteodyn WT, the model results had to be exported from the software 

in a proprietary data format for further analysis in Matlab. During the course of the 

doctoral thesis, it was not possible to persuade the developer of the software to 

implement an enhanced version of the export function. The fluctuations for the 

estimation of small lidar errors based on Meteodyn WT must, therefore, be treated as 

an individual source for model uncertainty. 

The absolute values of the lidar error due to speed-up effects that can be seen in Figure 

5.33 (right) are comparable to those from the potential flow model. For 𝑧/𝐿 ratios 

around 1.0, there are differences to the reference towards smaller lidar errors. The 

maximum lidar errors 𝜀𝑠 range from 0.5 % for small 𝐻/𝐿 ratios to about 1.75 % for 

the highest 𝐻/𝐿 ratios. 

Analogous to the previous chapter, the influence of the roughness length 𝑧0 is 

presented for the three different used values of 0.005 m, 0.1 m and 0.5 m for an 𝐻/𝐿 

ratio of 0.3. Detailed results for other 𝐻/𝐿 ratios can be found in the appendix. 

Figure 5.34 shows the total lidar error 𝜀 for the different roughness length. While the 

curve for the lowest roughness length has a pronounced maximum value and the shape 

of the curve is comparable to that from the potential flow, this is no longer the case for 

higher roughness length. For a 𝑧0 of 0.1 m ,the lidar errors are generally smaller for all 

𝑧/𝐿 ratios, except the lowest two 0.2 and 0.3. For these, the model results are very 

close to each other. At the maximum point, the lidar error is decreased by about 1 % 

for the medium roughness length. The decrease of 𝜀 is even stronger for a roughness 

length of 0.5 m. Here, 𝜀 is decreased by another 1 % for all 𝑧/𝐿 ratios. However, the 

general shape of the error curve stays similar. For the highest roughness length, the 

lidar error decreased below 2 % for a 𝑧/𝐿 of 2.5. 
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Figure 5.35 splits up the total lidar error 𝜀 into its parts 𝜀𝑐 and 𝜀𝑠. Depending on 

roughness length, the speed-up induced part of the lidar error, 𝜀𝑠 reaches up to 1.25 % 

to 1.5 %. Again, significant fluctuations can be found in the results, which make it 

difficult to assess the actual shape of the error curve. 

As the lidar error 𝜀𝑐, that is caused by flow curvature, is about four times larger than 

𝜀𝑠, the shape of the error curve is dominated by this part. 𝜀𝑐 reaches maximum values 

of 5.8 % for large roughness lengths and 7.2 % for small roughness length. For 𝑧/𝐿 

ratios from 1.5 to 3.0 and below 0.3, there is only a small difference between the low 

and the medium roughness length. For the part around the maximum value, these two 

curves differ by up to 0.5 %. The lidar errors for the highest roughness lengths are 

again systematically smaller for all z/l ratios. 
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Figure 5.34: Lidar error 𝜺 in dependence of the roughness length 𝒛𝟎 between 𝒛/𝑳 ratios from 

0 to 3. Results are based on Meteodyn WT (colored) and the potential flow model (black) for 

an 𝑯/𝑳 ratio of 0.3. 

  
Figure 5.35: Lidar error 𝜺𝒄 (left) and 𝜺𝒔 (right) in dependence of the roughness length 𝒛𝟎 

between 𝒛/𝑳 ratios from 0 to 3. Results are based on Meteodyn WT (colored) and the potential 

flow model (black) for an 𝑯/𝑳 ratio of 0.3. 
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5.2.3 Forest height and density 

The following sup-chapter shows the lidar error results from Meteodyn WT for 

forested cases. First, a case with small tree heights of 10 m and low forest densities is 

shown. This case is used as a consistency analysis for the transition between the high 

roughness case without forest and a case with minimal influence from the forest model. 

Afterward, results for 𝜀, 𝜀𝑐 and 𝜀𝑠 are presented for different tree heights and different 

forest densities at a 𝐻/𝐿 ratio of 0.3. More results for other 𝐻/𝐿 ratios can be found 

in the appendix. 

Figure 5.36 shows the results of the comparison between the high roughness (𝑧0 =
0,5𝑚) cases without forest model and the low and sparse forest cases (ℎ𝑡 = 10𝑚, low 

forest density) for the four different 𝐻/𝐿 ratios. It can be seen that the lidar error 𝜀 is 

comparable for the two settings for nearly all cases, although there are some minor 

deviations between the two. 

Figure 5.37 splits up the lidar error into its parts 𝜀𝑐 (left) and 𝜀𝑠 (right). Also here – 

except some results – the absolute values of 𝜀𝑐 are comparable between the two cases. 

For the speed-up induced error, there is much fluctuation in the results (see explanation 

above). However, it can be noted that the speed-up errors are in the same order for 

both cases and that they are systematically increasing for larger 𝐻/𝐿 ratios. 
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Figure 5.36: Lidar error 𝜺 in dependence of the ratio 𝑯/𝑳 between 𝒛/𝑳 ratios from 0 to 3 for 

a high roughness length 𝒛𝟎 = 𝟎, 𝟓𝒎 (dashed lines) and a forest (𝒉𝒕 = 𝟏𝟎𝒎, low forest 

density), i.e., a very sparse forest (solid lines). Results are based on Meteodyn WT. 

  
Figure 5.37: Lidar error 𝜺𝒄 (left) and 𝜺𝒔 (right) in dependence of the ratio 𝑯/𝑳 between 𝒛/𝑳 

ratios from 0 to 3 for a high roughness length 𝒛𝟎 = 𝟎, 𝟓𝒎 (dashed lines) and a forest (𝒉𝒕 =
𝟏𝟎𝒎, low forest density), i.e., a very sparse forest (solid lines). Results are based on Meteodyn 

WT. 
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5.2.3.1 Forest height 

Figure 10.11, Figure 10.12, Figure 5.38 and Figure 5.39 show the impact of different 

tree heights on the total lidar error and the two distinct parts. The results are shown for 

an 𝐻/𝐿 ratio of 0.2 and 0.3, to illustrate that the influence of the forest on the lidar 

error is different, depending on terrain inclination. 

The total lidar error 𝜀 for a 𝐻/𝐿 ratio of 0.2 shows a significant dependence on tree 

height (Figure 10.11). Highest lidar errors are found for small tree heights of 10 m and. 

When increasing the tree height to 20 m and 30 m, 𝜀 decreases for all 𝑧/𝐿 ratios but 

the largest. Although maximum values for the lidar error can still be seen around 𝑧/𝐿 

ratios of 0.6, the shape of the curves is not entirely comparable with that from the 

potential flow model as a reference. 

Figure 10.12 shows the lidar error parts 𝜀𝑐 and 𝜀𝑠 for the same 𝐻/𝐿 ratio. The speed-

up induced part of the error (right-hand side of the plot) is small in this case and does 

not exceed -0.8 %. However, it is interesting to note that 𝜀𝑠 reaches a minimum around 

0 % for tree heights of 20 m and 30 m for a 𝑧/𝐿 ratio of 1.5, while it stays at -0.4 % 

for the smallest trees of 10 m. Maximum 𝜀𝑠 occur aroung 𝑧/𝐿 ratios of 0.6. 

When looking at the flow curvature part of the lidar error (left-hand side of the plot), 

a clear dependence on tree height is found. Increasing the tree height results in 

decreased 𝜀𝑐, which is particularly true for 𝑧/𝐿 ratios between 0.3 and 1.0. There is 

almost no influence of the tree height for 𝑧/𝐿 ratios of 0.2 and 3.0. The shape of the 

error curve is comparable to that from the reference for a tree height of 10 m, showing 

a clear maximum at 𝑧/𝐿 ratio of 0.6. For larger tree height, the shape of the curve 

changes. 

For the larger 𝐻/𝐿 ratio of 0.3, the total lidar error 𝜀, as shown in Figure 5.38, is also 

dependent on tree height. However, when comparing it to the results in Figure 10.11 

for a lower 𝐻/𝐿 ratio of 0.2, it can be seen that the shape of the curves is different. 

There is still a general tendency towards smaller lidar errors for increasing tree heights, 

especially when increasing it from 10 m to 20 m or 30 m. The results for 20 m and 

30 m are very similar for 𝑧/𝐿 ratios of 0.3 to 1.0. A significant difference for these tree 

heights can only be seen at a 𝑧/𝐿 ratio of 1.5. 

Regarding the flow curvature induced part of the error 𝜀𝑐 for the 𝐻/𝐿 ratio of 0.3, 

which is shown in Figure 5.38 (left), also a clear dependence on tree height can be seen 

for all 𝑧/𝐿 ratios but 3.0. The largest errors can be found for a tree height of 10 m, 

reaching up to a maximum value of -5.2 % at a 𝑧/𝐿 of 0.3. The maximum error is 

decreased to -3.8 % for a tree height of 30 m. However, the difference in 𝜀𝑐 between 

the results for 20 and 30 m, high trees is smaller than for the 𝐻/𝐿 of 0.2 cases. 

The influence of tree height on speed-up induced lidar errors 𝜀𝑠 is also different from 

the 𝐻/𝐿 of 0.2 cases. The results in Figure 5.38 (right) show that the strongest speed-

ups occur for small tree heights for 𝑧/𝐿 ratios 1.0 and 1.5. For 𝑧/𝐿 ratios of 0.3, 0.6 

and 0.75, this behavior is reversed and strongest speed-ups are observed for tree 

heights of 30 m. 
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Figure 5.38: Lidar error 𝜺 in dependence of tree heights 𝒉𝒕 between 𝒛/𝑳 ratios from 0 to 3. 

Results are based on Meteodyn WT (colored) and the potential flow model (black) for an 𝑯/𝑳 

ratio of 0.3. 

  
Figure 5.39: Lidar error 𝜺𝒄 (left) and 𝜺𝒔 (right) in dependence of tree heights 𝒉𝒕 between 𝒛/𝑳 

ratios from 0 to 3. Results are based on Meteodyn WT (colored) and the potential flow model 

(black) for an 𝑯/𝑳 ratio of 0.3. 
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5.2.3.2 Forest density 

To analyze the influence of forest density on the lidar error results from Meteodyn WT 

for an 𝐻/𝐿 ratio of 0.3 are exemplarily shown in Figure 5.40 and Figure 5.41. The 

results cover the three possible parameter variations “low,” “medium” and “high” 

forest density for a forest with 30 m tree height. A significant tree height has been 

chosen in order to increase the influence of forest density on the results. 

However, for many 𝑧/𝐿 ratios, there is only a small dependence on forest density. 

Particularly a change from medium to high forest density has not much impact on the 

results for the lidar error 𝜀. The largest differences between the results for the three 

different forest densities can be observed at a 𝑧/𝐿 ratio of 1.0. Here the maximum lidar 

error of about -4 % occurs for low forest density and the minimum of -2.2 % for high 

forest density. 

Splitting up the lidar error into 𝜀𝑐 and 𝜀𝑠 in Figure 5.41 shows that the differences in 

𝜀𝑐 are small and the shape of the error curve is similar for all three forest densities. 

Differences in the shape of the curve for the total lidar error 𝜀 are mainly caused by 

the influence of 𝜀𝑠. As illustrated in Figure 5.41 (right), the shape of the error curves 

differs for the different forest densities, although the absolute values of 𝜀𝑠 are small. 

However, the observed effects are strong enough to impact the total lidar error, as the 

differences in 𝜀𝑐 are relatively small. 
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Figure 5.40: Lidar error 𝜺 in dependence of forest density between 𝒛/𝑳 ratios from 0 to 3. 

Results are based on Meteodyn WT (colored) and the potential flow model (black) for an 𝑯/𝑳 

ratio of 0.3. 

  
Figure 5.41: Lidar error 𝜺𝒄 (left) and 𝜺𝒔 (right) in dependence of forest density between 𝒛/𝑳 

ratios from 0 to 3. Results are based on Meteodyn WT (colored) and the potential flow model 

(black) for an 𝑯/𝑳 ratio of 0.3. 
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5.2.4 Atmospheric stability 

In order to analyze the influence of different atmospheric stability conditions, the 

stability class in Meteodyn WT has been modified for a part of the simulation cases. 

The influence of the stability parameter is most severe for medium to large 𝐻/𝐿 ratios. 

Additionally, the computational effort to create results for a wide range of stability 

cases for individual hill geometries and parameter settings is large. Therefore, this part 

of the study has been limited to an 𝐻/𝐿 ratio of 0.3 and to the cases of low roughness, 

high roughness and medium dense forest with a tree height of 20 m. 

The results presented in Figure 5.42 to Figure 5.47 sum-up these results for the four 

chosen stability classes very unstable, neutral, stable and strongly stable. These four 

out of ten possible stability classes in Meteodyn WT cover the whole possible range. 

Calculations have been carried out for all stability classes in-between those four, but 

the effects found are systematic and it is, therefore, sufficient to show only this excerpt. 

Starting with the low roughness case of 𝑧0 = 0,005𝑚, Figure 5.42 shows the results 

for the total lidar error 𝜀 for an 𝐻/𝐿 ratio of 0.3 and the four different stability classes. 

First, it can be seen that 𝜀 decreases from hthe ighest values for very unstable cases to 

lower values for strongly stable cases. This influence differs for different 𝑧/𝐿 ratios. 

There is only a small dependence of the lidar error for 𝑧/𝐿 ratios of 0.2 and 0.3, as 

well as 3.0. The difference between the results increases for medium 𝑧/𝐿 ratios 

between 0.6 and 1.0. In addition, the location of the maximum lidar error is dependent 

on atmospheric stability. While for unstable cases, the maximum 𝜀 is found at a 𝑧/𝐿 

ratio of 0.75, the value decreases 0.3 for strongly stable cases. The most considerable 

difference between the results can be found at the maximum point for very unstable 

cases with a 𝜀 of about 8 % compared to only 5.25 % for strongly stable cases. It is 

also interesting to note that the maximum point for unstable cases is very close to the 

reference line from the potential flow model. 

Looking at the individual contribution of 𝜀𝑐 and 𝜀𝑠 to the total lidar error for different 

atmospheric stabilities (Figure 5.43) shows that, for the low roughness case, the flow 

curvature induced effects dominate. There is a systematic decrease in lidar error 𝜀𝑐 
when coming from very unstable cases to neutral, stable and strongly stable cases for 

almost all 𝑧/𝐿 ratios. The differences are largest between 𝑧/𝐿 ratios of 0.6 to 1.5. The 

location of maximum error changes with atmospheric stability. While for unstable 

cases a clear maximum of 𝜀𝑐 of -6.6 % can be found at a 𝑧/𝐿 of 0.75, the maximum 

for strongly stable cases is -5 % at a z/L of 0.3. For very low 𝑧/𝐿 of 0.2 and the highest 

value of 3.0, the dependence of 𝜀𝑐 on atmospheric stability is relatively small. 

When looking at the speed-up induced part of the lidar error 𝜀𝑠 in Figure 5.43 (right), 

it can be noted that the largest speed-ups can be found for very unstable and neutral 

cases. The lidar error 𝜀𝑠 then significantly decreases for stable and strongly stable 

cases, which is particularly true for 𝑧/𝐿 ratios between 0.6 and 1.5. 

Looking at the high roughness cases with a 𝑧0 of 0.5 m (Figure 5.44), the tendency of 

the influence of atmospheric stability is consistent with what has already been 

described for the low roughness length. Largest lidar errors 𝜀 can be found for very 

unstable cases. Then, the lidar error is systematically reduced for neutral, stable and 

strongly stable cases. This effect is significant for 𝑧/𝐿 ratios between 0.6 and 1.5. 

However, there is an exception for unstable cases with 𝑧/𝐿 ratios below 0.6. Here the 

shape of the error curve is different and significantly lower lidar errors are found, 

which are even smaller than for the stable cases at these 𝑧/𝐿 ratios. 
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For the high roughness cases, the maximum lidar error can be found at a 𝑧/𝐿 ratio of 

0.6 for very unstable cases and at 0.3 for strongly stable cases. The maximum lidar 

error reaches up to -6.25 % for very unstable and about -2.5 % for strongly stable 

atmospheric conditions. 

The speed-up induced part of the lidar error 𝜀𝑠 for the high roughness case is also 

sensitive to atmospheric stability. In Figure 5.45 (right), it can be seen that especially 

for 𝑧/𝐿 ratios between 1.0 and 3.0, the errors significantly decrease with increased 

atmospheric stability. While 𝜀𝑠 is close to zero for strongly stable cases, it reaches up 

to -1.3 % for very unstable cases. 

The atmospheric stability has also been varied for a forested case with 30 m tree height 

and medium forest density. The results for the total lidar error are shown in Figure 

5.46. Again, a clear tendency of reduced lidar errors for increasing atmospheric 

stability can be seen. Largest lidar errors occur for very unstable stability conditions, 

with a clear maximum at a 𝑧/𝐿 ratio of 0.6 and a lidar error 𝜀 of about -6 %. Coming 

to neutral, stable and strongly stable cases, the maximum is again shifted towards 

lower 𝑧/𝐿 ratios. The maximum error for strongly stable cases is -2.3 % and can be 

found at a 𝑧/𝐿 ratio of 0.3. The shape of all error curves is different from that for low 

and high roughness cases. Below and above the maximum, there is a relatively sharp 

decrease in lidar errors, which pronounces the maximum points. For the largest 𝑧/𝐿 

ratio of 3.0, the influence of atmospheric stability is relatively small. 

Figure 5.47 shown the lidar error split up into its parts 𝜀𝑐 and 𝜀𝑠 for the forested case. 

The shape and tendency for 𝜀𝑐 to that for the total error, although maximum errors can 

be found around a 𝑧/𝐿 ratio of 0.3 for all stability classes. 

For 𝜀𝑠, also a clear tendency of reduced errors for increased atmospheric stability can 

be seen in Figure 5.47 (right). Most substantial speed-up induced lidar errors can be 

found for unstable cases at 𝑧/𝐿 ratios of 0.6 and 0.75. 
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Figure 5.42: Lidar error 𝜺 in dependence of atmospheric stability between 𝒛/𝑳 ratios from 0 

to 3. Results are based on Meteodyn WT (colored) and the potential flow model (black) for an 

𝑯/𝑳 ratio of 0.3 for a low roughness length 𝒛𝟎 of 0.005m.  

  
Figure 5.43: Lidar error 𝜺𝒄 (left) and 𝜺𝒔 (right) in dependence of atmospheric stability between 

𝒛/𝑳 ratios from 0 to 3. Results are based on Meteodyn WT (colored) and the potential flow 

model (black) for an 𝑯/𝑳 ratio of 0.3 for a low roughness length 𝒛𝟎 of 0.005m. 
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Figure 5.44: Lidar error 𝜺 in dependence of atmospheric stability between 𝒛/𝑳 ratios from 0 

to 3. Results are based on Meteodyn WT (colored) and the potential flow model (black) for an 

𝑯/𝑳 ratio of 0.3 for a high roughness length 𝒛𝟎 of 0.5m. 

  
Figure 5.45: Lidar error 𝜺𝒄 (left) and 𝜺𝒔 (right) in dependence of atmospheric stability between 

𝒛/𝑳 ratios from 0 to 3. Results are based on Meteodyn WT (colored) and the potential flow 

model (black) for an 𝑯/𝑳 ratio of 0.3 for a high roughness length 𝒛𝟎 of 0.5m. 
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Figure 5.46: Lidar error 𝜺 in dependence of atmospheric stability between 𝒛/𝑳 ratios from 0 

to 3. Results are based on Meteodyn WT (colored) and the potential flow model (black) for an 

𝑯/𝑳 ratio of 0.3 for the forested case with a tree height 𝒉𝒕 = 𝟐𝟎𝒎 and a medium forest 

density. 

  
Figure 5.47: Lidar error 𝜺𝒄 (left) and 𝜺𝒔 (right) in dependence of atmospheric stability between 

𝒛/𝑳 ratios from 0 to 3. Results are based on Meteodyn WT (colored) and the potential flow 

model (black) for an 𝑯/𝑳 ratio of 0.3 for the forested case with a tree height 𝒉𝒕 = 𝟐𝟎𝒎 and a 

medium forest density. 
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5.2.5 Measurement height 

The influence of measurement height, respectively, the height above ground 𝑧 at the 

location of the measurement device, is already part of all previously presented figures 

in chapter 0. For a constant 𝐿, the dimensionless measure 𝑧/𝐿 on the y-axis illustrates 

the influence of increasing the measurement height on the lidar error. For example, for 

a hill half-width 𝐿 of 250 m, the range of 𝑧/𝐿 from 0.2 to 3.0 covers measurement 

heights from 50 m to 750 m. The influence of measurement height on the lidar error 

for a particular hill geometry can, therefore, be analyzed for each model and shown 

parameterization in this chapter. 

However, due to limitations in setting up the model domain, it was not possible to 

follow this approach of a fixed 𝐿 and increasing 𝑧 values for the required parameter 

space (compare chapter 4.5) in practice. Thus, the value of 𝐿 was changed for the 

different 𝐻/𝐿 ratios in order to cover 𝑧/𝐿 values from 0.2 to 3.0 for WEng and 

Meteodyn WT. This, however, assumes the validity of creating the dimensionless 

measure 𝑧/𝐿 and use it for both, the influence of diverse 𝐿 values of different hill 

geometries and the influence of increasing 𝑧 on the lidar error. 

All results presented so far have been generated for a fixed 𝑧 of 150 m as this is a 

typical measurement height in wind energy applications and was appropriate to be 

used in all model setups. The purpose of the following chapter is to validate the above-

explained assumption about the applicability of 𝑧/𝐿 for the potential flow model as a 

reference and different parameterizations of the flow model Meteodyn WT. For this, 

results for 𝜀, 𝜀𝑐 and 𝜀𝑠 have been calculated for four different measurement heights 

(50, 100, 150 and 200 m). As the same model data has been used for this, the 𝑧/𝐿 range 

is shifted, but still covers the most relevant ranges (compare Table 5). The range of the 

y-axis has been increased to 4.0 in order to cover all results for a measurement height 

of 200 m. 

Table 5: Range of z/L ratios for different values of z. 

Measurement 

height 

Minimum z/L Maximum z/L 

50 0.067 1.0 

100 0.133 2.0 

150 0.200 3.0 

200 0.267 4.0 

 

Because the potential flow model is inviscid and, therefore, fully symmetric, the results 

for different 𝑧 are equivalent. In the following figures, a single line is, therefore 

sufficient to represent the reference model. 

In Meteodyn WT, friction due to roughness, forest and turbulence results in 

asymmetric flow fields that cause differences between the four analyzed 𝑧 values. The 

following figures show how far the non-dimensional display of the results can be kept 

up in this case. 

Starting with the low roughness case (𝑧0 = 0,005𝑚), Figure 5.48 shows the results for 

the total lidar error 𝜀 for the four different measurement heights 𝑧. In this case ,the 

results for all four are very close together, only showing minor deviations around 𝑧/𝐿 

of 0.4 to 0.8.  
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When separating the two effects of flow curvature and speed-up into 𝜀𝑐 and 𝜀𝑠 (Figure 

5.49, left and right plot), there is still a lot of consistency in the non-dimensional plots 

for different measurement heights. This is in particular true for 𝜀𝑐, while the small 

values of 𝜀𝑠 show a bit of sensitivity to the measurement height. However, as these 

values are very small in magnitude, this sensitivity cannot be seen as significant. 

For the high roughness cases with a 𝑧0 of 0.5 m show that the shape and magnitude of 

the lidar errors is mostly independent of the measurement height z that is used for 

calculation. There are only small and unsystematic differences between the four 

chosen measurement heights. When separating the total lidar errors into its parts 𝜀𝑐 
and 𝜀𝑠, most results are also very close together. In particular, for the flow curvature 

induced part of the error 𝜀𝑐 the shape of the curves is nearly identical. The results are 

given in Figure 10.7 and Figure 10.8 in Appendix 10.3. 

Also, for the forested case, deviations are relatively small for the total lidar error 𝜀. 

However, for the flow curvature induced part of the error, the shape and magnitude of 

the results for the lowest measurement height of 50 m is significantly different from 

the other results. A reason for this might be that a measurement height of 50 m is 

already very close to the forest height of 20 m, which has a considerable impact on the 

flow field close to the ground (Figure 10.9 and Figure 10.10 in Appendix 10.3.). 

Summing up these results, it can be concluded that in most cases, the non-dimensional 

approach is applicable and results from a fixed 𝑧 can be transferred to other values as 

well. 
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Figure 5.48: Lidar error 𝜺 in dependence of the measurement height z that is used to calculate 

the 𝒛/𝑳 ratio. Results are based on Meteodyn WT (colored) and the potential flow model 

(black) for an 𝑯/𝑳 ratio of 0.3 for a low roughness length 𝒛𝟎 of 0.005m. 

  
Figure 5.49: Lidar error 𝜺𝒄 (left) and 𝜺𝒔 (right) in dependence of the measurement height z 

that is used to calculate the 𝒛/𝑳 ratio. Results are based on Meteodyn WT (colored) and the 

potential flow model (black) for an 𝑯/𝑳 ratio of 0.3 for a low roughness length 𝒛𝟎 of 0.005m. 
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5.2.6 Half-cone opening angle 

The following chapter is illustrating the influence of changing the half-cone opening 

angle 𝜑 of the lidar measurement geometry on 𝜀. Again, to separate and analyze the 

individual contribution of 𝜑, the lidar error is separated into 𝜀𝑐 and 𝜀𝑠. Results are first 

presented for the potential flow model as a reference. Then, exemplary results based 

on Meteodyn WT are shown, which allow for a determination of the influence of 𝜑 in 

the presence of roughness and forest in neutral atmospheric conditions. The half-cone 

angle has been changed from 30° to 20° and 10°. 

Figure 5.50 shows the lidar error 𝜀 for the four 𝐻/𝐿 ratios and the three different half-

cone opening angles 𝜑. When decreasing the half-cone angle, there is also a slight 

decrease in the lidar error. This is particularly true for 𝑧/𝐿 ratios between 0.3 and 1.0, 

which is in the range of the maximum lidar error. For larger 𝑧/𝐿 ratios, the influence 

of 𝜑 on the lidar error decreases. For small 𝑧/𝐿, the influence is also only marginal. 

Figure 5.51, which shows the lidar error split up into 𝜀𝑐 and 𝜀𝑠, enables to retrace of 

the individual contribution of flow curvature and speed-up effects on the total lidar 

error 𝜀. It becomes obvious that decreasing the half-cone opening angle significantly 

decreases 𝜀𝑠 (right plot). While 𝜀𝑠 reaches up to -2 % for an 𝐻/𝐿 ratio of 0.4 for a 𝜑 

of 30°, it falls below -0.25 % for all 𝐻/𝐿 ratios for an angle of 10°. 

Decreasing 𝜑 has a contrary influence on 𝜀𝑐, which is shown in Figure 5.51, left plot. 

While there is almost no influence for the lowest two 𝑧/𝐿 ratios, there is an increase 

of 𝜀𝑐 for half-cone angles of 20° and 10° when compared to the original 30°. This 

difference is largest for 𝑧/𝐿 above 0.5 and persists up to z/L of 3. 

The superposition of the two opposing effects results in the total effect on 𝜀 as it is 

shown in Figure 5.50. 

When looking at the influence of the half-cone opening angle on the results based on 

flow simulations with Meteodyn WT in Figure 10.13, Figure 5.52 and Figure 10.14, it 

becomes obvious that the interdependency with the model parameterization is 

complex. 

For the low roughness case and a 𝐻/𝐿 ratio of 0.3, it can be seen that the lidar error 𝜀 

can be reduced for all 𝑧/𝐿 ratios when the half-cone opening angle is decreased to 10°. 

The decrease is largest for a 𝑧/𝐿 ratio of 1.0, where the difference is about 1 %. There 

are only small differences between a 𝜑 of 30° and one of 20°. Significant differences 

only occur for a 𝑧/𝐿 of 0.6. 

However, when looking at the results for a high roughness length in Figure 5.52, the 

impact of a smaller half-cone opening angle is different. There is only marginal 

influence between 𝑧/𝐿 ratios of 0.6 and 1.5 and for the largest ratio, 𝜀 is increasing in 

comparison to 20 and 30° angles. For the lowest ratios of 0.2, 0.3 on the other hand, 

there is a significant decrease for a small 𝜑. 

Changing the half-cone opening angle in the forest case with medium dense forest and 

a tree height of 20 m (Figure 10.14), the difference between the three lines is very 

small and there is no systematic influence. Only for the largest 𝑧/𝐿 ratio of 3.0, the 

lidar error is decreased by more than 1 %. 
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Figure 5.50: Lidar error 𝜺 in dependence of the 𝑯/𝑳 ratio for the half-cone opening angles 𝝋 

of 30° (solid lines), 20° (dashed lines) and 10° (dot-dashed lines) between 𝒛/𝑳 ratios from 0 

to 3. Results are based on the potential flow model. 

  
Figure 5.51: Lidar error 𝜺𝒄 (left) and 𝜺𝒔 (right) in dependence of the 𝑯/𝑳 ratio for the half-

cone opening angles 𝝋 of 30° (solid lines), 20° (dashed lines) and 10° (dot-dashed lines) 

between 𝒛/𝑳 ratios from 0 to 3. Results are based on the potential flow model. 
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Figure 5.52: Lidar error 𝜺 in dependence of the half-cone opening angles between 𝒛/𝑳 ratios 

from 0 to 3. Results are based on Meteodyn WT for a high roughness length 𝒛𝟎 of 0.5 m and 

a 𝑯/𝑳 ratio of 0.3. 
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6 Evaluation with real-world data 

The focus of the present thesis is the model-based parameter study that is presented in 

chapter 5. However, in order to connect the findings to real-world experiments, the 

following chapter presents results from a measurement campaign that compares lidar 

data to data from mast-based cup anemometry. 

The presented measurement site is equipped with a 200 m high wind measurement 

mast. Several months of lidar wind measurements have been carried out at that site, in 

order to create a dataset that enables a comparison of both methods. Details about the 

measurement site and the used measuring devices are presented in chapter 6.1. That 

subchapter also provides a basic overview of the available measurement data and its 

quality check. Basic statistics are given in this chapter in order to validate the usability 

of the data set. 

Due to the context of this thesis, an alternative evaluation approach has been used that 

aims at integrating the evaluation results into the non-dimensional presentation of the 

findings of the parameter study. For this, the actual terrain of the measurement site is 

fitted to Gaussian hill shapes for several wind directions. This approach is described 

in chapter 6.2. 

The results of the evaluation, i.e., the comparison of real-world measurement data to 

the findings from the model-based parameter study is given in chapter 6.3. The aim of 

this subchapter is to evaluate the applicability of the generic findings of this thesis to 

real-world sites. Results of a comparison of mast and lidar data have been analyzed in 

Klaas et al. (2015). The individual contributions of the authors to that paper are given 

in Appendix 10.4, mainly focusing on the contributions of the author of this thesis. 

However, in this thesis, the presentation of the results is extended. Additionally, a 

different approach is chosen, which includes them to the overall structure of this thesis. 

The evaluation chapter concludes with a presentation of a model-based lidar error 

estimation with the CFD RANS model Meteodyn WT, which uses the full terrain data 

of the measurement site. A parameter-variation is presented, to underline the 

importance of using an appropriate model parameterization to accurately estimate the 

lidar error. 

6.1 Measurement campaign 

The following sub-chapter provides details of the measurement campaign that has been 

carried out at Fraunhofer IEE’s complex terrain test site at Rödeser Berg in central 

Germany (6.1.1). The data that has been collected during this measurement campaign 

is briefly described in chapter 6.1.2. 

6.1.1 Measurement site and equipment 

Within the project “Utilization of Inland Wind Power,” funded by the BMWi, the 

Fraunhofer IEE erected a 200 m high wind measurement mast. As the primary purpose 

of the project was the investigation of wind characteristics at complex and forest sites, 

the mast was placed at the “Rödeser Berg,” which is a hill in Northern Hesse, close to 

the city of Kassel. 

The measurement site is described, e.g., in Klaas et al. (2015), from which most of the 

following information are taken. The geo-coordinates of the measurement mast are 
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51° 21’ 46’’ N 9° 11’ 43’’ E. The lidar was located in direct proximity of the mast 

(about 4 m of distance to the mast structure). While the majority of the hill is forested, 

a small clearing was chosen for the measurement site. With regards to the expected 

main wind direction (south-south-west), the measurement site is located at the top of 

the hill. Perpendicular to this direction there are several more crests, some of which 

surmounting the measurement site. 

A map of the orography is given in Figure 6.2, representing the altitudes in an area of 

approximately 6 by 6 km² around the measurement site. The measurement mast is 

located at an altitude of 390 m. In the southwestern direction, the terrain falls off to 

about 230 m to a small creek before a plain at 270 to 290 m is reached. Also, in the 

northeastern direction, the terrain declines to about 270 m in altitude. Hill slopes close 

to the mast are reaching up to 10-15°, particularly for the 210-270° direction sectors 

(west to south-south-west) and the 60-90° sectors (north-east to east). The ridge of the 

Rödeser Berg extends perpendicular to these directions. In its wider surroundings, the 

orography is characterized by diverse hills of comparable heights. 

The satellite image shown in Figure 6.3 illustrates the patchiness of the terrain. While 

the hills are mostly covered with forest, the valleys are dominated by agricultural use 

as well as villages and small cities. When looking at the closer surroundings of the 

measurement site, the clearing in which the mast is located can be recognized. 

Additionally, there are several more clearings in the forest that can be seen in the 

image. There is forest for about 2 km when coming from the main wind direction 

towards the measurement site. In the opposite direction, the forest already ends at 

about 600 m behind the mast. 

 

Figure 6.1: 200 m wind measurement mast at the complex terrain test site “Rödeser Berg” of 

Fraunhofer IEE. 
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Figure 6.2: Orography of the measurement location (black dot, geographical data from 

HVBG (2010), modified by T. Klaas). LiDAR and mast measurements are located on top of 

a ridge that is oriented from north-west to south-east. Most significant inclinations are to the 

west and south-west (10-15°) (approx. main wind direction) and the north-east (10°). The 

illustration is a reprint from Klaas et al. (2015). 

 
Figure 6.3: Satellite image of the location of the mast-LiDAR inter-comparison (black dot, 

geographical data from HVBG (2010), modified by T. Klaas). The measurements are located 

within a small clearing surrounded by forest. To the west and south-west, the ground is 

covered with mixed forest up to approx. 2 km distance. The image is a reprint from Klaas et 

al. (2015). 



 

106 

 

As can be seen in the photo in Figure 6.1, the measurement mast is constructed as a 

rectangular lattice tower. Due to its small side length of 1.05 m, it is supported by guy-

wiring every 20 m. In accordance with IEC 61400-12-1 (International Standard IEC 

61400-12-1:2017), the effects due to flow distortion at the sensors are kept at 0.5 %. 

This is achieved by a low solidity of 0.220 (below 100 m) and 0.204 (above 100 m) 

and boom lengths of 5.40 m. The cup anemometers are mounted at 1 m high pole 

above the boom ends. There are mostly two opposed booms at each measurement 

height, which are mounted around 140° and 320°perpendicular to the assumed main 

wind direction. The exact values of the booms are slightly deviating (compare Table 1 

in Klaas et al. (2015)). 

There are numerous wind and meteorological sensors mounted on the mast. Only a 

part of these is used for the lidar mast inter-comparison. At the chosen measurement 

heights of 80, 120, 160 and 200 m, there are mostly Thies Clima “first-class” advanced 

cup anemometers mounted, with the exception of a Thies Clima Ultrasonic 

Anemometer 3D, which is located at the 320° boom at 80 m height. All sensors but 

the top anemometer at 200 m height are mounted pairwise at opposed booms as 

described above. A detailed description of the sensors is given in Klaas et al. (2015). 

Wind directions were measured by the lidar and wind vanes mounted on the mast. 

Wind vanes at 132 m and 187 m height were used, chosen according to the minimum 

vertical distance to the actual wind speed sensor. 

The Doppler lidar that is used for the data comparison is a Leosphere Wincube v1. The 

measurement geometry is given in Figure 3.2 and the basic equations for wind vector 

reconstruction are explained in chapter 3.1. The measurement device has a half-cone 

opening angle of about 28°, which is very close to 30° and, therefore, comparable to 

the values used in the parameter study. The lidar has been configured to measure at 

the same heights as the measurement mast. The direction offset of the first laser beam 

from the north was 10°. 

6.1.2 Data basis 

The measurement campaign took place from January 21st to June 30th, 2012. Within 

this period, 10-minute mean values of wind speed and wind direction were acquired. 

The total number of possible data points for this period is 22,752. This number is 

reduced due to technical failures, data quality checks and data filters to assure that only 

high-quality data is used for the comparison. 

The exact number of valid data points is given in Table 2 of Klaas et al. (2015). It 

varies with height and lies between about 7,000 and 10,000 10-minute mean values 

per height. Wind speeds below 4 m/s were rejected and periods of icing were filtered 

out. Additionally, the lidar data was filtered for a 10-minute data availability of 80 %, 

which means that in each time interval of 10 minutes, the share of available high-

resolution measurements from the lidar must be at least 80 %. An algorithm was used 

to choose data from the one or the other sensor on each height, depending on wind 

direction. This allows the exclusion of mast shadowing effects on the wind sensors. 

For the comparison of mast and lidar data for specific wind direction sectors, it is of 

utter importance that enough data pairs are available for the individual sector. The 

number of data points per sector is shown in Figure 6.4. For most sectors, there are 

then 50 data points available, which allows for the calculation of reasonable statistics. 
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Figure 6.4: Number of data points per wind direction bin for different heights. The values 

indicate the number of 10 min periods for which both LiDAR and mast data were available 

after the filter criteria described in the text were applied. The figure is a modified reprint from 

Klaas et al. (2015). 

6.2 Evaluation approach 

The model-based parameter study presented in chapter 5 is limited to two-dimensional 

Gaussian hills. In order to enable a comparison to real-world cases, a relation between 

the Gaussian hills and the actual terrain must be found. 

The approach chosen for the evaluation in this thesis is to approximate the terrain slices 

for chosen wind directions by Gaussian hill shapes. To find a reasonable 

approximation, the hill height 𝐻 and the hill half-width 𝐿 is found on the basis of a 

least-squares algorithm. However, the results for 𝐻 and 𝐿 are sensitive to the lengths 

of the terrain slice taken into account for the approximation. Under consideration of 

the distance of the lidar measurement points and the dimensions of the Gaussian hills 

that have been analyzed in this thesis, a reasonable terrain interval is in the order of +-

500 m upwind and downwind of the lidar location. By this, it can also be assured that 

significant local terrain variations are approximated with sufficient quality. 

Having attributed the different wind directions to distinct Gaussian hill shapes then 

allows calculating 𝑧/𝐿 ratios for the measurement heights from the measurement 

campaign. The associated measured lidar errors can then be compared to the results 

from the parameter study for different 𝐻/𝐿  ratios and the correspondent roughness or 

forest parameterizations. 

Due to the complex terrain shape of the Rödeser Berg, not all wind direction sectors 

can be approximated by Gaussian hills. In order to ensure a reasonable evaluation, 

several sectors have been selected. Possible wind directions for the approximation are 

the intervals from 50 to 120 ° and the opposed sectors from 230 to 300°. However, the 

best approximation is possible for the sectors 70, 80, 110, 250, 260 and 290°. 

Exemplarily the fits for four wind direction sectors are shown in Figure 6.5.  

The 𝐻, 𝐿, 𝐻/𝐿 and 𝑧/𝐿 values for the chosen wind direction sectors are given in Table 

6. 
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Figure 6.5: Four examples of Gaussian hill fits to terrain slices at the evaluation site Rödeser 

Berg. The sectors are 70° (upper left), 110° (upper right), 260° (lower left), 270° (lower right). 

The 𝑯 and 𝑳 values are given in the figure. 

 

Table 6: Results of Gaussian hill fits for chosen wind direction sectors. 𝑳, 𝑯 and 𝑯/𝑳 are 

given for each wind direction sector. The results are symmetric for opposed direction sectors. 

The 𝒛/𝑳 ratios are given for the four chosen measurement heights 80, 120, 160 and 200 m. 

sector [°] 
50 60 70 80 90 100 110 120 

230 240 250 260 270 280 290 300 

L [m] 251 208 206 234 264 304 282 315 

H [m] 84 86 86 80 69 69 53 38 

H/L 0,33 0,41 0,42 0,34 0,26 0,23 0,19 0,12 

z [m] 

80 

z/L 

0,32 0,38 0,39 0,34 0,30 0,26 0,28 0,25 

120 0,48 0,58 0,58 0,51 0,45 0,39 0,42 0,38 

160 0,64 0,77 0,78 0,68 0,61 0,53 0,57 0,51 

200 0,80 0,96 0,97 0,85 0,76 0,66 0,71 0,64 
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6.3 Evaluation results 

The following sub-chapters are presenting the results of the evaluation. First, results 

are summarized, e.g., by comparing wind profiles of the mean wind speed measured 

by the lidar and the cup-anemometers (chapter 6.3.1). Additionally, results of linear 

regression for several heights and the direction-dependent deviation between mast and 

lidar are shown for the chosen heights. 

The second sub-chapter than gives the results from the non-dimensional evaluation 

described in chapter 6.2. Non-dimensional plots of 𝑧/𝐿 versus epsilon are shown for 

the different chosen wind directions. The applicability of the method is validated and 

possible drawbacks and advantages are discussed. 

6.3.1 Lidar-mast deviations 

When comparing the mean wind speeds for the whole measurement period, as 

illustrated in the wind profile in Figure 6.6, it can be noted that the overall deviations 

are relatively small. With 0.67 m/s, the largest deviations are found for the lowest 

measurement height of 40 m. This could be explained by the small vertical distance to 

the forest canopy at about 30 m above ground. Only a slight increase of the absolute 

deviations with increasing measurement height is found when comparing results from 

60 m to 200 m measurement height. However, these deviations are significantly 

smaller than those at 40 m (0.11 m/s for 60 m and 0.18 m/s for 200 m). 

 

 

Figure 6.6: Comparison of the mean wind profile measured with the lidar (blue) and the cup 

and sonic anemometers at the wind measurement mast (red). In this case, all available sensors 

have been used and a quality check was carried out as described for the other sensors in chapter 

6.1.2). Measurement data is available between 40 m and 200 m. Only time stamps where data 

is available for all measurement heights simultaneously are used in order to ensure 

comparability. 
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Looking at the scatter plots and linear regression for the four chosen heights 80 m, 

120 m, 160 m and 200 m, which are all well above the forest, it can be seen that the 

results are very similar (Figure 6.7). There is a high correlation with an R² of 0.99 for 

all measurement heights. The slope is closest to one for 160 m measurement height, 

giving a deviation of about 2 % between mast and lidar. The offset value is in the order 

of 0.1 m/s for all measurement heights, which is very close to zero. 

  

  
Figure 6.7: Scatter plots and linear regressions of the lidar-mast inter-comparison for the four 

chosen heights 80 m (upper left), 120 m (upper right), 160 m (lower left) and 200 m (lower 

right). Wind speeds of the lidar are shown on the y-axis, wind speeds of the mast are shown 

on the x-axis. The coefficients of the linear regression are given in the plots. The R-squared 

value is 0.99 for all measurement heights. Results from 80 m and 200 m are reprints from 

Klaas et al. (2015). 

The influence of terrain complexity becomes most severe when looking at the relative 

deviations lidar and mast measurements (lidar error 𝜀) versus wind direction for the 

four mentioned measurement heights (Figure 6.9 to Figure 6.12). For all heights are 

clear dependence of the lidar error on wind direction is found. Largest lidar errors are 

found for 240° to 260° with about -5 % at 80 m and about 3 % at 160 m measurement 

height. Opposed wind direction sectors are showing the second-highest lidar errors, 

which are only slightly smaller. There is a clear transition to positive deviations 
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between mast and lidar measurements at perpendicular wind direction sectors. This 

behavior can be explained by the fact that for these wind directions, the measurement 

site is located in between two other peaks at the ridge of Rödeser Berg, resulting in a 

valley-like wind flow (compare Klaas et al. (2015). 

For all results, it can be noted that there is a significant scatter of the lidar error around 

the mean value. The standard deviation of the lidar error is in the order of 2 %, although 

there are many outliers beyond this value for all measurement heights. Possible 

explanations for the scattering could be diurnal variations in atmospheric stability (and 

turbulence) as well as changes in wind direction within the 10-minute averaging 

interval that result in changes of flow curvature and speed-up. 

The lidar errors for the four different heights are compared with each other in Figure 

6.8 (compare also Figure 5 in Klaas et al. (2015)). Here it becomes evident that, except 

from the 80 m measurement height, all results are relatively similar. Slightly larger 

lidar errors can be found for many wind direction sectors for the 200 m measurement 

height. The most significant deviations are found 240° to 280° wind direction sectors 

at 80 m measurement height. Here the lidar errors exceed those found at the other 

measurement heights by up to 3 % (at the 270° sector). Also, in the north-eastern 

sectors, there are significant deviations from the other measurement heights. 

 

Figure 6.8: Lidar error 𝜺 derived from measurement data versus wind direction at the four 

chosen heights given in the legend. The lidar error is calculated based on an average for a bin 

size of +/-5° for each 10° bin from 0 to 360° wind direction. Only wind speeds higher than 

4m/s were used. Due to a lightning protection pole next to the top-anemometer, the data 

between 110° and 160° is excluded for this height. The figure is a modified reprint from Klaas 

et al. (2015). 
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Figure 6.9: Lidar error 𝜺 derived from measurement data versus wind direction at 80 m height. 

The lidar error is calculated based on a moving average for a bin size of +/-5° for each degree 

from 0 to 360° wind direction (blue line). The positive and negative standard deviation for 

each calculation is added to the mean value and shown in dashed red lines. Only wind speeds 

higher than 4 m/s were used. 

 

Figure 6.10: Lidar error 𝜺 derived from measurement data versus wind direction at 120 m 

height. The lidar error is calculated based on a moving average for a bin size of +/-5° for each 

degree from 0 to 360° wind direction (blue line). The positive and negative standard deviation 

for each calculation is added to the mean value and shown in dashed red lines. Only wind 

speeds higher than 4 m/s were used. 
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Figure 6.11: Lidar error 𝜺 derived from measurement data versus wind direction at 160 m 

height. The lidar error is calculated based on a moving average for a bin size of +/-5° for each 

degree from 0 to 360° wind direction (blue line). The positive and negative standard deviation 

for each calculation is added to the mean value and shown in dashed red lines. Only wind 

speeds higher than 4 m/s were used. 

 

 

Figure 6.12: Lidar error 𝜺 derived from measurement data versus wind direction at 200 m 

height. The lidar error is calculated based on a moving average for a bin size of +/-5° for each 

degree from 0 to 360° wind direction (blue line). The positive and negative standard deviation 

for each calculation is added to the mean value and shown in dashed red lines. Only wind 

speeds higher than 4 m/s were used. A lightning protection pole next to the top-anemometer 

causes the spike around 145° wind direction. 
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6.3.2 Non-dimensional representation 

Figure 6.13 to Figure 6.16 show the results of the non-dimensional evaluation for the 

four different 𝐻/𝐿 ratios 0.1, 0.2, 0.3 and 0.4. The Gaussian hill fits given in Table 6 

are assigned to the four 𝐻/𝐿 ratios and compared to the results from the parameter 

study based on Meteodyn WT for a tree height of 30 m and medium forest density.  

The measured lidar errors are grouped into those for northwestern sectors (filled 

markers) and those for southwestern sectors (unfilled markers). Following from the 

symmetry between these two groups, the evaluation data points always occur pairwise. 

Also, the four measurement heights 80 m, 120 m, 160 m and 200 m are represented by 

different markers in the figures. 

By this, it is possible to analyses the influence of measurement height on the results as 

well as the influence of the different upwind and downwind characteristics of the 

terrain for the two opposed wind direction sector groups. 

Figure 6.13 shows the results for a 𝐻/𝐿 ratio of 0.1. For northeastern sectors the 

measured lidar errors are of the same magnitude than those from the simulations. Also, 

the tendency of increasing lidar errors with increasing measurement height becomes 

obvious in this representation. 

When looking at the southwestern sectors, the evaluation results are different. For most 

of the sectors, the measured lidar errors are positive, which is contrary to the expected 

negative errors attributed to the Gaussian hills. The reason for this might be the fact 

that the terrain shape upwind to the actual measurement site has a significant influence 

on the actual flow curvature and speed-up effects at the measurement site. However, 

there are some sectors with negative errors also in the southwestern group that are 

close to the simulation results as well. 

The largest group of evaluation data points is assigned to the 𝐻/𝐿 ratio of 0.2, and the 

results are illustrated in Figure 6.14. Again, it can be noted that there is a difference 

between the southwestern and the northwestern group. While there is a tendency 

towards larger lidar errors for the northwestern sectors, all results for southwestern 

sectors – except for two data pairs – show smaller lidar errors. All results are generally 

in the same magnitude as the simulation results, although there is much scattering. For 

the northwestern sectors, there is a tendency of increasing lidar errors with increasing 

measurement height and most of the data points are close to the simulation results. 

There is one exception for a data point at 80 m measurement height, which shows 

significantly larger lidar errors than all other northwestern sectors. Most of the 

southwestern data points are shifted towards lower lidar errors when compared to the 

opposed northeastern sectors. However, there are no positive measured lidar errors, 

but the smallest lidar error is around -0.8 % for one data point at 120 m measurement 

height. There is one data point at 80 m measurement height that shows significant 

deviation and the overall highest lidar error of about -5 %, which significantly exceeds 

the simulation results. 

The results for a 𝐻/𝐿 ratio of 0.3 are shown in Figure 6.15. It first can be noted that 

all but two data points are showing lidar errors below those from the simulation. For 

the northwestern sectors, most of the measured lidar errors are close to the simulation 

results. While there are some cases where the lidar errors for the southwestern sectors 

are smaller, there are also cases where the measured errors for southwestern sectors 
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are significantly increased when compared to the opposite directions. Largest lidar 

errors can be found for two data points at 80 m measurement height. 

For the largest 𝐻/𝐿 ratio of 0.4, the measured lidar errors are compared to the 

simulation results in Figure 6.16. As there are only two opposed wind direction sectors 

that fall into this category, this is the smallest evaluation group. Except for one data 

point for a southwestern sector at 80 m measurement height, all measured results are 

significantly smaller than those given by the simulation. Again there is a tendency of 

increasing lidar errors for increasing measurement height. 

 

 

Figure 6.13: Non-dimensional ratio 𝒛/𝑳 versus the lidar error 𝜺 for an 𝑯/𝑳  ratio of 0.1. The 

markers represent the measured lidar errors for the chosen wind direction sectors according to 

Table 6 for the four different measurement heights 80 m, 120 m, 160 m and 200 m. The filled 

markers represent the measurements for north-western wind directions, the unfilled markers 

for south-western directions. 
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Figure 6.14: Non-dimensional ratio 𝒛/𝑳 versus the lidar error 𝜺 for an 𝑯/𝑳  ratio of 0.2. The 

markers represent the measured lidar errors for the chosen wind direction sectors according to 

Table 6 for the four different measurement heights 80 m, 120 m, 160 m and 200 m. The filled 

markers represent the measurements for north-western wind directions, the unfilled markers 

for south-western directions. 
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Figure 6.15: Non-dimensional ratio 𝒛/𝑳 versus the lidar error 𝜺 for an 𝑯/𝑳  ratio of 0.3. The 

markers represent the measured lidar errors for the chosen wind direction sectors according to 

Table 6 for the four different measurement heights 80 m, 120 m, 160 m and 200 m. The filled 

markers represent the measurements for north-western wind directions, the unfilled markers 

for south-western directions. 
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Figure 6.16: Non-dimensional ratio 𝒛/𝑳 versus the lidar error 𝜺 for an 𝑯/𝑳  ratio of 0.1. The 

markers represent the measured lidar errors for the chosen wind direction sectors according to 

Table 6 for the four different measurement heights 80 m, 120 m, 160 m and 200 m. The filled 

markers represent the measurements for north-western wind directions, the unfilled markers 

for south-western directions. 
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6.4 Lidar error estimation with flow models 

The lidar error can be estimated under consideration of the full three-dimensional 

terrain model of the area around Rödeser Berg, including information about land-use 

and forest (compare Figure 6.2and Figure 6.3). This has been done in Klaas et al. 

(2015) with three different flow models. One of the models was Meteodyn WT, which 

has also been used to analyze most of the parameter variations within chapter 5. 

The extension of the model domain was 20 by 20 km² and 36 wind direction sectors 

(10° bins) were modeled. Measured lidar errors were accordingly binned to 10° sectors 

for the comparison. To illustrate the influence of roughness and forest 

parameterization, which has also been found within chapters 5.2.2.2 and 5.2.3 of this 

thesis, results with and without forest are compared to the actual measurement results 

in Figure 6.17. The forest was parameterized with a height of 30 m and high forest 

density. The no. of cells in Meteodyn WT was 766,640, ensuring a high vertical and 

horizontal resolution in the proximity of the lidar site (compare table 4 in Klaas et al. 

(2015)). 

 

 

Figure 6.17: Comparison of lidar error estimations with Meteodyn WT for two different 

parameterizations to the measured lidar error at 120 m height versus wind direction bins. The 

error bars on the measured data indicate the confidence intervals. The red line shows the best 

result achieved with Meteodyn WT using a forest parameterization with 30 m tree height and 

high forest density. The yellow line is showing results without forest modeling but with high 

surface roughness. The figure is a modified reprint from Klaas et al. (2015). 

Within this sub-chapter, the model results are exemplarily shown for a measurement 

height of 120 m. However, results for the measured lidar error in Figure 6.8 emphasize 

that the differences between the upper heights (120 to 200 m) are relatively small for 

all wind direction sectors. 

In compliance with the results of the parameter-study that is presented in chapter 0, 

the estimated lidar errors without consideration of forest are significantly higher than 

those with forest modeling. Since the surroundings of the actual measurement site are 
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forested, the deviation between measured and estimated lidar errors are largest when 

not using forest modeling at all (Figure 6.17). 

The model results under consideration of forest in Figure 6.17 represent the best results 

that could be achieved with the model by adapting the parametrization of the forest. 

While the shape of the measured error curve is captured by both model 

parameterizations, the magnitude of the estimated lidar error only fits the measurement 

results for the forested case. However, for many wind direction sectors, the estimated 

lidar errors still deviate from the measurements. This is particularly true for those wind 

direction sectors where positive deviations between measurement mast and lidar 

measurements occur (10°, 20°, 160° and 290° to 360°).  

However, also for many sectors with negative lidar errors (underestimation), the 

modeled errors are up to 1 % larger than those found in the measurements (compare 

Klaas et al. (2015), chapter 4.2). Linking these findings to the non-dimensional 

evaluation presented in the previous chapter 6.3.2, the deviations between estimated 

and measured lidar errors are systematic. The reason for these deviations remains 

unclear. A detailed classification, as well as a verification before and after a 

measurement campaign, might provide helpful information on systematic deviations 

between cup anemometers and a distinct lidar device (Gottschall et al. 2011). 

Unfortunately, there is no verification available of the lidar used in the measurement 

campaign that is evaluated in this dissertation. 



 

121 

 

7 Conclusions 

The overall research question of this dissertation is: “How well do lidars measure at 

complex terrain sites and which factors are influencing the magnitude of the lidar 

error?“ Following this question, five hypotheses are developed in chapter 2, each 

dealing with one of the five major influencing factors on the lidar error in complex 

terrain. Furthermore, a novel approach is introduced, that separates the individual 

influence of flow curvature (𝜀𝑐) and speed-up effects (𝜀𝑠) on the total lidar error 𝜀. 

The concluding chapter provides links to these hypotheses, sums up the results and 

evaluates them concerning the initial assumptions (chapter 7.1). Finally, it provides 

concluding remarks on the key findings and outlines the implications of the findings 

for real-world applications (chapter 7.2). 

7.1 Evaluation of hypotheses 

Evaluation of hypothesis A) “The lidar error is dependent on orographic complexity. 

It increases with increasing terrain curvature that causes the wind flow to bend and 

accelerate.” 

Starting with the orographic complexity of the measurement site (chapter 5.2.1), it is 

found, that the non-dimensional parameter 𝐻/𝐿 (i.e. the ratio of hill height over hill 

half-width) has by far the most important influence on the magnitude of the lidar error 

𝜀. Based on the potential flow model results, the maximum 𝜀 found for a 𝐻/𝐿 ratio of 

0.1 is about -3 %. It increases significantly up to -11 % for a 𝐻/𝐿 ratio of 0.4. 

Maximum errors found for the linearized model WEng (-2.5 % to -12 %) and the 

RANS CFD model Meteodyn WT (-2 % to -9.5%) differ from the potential flow model 

but are of comparable magnitude. However, WEng provides significantly larger lidar 

errors than the potential flow model at the maximum point for 𝐻/𝐿 ratios of 0.3 and 

0.4. 

Following from this, hypothesis A) can generally be confirmed. Increasing terrain 

complexity is found to increase the lidar error significantly. However, taking into 

account the interdependency between measurement height and hill dimensions, solely 

considering the 𝐻/𝐿 ratio as a measure of terrain complexity is not sufficient to 

evaluate the effects on the lidar error. 

Evaluation of hypothesis B) “The lidar error is dependent on measurement height. 

It decreases with increasing height, while terrain effects on the wind flow diminish.” 

The non-dimensional approach followed within this dissertation allows for an analysis 

of the influence of orographic complexity with regards to measurement height above 

ground 𝑧 and hill half-width 𝐿, represented as the non-dimensional parameter 𝑧/𝐿 

(compare, e.g. Figure 5.25). Based on a constant half-cone opening angle 𝜑 of 30°, the 

results from all three used models show a well-defined dependence of the lidar error 𝜀 

on 𝑧/𝐿 for each of the four 𝐻/𝐿 ratios that were analyzed (0.1, 0.2, 0.3 and 0.4). 

Starting from negligible errors at the lowest 𝑧/𝐿, a steep increase is found when 

increasing 𝑧/𝐿. Here the lidar error reaches a maximum at 𝑧/𝐿 between 0.5 to 0.6 for 

𝐻/𝐿 ratios between 0.1 and 0.4. Afterward, it decreases for increasing 𝑧/𝐿. Depending 

on the 𝐻/𝐿 ratio, the errors fall below -2 % for 𝑧/𝐿 between 1.5 for the least inclined 

and 5.0 for the steepest hills. 
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There are two ways to interpret this dependency: First, 𝑧/𝐿 increases when increasing 

the measurement height 𝑧 for a fixed 𝐿. For small measurement heights, the 

measurement points of the lidar are close together. Resulting from that, the difference 

in horizontal wind speed between the two opposed measurement points and the 

reconstruction point directly above the lidar is small or negligible (compare e.g. Figure 

5.21). Additionally, for symmetric hill-flow, the curvature of the streamline directly 

above the hilltop is zero (compare e.g. Figure 5.1). It then steadily increases upwind 

and downwind along the flanks of the hill up to the inflection points. At a low 

measurement height, the measurement points are close to the zero-curvature point. As 

a result, the lidar error due to flow curvature is small. With increasing measurement 

height, both effects significantly increase as well, causing the lidar error to increase. 

Then, with a further increase of measurement height, the measurement points are 

leaving the flanks of the hill and the area of strongest flow curvature and highest speed-

up effects. After the maximum point, this contrary effect causes the lidar error to 

decrease for large measurement heights. 

Second, an increasing 𝑧/𝐿 is also found for a fixed measurement height and a 

decreasing hill half-width 𝐿. Based on this, small 𝑧/𝐿 can be interpreted as large or 

wide hills that are significantly larger than the dimensions of the lidar measurement 

geometry (compare e.g. Figure 5.3). Large 𝑧/𝐿 on the other hand, are representing 

small or narrow hills that are significantly smaller than the dimensions of the lidar 

measurement geometry (compare e.g. Figure 5.2). For large hills, the flow curvature 

and speed-up effects at the two opposed measurement points are then small, because 

the points are close to the hilltop. For small hills, the two effects are also small, because 

the measurement points are far upwind and downwind from the measurement location. 

Between these extreme cases, there is a ratio between the hill size and the size of the 

measurement geometry that causes maximum lidar errors, i.e., at 𝑧/𝐿 between 0.5 and 

0.6, as described above. 

Concerning the lidar error parts 𝜀𝑐 (caused by flow curvature) and 𝜀𝑠 (caused by speed-

up effects) it is found, that 𝜀𝑐 is responsible for about more than 90 % of the total lidar 

error for small 𝑧/𝐿, for about 85 % at the maximum point and about 70-75 % for larger 

𝑧/𝐿. Additionally, the maximum 𝜀𝑠 is found at an 𝑧/𝐿 of about 1.0, whereas the 

maximum 𝜀𝑐 is found at about 0.5. The overlay of the two effects shifts the maximum 

of 𝜀 towards a 𝑧/𝐿 of 0.6. 

The results show that hypothesis B) can be confirmed, regarding the assumption that, 

for increasing measurement height, the influence of complex terrain on the wind flow 

becomes negligible. However, there is no linear decrease of lidar error with increasing 

measurement height, but a complex dependency between 𝑧/𝐿, 𝐻/𝐿 and the lidar error 

𝜀. In particular, maximum lidar errors are found between 𝑧/𝐿 of 0.5 to 0.6, representing 

the worst measurement configuration. 

Evaluation of hypothesis C) ”The lidar error in complex terrain is dependent on 

terrain roughness. It is, in particular, sensitive to the presence or absence of forest. 

Roughness and forest increase shear and turbulence and facilitate flow separation 

effects. All these effects influence the flow curvature and speed-up.” 

The effects of terrain roughness on the lidar error are analyzed for the two models 

WEng and Meteodyn WT in chapter 5.2.2. First, it can be noted that for low roughness 

length 𝑧0 of 0.005 m, the results of both models are closest to those from the inviscid 

potential flow model. However, increasing the roughness length has a significant effect 

on the resulting lidar errors. Lidar errors are decreasing with increasing roughness 
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length and smallest errors are found for the roughness length 𝑧0 of 0.5 m. The result is 

consistent for all four 𝐻/𝐿 that were considered in this study. However, because lidar 

errors are small for an 𝐻/𝐿 ratio of 0.1, also the effect of increasing the roughness 

length is small here. For the highest 𝐻/𝐿 ratio of 0.4, increasing the roughness lengths 

significantly reduces the maximum lidar error from in Meteodyn WT from -9.5 % to -

7.5 %. 

Adding forest to the terrain model in Meteodyn WT has a significant influence on the 

lidar error as well (chapter 5.2.3). Results for a very sparse forest with low tree heights 

are comparable to those from the high roughness case. However, increasing the three 

height in medium and high forest density cases results in an overall decrease of the 

lidar error. Again, this result is found for all four 𝐻/𝐿 ratios. For an 𝐻/𝐿 ratio of 0.4 

the lidar error at the maximum point is reduced from -6.5 % for a tree height of 10 m 

to -4.5 % for a tree height of 30 m. The model-based findings are validated by 

measurement data from the forested site Rödeser Berg (chapter 6), which underlines 

the necessity to consider forest. 

In WEng, increasing the roughness length decreases the lidar error as well. However, 

at the maximum point around 𝑧/𝐿 between 0.5 and 0.6, the estimated lidar errors still 

exceed those from the potential flow model. As there is no forest model in WEng, the 

significant effects from the forest are not representable. 

Although surface roughness has a small influence on 𝜀𝑠 in Meteodyn WT, it is found 

that mainly flow curvature and therefore 𝜀𝑐 is impacted by surface roughness. This is 

also true for forested cases, although the impacts of 𝜀𝑐 and 𝜀𝑠 are more complicated, 

because of strong asymmetries in the flow field. However, there is a substantial 

discrepancy between 𝜀𝑐 and 𝜀𝑠 from Meteodyn WT and WEng. For 𝑧/𝐿 exceeding 1.0, 

WEng shows a significant underestimation of the flow curvature effects and, at the 

same time, a significant overestimation of the speed-up effects at the flanks of the hill. 

Following findings from the literature, this is typical behavior of linearized flow 

models (e.g., Bowen and Mortensen (1996)). 

From this, it can be concluded that the rougher the terrain, the smaller the resulting 

lidar errors, which confirms hypothesis C). Additionally, the presence of forest 

significantly decreases the estimated lidar errors. Both effects can be explained by the 

increasing asymmetry of the hill flow, in particular at the lee-side (Belcher et al. 2012; 

Ross and Vosper 2005). In particular, the critical slope for flow separation is reduced 

by the influence of the forest (Ross and Vosper 2005). 

Evaluation of hypothesis D) “The lidar error in complex terrain is dependent on 

atmospheric stratification. It decreases for stable cases, which is because, in this case, 

the wind flow is less bent when passing a hill.” 

Diverse atmospheric stability conditions are evaluated in chapter 5.2.4 based on the 

stability model implemented in Meteodyn WT (chapter 4.3.3). It is found that in the 

three analyzed situations (low surface roughness, high surface roughness and medium 

dense forest at a 𝐻/𝐿 ratio of 0.3) atmospheric stability has a significant influence on 

the resulting lidar error. 

In most simulations, the lidar error increases for unstable and very unstable 

stratification, when compared to the neutral cases. This increase is relatively small for 

the low roughness case and is below a difference of 1 %. For the forested case, the 

lidar error at between a 𝑧/𝐿 of 0.3 and 1.0 is about 1-1.5 percentage points larger than 

in the neutral case. 
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For stable and strongly stable cases, on the other hand, the lidar error is decreased for 

most simulations in comparison to neutral stratification. This effect is strongest for the 

highest stability class “strongly stable” with an 𝐿∗ of 60 m. Here, the lidar error is 

decreasing from -7.5 % to -5.5 % at the maximum point in the low roughness case, 

from -5.75 % to -2.5 % in the high roughness case and from -4.5 % to -2.25 % in the 

forested case. 

From these findings, it can be concluded that hypothesis D) can be confirmed. 

Atmospheric stability has a considerable impact on the flow over a hill. Flow curvature 

and speed-up are modified in a way that influences the magnitude of the lidar error. In 

particular, the strong decrease of flow curvature under stable stratification significantly 

reduces the estimated lidar error. 

Evaluation of hypothesis E) “The lidar error is dependent on the half-cone opening 

angle of the lidar measurement geometry. It decreases when the angle is decreased 

because the measurement points are closer together and the wind vectors are more 

similar.” 

Based on the novel approach of splitting up the lidar error 𝜀 into its parts 𝜀𝑐 and 𝜀𝑠, it 
is possible to systematically analyze the influence of reduced half-cone opening angles 

𝜑 on the lidar error in complex terrain (chapter 5.2.6). 

Only a small dependency of 𝜀 on 𝜑 is found in the results from the potential flow 

model. At the maximum point of a 𝑧/𝐿 of 0.6 and for the maximum 𝐻/𝐿 ratio of 0.4 

the difference in 𝜀 between a 𝜑 of 10° and 30° is less than 1 %. For all other 𝑧/𝐿 and 

𝐻/𝐿 ratios, the influence is smaller than that. 

However, splitting up the lidar error 𝜀 into its two parts provides a detailed insight into 

the individual influence of flow curvature and speed-up effects on the total lidar error 

for the different magnitude of 𝜑. First, it can be concluded that 𝜀𝑠 is significantly 

reduced for smaller 𝜑. While it reaches up to -2 % for a 𝐻/𝐿 ratio of 0.4 at the 

maximum point for the standard value of 30°, it is well below -0.5 % for a 𝜑 of 10°. 

Contrary to that, the error part 𝜀𝑐 increases for most 𝑧/𝐿 with decreasing 𝜑. The 

difference in the results is largest for a 𝑧/𝐿 of 1.5, where 𝜀𝑐 increases from -6 % to -

7 % for an 𝐻/𝐿 ratio of 0.4. For all other 𝑧/𝐿 and 𝐻/𝐿, the influence is smaller but 

consistently present. The superposition of these two opposite effects leads to an overall 

small decrease of the lidar error 𝜀. However, compared to the other influencing factors, 

it is marginal considering the results from the potential flow model. 

Despite these findings, when looking at rough and forested cases from Meteodyn WT, 

it is found that the dependence of 𝜀 on the half-cone opening angle is complex. 

Strongest effects are found for the forested and, therefore, most asymmetric case. 

Decreasing 𝜑 to 10° leads to a significant decrease in 𝜀 by up to 20 % for small 𝑧/𝐿 

below 0.6. For large 𝑧/𝐿, on the other hand, 𝜀 increases by about 1 % for 𝜑 decreased 

to 10°. These findings show the complex interrelation between the position of the 

measurement points, the actual structure of the flow field and the resulting lidar error. 

Contrary to the findings from the literature study (Bingöl et al. 2009; Foussekis 2009), 

the half-cone opening angle can significantly influence the resulting lidar error, in 

particular in complex flow situations, e.g., at forested hills where the flow is 

asymmetric. 

Summing up these findings, it can be noted that hypothesis E) can be confirmed. 

However, the relationship between lidar error 𝜀 and half-cone opening angle  𝜑 is more 
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complex than thought, particularly when looking at the lidar error parts 𝜀𝑐 and 𝜀𝑠. An 

individual adaption of the half-cone angle in dependence of the flow field at the actual 

measurement site can be reasonable. 

7.2 Concluding remarks 

The concept of separating the lidar error 𝜀 into its parts 𝜀𝑐 and 𝜀𝑠 has proven to be a 

capable tool to analyze and identify the impact of the different influencing factors on 

the lidar error. Although flow curvature is responsible for the major part of the lidar 

error, speed-up effects are not negligible. It is shown that depending on the 𝑧/𝐿 ratio, 

10-30 % of the total lidar error can be attributed to speed-up. Lidar error estimation 

methods should, therefore, take into account both effects. Simplified approaches, 

solely based on flow inclination angles at the measurement points, are not 

recommended for complex terrain sites. 

The influence of measurement height is found to be complicated. It is, for most cases, 

characterized by a steep increase of the lidar error with increasing measurement height, 

followed by a maximum point at a measurement height equal to roughly 60 % of the 

hill half-width 𝐿. The lidar error decreases again and becomes negligible at a 𝑧 equal 

to about 1.5 to 5 times the hill half-width. A lidar error estimation previous to the 

measurement campaign under consideration of planned the measurement heights is 

therefore mandatory. 

For the first time, the influence of decreasing the half-cone opening angle 𝜑 could be 

analyzed in detail and for both symmetric and asymmetric flow fields. Based on the 

potential flow model and for low roughness cases in the RANS CFD model, opposed 

effects of reduced half-cone opening angles are found on 𝜀𝑐 and 𝜀𝑠. This explains the 

small differences in the total lidar error for symmetric flows. Contrary to the findings 

in the literature (Bingöl et al. 2009; Foussekis 2009; Bradley 2012) it turned out that 

in case of complex, asymmetric flow above rough or forested terrain, 𝜑 can 

significantly influence the lidar error. An adaption of 𝜑 to the flow conditions at the 

actual measurement site and height could significantly reduce the lidar error in certain 

cases. 

When comparing the results of the potential flow and the linearized model to the 

RANS model for large 𝐻/𝐿 ratios and, in particular, high roughness lengths and 

forested cases, the limitations of the simple models become apparent. It can be 

concluded that potential flow and linearized models should not be applied at forested 

and rough sites with significant terrain inclination. These models will generally 

overestimate the lidar error because they are not capable of modeling non-linear or 

detached flow effects in the lee of the hill, which occur due to increased surface 

roughness or the presence of forest. The evaluation campaign confirms these findings. 

Neglecting the influence of the forest on the flow results in huge overestimations of 

the lidar error in comparison to the measurements. Best results of lidar error estimation 

are achieved when adding the forest to the model. It can be concluded that – despite 

the generally more complex flow characteristics at forested sites – lidar errors are 

reduced due to the presence of forest or high surface roughness. 

The influence of atmospheric stability in the lidar error estimations from Meteodyn 

WT was significant, particularly for stable stratification. At sites were significant 

changes in atmospheric stability occur, the lidar error could potentially be 

overestimated by modeling solely neutral stratification. However, the work presented 
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in this thesis was a first attempt in considering different atmospheric stability classes 

for lidar error estimation. A detailed evaluation is needed to validate the results. 

Because many different model parameterizations are considered within this 

dissertation, it is difficult to carry out a full evaluation of the findings. An evaluation 

approach was developed that sorts measurement results of lidar errors at real-world 

sites into the structure of the non-dimensional parameter study (chapter 6.2). The 

approach was successfully tested at the forested complex terrain test site “Rödeser 

Berg”, where measurement data from a 200 m measurement mast is compared to data 

from a Doppler wind lidar (chapter 6.1). The evaluation provides reasonable results 

for wind directions with 𝐻/𝐿 ratios in the order of 0.1 and 0.2 (compare e.g. Figure 

6.14). However, for orographically more complex wind directions that are comparable 

to 𝐻/𝐿 ratios of 0.3 and 0.4, the measured lidar errors are mostly smaller than the 

estimations from the flow model (compare e.g. Figure 6.15). An overestimation of the 

lidar errors for these wind direction sectors is also found when a three-dimensional 

terrain model is taken into account (Figure 6.17). It is therefore questionable if either 

the model or the measurements comprehend a systematic error at the analyzed site. 

Multiple sites with high measurement masts and diverse orographic complexity and 

surface roughness characteristics are needed to enhance the data basis for a profound 

non-dimensional evaluation (compare chapter 8). Additionally, the influence of the 

direction offset of the laser beams from the north at the lidar error could be taken into 

account. 

As an overall summary, it can be concluded, that the findings of this dissertation 

clearly show that orographic complexity, roughness and forest characteristics, as well 

as atmospheric stability, have a significant influence on lidar error estimation. The 

dissertation provides helpful guidance on the choice and parameterization of flow 

models as well as on the design of methods for lidar error estimation. The results 

emphasize that the use of a RANS CFD model in conjunction with an appropriate 

forest model is crucial to achieving reasonable lidar error estimations in complex 

terrain. If atmospheric stability variation at a measurement site plays a key role, the 

influence on the flow characteristics will also significantly affect the lidar error at those 

sites and should be considered in the modeling. Under certain flow conditions, 

particularly in complex and forested terrain, the half-cone opening angle can 

additionally affect the magnitude of the lidar error. The exact configuration of the used 

lidar device must, therefore, be known to estimate the lidar error. In the context of a 

wind resource assessment, an accurate estimation of the prospective lidar errors should 

be carried out before the measurement campaign. By taking into account the additional 

uncertainty of the lidar error correction, it is then possible to make an early decision 

on whether a lidar measurement is feasible at the given site (compare chapter 3.3). 
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8 Outlook 

The results of the dissertation show that RANS CFD models should be preferred for 

lidar error estimations in complex terrain, in particular at sites with high roughness 

length or in the presence of forest. However, recent standards and guidelines such as 

the IEC standard 61400-12-1 (International Standard IEC 61400-12-1:2017) or the 

German technical guideline of wind resource assessments TR6 (FGW e.V. 2017) 

either recommend to use simple models (e.g., linearized models) to estimate the lidar 

error or provide inexplicit guidance. Based on the findings of this dissertation, it should 

be achieved that state-of-the-art RANS CFD models that are capable of modeling the 

wind flow above forested terrain replace the current recommendations in future 

revisions. 

In order to accomplish this and for a better validation of the findings of this thesis, a 

broader basis of measurement data would be beneficial. Ideally, a measurement 

campaign with the specific purpose to validate the key findings of this dissertation 

could be designed at and around a forested hill. The measurement site should be 

carefully chosen under consideration of the dimensions 𝐻 and 𝐿 of the hill parallel to 

the prevailing wind directions. Furthermore, the possible 𝑧/𝐿 ratios should be 

examined, so that the dependence of the lidar error on height can be validated. The 

measurement site should at least be equipped with a high measurement mast and a 

Doppler lidar. 

In particular, with regards to atmospheric stability, three-dimensional terrain could 

enable an investigation of more complex flow patterns in different stability situations. 

Especially for stable stratification, where the flow could tend to stream around the hill, 

rather than over it, the results might be different for three-dimensional terrain (Leo et 

al. 2016). For this, probably a more advanced atmospheric stability model will be 

needed, which includes the temperature equation (Meteodyn 2014). So far, there is no 

evaluation of the influence of atmospheric stability on the lidar error based on 

measurement data available in the literature. 

As described in chapter 6.3.1, the lidar error derived from measurement data shows 

much scattering around the mean value. An analysis of this behavior is difficult 

without detailed data of the flow conditions at the measurement points of the lidar. In 

a future research campaign, a measurement setup could be designed that allows 

measuring the three-dimensional wind vector close to the measurement points of a 

Doppler lidar. In conjunction with advanced remote sensing technology, such as 

scanning lidars, a complete picture of the flow along and around a three-dimensional 

hill could be created. By this, also the effects of forest and atmospheric stability on 

speed-up, flow inclination and flow separation in the lee of the hill could be analyzed 

in more detail. A profound model validation could be based on this detailed data basis, 

leading to more accurate lidar error estimations in the future. 

Beyond the pathway of using conventional Doppler lidar profilers in complex terrain 

and correct their error by flow modeling, also the application of novel technologies is 

possible. In chapter 1.3.6, different current research projects are described that develop 

lidars with alternative measurement principles. However, these lidar devices are not 

yet available. Upcoming research projects must first evaluate their applicability for 

wind energy applications in complex terrain. 

Scanning Doppler lidars in so-called “multi-lidar” setups, where two to three lidars are 

measuring with intersecting probe volumes, can significantly reduce the lidar error in 
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complex terrain (compare e.g. Pauscher et al. (2016)). On the other hand, these devices 

are expensive when compared to lidar profilers and it is labor-intensive to operate them 

over a more extended period. Depending on future developments, they could become 

a valuable tool for many wind energy applications, providing more insight into the 

actual flow characteristics at complex terrain sites (Mann et al. 2017). The model-

study in this dissertation shows, that the half-cone opening angle of a lidar can have a 

significant influence on the resulting lidar error. Scanning lidars offer the possibility 

to evaluate this finding by adapting the elevation angle of the laser beam to evaluate 

the model results. An optimization routine could be developed that aims at lower lidar 

errors by adjusting the half-cone opening angle to the site-specific flow characteristics. 

Evaluation against a measurement mast and a standard Doppler lidar with a constant 

half-cone opening angle would be needed, to validate this concept. 

Additional and more complex flow features such as flow separation, which might 

occur in very complex terrain situations, have not been treated within the context of 

this thesis. For this, a non-stationary flow model could be used to analyze the influence 

of periodic recirculation phenomena behind escarpments. Such a model, together with 

more advanced turbulence modeling, could also help to explain the scatter that occurs 

in ten-minute values of lidar measurement errors in real-world applications. 
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10 Appendix 

 

10.1 Model equations for Meteodyn WT 

All of the following equations are taken from the software documentation of Meteodyn 

WT (Meteodyn 2014). They are based on the assumption of steady-state, 

incompressible and isotherm flow and the RANS equations. 

 

Mass conservation equation: 

𝜕𝜌�̅�𝑖
𝜕𝑥𝑖

= 0 

 

Momentum conservation equation: 

−
𝜕(𝜌�̅�𝑗�̅�𝑖)

𝜕𝑥𝑗
−
𝜕�̅�

𝜕𝑥𝑖
+

𝜕

𝜕𝑥𝑗
[𝜇 (

𝜕�̅�𝑖
𝜕𝑥𝑗

+
𝜕�̅�𝑗

𝜕𝑥𝑖
) − 𝜌𝑢′𝑖𝑢′𝑗̅̅ ̅̅ ̅̅ ̅] + 𝐹𝑖 = 0 

 

Reynolds stress tensor: 

− 𝜌𝑢′𝑖𝑢′𝑗̅̅ ̅̅ ̅̅ ̅ = 𝜈𝑡 (
𝜕�̅�𝑖
𝜕𝑥𝑗

+
𝜕�̅�𝑗

𝜕𝑥𝑖
) 

 

Turbulent viscosity: 

𝜈𝑡 = 𝑘
1/2𝐿𝑇 

 

Turbulent kinetic energy: 

𝑘 =
1

2
𝑢𝑖
′𝑢𝑖
′ 

 

Turbulent kinetic energy transport equation: 

𝑈𝑗
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Turbulent length scale: 

𝐿𝑇 = √2𝑆𝑚
3/2𝑙

{
 
 
 
 
 

 
 
 
 
 

1

𝑙
= (

1

𝑙0
+
1

𝜅𝑧
) , 𝑤ℎ𝑒𝑟𝑒 𝑧 = ℎ𝑒𝑖𝑔ℎ𝑡

𝐶𝜇 =
4𝑆𝑚
𝐵1

𝑆𝑚 = {
1,96

(0.1912 − 𝑅𝑖𝑓)(0.2341 − 𝑅𝑖𝑓)

(1 − 𝑅𝑖𝑓)(0.2231 − 𝑅𝑖𝑓)
, 𝑖𝑓 𝑅𝑖𝑓 < 0.16

0.085, 𝑖𝑓 𝑅𝑖𝑓 ≥ 0.16

𝐵1 = 16.6
𝑙0 = 100𝑚
𝜅 = 0,41

 

 

Through the flux Richardson number 𝑅𝑖𝑓 the turbulence model takes into account 

atmospheric stability. The flux Richardson number is calculated based on the Monin-

Obukhov length. 

 

10.2 Stability model equations for Meteodyn WT 

The equations for the stability models (and the boundary conditions) of Meteodyn WT 

are given in the following sub-chapters. The following equations are an excerpt from 

Meteodyn (2014) and not all details are given. 

Generally computations are based on the geostrophic wind 𝑢𝑔: 

(
𝑢𝑔

𝑢∗
)
2

= (ln (
𝑧ℎ
𝑧0
) − 𝐴2)

2

+ 𝐵2
2 

Where 𝐴2 and 𝐵2 are empirical constants taken from (Garratt 1994). 

 

10.2.1 Two layer model for classes 0 to 6 

Wind speed profiles in the two-layer model: 

𝑧 < 𝑧𝑠: �̅� =
𝑢∗
𝜅
[ln (

𝑧

𝑧0
) − Ψ(

𝑧

𝐿∗
)]

𝑧𝑠 < 𝑧 < 𝑧ℎ: �̅� = 𝑢𝑔 − (𝑢𝑔 − 𝑢𝑧𝑠)
ln (

𝑧ℎ
𝑧 )

ln (
𝑧ℎ
𝑧𝑠
)

𝑧 > 𝑧ℎ: �̅� = 𝑢𝑔

 

 

The function Ψ(
𝑧

𝐿∗
) corrects the logarithmic wind profiles for atmospheric stability in 

dependence of the Monin-Obukhov-Length (Meteodyn 2014). 
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10.2.2 Three layer model for classes 7 to 9 

Wind speed profiles in the three-layer model: 

𝑧 ≤ 𝑧𝑠: �̅� = 𝑢∗ [ln (
𝑧

𝑧0
) + 5

𝑧

𝐿∗
]

𝑧𝑠 < 𝑧 < 𝑧ℎ: �̅� = 𝑢∗ [ln (
𝑧

𝑧0
) + 5

𝑧𝑠
𝐿∗
+ 5

𝑧 − 𝑧𝑠
𝐿𝑡𝑟𝑎𝑛𝑠

]

𝑧ℎ < 𝑧 ≤ 3𝑧ℎ:
3𝑧ℎ < 𝑧:

�̅� = 𝑢∗ [ln (
𝑧

𝑧0
) + 5

𝑧𝑠
𝐿∗
+ 5

𝑧ℎ − 𝑧𝑠
𝐿𝑡𝑟𝑎𝑛𝑠

+ 5
𝑧 − 𝑧ℎ
𝐿𝑜𝑢𝑡

]

�̅� = 𝑢∗ [ln (
𝑧

𝑧0
) + 5

𝑧𝑠
𝐿∗
+ 5

𝑧ℎ − 𝑧𝑠
𝐿𝑡𝑟𝑎𝑛𝑠

+ 5
2𝑧ℎ
𝐿𝑜𝑢𝑡

]

 

 

The factors 𝐿𝑡𝑟𝑎𝑛𝑠 and 𝐿𝑜𝑢𝑡 are the so-called slope coefficients in the transitional 

layer and the outer layer (compare Figure 4.2) (Meteodyn 2014). 
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10.3 Additional result plots 

 

Figure 10.1: Inflow angle α (dashed) and outflow angle  (solid) in dependence of tree height 

𝒉𝒕. Results from Meteodyn WT (colored) and from the potential flow model (black) at 150 m 

measurement height and for a 𝝋 of 30° for an H/L ratio of 0.2. The forest density is medium. 
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Figure 10.2: Inflow angle α (dashed) and outflow angle  (solid) in dependence of 

atmospheric stability. Results from Meteodyn WT (colored) and from the potential flow model 

(black) at 150 m measurement height and for a 𝝋 of 30° for an H/L ratio of 0.3. Meteodyn WT 

results for a low roughness length 𝒛𝟎 of 0.005 m. 
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Figure 10.3: Inflow angle α (dashed) and outflow angle  (solid) in dependence of 

atmospheric stability. Results from Meteodyn WT (colored) and from the potential flow model 

(black) at 150 m measurement height and for a 𝝋 of 30° for an H/L ratio of 0.3. Meteodyn WT 

results for a high roughness length 𝒛𝟎 of 0.5 m. 
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Figure 10.4: Speed-ups at inflow (dashed) and outflow (solid) in dependence of tree height 

𝒉𝒕. Results from Meteodyn WT (colored) and from the potential flow model (black) at 150 m 

measurement height and for a 𝝋 of 30° for an H/L ratio of 0.2. The forest density is medium. 
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Figure 10.5: Speed-ups at inflow (dashed) and outflow (solid) in dependence of tree height 

𝒉𝒕. Results from Meteodyn WT (colored) and from the potential flow model (black) at 150 m 

measurement height and for a 𝝋 of 30° for an H/L ratio of 0.2. The forest density is medium. 
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Figure 10.6: Speed-ups at inflow (dashed) and outflow (solid) in dependence of atmospheric 

stability. Results from Meteodyn WT (colored) and from the potential flow model (black) at 

150 m measurement height and for a 𝝋 of 30° for an H/L ratio of 0.3. Meteodyn WT results 

for a high roughness length 𝒛𝟎 of 0.5 m. 
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Figure 10.7: Lidar error 𝜺 in dependence of the measurement height z that is used to calculate 

the z/L ratio. Results are based on Meteodyn WT (colored) and the potential flow model 

(black) for an H/L ratio of 0.3 for a low roughness length 𝒛𝟎 of 0.5m. 
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Figure 10.8: Lidar error 𝜺𝒄 (left) and 𝜺𝒔 (right) in dependence of the measurement height z 

that is used to calculate the z/L ratio. Results are based on Meteodyn WT (colored) and the 

potential flow model (black) for an H/L ratio of 0.3 for a low roughness length 𝒛𝟎 of 0.5m. 
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Figure 10.9: Lidar error 𝜺 in dependence of the measurement height z that is used to calculate 

the z/L ratio. Results are based on Meteodyn WT (colored) and the potential flow model 

(black) for an H/L ratio of 0.3 for the medium forest case with 𝒉𝒕 = 𝟐𝟎𝒎 and medium forest 

density. 
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Figure 10.10: Lidar error 𝜺𝒄 (left) and 𝜺𝒔 (right) in dependence of the measurement height z 

that is used to calculate the z/L ratio. Results are based on Meteodyn WT (colored) and the 

potential flow model (black) for an H/L ratio of 0.3 for the medium forest case with 𝒉𝒕 = 𝟐𝟎𝒎 

and medium forest density. 
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Figure 10.11: Lidar error 𝜺 in dependence of tree heights 𝒉𝒕 between z/L ratios from 0 to 3. 

Results are based on Meteodyn WT (colored) and the potential flow model (black) for an H/L 

ratio of 0.2. 



 

152 

 

  
Figure 10.12: Lidar error 𝜺𝒄 (left) and 𝜺𝒔 (right) in dependence of tree heights 𝒉𝒕 between z/L 

ratios from 0 to 3. Results are based on Meteodyn WT (colored) and the potential flow model 

(black) for an H/L ratio of 0.2. 
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Figure 10.13: Lidar error 𝜺 in dependence of the half-cone opening angles between z/L ratios 

from 0 to 3. Results are based on Meteodyn WT for a high roughness length 𝒛𝟎 of 0.005 m. 
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Figure 10.14: Lidar error 𝜺 in dependence of the half-cone opening angles between z/L ratios 

from 0 to 3. Results are based on Meteodyn WT for a medium dense forested case with a tree 

height of 20 m. 
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and aims for the statistical data analysis and comparison of the lidar and mast data. I 

developed the program code in MATLAB that was used for data analysis. 
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MATLAB for comparing the simulation results and the measured data. I adapted the 

available WAsP Engineering scripts to fit the lidar error estimation method given in 
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WindSim and Meteodyn WT data in MATLAB. Based on the idea of Lukas Pauscher, 

I carried out and analyzed the simulations with different forest parameterizations. 
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and 5. Apart from that, Lukas Pauscher provided many valuable suggestions and 

discussion during the writing of the manuscript. Doron Callies participated in the 

writing process, also, with valuable suggestions, discussions and proofreading. 

 



 

156 

 

List of symbols 

𝑓0 Frequency of the emitted laser light at the lidar 

∆𝑓 Frequency shift due to Doppler shift 

𝑓 Resulting frequency after Doppler shift 

𝑐 Speed of light 

𝑣𝑟 Radial wind speed 

𝜑 Half-cone opening angle of the lidar measurement geometry 

𝜃 Azimuth angle of the lidar measurement geometry 

𝑢 x-component of the wind speed vector 

𝑣 y-component of the wind speed vector 

𝑤 z-component of the wind speed vector 

𝑥 x-coordinate positive from west to east 

𝑦 y-coordinate positive from south to north 

𝑧 z-coordinate positive upwards or height above ground 

N North 

E East 

S South 

W West 

𝑣𝑟1 Radial wind speed at measurement point 1 (North) 

𝑣𝑟2 Radial wind speed at measurement point 2 (East) 

𝑣𝑟3 Radial wind speed at measurement point 3 (South) 

𝑣𝑟4 Radial wind speed at measurement point 4 (West) 

𝑣𝑟5 Radial wind speed at measurement point 5 (Center) 

𝑖 Index of the i-th measurement location or wind speed component 
at the i-th measurement location 

𝑽 Wind speed vector 

𝑽𝑳 Wind speed vector at the lidar location at measurement height 

𝑽𝟒 Wind speed vector at the western measurement point  

𝑽𝟐 Wind speed vector at the eastern measurement point  

𝛼 Inflow inclination angle 

𝛽 Outflow inclination angle 

𝜀 Lidar error 

𝜀𝑐 Lidar error due to flow curvature 

𝜀𝑠 Lidar error due to speed-up effects 

�̂� x-component of the wind speed estimated by the lidar 
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𝑣𝑟,𝑖𝑛 Radial wind speed at the inflow measurement point 

𝑣𝑟,𝑜𝑢𝑡 Radial wind speed at the outflow measurement point 

𝑉𝑖𝑛 Magnitude of the wind speed vector at the inflow 

𝑉𝑜𝑢𝑡 Magnitude of the wind speed vector at the outflow 

𝑢𝑖𝑛 x-component of the wind speed at the inflow 

𝑢𝑜𝑢𝑡 x-component of the wind speed at the outflow 

𝑘 Ratio of magnitude of the wind speed vector at the inflow over 
magnitude of the wind speed vector at the outflow 

∆𝑢 Speed-up between measurement point and x-component of the 
wind speed at the measurement location above the lidar 

𝑑 Displacement height 

𝑧0 Roughness length 

𝜅 Van-Karman constant 

𝑢∗ Friction velocity 

𝜓 Stream function in the potential flow model 

𝜂 z-coordinate-axis in the potential flow model (cylinder centered) 

𝜁 x-coordinate-axis in the potential flow model (cylinder centered) 

𝜂0 Streamline in the potential flow model 

𝐻 Hill height 

𝐿 Hill half-width 

𝑅 Cylinder radius in the potential flow model 

𝜁𝐿 x-location of the lidar in the potential flow model 

𝜂𝐿 y-location of the lidar in the potential flow model 

𝐴 Ratio of tree height to roughness in Meteodyn WT 

ℎ𝑡 Tree height 

𝐹𝑉 Volume force due to forest modeling in Meteodyn WT 

𝐶𝑑 Drag force coefficient for forest density in Meteodyn WT 

𝑼 Wind vector in Meteodyn WT 

𝜌 Air density 

𝜀 Dissipation term in Meteodyn WT (only used in chapter 4.3.3 with 
this meaning, otherwise it is the lidar error) 

𝜀𝑐𝑐 Viscous dissipation in Meteodyn WT 

𝜀𝑓𝑑 Form drag dissipation in Meteodyn WT 

𝐶𝜇 Term in turbulence model of Meteodyn WT 

𝐿𝑇 Turbulent length scale in Meteodyn WT 

𝜈𝑇 Turbulent viscosity in Meteodyn WT 

𝑘 Turbulent kinetic energy in Meteodyn WT 
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𝑙 Mixing length in Meteodyn WT 

𝑎 Parameter in the forest model of Meteodyn WT 

𝑙0 Initial mixing length in Meteodyn WT 

𝐿∗ Monin-Obukhov length 

𝑄𝐻 Kinematic heat flux  

𝑔 Gravitational constant 

𝑇 Air temperature 

𝑐𝑝 Specific heat 

𝑤′𝑇′̅̅ ̅̅ ̅̅  Heat flux 

𝑧𝑠 Height of surface layer in Meteodyn WT 

𝑧ℎ Height of Transitional layer in Meteodyn WT 
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List of abbreviations 

 

  
ABL Atmospheric Boundary Layer 

AEP Annual energy production 

BMWi German Federal Ministry for Economic Affairs and Energy 

CFD Computational fluid dynamics 

CW Continuous wave 

DBS Doppler Beam Swinging 

EU European Union 

FCR Flow complexity recognition 

Fraunhofer IEE Fraunhofer Institute for Energy Economics and Energy System 
Technology 

IEC International Electrotechnical Commission 

IPCC Intergovernmental Panel on Climate Change 

lidar Light detection and ranging 

MOST Monin-Obukhov similarity theory 

MWT Meteodyn WT 

NEWA New European Wind Atlas 

RANS Reynolds-averaged Navier-Stokes 

RSS Root-sum-square technique 

sodar Sound detection and ranging 

SRTM Shuttle Radar Topography Mission 

VAD Velocity Azimuth Display 

WEng WAsP Engineering 

WRA Wind resource assessment 
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