
Stable Matchings with Covering Constraints:
A Complete Computational Trichotomy?

Matthias Mnich1 and Ildikó Schlotter2
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Abstract. Stable matching problems with lower quotas are fundamen-
tal in academic hiring and ensuring operability of rural hospitals. Only
few tractable (polynomial-time solvable) cases of stable matching with
lower quotas have been identified; most such problems are NP-hard and
also hard to approximate (Hamada et al., Algorithmica 74(1), 2016).
We therefore consider stable matching problems with lower quotas under
a relaxed notion of tractability, namely fixed-parameter tractability. By
cloning hospitals we focus on the case when all hospitals have upper quota
equal to 1, which generalizes the setting of “arranged marriages” first
considered by Donald Knuth in 1976. We investigate how a set of natural
parameters, namely the maximum length of preference lists for men and
women, the number of distinguished men and women, and the number of
blocking pairs allowed determine the computational tractability of this
problem.
Our main result is a complete complexity trichotomy: for each choice
of parameters we either provide a polynomial-time algorithm, or an NP-
hardness proof and fixed-parameter algorithm, or NP-hardness proof and
W[1]-hardness proof. As corollary, we negatively answer a question by
Hamada et al. (Algorithmica 74(1), 2016) by showing fixed-parameter
intractability parameterized by optimal solution size. We also classify all
cases of one-sided constraints where only women may be distinguished.
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1 Introduction

The Stable Marriage (SM) problem is a fundamental problem first studied
by Gale and Shapley [19] in 1962. An instance of SM consists of a setM of men,
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a setW of women, and a preference list for each person ordering members of the
opposite sex. We aim to find a stable matching, i.e., a matching for which there
exists no pair of a man and a woman who prefer each other to their partners
given by the matching; such a pair is called a blocking pair. Gale and Shapley
proved [19] that any instance of SM admits at least one stable matching, and
gave a polynomial-time algorithm, known as the Gale-Shapley algorithm, to find
one. Gale and Shapley also considered the many-to-one extension of SM, known
as the Hospitals/Residents (HR) problem. In HR, the two sets H and R that
correspond to men and women in the SM problem are residents and hospitals,
respectively. Each hospital H ∈ H has an upper quota on the number of residents
in R that it can accept. For HR it still holds true that a stable matching always
exists, and can be found efficiently.

An extension of HR that is motivated by several real-world applications is
the Hospitals/Residents with Lower Quota (HRLQ) problem, where hos-
pitals declare both lower and upper quotas which bound the number of residents
they can accept; as before, residents rank hospitals and vice versa. Now it is no
longer true that a stable assignment always exists. The possible non-existence
of stable assignments motivates the design of algorithms that find an assign-
ment with a minimum number of blocking pairs; this is the task of the HRLQ
problem. Indeed, the HRLQ problem and its variants have recently gained quite
some interest from the algorithmic community [4,8,16,22,24,26,30,40,44,45]. In
his book, Manlove [36, Chapter 5.2] devotes an entire chapter to the algorithmics
of different versions of the HRLQ problem.

The reason for this high interest in HRLQ is explained by its importance
in several real-world matching markets [17,18,42] such as school admission sys-
tems, centralized assignment of residents to hospitals, or of cadets to military
branches. Lower quotas are a common feature of such admission systems. Their
purpose is often to remedy the effects of under-staffing that are explained by the
well-known Rural Hospitals Theorem [20]: as an example, governments usually
want to assign at least a small number of medical residents to each rural hospi-
tal to guarantee a minimum service level. Minimum quotas are also discussed in
controlled school choice programs [13,33,43] where students are divided into a
small number of types, and schools set lower bounds for each type. Such models
can represent various forms of affirmative actions taken by schools to, e.g., ad-
mit a certain number of minority students [13]. Another example is the German
university admission system for admitting students to highly oversubscribed sub-
jects, where a certain percentage of study places is assigned according to high
school grades or waiting time [43]. But lower quotas may also arise due to finan-
cial considerations: for instance, a business course with too few (tuition-paying)
attendees may not be profitable. Certain aspects of airline preferences for seat
upgrade allocations can be also modelled by lower quotas [33].

Much of the algorithmic research found that the HRLQ problem (in its differ-
ent variants) is NP-hard, and thus considered intractable. A common approach
then to identify tractable (polynomial-time solvable) cases of HRLQ; this av-
enue has lead to several beautiful algorithms [16,26,45]. However, restricting to



polynomial-time solvability necessarily means (if P 6= NP) that some original
features of HRLQ must be restricted more or less, which may be undesirable
in the application. Another approach aimed at addressing the intractability of
HRLQ was the design of approximation algorithms. Unfortunately, it turns out
that non-trivial approximation algorithms for HRLQ are highly unlikely to exist:
Hamada et al. [24] showed that, unless P = NP, no algorithm with approximation
guarantee (|H|+ |R|)1−ε can exist for any ε > 0 (which they complement by an
algorithm with approximation guarantee (|H|+ |R|)). In light of their strong in-
approximability bounds, Hamada et al. explicitly suggested to consider a more
relaxed notion of tractability for HRLQ, namely, fixed-parameter tractability.
They particularly asked whether HRLQ is fixed-parameter tractable parameter-
ized by the minimum number b of blocking pairs over all matchings meeting all
lower and upper quota requirements.

In this paper we follow this avenue, and study the fixed-parameter tractabi-
lity of HRLQ. It allows us to provide a fine-grained analysis of HRLQ, and the
design of efficient algorithms for NP-hard variants of HRLQ for small parameter
values. Our main focus will be the case of HRLQ when each hospital has unit
upper quota. The reason is that by the frequently applied method of “cloning”
hospitals, stable instances of HRLQ reduce to the case where each hospital has
unit upper quota—and thus we can reduce stable instances of HRLQ to the SM
setting with lower quotas. In fact, this is equivalent to the special case of SM
where only a subset of women (or, equivalently, men) are distinguished by having
also a unit lower quota. From now on, we refer to HRLQ with unit upper quotas
as SMC (where C means that we have to cover the women/men who have a unit
lower quota), to the special case of SMC with one-sided covering constraints,
linking SMC and HRLQ, as SMC-1. So formally, in SMC a set W? of women
and a setM? of men are distinguished, and a feasible matching is one where each
person inW?∪M? gets matched. By the Rural Hospitals Theorem [20] we know
that the set of unmatched men and women is the same in all stable matchings,
so clearly, feasible stable matchings may not exist. Thus, we define the task in
SMC as finding a feasible matching with a minimum number of blocking pairs.

Apart from the recent interest in HRLQ, its reduction SMC also serves as
a “modern version” of a classical problem first introduced by Donald Knuth.
Knuth [31] considered SM with “arranged marriages”, which are a set X of
man-woman pairs that must be matched with each other. He showed that the
Gale-Shapley algorithm can be extended to decide the existence of a stable
matching still in time O(n2) for n-person instances, but in case of absence of
a stable matching, minimizing the number of blocking pairs is NP-hard. Now
in SMC, one does not prescribe any more which woman has to marry which
man, but only requires certain women and men to marry without dictating their
partner. There is a natural Turing reduction from SMC to the variant considered
by Knuth. Coarse analysis into polynomial-time solvable and NP-hard cases has
been studied by several researchers [1].

Another motivation for studying the SMC problem comes from the following
scenario that we dub Control for Stable Marriage. Consider a two-sided market



where each participant of the market expresses its preferences over members of
the other party, and some central agent (e.g., a government) performs the task
of finding a stable matching in the market. It might happen that this central
agency wishes to apply a certain control on the stable matching produced: it
may favour some participants by trying to assign them a partner in the resulting
matching. Such a behaviour might be either malicious (e.g., the central agency
may accept bribes and thus favour certain participants) or beneficial (e.g., it may
favour those who are at disadvantage, like handicapped or minority participants).
However, there might not be a stable matching that covers all participants the
agency wants to favour; thus arises the need to produce a matching that is as
stable as possible among those that fulfil our constraints—the most natural aim
in such a case is to minimize the number of blocking pairs in the produced match-
ing, which yields exactly the SMC problem. Similar control problems have been
extensively studied in the area of social choice for voting systems [7, Chapter 7]
and recently also for fair division scenarios [2], but have not yet been considered
in connection to stable matchings.

1.1 Our Results

We provide an extensive algorithmic analysis of the SMC problem and its special
case SMC-1. In our analysis, we examine how different aspects of the input influ-
ence the tractability of these problems. To this end, we apply the framework of
parameterized complexity, which deals with computationally hard problems and
focuses on how certain parameters of a problem instance influence its tractabil-
ity; for background, we refer to the book by Cygan et al. [11]. We aim to design
so-called fixed-parameter algorithms, which perform well in practice if the value
of the parameter on hand is small (for the precise definitions, see Section 2).

The parameters we consider are

– the number b of blocking pairs allowed,
– the number |W?| of women with covering constraint,
– the number |M?| of men with covering constraint,
– the maximum length ∆W of women’s preference lists, and
– the maximum length ∆M of men’s preference lists.

The choice of each of these parameters is motivated by the aforementioned ap-
plications. For instance, we seek matchings where ideally no blocking pairs at
all or at least only few of them appear, to ensure stability of the matching and
happiness of those getting matched. The number of women/men with covering
constraints corresponds, for instance, to the number of rural hospitals for which a
minimum quota specifically must be enforced, which we can expect to be small
among the set of all hospitals accepting medical residents. Finally, preference
lists of hospitals and residents can be expected to be small, as each hospital
might not rank many more candidates than the number of positions it has to
fill, whereas residents might rank only their top choices of hospitals.

We investigate in detail how these parameters influence the complexity of
the SMC problem. A parameterized restriction of SMC with respect to the set



S = {b, |W?|, |M?|, ∆M, ∆W} means a (possibly parameterized) special case of
SMC where each element of S is either restricted to be some constant integer, or
regarded as a parameter, or left unbounded. Intuitively, these different choices
for the elements of S correspond to their expected “range” in applications, from
very small to mid-range to large (compared to the size of the entire system). By
considering all combinations, we can flexibly model the whole range of appli-
cations mentioned above. We can even cover some cases of master lists, where
all men’s preference lists are restrictions of the exact same total order over the
women, and likewise all women’s preference lists are restrictions of the exact
same total order over the men.

Theorem 1. Any parameterized restriction of SMC with respect to
{b, |W?|, |M?|, ∆M, ∆W} is in P, or NP-hard and fixed-parameter tractable, or
NP-hard and W[1]-hard with the given parameterization3, and is covered by one
of the results shown in Table 1.

In particular, SMC is W[1]-hard parameterized by b+ |W?|, even if there are
no distinguished men (i.e., |M?| = 0), there is a master list over men as well as
one over women, ∆M = 3, ∆W = 3 and each distinguished woman finds only a
single man acceptable.

We give a decision diagram in Section 7 to show that the presented results
indeed cover all restrictions of SMC with respect to {b, |W?|, |M?|, ∆M, ∆W}.
Table 1 summarizes our results on the complexity of SMC. Note that some
results are implied directly by the symmetrical roles of men and women in SMC,
and thus are not stated explicitly. Here and later, we assume for simplicity that
∆M ≥ 2 and ∆W ≥ 2.

As a special case, we answer a question by Hamada et al. [24] who gave an
exponential-time algorithm that in time O(|I|b+1) decides for a given instance I
of HRLQ whether it admits a feasible matching with at most b blocking pairs4;
the authors asked whether HRLQ is fixed-parameter tractable parameterized
by b. As shown by Theorem 1, SMC-1 and therefore also HRLQ is W[1]-hard
when parameterized by b, already in a very restricted setting. Thus, the answer
to the question by Hamada et al. [24] is negative: SMC-1, and hence HRLQ,
admits no fixed-parameter algorithm with parameter b unless FPT = W[1].

1.2 Related Work

There is a dynamically growing literature on matching markets with lower quo-
tas [4,8,16,17,18,22,24,26,30,40,44,45]. These papers study several variants of
HRLQ, adapting the general model to the various particularities of practical
problems. However, there are only a few papers which consider the problem of
minimizing the number of blocking pairs [17,24]. The most closely related work

3 Restrictions without any parameters are simply classified as polynomial-time solv-
able or NP-hard.

4 Hamada et al. claim only a run time O((|W||M|)b+1), but their algorithm can easily
be implemented to run in time O(|I|b+1).



constants parameters complexity

|M?| = 0, |W?| = 0 in P (Gale-Shapley alg.)
|M?| = 0, |W?|,∆M in P (Thm. 7)
|M?|, |W?|,∆M,∆W in P (Thm. 7)
|M?| = 0,∆M ≤ 2 in P (Thm. 8)
∆W ≤ 2,∆M ≤ 2 in P (Observ. 2)
b in P (Observ. 1)
|M?| = 0,∆W = 2,∆M ≥ 3 NP-hard (Thm. 9)
|W?| = 1,∆W = 2 NP-hard (Thm. 10)
|M?| = 0,∆W ≥ 3,∆M ≥ 3,∆? = 1 b+ |W?| W[1]-hard (Thm. 2)
|M?| = 0, |W?| ≥ 1,∆W ≥ 3,∆? = 1 b+∆M W[1]-hard (Thm. 5)
∆W ≤ 2 |W?|+ |M?| FPT (Thm. 11)
∆W ≤ 2 b FPT (Cor. 3)
∆W ≤ 2 |W?|+∆M FPT (Thm. 12)

Table 1: Summary of our results for Stable Marriage with Covering Con-
straints. Here, ∆? denotes the maximum length of the preference list of any
distinguished person.

to ours is the paper by Hamada et al. [24]: they prove that the HRLQ problem is
NP-hard and give strong inapproximability results; they also consider the SMC-1
problem directly and propose an O(|I|b+1) time algorithm for it.

A different line of research connected to SMC is the problem of arranged
marriages, an early extension of SM suggested by Knuth [31] in 1976. Here,
a set Q? of man-woman pairs is distinguished, and we seek a stable matching
that contains Q? as a subset. Thus, as opposed to SMC, we not only require
that each distinguished person is assigned some partner, but instead prescribe
its partner exactly. Initial work on arranged marriages [31,23] was extended by
Dias et al. [12] to consider also forbidden marriages, and was further generalized
by Fleiner et al. [15] and Cseh and Manlove [10]. Despite the similar flavour of
the studied problems, none of these papers have a direct consequence on the
complexity of SMC.

Our work also fits into the line of research that addresses computationally
hard problems in the area of stable matchings by focusing on instances with
bounded preference lists [6,27,29,32,41] or by applying the more flexible approach
of parameterized complexity [1,3,5,37,38].

Organization. After the preliminaries in Section 2, we start with the main
intractability result in Section 3, which answers Hamada et al.’s question. This
result shows W[1]-hardness of SMC parameterized by b+|W?| even whenM? = ∅
and ∆M = ∆W = 3. Thus, we explore three directions to achieve tractability: (i)
to lower b to be a constant, (ii) to lower |W?| to be a constant, or (iii) to lower
either ∆W or ∆M to 2. We cover the cases (i) and (ii) in Section 5, and case
(iii) in Section 6. In addition, Section 4 provides polynomial-time approximation



results for HRLQ and SMC, used also in the polynomial-time algorithms of
Section 5.

2 Preliminaries

An instance I of the Stable Marriage (SM) problem consists of a set M
of men and a set W of women. Each person x ∈ M ∪ W has a preference
list L(x) that strictly orders the members of the other party acceptable for x.
We thus write L(x) as a vector L(x) = (y1, . . . , yt), denoting that yi is (strictly)
preferred by x over yj for each i and j with 1 ≤ i < j ≤ t. A matching M
for I is a set of man-woman pairs appearing in each other’s preference lists
such that each person is contained in at most one pair of M ; some persons may
be left unmatched by M . For each person x we denote by M(x) the person
assigned by M to x. For a matching M , a man m and a woman w included in
each other’s preference lists form a blocking pair if (i) m is either unmatched or
prefers w to M(m), and (ii) w is either unmatched or prefers m to M(w). In the
Stable Marriage with Covering Constraints (SMC) problem, we are
given additional subsets W? ⊆ W and M? ⊆ M of distinguished people that
must be matched; a matching M is feasible if it matches everybody inW?∪M?.
The objective of SMC is to find a feasible matching for I with minimum number
of blocking pairs. If only people from one gender are distinguished, then without
loss of generality, we assume these to be women; this special case will be denoted
by SMC-1.

The many-to-one extension of SMC-1 is the Hospitals/Residents with
Lower Quotas (HRLQ) problem whose input consists of a set R of residents
and a set H of hospitals that have ordered preferences over the acceptable mem-
bers of the other party. Each hospital h ∈ H has a quota lower bound q(h) and
a quota upper bound q(h), which bound the number of residents that can be
assigned to h from below and above. One seeks an assignment M that maps
a subset of the residents to hospitals that respects acceptability and is feasible,
that is, q(h) ≤ |M(h)| ≤ q(h) for each hospital h. Here, M(h) is the set of resi-
dents assigned to some h ∈ H by M . We say that a hospital h is under-subscribed
if |M(h)| < q(h). For an assignment M of an instance of HRLQ, a pair {r, h} of
a resident r and a hospital h is blocking if (i) r is unassigned or prefers h to the
hospital assigned to r by M , and (ii) h is under-subscribed or prefers r to one of
the residents in M(h). The task in HRLQ is to find a feasible assignment with
minimum number of blocking pairs.

Some instances of SMC may admit a master list over women, which is a
total ordering LW of all women, such that for each man m ∈M, the preference
list L(m) is the restriction of LW to those women that m finds acceptable.
Similarly, we consider master lists over men.

With each instance I of SMC (or HRLQ) we can naturally associate a bipar-
tite graph GI whose vertex partitions correspond to M and W (or R and H,
respectively), and there is an edge between a man m ∈M and a woman w ∈ W
(or between a resident r ∈ R and a hospital h ∈ H, respectively) if they appear



in each other’s preference lists. We may refer to entities of I as vertices, or a pair
of entities as edges, without mentioning GI explicitly. For a graph G, we denote
its vertex set by V (G) and its edge set by E(G); furthermore, let dG(v) denote
the degree of vertex v ∈ V (G) in G. A path P in G is a series of vertices that
contains each vertex at most once, with an edge of G connecting any two con-
secutive vertices of P . With a slight abuse of the notation, we will often identify
paths with their edge sets; we will write P ′ ⊆ P to express that P ′ is a subpath
of P . A matching in G is a set of edges M ⊆ E(G) such that no vertex in G
is adjacent to more than one edges of M ; note that a matching in an instance
I of SMC indeed corresponds to a matching in the graph GI . For a matching
M in G, a path P is called M -alternating, if among any two consecutive edges
along P exactly one belongs to M . We will use a few other notions from the
theory of matchings about the symmetric difference of matchings, see e.g., the
book by Lovász and Plummer [35] for an introduction to this topic.

Parameterized complexity. The framework of parameterized complexity deals
with computationally hard problems, examining their complexity in a more de-
tailed way than classical complexity theory. In a parameterized problem problem
Π, each input instance I is associated with an integer k called the parameter.
An algorithm which decides instances I of Π in time f(k) · |I|O(1) for some
computable function f is called a fixed-parameter algorithm. Note that the de-
pendence of the polynomial in the run time is constant, but the dependence on
the parameter k can be arbitrary (and is typically exponential). However, if the
parameter of a given instance is small, then such an algorithm can be useful in
practice even if the overall size of the instance is large.

The class of problems admitting fixed-parameter algorithms is denoted by
FPT. To argue that a problem is not in FPT, parameterized complexity provides
a hardness theory. For two parameterized problems Π1 and Π2, a parameterized
reduction from Π1 to Π2 is a function f , computable by a fixed-parameter algo-
rithm, that maps each instance (I1, k1) of Π1 to an instance f(I1, k1) = (I2, k2)
of Π2 such that (i) (I1, k1) is a “yes”-instance of Π1 if and only if (I2, k2) is a
“yes”-instance of Π2, and (ii) k2 ≤ g(k1) for some function g. The basic class
of parameterized intractability is W[1]: proving a problem Π to be W[1]-hard
is strong evidence that Π /∈ FPT. Given some problem Π that is known to be
W[1]-hard, a parameterized reduction from Π to some parameterized problem
Π ′ implies W[1]-hardness of Π ′ as well.

For more on parameterized complexity, we refer the reader to the book by
Cygan et al. [11].

3 Strong Parameterized Intractability of SMC

This section provides parameterized intractability and inapproximability results
for SMC showing the hardness of finding feasible matchings with minimum num-
ber of blocking pairs. Namely, we prove SMC-1 to be W[1]-hard parameterized by
the number b of blocking pairs we aim for plus the number |W?| of distinguished
women, even in a very restricted setting.



Theorem 2. SMC-1 is W[1]-hard parameterized by b+ |W?|, even if there is a
master list over men as well as one over women, all preference lists are of length
at most 3, and |L(w)| = 1 for each woman w ∈ W?.

Before proving Theorem 2, let us quickly state a simple but useful claim.

Proposition 1. Let M1 and M2 be two matchings in an instance of SMC. Let
v0v1 . . . vp (with p ≥ 1) be a maximal path in the symmetric differenc of M1 and
M2, denoted by M14M2. Then

(a) P contains an edge that blocks either M1 or M2, and
(b) if i ∈ {1, . . . , p− 1} is such that vi prefers vi−i to vi+1, then Pi = v0v1 . . . vi

contains an edge that blocks either M1 or M2.

Proof. We call a person vi a leftist if either i = p, or i ∈ {1, . . . , p − 1} and vi
prefers vi−1 to vi+1. Similarly, we call vi a rightist if either i = 0, or i ∈ {1, . . . , p−
1} and vi prefers vi+1 to vi−1. Observe that any person on P is either a leftist or
a rightist. Moreover, the path P , and under the conditions of (b) also the path
Pi, must contain an edge {x, y} such that x is a leftist and y is a rightist. Let
Mi be the matching that does not contain {x, y} (where i ∈ {1, 2}). Then both
x and y prefer being matched to each other as opposed to their situation in Mi

(where they may or may not be matched), proving both (a) and (b). ut

Proof (of Theorem 2). We give a reduction from the W[1]-hard Multicolored
Clique parameterized by the size of the solution [14]. Let G be the input graph,
with its vertex set partitioned into k sets V1, . . . , Vk; the task is to find a clique
of size k in G containing exactly one vertex from each of the sets Vi. We let Ei,j
denote those edges that run between Vi and Vj for some 1 ≤ i < j ≤ k. We fix an
ordering on the vertices and edges of G that places vertices of Vi before vertices
of Vj whenever i < j (the ordering on the edges of G can be chosen arbitrarily).
We will write succ(x) to denote the vertex following x in this ordering, and we
let v1i and v∞i denote the first and last vertices in Vi, respectively. Similarly, we
write succ({x, y}) for the edge following {x, y}, and we let e1i,j and e∞i,j denote
the first and last edges in Ei,j , respectively. We will also write pred(x) and
pred({x, y}) for the predecessor of x or {x, y}, respectively. Also, we denote the
h-th neighbor of some vertex x as n(x, h). For simplicity, we assume that G has
no isolated vertices.

We construct an instance I of SMC as follows; see Figure 1 and Figure 2 for
an illustration.

We set the number of blocking pairs allowed for I to be b = 2k+
(
k
2

)
. Together

with the instance I, we will define a stable (but not feasible) matching Ms for
I as well. If a woman w of I is matched by Ms, we will denote the man Ms(w)
by ŵ. Some women will need “dummy” partners in their preference lists: we
denote the dummy of w by w̃. The dummy w̃ will always appear as the last item
on w’s preference list, and its preference list will always be L(w̃) = (w).

For each i and j with 1 ≤ i < j ≤ k, we construct an edge selecting gadget Gi,j
that involves women si,j and ti,j , together with women a{x,y}, bx→y, and by→x
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Fig. 1: Node selecting gadget Gi in the proof of Theorem 2. Throughout the
paper, we use squares for women, circles for men; distinguished persons are
denoted by filled squares/circles. The numbering of edges incident to some vertex
(or, sometimes, arrows between edges) indicate preferences. Double edges denote
edges of the stable matchingMs, and dashed edges are those leaving some gadget.

si,j
2 1 2

1

3

...

2 1

a{x,y}

2

1

3

b̂x→y
1

2

bx→y
1

3

2
b̂hx

b̂y→x
1

2

by→x
1

3 2
b̂`y

b̃y→x

. . .
2 1 2

1

3

...

2 1
ti,j

Fig. 2: Edge selecting gadget Gi,j in the reduction of Theorem 2.



for each edge {x, y} ∈ Ei,j . All women in Gi,j are matched by Ms except for si,j ,
and Gi,j contains the man ŵ for each of these women w, together with additional

dummies b̃y→x for each {x, y} ∈ Ei,j with x preceding y.
For each i ∈ {1, . . . , k}, we also construct a node selecting gadget Gi involv-

ing women si, ti, and u1i , . . . , u
b+1
i , together with women ax, b1x, . . . , b

dG(x)
x , and

c1x, . . . , c
b+1
x for each x ∈ Vi. The men in Gi include ŵ for each woman w of Gi

except for si, and additional dummies b̃1x, . . . , b̃
dG(x)
x and c̃b+1

x for each x ∈ Vi.
We define the following sets of women:

A = {ax | x ∈ V (G)} C={chx | x ∈ V (G), 1 ≤ h ≤ b+ 1}
A′= {a{x,y} | {x, y} ∈ E(G)} S={si | 1 ≤ i ≤ k} ∪ {si,j | 1 ≤ i < j ≤ k}
B = {bhx | x ∈ V (G), 1 ≤ h ≤ dG(x)} T={ti | 1 ≤ i ≤ k} ∪ {ti,j | 1 ≤ i < j ≤ k}
B′= {bx→y, by→x | {x, y} ∈ E(G)} U={uhi | 1 ≤ i ≤ k, 1 ≤ h ≤ b+ 1}

To define the set W? of women in I with covering constraint we let W? =
S ∪ T ∪ U ; note |W?| = 2

(
k
2

)
+ 2k + k(

(
k
2

)
+ 2k + 1). To finish the definition

of I, we define the precise structure of these gadgets as well as the connections
between them by the preference lists shown in Tables 2 and 3; when not stated
otherwise, indices take all possible values. For simplicity, we write b0x = ax,

b
dG(x)+1
x = c1x, and c0x = b

dG(x)
x for any vertex x ∈ V (G).

Let us define a master list LW over all women as follows. The first women
in LW are those in T , in any ordering. They are followed by women in A, ordered
according to the reversed ordering over V (G), that is, ax precedes ay exactly if y
precedes x. Next follow women of A′, ordered according to the reversed ordering
over E(G). Next come women in B ∪ B′. To order them, we first order those
in B by putting bhx before b`y in LW if and only if x precedes y or x = y and
h < `, then for each edge {x, y} ∈ E(G) with x preceding y, y = n(x, h) and
x = n(y, `) we insert bx→y just before bhx, and we insert by→x just before b`y, thus
determining the ordering of B ∪B′. After women in B ∪ B′ come women of C,
with chx preceding c`y exactly if h < ` or h = ` and x precedes y. We finish the
definition of the master list LW by putting all women in S ∪U at the end of LW
in an arbitrary order.

The master list over men is derived from LW by letting ŵ1 precede ŵ2 when-
ever w1 precedes w2 in LW , and adding all dummies at the end in an arbitrary
order. It is easy to check that the preference lists given in Tables 2 and 3 are
indeed compatible with these master lists. This completes the construction of
the instance.

We are going to prove that the constructed instance I admits a feasible
assignment with at most b blocking pairs if and only if there is a clique of size k
in the graph G.

”⇒”: Suppose there is a feasible matching M of men to women with at
most b blocking pairs. Let G∆ be the symmetric difference M4Ms. Notice that
for each woman s ∈ S, the difference G∆ must contain exactly one maximal path
containing s as its endpoint, since the women in S must be matched in M , but
are unmatched in Ms. Similarly, no path of G∆ can contain a woman in T ∪ U ,



L(ax) = (âsucc(x), âx, b̂
1
x), where x ∈ Vi \ {v∞i },

L(ax) = (t̂i, âx, b̂
1
x), where x = v∞i ,

L(bhx) = (b̂hx, b̂
h+1
x , b̃hx), where 1 ≤ h ≤ dG(x),

L(chx) = (ĉhx, ĉ
h
succ(x), ĉ

h+1
x ), where 1 ≤ h ≤ b, x ∈ Vi \ {v∞i },

L(chx) = (ĉhx, û
h
i , ĉ

h+1
x , ), where 1 ≤ h ≤ b and x = v∞i ,

L(cb+1
x ) = (ĉb+1

x , ĉhsucc(x), c̃
b+1
x ), where x ∈ Vi \ {v∞i },

L(cb+1
x ) = (ĉb+1

x , ûb+1
i , c̃b+1

x , ), where x = v∞i ,

L(si) = (âx), where x = v1i ,

L(ti) = (t̂i),

L(uh
i ) = (ûh

i ),

L(âx) = (ax, apred(x)), where x ∈ Vi \ {v1i },
L(âx) = (ax, si), where x = v1i ,

L(b̂hx) = (bh−1
x , bx→y, b

h
x), where y = n(x, h), x ∈ Vi, y ∈ Vj and i < j

L(b̂hx) = (bh−1
x , by→x, b

h
x), where y = n(x, h), x ∈ Vi, y ∈ Vj and i > j

L(ĉhx) = (ch−1
x , chpred(x), c

h
x), where x ∈ Vi \ {v1i },

L(ĉhx) = (ch−1
x , chx), where x = v1i ,

L(t̂i) = (ti, ax), where x = v∞i ,

L(ûh
i ) = (chx, u

h
i ), where x = v∞i ,

L(w̃) = (w), for any dummy woman w̃.

Table 2: Preference lists of women and men in node selecting gadgets.

L(a{x,y}) = (âsucc({x,y}), â{x,y}, b̂x→y), where {x, y} ∈ Ei,j \ {e∞i,j , } and x precedes y,

L(a{x,y}) = (t̂i,j , â{x,y}, b̂x→y), where {x, y} = e∞i,j and x precedes y,

L(bx→y) = (b̂x→y, b̂
h
x, b̂y→x), where y = n(x, h) and x precedes y in V (G),

L(by→x) = (b̂y→x, b̂
h
y , b̃y→x), where y = n(x, h) and x precedes y in V (G),

L(si,j) = (â{x,y}), where {x, y} = e1i,j ,

L(ti,j) = (t̂i,j),

L(â{x,y}) = (a{x,y}, apred({x,y})), where {x, y} ∈ Ei,j \ {e1i,j},
L(â{x,y}) = (a{x,y}, si,j), where {x, y} = e1i,j ,

L(b̂x→y) = (a{x,y}, bx→y), where x precedes y in V (G),

L(b̂y→x) = (bx→y, by→x), where x precedes y in V (G),

L(t̂i,j) = (ti,j , a{x,y}), where {x, y} = e∞i,j ,

L(w̃) = (w), for any dummy woman w̃.

Table 3: Preference lists of women and men in edge selecting gadgets.



because these women are matched by Ms to their only possible partners, and
they must be matched by M as well, since T ∪ U is contained in W?. We call a
maximal path P in G∆ with an endpoint s in S an improving path. We say that
P starts at s and ends at its other endpoint, and we refer to the path starting
at si (or si,j) as Pi (or Pi,j , respectively).

We define the cost of some path P of G∆ as the number of blocking pairs
{m,w} for M involving a woman w that appears on P . By Proposition 1, each
improving path contains at least one edge that is blocking for M , because no
edge can block Ms. Therefore, each path in G∆ has cost at least 1.

As there are exactly k +
(
k
2

)
improving paths (as all women in S must be

matched by M), we get a minimum cost of k+
(
k
2

)
. Note also that the total cost

of all paths in G∆ cannot exceed b = 2k +
(
k
2

)
. Claim 1 is therefore crucial.

Claim 1. The following holds for any improving path P of G∆:

(a) P cannot end at a dummy c̃b+1
x for some x ∈ V (G).

(b) P contains an edge {a, â} for some a ∈ A ∪A′ that blocks M .
(c) If P is not disjoint from Gi for some i, then P has cost at least 2.

Proof (of Claim 1.). To prove (a), suppose for contradiction that P ends at c̃b+1
x ,

where x ∈ Vi. Clearly, P must contain at least one woman from each of the
b + 1 sets {chv | v ∈ Vi}, h = 1, . . . , b + 1. Fix h, and let us consider the last
v ∈ Vi for which chv is incident to an edge of G∆. Let w = chsucc(v) if v 6= v∞i ,

or otherwise let w = uhi . Then the edge {chv , ŵ} yields a blocking pair in M ,
as M(w) = Ms(w) = ŵ, and thus ŵ prefers chv to w. This reasoning gives us
b + 1 different blocking pairs for M , one for each index h, contradicting our
assumption on M .

To prove (b), let us consider the case when P = Pi for some i; the argument
goes the same way for the case where P = Pi,j for some i and j. If P ends at ax
for some x ∈ Vi, then ax forms a blocking pair with âx in M . If P does not end
at a woman in A, then it must contain the edge {ax, b1x} for some x, in which
case {ax, âx} is again blocking in M , showing (b).

To see (c), first observe that if P is not disjoint from Gi, then P ends in Gi,
simply because of its property that it contains edges from M and Ms in an
alternating fashion. Therefore, the last woman w on P must be in B ∪ C. If
w = bhx for some b ∈ B, then the edge {bhx, b̂h+1

x } is blocking M , as bhx cannot

get its first choice b̂hx in M (and b̂h+1
x cannot be on P , as that would imply that

bh+1
x is on P , contradicting the choice of w). If, by contrast, w = c for some
c ∈ C, then P must end at w by (a), and then c forms a blocking pair with the
third man in its preference list (for whom c is the first choice). In either case, w
is involved in a blocking pair, which together with the blocking pair guaranteed
by (b) implies that P has cost at least 2.

This completes the proof of Claim 1. ♦

Claim 1 proves that for each i ∈ {1, . . . , k} the improving path Pi has cost
at least 2. Since all the remaining

(
k
2

)
improving paths have cost at least 1, and



the total cost of these paths must be at most b = 2k +
(
k
2

)
, we get that any

path Pi (or Pi,j) must have cost exactly 2 (or 1, respectively). Furthermore, it
also follows that no other path of G∆ can enter or start in Gi, for any i, as that
would imply that the number of blocking pairs for M is more than b. In addition,
it is not hard to see that G∆ does not contain any cycle, because all cycles in the
graph underlying I contain two consecutive edges not in Ms. Hence, it follows
that the only connected component in G∆ that is not disjoint from Gi is Pi.

To deal with the possible courses the path Pi may take in the graph for some
i ∈ {1, . . . , k}, let xi denote the vertex in Vi for which {axi

, âxi
} is the blocking

edge guaranteed by statement (b) of Claim 1. Observe that Pi either ends at axi

or contains the edge {axi
, b̂1xi
}. In either case, we say that Pi selects xi from Vi;

clearly, there can be only one vertex in Vi selected by Pi.
Consider now Pi,j for some 1 ≤ i < j ≤ k. Recall that Pi,j has cost 1.

Therefore, statement (b) of Claim 1 proves that the only blocking edge incident
to some woman on Pi,j must be {a{x,y}, â{x,y}} for some {x, y} ∈ Ei,j . We
say that Pi,j selects the edge {x, y}; without loss of generality, let us assume
that x precedes y. By statement (c) of Claim 1, we also know that Pi,j cannot

leave Gi,j , which means that it can only have cost 1 if it ends at b̃y→x. In

particular, it contains the edges {bx→y, b̂y→x} and {by→x, b̃y→x}. Observe that

the edge {bx→y, b̂hx} where h is such that y = n(x, h) cannot be blocking in M

(as this would indicate a cost of 2 for Pi,j), yielding that b̂hx must be matched
to bh−1x in M . By the arguments of the previous paragraph, this means that Pi
must contain the subpath (ax, b̂

1
x, b

1
x, . . . , b̂

h
x, b

h
x). Hence, we obtain that x must be

selected by Pi. Similarly, from the fact that the edge {by→x, b̂`y} where x = n(y, `)
is not blocking in M we get that y must be selected by Pj .

Thus, we obtain that if an edge is selected by Pi,j for some i and j, then
its endpoints must be selected by Pi and Pj . As this must hold for each pair of

indices with 1 ≤ i < j ≤ k, we obtain that there must be
(
k
2

)
edges in G whose

endpoints are among the k selected vertices. This can only happen if these edges
are the edges of a clique of size k.

”⇐”: Suppose now that G has a clique of size k formed by the vertices
x1, . . . , xk, with xi ∈ Vi for each i ∈ {1, . . . , k}. Instead of directly defining
the required matching M that is feasible and admits at most b blocking pairs,
we give Ms4M as the union of paths Pi for i ∈ {1, . . . , k}, and paths Pi,j for
1 ≤ i < j ≤ k, defined as follows.

We set Pi as the path

Pi = (si, âv1i , av1i , . . . , âxi , axi , b̂
1
xi
, b1xi

, . . . , b̂dG(xi)
xi

, bdG(xi)
xi

, b̃dG(xi)
xi

) .

Similarly, we define

Pi,j = (si,j , âe1i,j , ae1i,j , . . . , â{xi,xj}, a{xi,xj}, b̂xi→xj , bxi→xj , b̂xj→xi , bxj→xi , b̃xj→xi) .

It is straightforward to verify that the blocking pairs for M are then the k

edges {axi , âxi}, i ∈ {1, . . . , k}, the k edges {bdG(xi)
xi , c1xi

}, and the
(
k
2

)
edges



{a{xi,xj}, â{xi,xj}}, 1 ≤ i < j ≤ k. The feasibility of M is trivial; this completes
the proof of Theorem 2. ut

A fundamental hypothesis about the complexity of NP-hard problems is the
Exponential Time Hypothesis (ETH), which stipulates that algorithms solving
all Satisfiability instances in subexponential time cannot exist [28]. Assuming
ETH, the fundamental Clique problem parameterized by solution size k was
shown not to admit any algorithm giving the correct answer in time f(k) · no(k)
for all n-vertex instances and any computable function f [9, Thm. 5.4]. The
known reduction from Clique to Multicolored Clique does not change the
parameter [14]. Finally, in the proof of Theorem 2, an instance of Multicol-
ored Clique with solution size k is reduced to an instance of SMC-1 with
parameter b = O(k2).

Corollary 1. Assuming ETH, SMC-1 cannot be solved in time f ′(b) ·no(
√
b) for

any computable function f ′, even if there is a master list over men and over
women, all preference lists have length at most 3, and each woman in W? finds
only a single man acceptable.

4 Polynomial-Time Approximation

Here we first provide a polynomial-time algorithm that yields an approximation
for HRLQ with factor (∆R − 1)q

Σ
, where ∆R is the maximum length ∆R of

residents’ preference lists and q
Σ

is the total sum of all lower quotas. Then we
use this result to propose an exact polynomial-time algorithm for HRLQ for the
case where both ∆R and q

Σ
are constant. Recall that in HRLQ, our objective

is to find an assignment that satisfies all quota lower and upper bounds and
minimizes the number of blocking pairs.

Theorem 3. Let I be an instance of HRLQ. Let ∆R denote the maximum length
of residents’ preference lists, and let q

Σ
denote the sum of lower quota bounds

taken over all hospitals in I. There is an algorithm that in polynomial time either
outputs a feasible assignment for I with at most (∆R − 1)q

Σ
blocking pairs,

involving only q
Σ

residents, or concludes that no feasible assignment exists.

Proof. Let H? denote the set of hospitals with positive lower quotas. We start
by finding an assignment Mq that assigns q(h) residents to each hospital h ∈ H?,
and has the following property:

for each hospital h ∈ H?, all residents that are not in Mq(h) but
preferred by h to the least preferred resident in Mq(h) are contained
in
⋃
h′∈H?\{h}Mq(h

′).
(†)

Such an assignment can be obtained as follows. We start from an arbitrary
assignment M that assigns q(h) residents to each h ∈ H? (if no such assignment
exists, then we can stop and reject); such an assignment, if existent, can be
found in polynomial time by an algorithm of Hopcroft and Karp [25]. Then we



greedily re-assign residents to hospitals of H?, one-by-one: at each step, we take
a hospital h ∈ H?, and if there exists a resident r not assigned to any other
hospital in H? that h prefers to the least preferred resident r′ in M(h), then we
replace r′ with r in M(h). If this step cannot be applied anymore, then we arrive
at an assignment Mq with the desired property (†).

Given Mq, we reduce the upper quotas of each hospital h ∈ H? by q(h), set all
lower quotas to 0, and delete all residents inR? := Mq(H?). We then find a stable
assignment Ms in the resulting instance I ′; note that I ′ is an instance of HR,
so we can find Ms in polynomial time [19]. Finally, we output Mout = Ms ∪Mq.
Clearly, Mout is feasible. Also, any blocking pair that Mout admits must involve
either a hospital from H? or a resident from R? = Mq(H?) by the stability of Ms

with respect to I ′. Observe that if some h ∈ H? is involved in some blocking
pair {r, h} of Mout, then we must have r ∈ R?. To see this, recall that each
resident that is preferred by h to its least preferred resident in Mq(h) must be
in R? because of property (†), and furthermore, h is under-subscribed in Mout

(within I) if and only if h is under-subscribed in Ms (within I ′). Therefore, we
can conclude that each blocking pair for Mout must involve some resident in
R?; observe that |R?| ≤

∑
h∈H q(h) = q

Σ
. Since each resident in R? is incident

to at most ∆R − 1 edges not in Mout, we also have that Mout admits at most
(∆R − 1)|R?| ≤ (∆R − 1)q

Σ
blocking pairs. ut

If both ∆R and q
Σ

are constant, then Theorem 3 implies that HRLQ be-
comes polynomial-time solvable. Indeed, we can use the following simple strategy,
depending on the number b of blocking pairs allowed: if
b ≥ (∆R − 1)q

Σ
, then we apply Theorem 3 directly; if b < (∆R − 1)q

Σ
, then

we use the algorithm by Hamada et al. [24] running in time O(|I|b+1) which is
polynomial, since b is upper-bounded by a constant.

Corollary 2. If both the maximum length ∆R of residents’ preference lists and
the total sum q

Σ
of all lower quotas is constant, then HRLQ is polynomial-time

solvable.

Another application of Theorem 3 is an approximation algorithm that works
regardless of whether ∆R or q

Σ
is a constant. In fact, the algorithm of Theorem 3

can be turned into a (∆R−1)q
Σ

-factor approximation algorithm as follows. First,
we find a stable assignment Ms for I in polynomial time using the extension of
the Gale-Shapley algorithm for the Hospitals/Residents problem. If Ms is not
feasible, then by the Rural Hospitals Theorem [20], we know that any feasible
assignment for I must admit at least one blocking pair; hence, the algorithm
presented in Theorem 3 clearly yields an approximation with (multiplicative
and also additive) factor (∆R − 1)q

Σ
.

To close this section, we also state an analogue of Theorem 3 that deals with
SMC: it can handle covering constraints on both sides, but assumes that all
quota upper bounds are 1.

Theorem 4. There is an algorithm that in polynomial time either outputs a
feasible matching for an instance I of SMC with at most (∆W−1)|M?|+(∆M−
1)|W?| blocking pairs, or concludes that I admits no feasible matching.



Proof. The proof uses the same ideas as those used in our proof for Theorem 3,
so the reader may skip the proof below, which we only include for completeness.

We start by finding an arbitrary matching M that covers each distinguished
person (if no such matching exists, then we can stop and reject); such a matching,
if existent, can be found in polynomial time by standard flow techniques. We
assume, without loss of generality, that each edge in M is incident to some
distinguished person. Let us define X ? = W? ∪M?, and let U? be the set of
those persons x ∈ X ? whose partner M(x) is also in X ?.

We proceed by modifying M into a matching Mq that covers X ? and has the
following property:

If a person x ∈ X ? \ U? belongs to a blocking pair {x, y} for Mq, then
Mq(y) ∈ X ?.

(z)

Such an assignment can be obtained as follows. We greedily assign partners
to the men and women in X ? \ U?, one-by-one: at each step, we take a person
x ∈ X ?\U?, and if x forms a blocking pair (with respect to the current matching)
with some y that is not the partner of a distinguished person, then we replace
the partner of x with y: we add the edge {x, y} to the matching, and delete all
the other edges incident to x or y. Observe that the obtained matching is still
feasible. If this step cannot be applied anymore, then we arrive at a matching Mq

with the desired property (z); note also that each edge in Mq is incident to some
distinguished person.

Given Mq, we delete all men and women covered by Mq. We then find a
stable matching Ms in the resulting instance I ′; note that I ′ is an instance of
Stable Marriage, so we can find Ms in polynomial time [19]. Finally, we
output Mout = Ms ∪Mq. Clearly, Mout is feasible. Also, any blocking pair that
Mout admits must involve a person covered by Mq due to the stability of Ms

with respect to I ′.
We claim that any blocking pair {x, y} involves a person whose partner by Mq

is distinguished, so either Mq(x) ∈ X ? or Mq(y) ∈ X ?. We can assume that x
is covered by Mq (because this holds for at least one of x and y). To see the
claim, first note that if x is not distinguished, then Mq(x) must be distinguished,
because each edge of Mq contains a distinguished person. Second, if x ∈ X ?,
then either x ∈ U? (in which case Mq(x) ∈ X ?) or Mq(y) ∈ X ? because of
property (z). Therefore, we can conclude that each blocking pair for Mout must
involve the partner of some distinguished resident. The partners of distinguished
women can be incident to at most |W?|(∆M − 1) blocking pairs, and similarly,
the partners of distinguished men can be incident to at most |M?|(∆W − 1)
blocking pairs, proving the theorem. ut

5 SMC with Bounded Number of Distinguished Persons
or Blocking Pairs

In Theorem 2 we proved W[1]-hardness of SMC-1 for the case where ∆M =
∆W = 3, with parameter b+ |W?|. Here we investigate those instances of SMC



and SMC-1 where the length of preference lists may be unbounded, but either b,
or the number of distinguished persons is constant.

First, if the number b of blocking pairs allowed is constant, then SMC can
be solved by simply running the extended Gale-Shapley algorithm after guess-
ing and deleting all blocking pairs. This complements the result by Hamada et
al. [24].

Observation 1. SMC can be solved in time O(|I|b+1), where b denotes the num-
ber of blocking pairs allowed in the input instance I.

In Theorem 5 we prove hardness of SMC-1 even if only one woman must be
covered. If we require preferences to follow master lists, then a slightly weaker
version of Theorem 5, where |W?| = 2, still holds.

Theorem 5. SMC-1 is W[1]-hard parameterized by b+∆M, even if W? = {s},
∆W = 3, and |L(s)| = 1.

Proof. We present a reduction based on the one from Multicolored Clique
given in the proof of Theorem 2. Given some graph G and an integer k as inputs,
we are going to re-use the instance I constructed in the proof of Theorem 2.
Recall that I has a feasible matching with at most b =

(
k
2

)
+ 2k blocking pairs if

and only if G has a clique of size k. Recall also that the set of women that must
be covered in I is S∪T ∪U ; here we denote this set byW?

I . We define a modified
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Fig. 3: Illustration depicting the forcing gadget Fw in the proof of Theorem 5.

instance I ′ of SMC as follows. For each w ∈ W?
I , we create a forcing gadget Fw

which apart from w contains the newly introduced women aw, bw, cw, dw and men
a′w, b

′
w, c
′
w, d

′
w. We also add the distinguished woman s, who must be covered in

I ′, and the unique man t in L(s). See Figure 3 for an illustration.
Let n(w) denote the unique man acceptable for some w ∈ W?

I in I. Addi-
tionally, we let Y = {aw, cw | w ∈ W?

I }, and we write [Y ] for an arbitrarily fixed



ordering of the elements of Y . The preferences of the newly introduced men and
women, as well as the modified preferences of those agents that find them ac-
ceptable, is given below. Here, again, indices take all possible values, and w can
be any woman in W?

I . We let I ′ contain all other women and men defined in I,
having the same preferences as in I.

L(s) = (t), L(t) = ([Y ], s),
L(aw) = (b′w, t, a

′
w), L(a′w) = (aw, dw),

L(bw) = (c′w, b
′
w), L(b′w) = (bw, w, aw),

L(cw) = (d′w, t, c
′
w), L(c′w) = (cw, bw),

L(dw) = (a′w, d
′
w), L(d′w) = (dw, w, cw),

L(w) = (n(w), b′w, d
′
w).

We will show that I ′ has a feasible matching with at most b blocking pairs if
and only if I has such a matching; this clearly proves the theorem.

First observe that any feasible matching M ′ for I ′ contains the edge {s, t}.
Thus, if some woman y in Y is not matched by M ′ to her first choice, then {y, t}
is blocking in M ′. Consider now Fw for some w ∈ W?

I . It is straightforward to
check that if M ′(w) 6= n(w), then there are at least two blocking pairs incident
to a woman in Fw. Indeed, assume first that {t, aw} is the only blocking pair in
Fw; this quickly implies M ′(cw) = d′w and M ′(aw) = a′w, which in turn leads
to {dw, d′w} blocking M ′, a contradiction. Second, assume that {t, aw} does not
block M ′; from this follows M ′(aw) = b′w and we have that {b′w, w} is a blocking
pair for M ′. Now either {t, cw} is blocking (in which case our claim holds), or we
get M ′(cw) = d′w, which implies that {d′w, w} blocks M ′, again a contradiction.

Now, let Wi be the women in Gi that must be covered in I, i.e., Wi =
{si, ti, u1i , . . . , u

b+1
i }. Consider the number βi of blocking pairs for M ′ that in-

volve a woman either in the gadget Gi or in a gadget Fw for some w ∈ Wi. On
the one hand, if some w ∈ Wi is not matched by M ′ to n(w), then βi ≥ 2 be-
cause of the blocking pairs in Fw. On the other hand, if each w ∈ Wi is matched
by M ′ to n(w), then using the arguments of the proof for Theorem 2, we again
know βi ≥ 2 because of the blocking pairs in Gi. Also, βi = 2 can only be
achieved if (i) M ′(ti) = n(ti), as otherwise {ti, n(ti)} would be blocking for M ′,
in addition to the two blocking pairs in Fti , and (ii) M ′(uhi ) = n(uhi ) for each
h ∈ {1, . . . , b + 1}, as otherwise we would have M ′(si) = n(si) (so as to avoid
having four blocking pairs due to women in Fuh

i
and Fsi), implying at least one

blocking pair in Gi in addition to those in Fuh
i
.

Analogously, let βi,j denote the number of blocking pairs for M ′ that involve
a woman either in the gadget G{i,j} or in a gadget Fw for some w ∈ {si,j , ti,j}.
Then either βi,j ≥ 2, or we know that M ′(w) = n(w) for both women w ∈
{si,j , ti,j}; in this case, from the proof of Theorem 2 we get βi,j ≥ 1. However,

supposing that M ′ has at most b = 2k+
(
k
2

)
blocking pairs, it follows that βi = 2

and βi,j = 1 must hold for each i ∈ {1, . . . , k} and each i, j with 1 ≤ i < j ≤ k,
respectively.

Along the same lines as in the proof of Theorem 2, it can also be verified that
βi,j = 1 for each pair of indices i, j can only be achieved if M ′4Ms contains a



path in each gadget Gi. From M ′(w) = n(w) for each w ∈ Wi \ {si} we get that
such a path contains at least one blocking pair. This implies M ′(si) = n(si), as
otherwise we would end up with βi ≥ 3 because of the blocking pairs incident
to women of Fsi .

Altogether, we have proved that M ′(w) = n(w) for each w ∈ W?
I . Hence,

the restriction of M ′ to I yields a feasible matching for I that admits at most b
blocking pairs.

For the other direction, suppose that I has a feasible matching M . Then it
is easy to see that adding the edges {aw, b′w}, {bw, c′w}, {cw, d′w}, and {dw, a′w}
for each w ∈ W?

I together with the edge {s, t} to M yields a feasible matching
for I ′ that contains exactly the same number of blocking pairs in I ′ as M does
in I. ut

Theorem 6. SMC-1 is W[1]-hard parameterized by b + ∆M, even if there is
a master list over men as well as one over women, |W?| = 2, ∆W ≤ 3, and
|L(w)| = 1 for each w ∈ W?.

Proof. The proof is very similar to the one for Theorem 5, so we will only sketch
it. Again, we are going to re-use the instance I constructed in the proof of
Theorem 2, and construct a modified instance I ′ of SMC, adding only two new
women z1 and z2 and two men m1 and m2 to I. We append z1 and z2, in this
order, to the master list over women, and similarly, we append m1 and m2 to
the master list over men. We define the women to be covered in I ′ as z1 and z2.

Again, we denote the set of women to be covered in I by W?
I , and we denote

by n(w) the unique man acceptable for some w ∈ W?
I in I. The preferences of

the newly introduced men and women, as well as the modified preferences of
those agents that find them acceptable, is given below (here, [W?

I ]≺ denotes the
ordering of W?

I given by the master list). We let I ′ contain all other women and
men defined in I, having the same preferences as in I.

L(z1) = (m1), L(m1) = ([W?
I ]≺, z1),

L(z2) = (m2), L(m2) = ([W?
I ]≺, z2),

L(w) = (n(w),m1,m2) ∀w ∈ W?
I .

Arguing analogously as before in the proof of Theorem 5, one can show that I ′

has a feasible matching with at most b blocking pairs if and only if I has such a
matching; this suffices to prove the theorem. ut

To contrast our intractability results, we show next that if each of the four pa-
rameters |W?|, |M?|, ∆W , and ∆M is constant, then SMC becomes polynomial-
time solvable. Our algorithm relies on the observation that in this case, the num-
ber of blocking pairs in an optimal solution is at most
(∆M−1)|W?|+(∆W−1)|M?| by Theorem 4. Note that for instances of SMC-1,
Theorem 7 yields a polynomial-time algorithm already if both |W?| and ∆M are
constant.

Theorem 7. SMC can be solved in time O(|I|(∆M−1)|W?|+(∆W−1)|M?|+1).



Proof. By Theorem 4, there is a matching with at most bmax = (∆M−1)|W?|+
(∆W − 1)|M?| blocking pairs. Hence, if the number b of blocking pairs allowed
is at least bmax, then we can simply run the algorithm of Theorem 4. Otherwise,
we can use Observation 1, which gives us the required run time. ut

Importantly, restricting only three of the values |W?|, |M?|, ∆W , and ∆M
to be constant does not yield tractability for SMC, showing that Theorem 7 is
tight in this sense. Indeed, Theorem 5 implies immediately that restricting the
maximum length of the preference lists on only one side still results in a hard
problem: SMC remains W[1]-hard with parameter b + ∆M, even if ∆W = 3,
|W?| = 1, and |M?| = 0. On the other hand, Theorem 2 shows that the problem
remains hard even if ∆W = ∆M = 3 and |M?| = 0.

6 SMC with Preference Lists of Length at most Two

In this section we investigate the computational complexity of SMC where the
maximum length of preference lists is bounded by 2 on one side. This restriction
leads to important tractable special cases: we obtain both polynomial-time al-
gorithms and fixed-parameter tractability results for various parameterizations.

Let I be an instance of SMC with underlying graph G. Let Ms be a stable
matching in I, and let M?

0 and W?
0 denote the set of distinguished men and

women, respectively, unmatched by Ms. Furthermore, let M0 and W0 denote
the set of all men and women, respectively, unmatched by Ms. A path P in G
is called an augmenting path, if Ms4P is a matching, and either both endpoints
of P are in M?

0 ∪ W?
0 , or one endpoint of P is in M?

0 ∪ W?
0 , and its other

endpoint is not distinguished. This definition ensures that for an augmenting
path P , the set of distinguished men and women that are matched in Ms4P
strictly contains the set of distinguished men and women matched in Ms.

5 We
will call an augmenting path P masculine or feminine if it contains a man in
M?

0 or a woman in W?
0 , respectively; if P is both masculine and feminine, then

we call it neutral. If P is not neutral, then we say that it starts at the (unique)
person from M?

0 ∪W?
0 it contains, and ends at its other endpoint.

6.1 Covering constraints on one side

Here we deal with the SMC-1 problem where only women need to be covered.
We first give a polynomial-time algorithm for SMC-1 when each man finds at
most two women acceptable, and then show NP-hardness of SMC-1 for instances

5 We remark that our concept of an augmenting path is analogous, but not identical,
to the standard notion of an augmenting path in general matching theory. According
to the standard definition, an augmenting path for a given matching M is an M -
alternating path P ′ such that M4P ′ is a matching containing more edges than M .
In our case, however, instead of increasing the number of edges in the matching, we
aim for a path which can be used to increase the number of distinguished men and
women that are matched.



where each woman finds at most two men acceptable. We start by considering
the special case of SMC-1 where ∆M ≤ 2.

Theorem 8. There is a polynomial-time algorithm for the special case of
SMC-1 where each man finds at most two women acceptable.

High-level description. The main observation behind Theorem 8 is that
if ∆M ≤ 2, then any two augmenting paths starting from different women in
W?

0 are almost disjoint, namely they can only intersect at their endpoints. Thus,
we can modify the stable matching Ms by selecting augmenting paths starting
from each woman inW?

0 in an almost independent fashion: intuitively, we simply
need to take care not to choose paths sharing an endpoint—a task which can be
managed by finding a bipartite matching in an appropriately defined auxiliary
graph. To ensure that the number of blocking pairs in the output is minimized,
we will assign costs to the augmenting paths. Roughly speaking, the cost of an
augmenting path P determines the number of blocking pairs introduced when
modifying Ms along P (though certain special edges need not be counted); hence,
our problem reduces to finding a bipartite matching with minimum weight in
the auxiliary graph.

To present the algorithm of Theorem 8 in detail, we start with the following
properties of augmenting paths which are easy to prove using that ∆M ≤ 2:

Proposition 2. Suppose ∆M ≤ 2. Let P1 and P2 be augmenting paths starting
at women w1 and w2, respectively.

(a) If w1 6= w2, then P1 and P2 are either vertex-disjoint, or they both end at
some m ∈M0, with V (P1) ∩ V (P2) = {m}.

(b) If there is an edge {m,w} of G (with m ∈ M and w ∈ W) connecting P1

and P2, then m ∈M0 and P1 or P2 must end at m.
(c) If w1 = w2 and P is the maximal common subpath of P1 and P2 starting

at w1, then either V (P1) ∩ V (P2) = V (P ), or P1 and P2 both end at some
m ∈M0 and V (P1) ∩ V (P2) = V (P ) ∪ {m}.

With a set P of edges (typically a set of augmenting paths) where Ms4P is a
matching, we associate a cost, which is the number of blocking pairs that Ms4P
admits. A pair {m,w} for some m ∈ M and w ∈ W is special, if m ∈ M0 and
w is the second (less preferred) woman in L(m). As it turns out, such edges can
be ignored during certain steps of the algorithm; thus, we define the special cost
of P as the number of non-special blocking pairs in Ms4P .

Lemma 1. For vertex-disjoint augmenting paths P1 and P2 with cost c1 and c2,
respectively, the cost of P1∪P2 is at most c1+c2. Further, if the cost of P1∪P2 is
less than c1 + c2, then the following holds for {i1, i2} = {1, 2}: there is a special
edge {m,w} with Pi1 ending at m and w appearing on Pi2 ; moreover, {m,w} is
blocking in Ms4Pi2 , but not in Ms4(P1 ∪ P2).

Proof. First observe that if some edge {m,w} has a common vertex with only
one of the paths P1 and P2, say P1, then {m,w} is blocking in Ms4P1 if and
only if it is blocking in Ms4(P1 ∪ P2).



Consider now the case when {m,w} connects P1 and P2. By Proposition 2,
this implies that one of the paths, say P1, ends at m ∈ M0 (and w lies on P2).
Clearly, {m,w} is not blocking in Ms4P1, by the stability of Ms. If, on the one
hand, w is the first choice of m, then {m,w} is blocking in Ms4P2 exactly if
it is blocking in Ms4(P1 ∪ P2). If, on the other hand, {m,w} is special, then
it cannot be blocking in Ms4(P1 ∪ P2), but it might be blocking in Ms4P2.
Putting all these facts together, the lemma follows immediately. ut

We are ready to provide the algorithm, in a sequence of four steps.

Step 1: Computing all augmenting paths. By Proposition 2, if we deleteM0

from the union of all augmenting paths starting at some w ∈ W?
0 , then we obtain

a tree. Furthermore, these trees are mutually vertex-disjoint for different starting
vertices of W?

0 . This allows us to compute all augmenting paths in linear time,
e.g., by an appropriately modified version of a depth-first search algorithm (so
that only augmenting paths are considered). During this process, we can also
compute the special cost of each augmenting path in a straightforward way.

Step 2: Constructing an auxiliary graph. Using the results of the compu-
tation of Step 1, we construct an edge-weighted single bipartite graph Gpath =
(U, V ;E) as follows. To define the vertices of Gpath we set U := W?

0 and
V := M0 ∪ {w′ | w ∈ W?

0}, so for each woman w ∈ W?
0 we create a cor-

responding new vertex w′. The edge set E contains an edge {w,w′} for each
w ∈ U , as well as an edge {w,m} whenever w ∈ U , m ∈ M0 and there ex-
ists an augmenting path with endpoints w and m. We define the weight of an
edge {w,w′} as the minimum special cost cmin

w of any augmenting path starting
at w and not ending in M0, and we define the weight of an edge {w,m} with
w ∈ U and m ∈ M0 as the minimum special cost of any augmenting path with
endpoints w and m.

Step 3: Computing a minimum weight matching. We compute a match-
ing MP in Gpath covering U and having minimum weight; this can be done in
polynomial time by, e.g., the Hungarian method [34]. Observe that the match-
ing MP corresponds to a set of augmenting paths P = {Pw | w ∈ W?

0} that are
mutually vertex-disjoint by Proposition 2. Recall that the special cost of Pw is
the weight of the edge in MP incident to w.

Step 4: Eliminating blocking special edges. In this step, we modify P it-
eratively. We start by setting Pact = P. At each iteration we modify Pact as
follows. We check whether there exists a special edge {m∗, w∗} that is blocking
in Ms4Pact. If yes, then notice that m∗ is not matched in Ms4Pact, because
{m∗, w∗} is special and thus m∗ ∈M0. Let P be the path of Pact containing w∗.
We modify Pact by truncating P to its subpath between its starting vertex
and w∗, and appending to it the edge {m∗, w∗}. This way, {m∗, w∗} becomes
an edge of the matching Ms4Pact. The iteration stops when there is no special
edge blocking Ms4Pact. Note that once a special edge ceases to be blocking in
Ms4Pact, it cannot become blocking again during this process, so the algorithm



performs at most |M0| iterations. For each w ∈ W?
0 , let P ∗w denote the augment-

ing path in Pact covering w at the end of Step 4; we define P∗ = {P ∗w | w ∈ W?
0}

and output the matching Ms4P∗.

This completes the description of the algorithm; we now provide its analysis.

Lemma 2. Msol := Ms4P∗ is a feasible matching for I, and the number of
blocking pairs for Msol is at most the weight of MP .

Proof. Consider the situation when the iteration in Step 4 deals with a spe-
cial edge {m∗, w∗} blocking in Pact. Notice that since w∗ is the second woman
in L(m∗) (by the definition of a special edge), and since {w∗,m∗} is blocking
in Ms4Pact, we know that m∗ is unmatched in Ms4Pact, that is, m∗ does not
lie on any of the augmenting paths in Pact. From this follows that the augment-
ing paths in Pact, and hence in P∗, remain mutually vertex-disjoint. Therefore,
Msol is indeed a matching. As it covers W?

0 , and no augmenting path ends at a
woman in W? \W?

0 , matching Msol is feasible.
Clearly, Step 4 ensures that there are no blocking special edges in Msol.

Note that when the algorithm modifies Pw for some w ∈ W?
0 , at most one new

blocking pair may arise with respect to Ms4Pact, and from the stability of M
and Proposition 2 it follows that such an edge must be a special edge (incident to
the man at which Pw ends before its modification). This means that Step 4 gets
rid of all blocking special edges without introducing any non-special blocking
edges. Hence, we obtain that the cost of P ∗w is at most the special cost of Pw,
for each w ∈ W?

0 . By Lemma 1, the number of blocking pairs that Msol admits
is at most the sum of the costs of all augmenting paths in P∗; this finishes the
proof. ut

To show that our algorithm is correct and Msol is optimal, by Lemma 2 it
suffices to prove that the weight of MP is at most the number of blocking pairs
in Mopt, where Mopt denotes an optimal solution in I. To this end, we are going
to define a matching covering W?

0 in Gpath whose weight is at most the number
of blocking pairs in Mopt.

Clearly, Ms4Mopt contains an augmenting path Qw covering w for each
w ∈ W?

0 . If some Qw ends at a man m ∈ M0, then clearly no other path
in Ms4Mopt can end at m. So let us take the matching MQ in Gpath that
includes all pairs {m,w} where Qw ends at m ∈ M0 for some w ∈ W?

0 . Also,
we put {w,w′} into MQ if Qw does not end at a man of M0. Note that MQ is
indeed a matching.

It remains to show that the weight of MQ is at most the number of blocking
pairs in Mopt. By definition, the weight of MQ is at most the sum of the special
costs of the paths Qw for every w ∈ W?

0 . By Lemma 1, any non-special blocking
pair in Ms4Qw remains a blocking pair in Ms4(

⋃
w∈W?

0
Qw), and hence in Mopt

as well. Hence, there is a matching in Gpath with weight at most the number of
blocking pairs in an optimal solution, implying the correctness of our algorithm.
As the algorithm runs in polynomial time, Theorem 8 follows.



By contrast to Theorem 8, if men may have preference lists of length 3, then
SMC-1 (and hence SMC) is NP-hard even if each woman finds at most two men
acceptable.

Theorem 9. SMC-1 is NP-hard even if ∆W = 2 and ∆M = 3.

Proof. We give a reduction from the NP-hard Vertex Cover problem, asking
whether the input graph G has a vertex cover of size at most k. We order the
vertices of G arbitrarily, and denote the h-th neighbor of some vertex x by n(x, h)
for any h ∈ {1, . . . , dG(x)}.

Let us construct an instance I of SMC as follows; see Figure 4 for an il-
lustration. For each vertex x ∈ V (G) we construct a node gadget Gx which

Gx: sx

1

2

dx
1

2

3
c1x

c2x

b0x

1
2

a0x

12

b1x1

2

3
a1x

12

b2x

ax→y

1 2

bx→y

1
2

s{x,y}
1

2

G{x,y}:

by→x

1
2 ay→x

1

2

a
dG(x)−1
x

12

b
dG(x)
x a

dG(x)
x

. . .

Fig. 4: Illustration of a node gadget Gx and an edge gadget G{x,y} constructed
in the proof of Theorem 9. Double edges denote edges of a stable matching for I,
and dashed edges are those leaving some gadget. The example depicted assumes
y = n(x, 2).

contains women sx, a0x, . . . , a
dG(x)
x , c1x and c2x, and men b0x, . . . , b

dG(x)
x , and dx.

For each edge {x, y} ∈ E(G) we also construct an edge gadget G{x,y} involving
women s{x,y}, ax→y and ay→x, and men bx→y and by→x. Furthermore, there
are two edges in the underlying graph connecting G{x,y} to Gx and Gy, namely

{ax→y, bhx} and {ay→x, b`y} where y = n(x, h) and x = n(y, `).



The preference lists of I are given in Table 4. Let the set of women with
covering constraints be

W? =
⋃

x∈V (G)

{sx, a0x, . . . , adG(x)−1
x } ∪

⋃
{x,y}∈E(G)

{s{x,y}},

and set the number of blocking pairs allowed to be |V (G)|+ k. We are going to

L(sx) = (b0x, dx),

L(b0x) = (a0x, sx),

L(bhx) = (ahx, ax→y, a
h−1
x ) where 1 ≤ h ≤ dG(x) and y = n(x, h),

L(ahx) = (bh+1
x , bhx) where 0 ≤ h < dG(x),

L(a
dG(x)
x ) = (b

dG(x)
x ),

L(chx) = (dx), where h ∈ {1, 2},
L(dx) = (c1x, c

2
x, sx),

L(s{x,y}) = (bx→y, by→x) where x precedes y,

L(bx→y) = (ax→y, s{x,y}),

L(ax→y) = (bx→y, b
h
x) where y = n(x, h).

Table 4: Preference lists of women and men in the proof of Theorem 9. When
not stated otherwise, indices take all possible values.

prove that I admits a feasible matching with at most |V (G)|+ k blocking pairs
if and only if there is a vertex cover of size k in the graph G.

”⇒”: Let M be a feasible matching with at most |V (G)|+ k blocking pairs.
We say that the cost of some gadget Gx (or G{x,y}) is the number of edges
blocking M which are incident to some man of Gx (or G{x,y}, respectively.) We
will prove that the set S of vertices x for which Gx has cost at least 2 is a vertex
cover of G.

First, let us consider some x for which M(sx) = dx. In this case, both c1x
and c2x form a blocking pair for M with dx, implying x ∈ S. Second, let us
consider some x with M(sx) = b0x. Since each ahx with 0 ≤ h < dG(x) must be
matched by M (because it is contained in W?), we obtain M(ahx) = bh+1

x for

each such h. Hence, a
dG(x)
x and b

dG(x)
x form a blocking pair for M . Moreover,

if the woman ax→y is unmatched in M for some y, then {ax→y, bhx} is also a
blocking pair in M (where y = n(x, h)), and implies a cost of at least 2 for Gx.
Therefore, we can observe that if x /∈ S, then ax→y must be matched by M to
bx→y for each neighbor y of x in G.

However, for any {x, y} ∈ E(G), M must match s{x,y} either to bx→y or
to by→x (because s{x,y} is contained in W?), which means that x ∈ S or y ∈ S.
This proves that S is indeed a vertex cover for G. Moreover, the number of



vertices in S can be at most k, since each Gx with x ∈ S has cost at least 2,
each Gx with x /∈ S has cost at least 1, and the total cost of all gadgets cannot
exceed our budget |V (G)|+ k.

”⇐”: Given a vertex cover S of size at most k for G, we define a matching M
with the desired properties. Namely, for each x ∈ S we set M(sx) = dx and
M(ahx) = bhx for each h ∈ {0, . . . , dG(x)}. In this case, c1x, c

2
x are unmatched by M ,

both forming a blocking pair with dx. By contrast, all of the men b0x, . . . , b
dG(x)
x

get their first choices.
Next, for each x ∈ V (G) \ S we set M(sx) = b0x, M(c1x) = dx, and M(ahx) =

bh+1
x for each h ∈ {0, . . . , dG(x)− 1}. Note that a

dG(x)
x is unmatched by M , and

thus forms a blocking pair with b
dG(x)
x . Observe also that dx is not contained in

any blocking pair.
Finally, for some {x, y} ∈ E(G), let us assume y ∈ S (since S is a vertex

cover, it contains x or y). We set M(s{x,y}) = by→x and M(ax→y) = bx→y.
Note that ax→y gets her first choice, so it cannot be involved in a blocking pair.
Although ay→x is unmatched by M , we know that it cannot form a blocking
pair with b`y where x = n(y, `), because y ∈ S and hence b`y is assigned her first
choice by M . Thus, no man or woman of some edge gadget participates in a
blocking pair, and therefore we obtain that the total number of blocking pairs
for M is exactly |V (G)|+ k.

Since M is feasible, the theorem follows. ut

6.2 Covering constraints on both sides

Let us now investigate the complexity of SMC with covering constraints both for
men and women. If we restrict the maximum length of preference lists on both
sides to be at most 2, SMC becomes linear-time solvable. To see this, observe
that by max(∆W , ∆M) ≤ 2, the underlying graph G must be a collection of
paths and cycles. Thus, we can process the connected components of G one by
one. Applying dynamic programming on each component K, we can determine
the minimum number bK of blocking pairs for any matching that is feasible for
K, together with a matching MK for K that admits bK blocking pairs. If K is
a path, then this can be done in a straightforward manner, traversing the edges
of K one by one in linear time. If K is a cycle, then we can pick any edge e of
K, guess whether it is contained in MK , or blocks MK , or neither of the two; we
can then process the remainder of K (which is a path) taking into account our
guess for e. To compute the minimum number of blocking pairs that a feasible
matching admits in our instance, we can simply sum up the values bK over each
connected component K of G. Hence, we arrive at the following.

Observation 2. Instances of SMC with max(∆W , ∆M) ≤ 2 are linear-time
solvable.

Recall that the case where ∆W = 2 and ∆M = 3 is NP-hard by Theorem 9,
even if there are no distinguished men to be covered. However, switching the



roles of men and women in Theorem 8, we obtain that if there are no women to
be covered, then ∆W ≤ 2 guarantees polynomial-time solvability for SMC. This
raises the natural question whether SMC with ∆W ≤ 2 can be solved efficiently
if the number of distinguished women is bounded. Next we show that this is
unlikely, as the problem turns out to be NP-hard for |W?| = 1.

Theorem 10. SMC is NP-hard, even if ∆W = 2, |W?| = 1 and there is only
one man m with |L(m)| > 3.

Proof. We present a reduction from the following special case of Exact-3-
Cover. We are given a set U = {u1, . . . , un}, a family S of subsets S1, . . . , Sm
of U , each having size 3, such that each element of U occurs in at most three
sets of S. The task is to decide whether there exists a collection of n/3 sets in S
whose union covers U ; such a collection of subsets is called an exact cover for
U . This problem is NP-complete [21, GT2]. We construct an equivalent instance
I of SMC as follows.

The set W of women in I contains the women sj , p
1
j , p

2
j , p

3
j , and qj for each

j ∈ {1, . . . ,m}, women x and y, as well as two women ai,j , bi,j for each element
ui contained in Sj for each j ∈ {1, . . . ,m}. The men defined in I are p̂1j , p̂

2
j , p̂

3
j ,

q̂j , and tj for each j ∈ {1, . . . ,m}, a man ci for each ui ∈ U , a man b̂i,j for each
element ui contained in Sj for each j ∈ {1, . . . ,m}, plus one additional man ŷ.
(The pairs {w, ŵ} form a stable matching in I.) The only distinguished woman
in I is x, and the set of distinguished men isM? = {ci | i = 1, . . . , n}∪ {tj | j =
1, . . . ,m}. The preferences of each person are as shown in Table 5. Note that
since each subset Sj contains three elements, and each element ui is contained in
at most three subsets from S, we get that all men except for ŷ have a preference
list of length at most 3, as promised. To finish the construction, we set the
number of allowed blocking pairs to be b = 2m+ 2n/3 + 1.

We claim that I admits a feasible matching with at most b blocking pairs if
and only if (U,S) is a “yes”-instance of Exact-3-Cover.

“⇒”: Suppose that M is a feasible matching for I with at most b blocking
pairs. Clearly, as x is distinguished, M must contain the edge {x, ŷ}. Thus, {y, ŷ}
is blocking in M . Second, since tj is distinguished for each j ∈ {1, . . . ,m}, we
get that M matches tj either to qj or to p1j , which in turn implies that either

{qj , q̂j} or {p1j , p̂1j} blocks M , leading to m additional blocking pairs for M .
Third, consider now any man ci, i ∈ {1, . . . , n}: as ci is distinguished, we know

M(ci) = bi,j for some j such that Sj contains ui. In this case, {bi,j , b̂i,j} is also a
blocking pair for M , yielding n blocking pairs of such form. Thus, if bU denotes
the number of blocking pairs among the edges {bi,j , b̂i,j} for indices i and j with
ui ∈ Sj , then we get bU ≥ n. This adds up to m+ bU + 1 ≥ m+ n+ 1 blocking
pairs so far.

Let us define the set Ej of those edges that are incident to sj , p̂
3
j , p̂

2
j , or p̂1j ,

but not to p1j for some j ∈ {1, . . . ,m} ; note that these sets are pairwise disjoint,
and none of them contains any of the (possibly) blocking edges mentioned in
the previous paragraph. Let k be the number of indices j for which Ej contains
no blocking pairs for M ; we call such indices (and the subsets Sj corresponding



L(x) = (ŷ),

L(y) = (ŷ),

L(sj) = (p̂3j , ŷ),

L(p1j ) = (p̂1j , tj),

L(phj ) = (p̂h−1
j , p̂hj ) for h ∈ {2, 3},

L(qj) = (q̂j , tj),

L(ai,j) = (b̂i,j , p̂
h
j ) for the unique h ∈ {1, 2, 3} that satisfies i = ind(j, h),

L(bi,j) = (b̂i,j , ci),

L(ŷ) = (y, s1, s2, . . . , sm, x),

L(tj) = (p1j , qj),

L(p̂hj ) = (phj , ai,j , p
h+1
j ) for h ∈ {1, 2} and i = ind(j, h),

L(p̂3j ) = (p3j , ai,j , sj) where i = ind(j, 3),

L(q̂j) = (qj),

L(b̂i,j) = (bi,j , ai,j),

L(ci) = ([Bi]) where [Bi] is some fixed ordering of Bi = {bi,j | ui ∈ Sj}.

Table 5: Preference lists of women and men in the proof of Theorem 10. We
denote by ind(j, h) the index i for which ui is the h-th element in Sj . When not
stated otherwise, indices take all possible values.

to them) selected. The m− k non-selected indices clearly correspond to at least
m− k blocking pairs for M (each contained in Ej for some j).

Suppose now that j is selected. Then, since {sj , ŷ} is not blocking, we get
M(sj) = p̂3j , since ŷ prefers sj to its partner x. This implies that M(p3j ) = p̂2j ,

as otherwise {p3j , p̂3j} would be blocking in M . Similarly, from this we obtain

M(p2j ) = p̂1j . Moreover, for each h ∈ {1, 2, 3}, to ensure that {p̂hj , ai,j} does not

block M where ui is the h-th element of Sj , we must have M(ai,j) = b̂i,j . Hence,

{bi,j , b̂i,j} must be blocking in M . Since this holds for each h ∈ {1, 2, 3} and
each selected j, we get bU ≥ 3k.

Summing up the blocking pairs identified so far, we know that M admits
at least 1 + m + (m − k) + max(n, 3k) blocking pairs. Using that this must be
upper-bounded by b = 1 + m + n + (m − n/3), it is easy to show that only
k = n/3 is possible. This yields that there exist exactly n/3 selected indices, and

for all such indices j all the edges {bi,j , b̂i,j} for which ui ∈ Sj are blocking with
respect to M . Moreover, we also must have bU = n, as otherwise the number of
blocking pairs would exceed b.

However, observe that for each i ∈ {1, . . . , n}, there must exist some j with

ui ∈ Sj for which the pair {bi,j , b̂i,j} is blocking in M (because ci is distin-
guished), implying that for each ui ∈ U there must exist some selected Sj that



contains ui. Since there are exactly n/3 selected sets in S, we get that they form
an exact covering of U .

“⇐”: Suppose that (U,S) is a “yes”-instance of Exact-3-Cover. Let J be
the set of indices describing a solution, meaning that the subsets Sj ∈ S with
j ∈ J form an exact covering of U ; clearly, |J | = n/3. We define σ(i) as the
unique index j in J for which ui ∈ Sj . We define a feasible matching M for I
with exactly b blocking pairs as follows (indices take all possible values, if not
stated otherwise).

M(ŷ) = x,
M(tj) = p1j if j ∈ J ,
M(tj) = qj if j /∈ J ,

M(p̂hj ) = ph+1
j if j ∈ J , h ∈ {1, 2},

M(p̂3j ) = sj if j ∈ J ,
M(ci) = bi,σ(i),

M(b̂i,σ(i)) = ai,σ(i),
M(ŵ) = w if w ∈ W and neither M(w) nor M(ŵ) is defined yet.

It is easy to check that M indeed is feasible, and the blocking pairs it admits
are exactly the pairs {y, ŷ}, {bi,σ(i), b̂i,σ(i)} for each i ∈ {1, . . . , n}, {p1j , p̂1j} for
each j ∈ J , {qj , q̂j} for each j /∈ J , and {sj , ŷ} for each j /∈ J . This proves the
lemma. ut

Contrasting Theorem 10, we establish fixed-parameter tractability of the case
∆W ≤ 2 with three different parameterizations. Considering our five parameters,
the relevant cases (whose tractability or intractability does not follow from our
results obtained so far) are as follows, assuming ∆W ≤ 2 throughout. Since
letting the number b of blocking pairs and the number |W?| of distinguished
women to be unbounded (while assuming ∆W ≤ 2) results in NP-hardness by
Theorem 9, in order to obtain fixed-parameter tractability, we need to take either
b or |W?| as a parameter. However, taking only |W?| as a parameter is not likely
to result in tractability, as the case |W?| = 1 is still NP-hard by Theorem 10.
Thus we need to take either |M?| or ∆M as an additional parameter. Altogether,
this results in the following parameterizations of the SMC problem, each case
subject to the assumption ∆W ≤ 2:

– taking b as the parameter,
– taking |W?|+ |M?| as the parameter, and
– taking |W?|+∆M as the parameter.

We show fixed-parameter tractability for each three of these parameteriza-
tions. The first two parameterizations can be dealt with an algorithm whose
properties are stated in Theorem 11 (see also Corollary 3), while the third pa-
rameterization will be considered by Theorem 12.

Theorem 11. There is a fixed-parameter algorithm for the special case of SMC
where each woman finds at most two men acceptable (i.e., ∆W ≤ 2), parameter-
ized by the number |W?

0 |+ |M?
0| of distinguished men and women left unmatched

by some stable matching.



Let Mopt denote an optimal solution for our instance I such that Ms4Mopt

contains the minimum number of edges; recall that Ms is a fixed stable matching
for I. Without loss of generality, we can further assume that there does not exist
another optimal solution M ′ such that (i) M ′ has the same number of common
edges with Ms as Mopt, and (ii) for each man m, either M ′(m) = Mopt(m) or m
prefers M ′(m) to Mopt(m).6 Indeed, as long as such a “superior” matching M ′

exists, we can simply pick that instead of Mopt, until this is no longer possible.
This way, we eventually end up with an optimal matching that satisfies our
requirement.

We denote by b the number of blocking pairs in Mopt.
High-level description. Let us remark first that simply guessing the opti-

mal partners for each woman in W?
0 and then using the polynomial-time algo-

rithm presented in Section 6.1 (after exchanging the roles of men and women)
does not work, since that algorithm heavily relies on the assumption that we start
with a stable matching. In fact, the main difficulty to overcome is that feminine
and masculine augmenting paths may “interact” in the sense that certain block-
ing pairs introduced by a feminine augmenting path can be “eliminated” (i.e.,
made non-blocking again) by an appropriately chosen masculine path. There-
fore, we apply the following strategy. In Phase I, we find all feminine paths
(as well as all cycles) in Ms4Mopt, and in Phase II we proceed with choosing
the masculine paths carefully. Note that in Phase I it does not suffice to find a
cheapest set of feminine augmenting paths, since we may not be able to elimi-
nate as many blocking pairs afterwards as it is possible after an optimal choice
of feminine paths. Instead, we need to find the exact feminine augmenting paths
(and cycles) present in Ms4Mopt; this can be accomplished by guessing certain
properties of Mopt.

In Phase II, the main obstacle is that we do not know which blocking edges
should be eliminated in an optimal solution, nor can we guess these edges ef-
ficiently. We deal with this problem by guessing the sets of those men in M?

0

whose augmenting paths in Ms4Mopt contribute to the elimination of a block-
ing pair; this information allows us to find these masculine paths. Finally, we
apply the algorithm of Theorem 8.

For the detailed description of our algorithm, we need a couple of simple
observations and some additional notation. We begin with the following impli-
cations of the fact that each woman finds at most two men acceptable.

Proposition 3. Suppose ∆W ≤ 2. Let P1 and P2 be two augmenting paths.

(a) If P1 and P2 start at some w ∈ W?
0 through the same edge, then one of them

is a subpath of the other.
(b) If P1 and P2 start at different women w1 and w2, respectively, and P1 and

P2 are not disjoint, then the set of their common vertices induces a suffix of
either P1 or P2 (or both); their first common vertex is a man.

6 Note that there may be optimal solutions that are incomparable to Mopt in the
sense that they are preferred by some of the men while not preferred by some other
men, but the existence of such a matching is of no importance to us: we can pick
any optimal matching that fulfils our requirement above.



(c) If P1 and P2 are disjoint and e is an edge incident to both, then one of the
paths starts or ends at a women w, and e connects w with a man on the
other path.

Observations (a) and (b) of Proposition 3 immediately suggest that feminine
paths are easy to find, since once we decide which edge to start with, all pos-
sible augmenting paths lead in the same direction; the only difficulty arises in
deciding when to stop. Observation (c) describes the limited ways in which two
augmenting path can interact; we next look closer at such interactions.

We say that an edge f = {m,w} of G (with m ∈M and w ∈ W) is dependent
if it connects two different connected components K1 and K2 of Ms4Mopt and,
in addition, it holds that Ms4K1 admits more blocking pairs than Ms4(K1 ∪
K2). We will say that f , and with a slight abuse of the notation, also K1 relies
on K2. We say that

– f has type A, if w is the endpoint of K2 (which is a path), f connects w
with a man m on K1 that prefers Ms(m) to w, and w to Mopt(m), and w is
unmatched by Ms and prefers Mopt(w) to m;

– f has type B, if w is the endpoint of K1 (which is a path), unmatched by
Mopt, and f connects w with a man m on K2 that prefers Mopt(m) to w,
and w to Ms(m).

See Figure 5 for an illustration of the above definitions.

type A:

K1 :

K2 :

. . .
m

w

2

1
. . .

. . .

f

type B:

K1 :

K2 :

. . . w
1

2

m
. . . . . .

f

Fig. 5: Illustration of a dependent edge f , running between two connected com-
ponents K1 and K2 of Ms4Mopt where K1 relies on K2. Double lines here
denote edges of Ms, single lines denote edges of Mopt, and f is drawn with a
dashed line.

Lemma 3. Let K be the set of connected components of Ms4Mopt, and let
H ⊂ K and K ∈ K \H. Then any edge f that is blocking in Ms4H but is not
blocking in Ms4(H ∪ K) connects K with a connected component of H, is a
dependent edge relying on K, and has either type A or type B.

Proof. Let f be an edge that blocks Ms4H but does not block Ms4(H ∪K).
Since Ms is stable, f must have an endpoint in a connected component of H,
because it blocks Ms4H. However, as it ceases to be blocking in Ms4(H ∪K),



it also must have an endpoint in K. Let w and m be the woman and the man
connected by f , respectively. We distinguish now between two cases.

First, let us assume that w is contained in K. Since m is not contained in K,
and w can only be connected to two men, it follows that the degree of w in K
is at most (and hence exactly) 1. Since each connected component of Ms4Mopt

is either a cycle or a path, this implies that K is a path with w being one of its
endpoints.

Since f blocks Ms4H and the partner of m under Ms4H is Mopt(m), we
know that m prefers w to Mopt(m). But as Ms is stable, m must prefer Ms(m)
to w.

Notice now that w is unmatched either inMs or inMopt. However, as f blocks
Ms4H (where w is matched as in Ms) but does not block
Ms4(H ∪ K) (where w is matched as in Mopt), it must be the case that w
is matched by Mopt but is unmatched in Ms. Further, as f is not blocking
in Ms4(H ∪ K) even though m prefers w to Mopt(m), we get that w prefers
Mopt(w) to m. This proves that f has type A.

Second, let us assume that w is contained in a connected component K ′ of
H. As in the previous case, we quickly get that K ′ must be a path, with w being
an endpoint of K ′. Since f blocks Ms4H, we know that w is matched by Ms but
is unmatched by Mopt. The stability of Ms implies also that w prefers Ms(w)
to m.

Regardingm, the fact that f blocksMs4H implies thatm prefers w toMs(m).
However, since f ceases to be blocking in Ms4(H ∪K), we get that m prefers
Mopt(m) to w. This proves that f has type B. ut

We are now ready to present our algorithm, which is a branching algorithm:
throughout its course, we make several “guesses” for which all possibilities have
to be explored. When certain guesses turn out to be trivially wrong, such guesses
are discarded, and we might not explicitly mention this in the algorithm. (In Step
1, we describe such issues in detail for illustration, but later we omit them.)
Phases I and II consist of Steps 1-5 and Steps 6-8, respectively.

Step 1: Guessing the first edges of feminine augmenting paths. First,
for each w ∈ W?

0 with |L(w)| = 2, we guess the edge of Mopt incident to w. This
results in at most 2|W

?
0 | possibilities, all of which must be explored. Naturally,

we discard those guesses where the edges {w,Mopt(w)}, w ∈ W?
0 , do not form a

matching. From now on we assume that we know Mopt(w) for each w ∈ W?
0 .

Additionally, we delete those edges {m,w} for which w ∈ W?
0 and w prefers

Mopt(w) to m. Such edges are neither needed in Mopt, nor can they block any
matching that contains all the edges {w,Mopt(w)}, w ∈ W?

0 , guessed in this
step.

Before proceeding to Step 2, we state an important lemma about augmenting
paths.

Lemma 4. Each connected component of Ms4Mopt that is not a cycle is an
augmenting path. Further, assume that Step 1 has already been performed, and K1



and K2 are connected components of Ms4Mopt such that K1 relies on K2 via
a dependent edge f . Then

(a) if f has type A, then K2 is a masculine path and not a feminine path;
(b) if f has type B, then K1 is a feminine path and not a masculine path, and

K2 is either a cycle or a feminine path.

Proof. We begin by proving the first sentence of the lemma. Let us first suppose
that Q is a connected component of Ms4Mopt that is not a cycle (thus is a
path) but is not an augmenting path. The feasibility of Mopt implies that if Q
has a distinguished person p as its endpoint, then p must be unmatched by Ms.
This means that Q can only be non-augmenting if neither of its endpoints is
distinguished. This implies that MQ := Mopt4Q is a feasible matching. Recall
that b is the number of blocking pairs Mopt admits. If MQ admits at most b
blocking pairs as well, then this contradicts the choice of Mopt, because there
are strictly less edges in Ms4MQ than in Ms4Mopt.

Hence, Mopt4Q admits at least b + 1 blocking pairs. Since Q is a maximal
path in Ms4Mopt and Ms is stable, Proposition 1 implies that there must be an
edge along Q that blocks Mopt. Obviously, there is no edge on Q that blocks Ms,
sinceMs is stable. Hence, modifyingMopt by switching the edges ofMs andMopt

along Q decreases the number of blocking edges among the edges of Q. However,
the same operation increases the total number of blocking pairs (from b to at
least b + 1), thus we get that there must exist at least two edges that become
blocking only as a result of this switch along Q. In other words, there exist at
least two edges that are blocking in Mopt4Q but are not blocking in Mopt. By
Lemma 3 we obtain that these edges must be dependent edges relying on Q.7

By the definition of a type A edge, at most one type A edge can rely on Q (as
only one endpoint of Q can be a woman unmatched by Ms, and this woman may
be incident to at most one edge outside Q), so we get that at least one of these
dependent edges relying on Q must have type B.

Let us call the man endpoint of a type B dependent edge a joiner ; by the
previous paragraph, Q contains at least one joiner. Our aim is to fix an “outer-
most” joiner m on Q. However, for technical reasons we also have to take into
account a special case where some man m` lying on Q, called the looper for Q,
fulfils the following properties: (i) one endpoint of Q is a woman w` that is
adjacent to m` in G but prefers Ms(w`) to m`, and (ii) m` prefers w` to Ms(m`)
but prefers Mopt(m`) to w`.

8 Now, we choose a man m that is either a joiner or
the looper for Q so that the following holds: if m splits Q into two subpaths Q1

and Q2 with Q1 containing Mopt(m), then V (Q1) \{m} contains neither joiners
nor the looper for Q.

Case for a joiner. First, let us assume that m is a joiner. In this case, there
might be several women who form a dependent edge of type B with m, so let

7 Formally, we need to apply Lemma 3 with setting H to contain all connected com-
ponent of Ms4Mopt except for Q, and setting K as Q.

8 Note that there cannot exist two loopers for Q, because only one woman endpoint
of Q can be matched by Ms and such a woman can only be connected to at most
one man on Q other than its partner in Ms.



w denote the one that is most preferred by m. Let f be the edge {m,w}, and
let P be the path of Ms4Mopt that has w as its endpoint. We illustrate these
concepts in Figure 6.

Q :

P :

. . .
y

1 2 m
. . .

. . .
w

Q1
Q2

f

Fig. 6: The joiner m splits Q into subpaths Q1 and Q2. Here and in later figures,
double lines denote edges of Ms. Single lines denote edges of Mopt, and dashed
lines are for dependent edges.

We claim that Mf = Mopt4(Q1 ∪ {f}) = (Mopt4Q1) ∪ {f} is an optimal
solution. Observe that Ms4Mf can be obtained from Ms4Mopt by deleting Q
and substituting P by the path P +f+Q2 where the plus sign means concatena-
tion. Let x denote the endpoint of Q1 that is not m. First, Mf is clearly feasible,
since x is not distinguished (by our assumption that Q is non-augmenting). Next,
suppose that some edge e is blocking in Mf but is not blocking in Mopt. It is
easy to see that by our choice of w, e cannot be incident to w or m. As only
vertices in Q1 ∪ {f} are matched differently in Mf as in Mopt, we obtain that
one endpoint of e must lie on Q1. Using the stability of Ms, we also get that the
other endpoint of e must lie either on a connected component of Ms4Mopt other
than Q or on Q2. In the former case, Lemma 3 implies9 that e is a dependent
edge. By our choice of m, e cannot be of type B, hence by Lemma 3, e must
have type A, and thus it is incident to x which must be a woman not covered
by Ms. In the latter case, supposing that the man endpoint m′ of e lies on Q1

we quickly get that it must be the looper for Q. To see this, first note that the
only woman that m′ can be adjacent to on Q2 must be the common endpoint
of Q2 and Q (by ∆W ≤ 2); let w′ denote this woman. Second, since e blocks
Mf but it does not block Mopt, we know that m′ prefers w′ to Ms(m

′), but
prefers Mopt(m′) to w′. Third, since m′ prefers w′ to Ms(m

′), the stability of
Ms implies that w′ is matched by Ms and w′ prefers Ms(w

′) to m′. Hence, m′

is indeed the looper for Q, contradicting our choice of m. Thus, we know that it
must be the woman endpoint of e that lies on Q1. Since the two endpoints of Q1

are m ∈ M and x, by ∆W ≤ 2 we obtain that the woman endpoint of e lying
on Q1 can only be x, which therefore must be a woman not covered by Ms. In
either case, we can conclude that there can only exist at most one such edge e

9 Again, we need to apply Lemma 3 with settingH to contain all connected component
of Ms4Mopt except for Q, and setting K as Q.



(because x has degree at most 2 in G). So the number of edges that are blocking
in Mf but not blocking in Mopt is at most one.

Furthermore, since f is a dependent edge of type B, by definition we know
that m prefers y = Mopt(m) to Ms(m), and hence, y must prefer Ms(y) to m (as
otherwise {m, y} would be blocking in Ms, which is not possible). Note that, in
particular, Ms(y) exists and Q1 contains at least two edges. By Proposition 1, Q1

must contain at least one edge that blocks Mopt, and this edge is not blocking in
Mf , simply because any edge of Q1 that blocks Mopt but be an edge contained
in Ms and hence in Mf . Thus, the number of edges blocking Mf cannot be
more than b. Hence, Mf is an optimal solution such that there are less edges in
Ms4Mf than in Ms4Mopt, a contradiction. This proves the first statement of
the lemma for the case of m being a joiner.

Q : . . . 1 2 m
. . . w`

1

2

Q1
Q2

f

Fig. 7: The looper m of Q splits Q into subpaths Q1 and Q2.

Case for a looper. Let us now assume that m = m` is the looper for Q. In
this case let f be the edge connecting m` to the woman endpoint w` of Q that
is matched by Ms; it is easy to see that w` is the endpoint of Q2 as well. See
Fig. 7 for an illustration. Let us again define Mf = Mopt4(Q1 ∪{f}). As in the
previous case, it is immediate that Mf is feasible. Arguing similarly as before
and using that Q1 does not contain any joiners, we get that any edge that blocks
Mf but does not block Mopt can only be a type A dependent edge incident to the
(woman) endpoint x of Q1 that is not m`. Hence, there can be at most one edge
blocking Mf but not Mopt. From this point on, we can use the same reasoning
as in the previous case to arrive at the conclusion that Mf is an optimal solution
that has more edges common with Ms than Mopt, a contradiction. This proves
the first statement of our lemma.

Let us prove (b) now. Suppose that K1 and K2 are two connected components
of Ms4Mopt such that K1 relies on K2 via an edge f = {w,m} of type B. By
the definition of a type B edge, we know that K1 is a path with an endpoint
that is a woman covered by Ms, so its other endpoint is either a woman not
covered by Ms, or a man covered by Ms. Thus, K1 cannot be a masculine path,
so by the first statement of the lemma, it is feminine. It remains to show that
if K2 is a path, then it is feminine. Assume for contradiction that K2 is a non-
feminine path Q in Ms4Mopt and some other path P in Ms4Mopt relies on Q
via a type B edge f . In this case we can argue exactly as above to show that
there must exist an optimal matching Mf (defined the same way as we did while
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Fig. 8: Step 2 of the algorithm for Theorem 11, for finding cycles in M4Mopt.

proving the first statement of the lemma) for which Ms4Mf contains less edges
than Ms4Mopt, a contradiction.

To show (a), suppose that K1 and K2 are two connected components of
Ms4Mopt such that K1 relies on K2 via an edge f = {w,m} of type A. By the
definition of a type A edge, the woman endpoint w of f is unmatched in Ms, and
K2 is a path that has w as an endpoint. Also, m is the second choice of w and
Mopt(w) is the first choice of w. Hence w ∈ W?

0 is not possible, as in that case
the edge f would have been deleted in Step 1 of the algorithm. Furthermore,
since K2 is an Ms-alternating path with an endpoint in W0, the other endpoint
of K2 cannot be a woman in W0. Hence, K2 is not a feminine augmenting path.
Since we already know that K2 is an augmenting path, (a) follows. ut

By Lemma 4, each connected component in Ms4Mopt that is a path must
be an augmenting path; we let P opt

x denote the augmenting path in Ms4Mopt

that contains some x ∈ W?
0 ∪M?

0 as an endpoint.
Consider now any woman w ∈ W?

0 . Let us define a candidate path for w as an
augmenting path that starts through the edge {w,Mopt(w)}. Observe that P opt

w

itself is a candidate path for w. Furthermore, although we cannot determine P opt
x

directly, Proposition 3 implies that there exists a unique maximal candidate path
Aw for w that contains P opt

w as a subpath. We can compute Aw easily: starting
from the edge {w,Mopt(w)}, we can build Aw by adding edges of Ms and edges
not in Ms in an alternating manner, always appending a new edge to the last
vertex of the current subpath of Aw. Observe that after an addition of an edge
of Ms, the resulting subpath of Aw ends at a woman, and thus ∆W ≤ 2 implies
that there exists at most one edge that we can add to our path. This shows the
uniqueness of Aw.

Step 2: Finding cycles in Ms4Mopt. We make one more guess for each
w ∈ W?

0 by guessing whether P opt
w relies on some cycle of Ms4Mopt or not;

this again yields 2|W
?
0 | possibilities. If P opt

w relies on some cycle C, then by
Proposition 3, both P opt

w and C can be found in time O(|P opt
w |+ |C|) as follows.

We compute the longest possible candidate path Aw for w. Since P opt
w relies on

cycle C, the last person on Aw must be a woman x incident to an edge {x,m} for
which m is already on Aw. Then the subpath of Aw between m and x together
with the edge {x,m} form the cycle C. For an illustration, see Fig. 8.



Lemma 5. Assuming that the guesses made by the algorithm are correct, all
cycles in Ms4Mopt and all paths relying on some cycle in Ms4Mopt are found
in Step 2.

Proof. Let C be a cycle in Ms4Mopt. By the stability of Ms, no edge of C blocks
the matching Mopt4C. Since Mopt4C has more edges in common with Ms

than Mopt does, we know by the choice of Mopt that there must be an edge
incident to C that is blocking in Mopt4C but is not blocking in Mopt. By
Lemma 3, such an edge must be a dependent edge e relying on C. This proves
that there are no cycles in Ms4Mopt without augmenting paths relying on them.

By Lemma 4 we know that dependent edges of type A rely on (masculine)
paths10, so e must have type B. From this, Lemma 4 yields that all paths relying
on a cycle must be feminine paths. Hence, Step 2 indeed finds all paths that rely
on some cycle, together with the cycles that these paths rely upon, which (as
pointed out above) means that Step 2 finds all cycles of Ms4Mopt, proving our
claim. ut

Step 3: Finding neutral paths. In this step, for each w ∈ W?
0 we guess

whether w lies on a neutral path in Ms4Mopt, yielding at most 2|W
?
0 | possibili-

ties. Clearly, if w lies on a neutral path, then by Proposition 3, P opt
w is the max-

imal candidate path starting with the edge {w,Mopt(w)}, that is, P opt
w = Aw.

Step 4: Finding feminine paths relying on other feminine paths. In this
step, we find all feminine paths that rely on some other feminine path; note that
feminine paths that do not depend on other feminine paths will be taken care of
by Step 5.

In Step 4, we first guess for each w ∈ W?
0 whether P opt

w relies on another
feminine path, and if so, we also guess on which one. This means at most |W?

0 |
possibilities for each w ∈ W?

0 , a total of |W?
0 ||W

?
0 | possibilities.

Supposing that, according to our guesses, P opt
w relies on P opt

y for some w and
y in W?

0 , we can find P opt
w easily as follows. Consider the maximal candidate

paths Aw and Ay for w and y, respectively. We know that P opt
w and P opt

y are
disjoint, but supposing that our guesses were made correctly, Lemma 4 implies
that they are connected by a dependent edge f of type B relying on P opt

y . Hence,
Aw contains P opt

w , followed by the dependent edge f connecting P opt
w and P opt

y ,
followed possibly by a suffix of P opt

y . Thus, by Proposition 3, Aw and Ay must
share the man endpoint m of f as their first common vertex, and they coincide
after m. Therefore, P opt

w can be obtained by deleting all edges incident to or
occurring after m on Aw. This way, f and P opt

w can be found in O(|P opt
w |+|P opt

y |)
time.

Notice that this method only enables us to locate P opt
w but not P opt

y ; we
only know that P opt

y must contain the man m incident to f , but we do not know
where P opt

y ends. To remind us that P opt
y contains m, we store m as an obligatory

man for y.

10 We remark that it is still possible that C itself relies on a masculine path via a
dependent edge of type A, but such edges do not play a role in Step 2.



Step 5: Finding all remaining feminine paths. In this step, we find all
feminine paths that rely neither on a cycle, nor on another feminine path. To
do so, we will use a surprisingly simple method. Intuitively, it makes sense to
construct augmenting paths to be as short as possible, since the longer such a
path gets, the more opportunities arise for a blocking pair to appear along the
way. This intuition is almost entirely correct, if no other path (or cycle) relies
on the augmenting path P opt

w we are looking for: it turns out that P opt
w is either

indeed the shortest possible, or if this is not the case, then we can “get rid of”
only one blocking pair by constructing a longer augmenting path—and this, too,
we can keep as short as it is possible, by stopping whenever we encounter a
decrease in the number of blocking pairs along the augmenting path. In the case
when some other path relies on P opt

w , we need to be somewhat more careful, and
take into account the obligatory men defined in Step 4.

After this high-level explanation, let us define Step 5 formally. Let Wr be
the set of those women w ∈ W?

0 for which P opt
w has not been found yet (that

is, where P opt
w is not neutral, and it does not rely on any other path or cycle in

Ms4Mopt). Let us fix any woman w ∈ Wr. With any candidate path Q for w,
we associate a matching MQ = (Mopt4P opt

w )4Q; we can think of MQ as the
matching that results from replacing P opt

w with Q in the symmetrical difference
of Ms and the solution. Let us state a few useful properties of candidate paths
and their associated matchings.

Proposition 4. The following holds for any candidate path Q for w:

(a) Ms4Q is a matching.
(b) MQ is a feasible matching.
(c) Q must be one of the following two forms:

(i) Q ends at a man in M0, in which case Q = Aw = P opt
w , or

(ii) Q ends at a non-distinguished woman.

Proof. Recall that the definition of an augmenting path (see the beginning of
Section 6) directly requires that Ms4Q be a matching, proving (a). This imme-
diately implies that if Q ends at a man, then this man cannot be matched by
Ms, from which Q = Aw and thus Q = P opt

w follows. Using again the definition
of an augmenting path, we get that the last person on Q is not distinguished
(because P opt

w is not neutral by Step 3), showing (c).
To see that MQ is a matching, let K−w denote the union of all connected

components of Ms4Mopt except for P opt
w . Then Mopt4P opt

w = Ms4K−w is a
matching. But as K−w is vertex-disjoint from Q, from (a) we get that MQ =
(Ms4K−w)4Q must be a matching too. The properties of Q described in (c)
show also that MQ is feasible. ♦

Now, we define two candidate paths for w as follows:

– First, we let Q1
w be the shortest candidate path for w that contains all

obligatory men for w. In particular, if there are no obligatory men for w,
then Q1

w is the shortest candidate path for w; see Figure 9 for an illustration.



Aw1 : w1

Mopt(w1)

. . .

mobl
1

. . .

Q1
w1

Aw2 : w2

Mopt(w2)

. . .

mobl
2

. . .

Q1
w2

Aw3 : w3

Mopt(w3)

. . .

mobl
3

Q1
w3

Fig. 9: An example of the paths Q1
w for three women w ∈ {w1, w2, w3} ⊆ Wr,

as defined in Step 5. The man mobl
i for each i ∈ {1, 2, 3} is the last obligatory

man for wi on the maximal augmenting path Awi
. In cases where there is no

obligatory man for wi, one can identify mobl
i with Mopt(wi) to get an appropriate

figure.

– Second, let Q2
w be the shortest candidate path containing Q1

w such that
Ms4Q2

w admits less blocking pairs than Ms4Q1
w. Such a path, however,

may not exist, in which case we leave Q2
w undefined.

Lemma 6. If P opt
w does not rely on any other path or cycle in Ms4Mopt, then

either P opt
w = Q1

w or P opt
w = Q2

w.

Proof. First observe that for any w ∈ Wr, if the guesses made by the algorithm
are correct, then P opt

w contains Q1
w as a subpath. To see this, recall that if the

guesses made in Step 4 of the algorithm are correct, then P opt
w indeed must

contain all obligatory men for w. Since P opt
w is a candidate path for w, it indeed

must contain Q1
w.

Next, suppose that P opt
w 6= Q1

w, and consider the matching M1 := MQ1
w

. By
Proposition 4, M1 is a feasible matching, and P opt

w 6= Q1
w implies that Q1

w ends
at a non-distinguished woman x.

Claim 2. Let Q be a candidate path for w such that Q1
w ⊂ Q ⊆ P opt

w . If e is an
edge blocking in M1 but not blocking in MQ, then e is adjacent to x.

Proof (of Claim 2.). Suppose for contradiction that e is not incident to x. First
note that e must be adjacent to a person in V (Q) \ V (Q1

w), as all other persons
(except for x) have the same partner in M1 as in MQ. Second, as Ms is stable,
at least one endpoint of e must be matched differently in M1 than in Ms. Thus,
e must connect a person in V (Q)\V (Q1

w) either (i) with a connected component
of K−w, denoting the union of all connected components of Ms4Mopt except
for P opt

w , or (ii) with Q1
w.

In case (i), e must be blocking in Ms4K−w (as e blocks M1). As e is not
blocking inMQ = Ms4(K−w∪Q), it is not blocking inMopt = Ms4(K−w∪P opt

w )



either (because any person in V (Q) \ V (Q1
w) has the same partner in MQ as in

Mopt, except possibly for the last person on Q who might be left unmatched in
MQ). Therefore, Lemma 3 implies that e is a dependent edge relying on P opt

w .
By Lemma 4, only feminine paths may rely on P opt

w . However, in Step 4 we have
stored the man endpoint of all edges that connect P opt

w with a feminine path
relying on P opt

w as an obligatory man, so assuming correct guesses in Step 4, e
must have an obligatory man as its endpoint. But Q1

w contains all the obligatory
men for w, which contradicts our assumption of case (i).

In case (ii), let we and me be the woman and man endpoint of e, respectively;
we assumed we 6= x. By ∆W ≤ 2, we can only be adjacent to both V (Q)\V (Q1

w)
and V (Q1

w) if either we = w, or Q and also P opt
w ends at we. In the former

case, me ∈ V (P opt
w ) \ V (Q1

w), yielding M1(me) = Ms(me). As e blocks M1, me

prefers w to Ms(me); however, w is not matched in Ms, so this means that e
blocks Ms as well, a contradiction. In the latter case, me lies on Q1

w, yielding
M1(me) = Mopt(me). As e blocksM1,me prefers we toMopt(me); however, we is
not matched by Mopt, so this means that e blocks Mopt as well, a contradiction.
Hence the claim follows. ♦

Let c1 denote the number of blocking pairs with respect to M1 that are
incident to a man or woman on Q1

w.

Claim 3. If Q is a candidate path for w such that Q1
w ⊂ Q ⊆ P opt

w , and c is
the number of blocking pairs with respect to MQ that are incident to a man or
woman on Q, then c ≥ c1 − 1.

Proof (of Claim 3). By Claim 2, c ≤ c1−2 can only happen if both edges incident
to x are blocking in M1, and none of them is blocking in MQ. However, this
cannot happen, as we are going to show now. Letm1 = Ms(x) andm2 = Mopt(x)
be the two men in x’s preference list; note that Q1

w contains m1 but not m2. If
both {x,m1} and {x,m2} are blocking in M1, then m1 prefers x to Mopt(m1),
and m2 either prefers x to Ms(m2) or m2 is unmatched by Ms. Therefore the
stability of Ms implies that x prefers m1 to m2, as otherwise {x,m2} would
block Ms. But this shows that {x,m1} is a blocking pair in Mopt and thus in
MQ as well, proving our claim. ♦

Now, let copt denote the number of blocking pairs with respect to Mopt that
are incident to a man or woman on P opt

w . By our assumption Q1
w 6= P opt

w , we
get copt < c1, as otherwise M1 would also be an optimal solution which would
contradict our choice of Mopt (as Ms4M1 contains less edges than Ms4Mopt).
Hence, Claim 3 implies copt = c1 − 1.

By the definition of Q2
w, we know that Q1

w ⊂ Q2
w ⊆ P opt

w , and Proposition 4
yields that M2 := MQ2

w
is a feasible solution. The definition of Q2

w and Claim 3
together imply that the number of blocking pairs with respect to M2 that are
incident to a man or woman on Q2

w is exactly c1 − 1. Hence, M2 is an optimal
solution. Therefore, Ms4M2 cannot contain less edges than Ms4Mopt, because
assuming otherwise would contradict our choice of Mopt. From this, Q2

w = P opt
w

follows. ut



According to Lemma 6, we can find all remaining feminine paths in
Ms4Mopt by guessing for each w ∈ Wr whether P opt

w equals Q1
w or Q2

w. This
means at most 2|W

?
0 | guesses; the computations needed for each guess take linear

time.

Step 6: Computing elimination paths. Let F be the union of cycles, feminine
and neutral paths found in Steps 1 to 5. When searching for masculine paths,
we will have to deal with edges that might be type A dependent edges in the
optimum solution. We call an edge volatile if it connects a woman in W0 with
her second choice. The importance of this definition is shown by the following
two lemmas.

Lemma 7. Let f be an edge that is blocking in Ms4F , but not blocking in
Mopt. Then f is volatile, its woman endpoint is contained on a non-feminine
path of Ms4Mopt, and its man-endpoint is contained in F .

Proof. Observe that since f does not block Mopt, there must exists a connected
component Q of Ms4Mopt not in F such that f does not block Ms4(F ∪Q).
Clearly, Q is a masculine but not feminine augmenting path by the definition of
F . Lemma 3 then implies that f is a dependent edge relying on Q, and Lemma 4
yields also that f has type A and Q is masculine and not feminine. The remaining
statements follow from the definition of a type A edge. ut

Lemma 8. If f is a volatile edge incident to some non-feminine path in
Ms4Mopt, then f is not blocking in Mopt.

Proof. Recall that Mopt is an optimal solution for which Ms4Mopt has as few
edges as possible, and there does not exist another optimal solution M ′ such
that (i) M ′ has the same number of common edges with Ms as Mopt, and (ii)
for each man m, either M ′(m) = Mopt(m) or m prefers M ′(m) to Mopt(m).

Suppose for the sake of contradiction, that f is a volatile edge incident to a
masculine path P opt

x in Ms4Mopt for some x ∈M?
0, and f blocks Mopt. Let m

and w be the man and woman connected by f .
Since m is the second choice of w and f is blocking in Mopt, we know

that Mopt does not cover w. However, any woman on a masculine augment-
ing path is matched by Mopt with a man adjacent to her on this path, so w does
not lie on P opt

x . Therefore, m lies on P opt
x .

Define P as the subpath of P opt
x from x to m plus the edge f . Consider now

Mf = Mopt4(P opt
x 4P ); Mf is a matching because w ∈ W0. Clearly, Mf is

feasible, since P opt
x is not a neutral path.

Claim 4. If f ′ is an edge that blocks Mf but does not block Mopt, then P opt
x

ends at a woman y, and f ′ is a volatile edge incident to y.

Proof (of Claim 4). Let w′ and m′ be the woman and man connected by f ′.
The only persons that are matched differently in Mf than in Mopt are those in
(V (P opt

x ) \ V (P )) ∪ {m,w}; recall that f = {m,w} with w ∈ W0. Since both m



and w are better off in Mf than in Mopt, and f ′ blocks Mf but not Mopt, we
get that one endpoint of f ′ must be in V (P opt

x ) \ V (P ).

Suppose first that m′ ∈ V (P opt
x )\V (P ). Then Mf (m′) = Ms(m

′) and since f ′

blocks Mf , we know that m′ prefers w′ to Ms(m
′). But Ms is stable, so w′ prefers

Ms(w
′) to m′, and in particular is matched by Ms. As f ′ blocks Mf , we get that

Mf (w′) 6= Ms(w
′). Hence, as w′ 6= w (because w ∈ W0 but w′ /∈ W0), it must be

the case that Mf (w′) = Mopt(w′) and w′ is on a connected component of K−x,
denoting the union of all connected components of Ms4Mopt other than P opt

x .
This implies that f ′ is blocking in Ms4K−x as well. Since f ′ is not blocking in
Mopt = Ms4(K−x ∪ P opt

x ), Lemma 3 implies that f ′ must be a dependent edge
relying on P opt

x . Note that since m′ ∈ V (P opt
x ), f ′ cannot be of type A (by the

definition of a type A edge), so it must be of type B. However, Lemma 4 tells us
that a type B edge relies either on a cycle or on a feminine path, but as P opt

x is
neither of the two, we arrive at a contradiction.

Thus, we get w′ ∈ V (P opt
x ) \ V (P ). Observe that m′ = m is not possible,

because it would imply f ′ = {m,Mopt(m)} contradicting the assumption that f ′

blocks Mf (note that m prefers w to Mopt(m) because f blocks Mopt). From this
we obtain that f ′ cannot be contained in P opt

x : we have f ′ /∈ Mf by definition,
and f ′ ∈Mopt is also not possible, since in that case m′ /∈ V (P opt

x )\V (P ) would
imply m′ = m. Thus, by ∆W ≤ 2 we know that w′ = y, and since f ′ blocks Mf

but not Mopt, we also get that m′ must be the second choice of w′. Hence f ′ is
volatile, proving our claim. ♦

By Claim 4, there can be at most one edge that is blocking in Mf but not
in Mopt. Since f is an edge that blocks Mopt but not Mf , we get that Mf is
an optimal matching. Moreover, either Mf has more common edges with Ms

than Mopt, or m is the last man on P opt
x , in which case every man has the same

partner in Mf as in Mopt except for m who is better off in Mf than in Mopt.
This contradicts our choice of Mopt. ut

For any volatile edge f we can decide in linear time if there exists a masculine
augmenting path disjoint from F that contains the woman endpoint w of f ,
but not f itself. Indeed, we can build such a path starting from w by taking
edges not in Ms and edges in Ms in an alternating manner; by ∆W ≤ 2 and
since we need to start with an edge different from f , we always have at most
one possibility to pick our next edge. This process may or may not result in a
masculine augmenting path, but if it does, then the path is unique, proving the
following claim.

Proposition 5. Let f be a volatile edge. If there exists a masculine augmenting
path disjoint from F that contains the woman endpoint w of f but not f itself,
then this path is unique; we denote it by Qelim

f .

Let f be a volatile edge that is blocking in Ms4F . We say that a set Pf
of masculine augmenting paths eliminates f if (i) Qelim

f exists and Qelim
f ∈ Pf ,

and (ii) for any path Q ∈ Pf , if there is a volatile blocking edge f ′ in Ms4Q,



then Qelim
f ′ exists and is contained in Pf . We refer to the (inclusion-wise) min-

imal set of masculine paths eliminating f as the elimination paths for f , and
denote it by Pelim

f . Further, we refer to the starting vertices of these paths as the
elimination set for f . The next lemma illuminates the role of elimination paths.

Lemma 9. If f is an edge blocking in Ms4F but not blocking in Mopt, then
Ms4Mopt contains all paths in Pelim

f .

Proof. By Lemma 7, the woman endpoint w of f lies on a masculine path. By
Proposition 5, this path can only be Qelim

f , and thus Qelim
f must be contained

in Ms4Mopt. For an inductive reasoning, assume that Q is a masculine path
in Pelim

f that is contained in Ms4Mopt and f ′ is a volatile edge that is blocking

in Ms4Q. We claim that Qelim
f ′ is contained in Ms4Mopt, which by induction

proves our lemma.
To see our claim, note that by Lemma 8, f ′ cannot be blocking in Mopt.

Since the woman endpoint of f ′ is unmatched by Ms, it can only be blocking
in Ms4Q if its man endpoint lies on Q. Thus, since f ′ is not blocking in Mopt

(but is blocking in Ms4Q), it must be the case that its woman endpoint lies
on a masculine path in Ms4Mopt. Since such a path can only be Qelim

f ′ by

Proposition 5, we get that Qelim
f ′ ∈ Pelim

f and the lemma follows. ut

Step 7: Guessing relevant elimination sets in Mopt. We call an edge rele-
vant in Mopt, if it is a volatile edge blocking Ms4F , but it does not block Mopt.
By Lemma 9, if f is a relevant edge in Mopt, then Ms4Mopt must contain all
paths in Pelim

f . Since there may be several volatile edges blocking in Ms4F ,
we cannot determine the relevant ones among them by simply guessing them.
Instead, we only guess the elimination sets for all relevant edges. Clearly, these
sets must be pairwise disjoint subsets ofM?

0, so guessing them results in at most
(|M?

0|+1)|M
?
0 | possibilities. Let us denote by R1, . . . , R` the guessed elimination

sets.

Step 8: Computing cheapest elimination paths. For each set Ri ⊆ M?
0

with i = 1, . . . , ` that, according to our guesses made in Step 7, forms the
elimination set for a volatile edge relevant in Mopt, we determine some volatile
edge f incident to F that is blocking in Ms4F and whose elimination set is
exactly Ri. Namely, we pick an edge f among all such edges in a way that the
number of blocking pairs in Ms4(F ∪ Pelim

f ) is as small as possible. Let fi be

the volatile edge chosen this way, and let Pelim =
⋃

1≤i≤` Pelim
fi

.

Step 9: Computing remaining masculine paths. We define Mr = M?
0 \

(R1 ∪ · · · ∪ R`) as the set of distinguished men that are neither covered by Ms

nor contained in any of the sets R1, . . . , R`. For each such m we are going to
compute an augmenting path Pm disjoint from F such that the number of edges
that block Ms4(F ∪

⋃
m∈Mr

Pr) but not Ms4F is minimized. We set Pr =
{Pm | m ∈Mr}.

To compute Pr, we use the algorithm of Theorem 8 with some modifications.



Step 9.1: We compute all augmenting paths that start at a man m ∈ Mr and
are disjoint from F . For each such augmenting path P we define a set C(P )
containing those edges that block Ms4(F ∪ P ) but not Ms4F , and are either
non-volatile or have a woman endpoint in F ; we define the contributing cost of
P as |C(P )|.
Step 9.2: We construct the auxiliary graph Gpath = (U, V ;E) as follows: we
set U = Mr and V = W0 ∪ {m′ | m ∈ Mr}. The edge set E contains an edge
{m,m′} for each m ∈ U , as well as an edge {m,w} whenever m ∈ U , w ∈ W0

and there exists an augmenting path disjoint from F with endpoints m and w.
We define the weight of an edge {m,m′} as the minimum contributing cost cmin

m

of any augmenting path starting at m and not ending in W0, and we define the
weight of an edge {m,w} with m ∈ U and w ∈ W0 as the minimum contributing
cost of any augmenting path with endpoints m and w, disjoint from F .
Step 9.3: We compute a minimum weight matching MP in Gpath covering U the
same way as in the algorithm of Theorem 8; let P denote the set of augmenting
paths corresponding to the edges of the matching MP . Note that the paths in P
are pairwise disjoint, by the construction of Gpath and because MP is a matching
in Gpath.
Step 9.4: We eliminate all volatile edges that block Ms4(F∪P) but not Ms4F
and are not incident to F . We modify P iteratively. We start by setting Pact = P.
At each iteration we modify Pact as follows. We check whether there exists a
volatile edge {m∗, w∗} with w∗ ∈ W0 that is not incident to F , and blocks
Ms4(F ∪ Pact) but not Ms4F . If yes, then notice that w∗ is not matched in
Ms4(F ∪ Pact), because m∗ is the second choice for w∗. Let P be the path
of Pact containing w∗. We modify Pact by truncating P to its subpath between
its starting vertex and m∗, and appending to it the edge {m∗, w∗}. This way,
{m∗, w∗} becomes an edge of the matching Ms4(F ∪Pact). The iteration stops
when there is no volatile edge disjoint from F blocking Ms4(F ∪ Pact) but not
Ms4F . Note that once a volatile edge ceases to be blocking in Ms4(F ∪Pact),
it cannot become blocking again during this process, so the algorithm performs
at most |W0| iterations. For each m ∈ Mr, let Pm denote the augmenting path
in Pact covering m at the end of this step; we set Pr := {Pm | m ∈Mr}.
Step 9.5: Finally, we output the matching Mout = Ms4(F ∪ Pelim ∪ Pr).

It is straightforward to verify that the number of guesses made are bounded
by a function of |W?

0 |+|M?
0|, and all computations in a branch can be performed

in time polynomial in the size |I| of the instance, yielding a fixed-parameter
algorithm with parameter |W?

0 | + |M?
0|. It remains to prove the correctness of

the proposed algorithm.
To this end, we first prove a simple observation.

Proposition 6. Suppose ∆W ≤ 2. Let M be a matching and KM the set of
connected components in Ms4M . Let also H1 and H2 be two disjoint subsets of
KM . Then there is no edge that blocks both Ms4H1 and Ms4H2

Proof. Suppose that e blocks both M1 := Ms4H1 and M2 := Ms4H2; by the
stability of Ms, e connects a person a1 in H1 with a person a2 in H2. Since e



blocks M1, we know that a2 prefers a1 to its situation in Ms. Since e blocks
M2, we also get that a1 prefers a2 to its situation in Ms. This contradicts the
stability of Ms. ut

Next, let us prove that Step 9 works as promised.

Lemma 10. For each m ∈ Mr let P ′m be an augmenting path disjoint from F
and starting at m, and let P ′r = {P ′m | m ∈Mr}. Then the number of edges that
block Ms4(F ∪ Pr) but not Ms4F is at most the number of edges that block
Ms4(F ∪ P ′r) but not Ms4F .

Proof. Let c′ be the number of edges that block Ms4(F ∪ P ′r) but not Ms4F .
Then Claim 5 implies that there can be at most c′ edges in

⋃
m∈Mr

C(P ′m).

Claim 5. If e is an edge such that e ∈ C(P ′m) for some m ∈Mr, then e blocks
Ms4(F ∪ P ′r) but not Ms4F .

Proof. Let m∗ and w∗ be the man and woman connected by e. By e ∈ C(P ′m)
it does not block Ms4F , so we only need to show that e blocks Ms4(F ∪ P ′r).
Suppose for contradiction that e does not block Ms4(F ∪ P ′r). Then it must
clearly be adjacent to some path P ′x, x ∈ Mr. By ∆W ≤ 2 we know that w∗ is
the endpoint of one of these paths, w∗ ∈ W0, and since e blocks Ms4(F ∪ P ′m)
but not Ms4(F ∪ P ′r) we also get that m∗ must be the less preferred choice
of w∗; this yields that e is volatile. However, as e is not incident to F (because
it connects P ′m and P ′x), this contradicts e ∈ C(P ′m). ♦

Let m1 and m2 be two distinct men inMr; we will show C(P ′m1
)∩C(P ′m2

) =
∅. Assuming otherwise, let e be an edge in C(P ′m1

) ∩ C(P ′m2
). Then e does

not block Ms4F but blocks both Ms4(F ∪ P ′m1
) and Ms4(F ∪ P ′m2

). Hence
e connects P ′m1

with P ′m1
, and thus blocks Ms4P ′m1

and Ms4P ′m2
as well,

contradicting Proposition 6. Thus,∣∣∣∣∣ ⋃
m∈Mr

C(P ′m)

∣∣∣∣∣ =
∑

m∈Mr

|C(P ′m)| ≤ c′.

Then, by the definition of edge-weights in Gpath, we get that there exists a
matching M ′ in Gpath with weight at most

∑
m∈Mr

|C(P ′m)| ≤ c′ that covers
U =Mr. Thus, the matching computed by the algorithm in Step 9.3 has weight
at most c′ as well, yielding that the set Pr of augmenting path corresponding to
this matching is such that

∑
m∈Mr

|C(Pm)| ≤ c′, that is, their total contribution
cost is at most c′. From this, Claim 6 below implies that there can be at most
c′ edges that block Ms4(F ∪ Pr) but not Ms4F .

Claim 6. If an edge e blocks Ms4(F ∪Pr) but not Ms4F , then e ∈ C(Pm) for
some m ∈Mr.

Proof. Let m∗ and w∗ be the man and woman connected by e. Clearly, e is
adjacent to some path in Pr.



First, suppose that e is adjacent to only one path Pm where m ∈Mr. Then e
must block Ms4(F∪Pm) as well. In that case, to prove e ∈ C(Pm) we only need
to show that either w∗ is in F or is e is non-volatile. Suppose for contradiction
that e is volatile and w∗ is not in F . However, as a result of Step 9.4, there can
be no volatile edge that blocks Ms4(F ∪ Pr), unless it is incident to F . Hence,
we must have that m∗ is in F , and since e blocks Ms4(F ∪ Pm), we get that
m∗ prefers w∗ to its partner in Ms4(F ∪Pm), which is the same partner he has
in Ms4F . However, this yields that e blocks Ms4F as well: since w∗ ∈ W0 and
w∗ is not in F , she is unmatched in Ms4F . Hence, we arrive at a contradiction,
proving e ∈ C(Pm).

Second, suppose that e connects two paths Pm1 and Pm2 where m1 and m2

are distinct men in Mr. By ∆W ≤ 2, we know that w∗ is an endpoint of one of
these paths; without loss of generality, we may assume that w∗ is an endpoint
of Pm1

. Since Pm1
is a masculine augmenting path, we get w∗ ∈ W0. Now, we

know that e blocks Ms4(F ∪Pm1
∪Pm2

), so it must also block Ms4(F ∪Pm2
),

because w∗ is unmatched in Ms4(F ∪ Pm2) and m∗ has the same partner in
Ms4(F ∪ Pm2) as in Ms4(F ∪ Pm1 ∪ Pm2). Again, e cannot be volatile as a
result of Step 9.4, yielding that e is contained in C(Pm2

). ♦

This proves the optimality of Pr as stated by the lemma. ut

Next we state the following useful lemma.

Lemma 11. Let f be a volatile edge blocking in Ms4F , Q an elimination path
in Pelim

f , and Q′ a non-feminine augmenting path not contained in Pelim
f , disjoint

from F . Let e be an edge. Then e blocks Ms4(Q ∪ Q′) if and only if it blocks
Ms4Q or Ms4Q′.

Proof. First observe that the statement of the lemma is obviously true for any
edge e that is incident to at most one of Q and Q′. So suppose that e connects Q
with Q′. Since both Q and Q′ are masculine augmenting paths and ∆W ≤ 2, by
Proposition 3 we know that e connects the woman endpoint w of one of these
paths with a man m on the other path; moreover, w must be unmatched by Ms

as it is the endpoint of a masculine augmenting path. Let Qw be the path (either
Q or Q′) that contains w, and let Qm be the one containing m. By w ∈ W0 and
the stability of Ms, e cannot be blocking in Ms4Qw.

Now, if e blocks Ms4(Qm ∪ Qw), then it blocks Ms4Qm as well, since m
prefers w to its partner in Ms4Qm and w is unmatched in Ms4Qm.

It remains to show that if e blocks Ms4Qm, then it also blocks Ms4(Qw ∪
Qm). Supposing otherwise, it must be the case that (i) m prefers w to its partner
in Ms4Qm, but (ii) w prefers its partner in Ms4Qw to m. Consequently, e is a
volatile edge.11 We distinguish two cases.

Case (A): Qw = Q′. Then Q′ must be the unique masculine augmenting path
containing the woman endpoint of e but not e itself, that is, Q′ = Qelim

e . Hence,

11 This case is analogous with e being a type A edge; however, the paths Q and Q′

here need not be paths of Ms4Mopt.



since e is a volatile edge blocking Ms4Q and Q ∈ Pelim
f , by the definition of

elimination paths we get Q′ ∈ Pelim
f as well, a contradiction.

Case (B): Qm = Q′. Then Q′ contains the man endpoint of e. However,
again by the definition of elimination paths, as Q is a path of Pelim

f , the man

endpoint of e must be contained either in F (if e = f) or another path of Pelim
f

that triggered the addition of Q into Pelim
f ; both possibilities contradict our

conditions on Q′. ♦

Now we are ready to show that our algorithm is correct.

Proof (of Theorem 11.). To prove the correctness of the proposed algorithm, we
first show that if all our guesses are true, then the paths and cycles in F are
exactly the feminine paths and the cycles of Ms4Mopt. The correctness of Step 2
is stated by Lemma 5. From the description of our algorithm, it should be clear
that the correctness of Steps 3 and 4 follows directly from Proposition 3 and
Lemma 4. Lemma 6 guarantees the correctness of Step 5, which proves that in
Steps 1–5 the algorithm indeed finds all cycles and feminine paths of Ms4Mopt.

Next, let us argue that Mout is indeed a matching. For this, apart from the
correctness of Steps 1–5, we need that the masculine paths in Ms4Mout are
disjoint from F . Further, we also need that paths in Pelim are disjoint from all
remaining masculine paths. To see this, observe that any path P in Pelim ends
at a woman w ∈ W0 which is connected by a volatile edge (not on P ) to either
F or to another path in Pelim. Hence, w cannot lie on any masculine path other
than P by Proposition 5. Thus, Mout is a matching. Its feasibility is implied by
the correctness of Steps 1–5, and the definition of augmenting paths.

It remains to argue thatMout admits at most as many blocking pairs asMopt.
First, Lemma 7 implies that all edges blocking in Ms4F are either relevant
volatile edges in Mopt, or they are also blocking in Mopt. Furthermore, if fopti

is a relevant volatile edge with elimination set Ri for some i ∈ {1, . . . , `},
then by Lemma 9 we know that all elimination paths in Pelim

fopt
i

must be con-

tained in Ms4Mopt. As F is the set of feminine augmenting paths and cycles
of Ms4Mopt, in Step 8 the algorithm is bound to find some volatile edge fi
(though not necessarily fopti ) that is blocking in Ms4F and whose elimination
set is Ri. Furthermore, by our choice of fi, there are at most as many blocking
pairs in Ms4(F ∪ Pelim

fi
) as there are in Ms4(F ∪ Pelim

fopt
i

).

Let the contribution of a volatile edge e, denoted by C(e), be the set of edges
that block Ms4(F∪Pelim

e ) but not Ms4F ; we extend this notion to any set E of
volatile edges with pairwise disjoint elimination sets by defining the contribution
C(E) of E as the set of edges that block Ms4(F ∪

⋃
e∈E Pelim

e ) but not Ms4F .

By our choice of fi, we know |C(fi)| ≤ |C(fopti )|.
We are going to show

|C({fi | 1 ≤ i ≤ `})| ≤ |C({fopti | 1 ≤ i ≤ `})|,
which implies that Ms4(F ∪

⋃
1≤i≤` Pelim

fi
) has at most as many blocking pairs

as Ms4(F ∪
⋃

1≤i≤` Pelim
fopt
i

) does. To prove this, it suffices to prove the following

claim.



Claim 7. Let F ∪{f} be a set of volatile edges with pairwise disjoint elimination
sets, F 6= ∅. Then |C(f)|+ |C(F )| = |C(F ∪ {f})|.

Proof. We need to prove that any edge e blocks Ms4(F ∪Pelim
f ∪

⋃
f ′∈F Pelim

f ′ )

but not Ms4F if and only if it blocks exactly one of Ms4(F ∪ Pelim
f ) and

Ms4(F ∪
⋃
f ′∈F Pelim

f ′ ) but not Ms4F . So let us assume that e does not block
Ms4F .

Notice that if e is incident to only one of Pelim
f and

⋃
f ′∈F Pelim

f ′ , then our

claim is immediate. So suppose that e connects a path Q ∈ Pelim
f with a path

Q′ ∈
⋃
f ′∈F Pelim

f ′ . Observe that it suffices to show that e blocks Ms4(Q ∪ Q′)
if and only if it blocks exactly one of Ms4Q and Ms4Q′, because e cannot be
incident to any connected component of F ∪ Pelim

f ∪
⋃
f ′∈F Pelim

f ′ other than Q
and Q′. Now the claim follows directly from Lemma 11 and Proposition 6. ♦

It remains to consider the blocking pairs contributed by the paths Popt
r :=

{P opt
m | m ∈Mr}.

Claim 8. If e is an edge that blocks Ms4(F ∪ Popt
r ) but not Ms4F , then e

blocks Mopt but not Mopt4Popt
r .

Proof. Recall that by definition Mopt = Ms4(F ∪ Popt
r ∪

⋃
1≤i≤` Pelim

fopt
i

) and

Mopt4Popt
r = Ms4(F ∪

⋃
1≤i≤` Pelim

fopt
i

), so if e does not have an endpoint in⋃
1≤i≤` Pelim

fopt
i

, then the claim follows immediately.

So suppose that e is incident to a path Q ∈ Pelim
fopt
i

for some i ∈ {1, . . . , `}. As e

blocks Ms4(F∪Popt
r ) but not Ms4F , the other endpoint of e must be contained

in a path P opt
m for some m ∈ Mr. Since Q and P opt

m are the only connected
components of Ms4Mopt that e is adjacent to, the condition of our claim yields
that e blocks Ms4P opt

m , and we need to show that e blocks Ms4(Q ∪ P opt
m )

but not Ms4Q. To see this, first notice that by Proposition 6, edge e cannot
block Ms4Q, because Q and P opt

m are disjoint. Second, as e blocks Ms4P opt
m ,

Lemma 11 implies that it must block Ms4(Q∪P opt
m ) as well, proving our claim.

♦

Let cr be the number of those edges that block Mopt but not Mopt4Popt
r .

Then Claim 8 implies that there are at most cr edges that block Ms4(F ∪Popt
r )

but not Ms4F . Since Steps 9.1–9.4 calculate a set Pr = {Pm | m ∈ Mr} of
augmenting paths that minimizes the number of edges that block Ms4(F ∪Pr)
but not Ms4F , we know that there are at most cr such edges. This in turn
shows that there can be at most cr edges that block Mout but not Mout4Pr, as
implied by Claim 9. This proves the optimality of Mout.

Claim 9. If e is an edge that blocks Mout but not Mout4Pr, then e blocks
Ms4(F ∪ Pr) but not Ms4F .

Proof. Since Mout = Ms4(F ∪ Pr ∪ Pelim) and Mout4Pr = Ms4(F ∪ Pelim),
we have that if e does not have an endpoint in Pelim, then the claim follows
immediately.



So suppose that e is incident to a path Q ∈ Pelim
fi

for some i ∈ {1, . . . , `}. As e

blocks Mout but not Mout4Pr, the other endpoint of e must be contained in a
path Pm for some m ∈Mr. Since Q and Pm are the only connected components
of Ms4Mout that e is adjacent to, the condition of our claim yields that e blocks
Ms4(Q∪Pm) but not Ms4Q, and we only need to show that e blocks Ms4Pm,
which is directly implied by Lemma 11, proving our claim. ♦

This finishes our proof of correctness for Theorem 11. ut

As each augmenting path contains at least one edge that blocks Mopt, the
number of blocking pairs admitted by Mopt is at least (|W?

0 | + |M?
0|)/2. Thus,

we get Corollary 3.

Corollary 3. The special case of SMC where each woman finds at most two
men acceptable (i.e., ∆W ≤ 2) is fixed-parameter tractable for parameter b.

It remains to deal with the third among the parameterizations we have to
consider. So let us turn our attention to the complexity of the SMC with ∆W ≤ 2
where we take |W?|+∆M as the parameter.

Theorem 12. There is a fixed-parameter algorithm for the special case of SMC
where each woman finds at most two men acceptable (i.e., ∆W ≤ 2), and the
parameter is |W?|+∆M, the number of distinguished women plus the maximum
length of men’s preference lists.

It turns out that Theorem 12 can be proved by a modified version of the
algorithm described above to prove Theorem 11. In fact, we start with apply-
ing Steps 1 to 6. However, we can no longer apply Step 7, because now |M?|
can be unbounded, and thus guessing the elimination sets would not yield a
fixed-parameter tractable algorithm. To circumvent this problem, we rely on an
observation stated by Lemma 12 which shows that “almost all” volatile edges
that are blocking in Ms4F are relevant edges, and thus have to be eliminated.
This allows us to efficiently guess the set of relevant volatile edges, leading us
to a fixed-parameter tractable algorithm. Hence, instead of guessing only the
elimination sets (that is, the man endpoints of the elimination paths) we can
now guess the exact set of edges that the optimal solution eliminates, so in fact
the modified algorithm can be viewed as a more simple approach.

Let Evol denote the set of all volatile blocking edges in Ms4F , and let
{m,w} ∈ Evol for some man m. We say that {m,w} is loose, if

– both Ms and Mopt assign a partner to m,

– m prefers Ms(m) to w, and w to Mopt(m), and

– Mopt(m) is not distinguished.

Lemma 12. All loose edges in Evol are relevant, and at most (∆M − 1)|W?|
edges in Evol are not loose.



Proof. First suppose that {m,w} for some man m is loose. Since {m,w} is
volatile, we have that m is the less preferred man acceptable to w, and since
{m,w} is blocking in Ms4F , we know that w is unmatched in Ms4F .

For the sake of contradiction, let us suppose that {m,w} is not relevant,
meaning that it is still blocking in Mopt. In this case, w must be unmatched
in Mopt too. We define a matching M ′ obtained from Mopt by modifying only
the partner of m to be M ′(m) = w and, i.e., M ′ = (Mopt \ {{m,Mopt(m)}}) ∪
{{w,m}}. Observe that M ′ is indeed a matching, because w was unmatched
in Mopt. It is also feasible, because only Mopt(m) becomes unmatched by this
modification, and Mopt(m) is not distinguished (by the definition of a loose
edge). Furthermore, while {m,w} is not blocking in M ′, the only edge that
might be blocking in M ′ but not in Mopt is the edge adjacent to Mopt(m) but
not to m, if existent (because both m and w are better off in M ′ than in Mopt).
Hence, M ′ is also an optimal matching. It should also be clear that it has the
same number of common edges with Ms as Mopt. Note also that each man has
the same partner in M ′ as in Mopt except for m who is better off in M ′ than in
Mopt. This contradicts our choice of Mopt, proving that {m,w} must indeed be
relevant.

To prove the second part of the lemma, let us consider any edge {m,w} ∈ Evol

with m ∈ M. Again, w must be unmatched in the matching Ms4F , since
otherwise {m,w} would not block it (because m is the less preferred man in w’s
preference list). By contrast, {m,w} cannot block Ms, which can be explained
in three different ways, giving rise to the following three cases:

– Case A: {m,w} ∈Ms,
– Case B: {m,w} /∈Ms, but Ms(w) exists and is preferred by w to m, or
– Case C: {m,w} /∈Ms, but Ms(m) exists and is preferred by m to w.

In Case A, by {m,w} ∈ Ms, the edge {m,w} must be contained in an
augmenting path of Ms4F , with w being an endpoint (since w is not matched
in Ms4F). In Case B, Ms matches w to its first choice, say x, so the edge
{w, x} must be contained in an augmenting path of Ms4F , with w being an
endpoint. Thus, in both cases we know that w is an endpoint of a feminine
augmenting path of F . However, Cases A and B exclude each other, because
in Case A the augmenting path ending at w contains the edge connecting w to
her second choice, while in Case B it connects w to her first choice. Since there
are at most |W?| feminine augmenting paths, it follows that the number of such
edges {m,w} ∈ Evol where the conditions of Cases A or B hold is at most |W?|.

In Case C, let us first observe that m gets matched in Ms4F . Indeed, if this
were not the case, then m would be the man endpoint of a feminine augmenting
path, with the last edge contained in Ms; however, this is not possible (simply
because feminine paths start with women and with edges not in Ms). Because F
is a collection of connected components of Ms4Mopt, with m contained in F , it
is clear that the partner of m in Ms4F is the same as his partner in Mopt. Thus,
Mopt(m) exists, and since {m,w} blocks Ms4F , we know that m prefers w to
Mopt(m). Therefore, either {m,w} is a loose edge, or Mopt(m) is distinguished;
in the latter case, we say that {m,w} belongs to this distinguished woman.



Now, observe that all edges belonging to some woman z ∈ W? are adjacent
to Mopt(z), and Mopt(z) is adjacent to at least two edges not belonging to z:
namely, the edges {Mopt(z), z} and {Mopt(z),Ms(M

opt(z))}. Hence, at most
∆M − 2 edges may belong to z, implying that there are at most (∆M − 2)|W?|
edges in total belonging to distinguished women. Taking into account all three
cases, we get that there are at most (∆M − 1)|W?| edges in Evol that are not
loose. ut

Let us now describe our algorithm proving Theorem 12 in detail. This algo-
rithm starts with Steps 1 to 6 (as given for Theorem 11), and then applies Steps
7? and 8? below. The last step of our algorithm is Step 9 from the algorithm for
Theorem 11.

Step 7?: Guessing the relevant edges. To determine which edges among
those volatile edges that blockMs4F are relevant, we first compute the set Eloose

of all loose edges in Evol. Notice that when checking some edge {m,w} ∈ Evol,
we already know Mopt(m): since m lies on a path or cycle of F , it gets matched
in Ms4F to the same woman as in Mopt. Therefore, checking whether {m,w}
is loose is straightforward.

After determining all loose edges (which are all relevant by Lemma 12), we
guess the remaining set of relevant edges in Evol \ Eloose. By Lemma 12, this
yields at most 2(∆M−1)|W?| possibilities, and in the branch where our guess is
correct, we obtain the set Erel of all relevant volatile edges blocking in Ms4F .

Step 8?: Computing cheapest elimination path. This step is a simplifica-
tion of Step 8 of the algorithm for Theorem 11. By Lemma 9, for each f ∈ Erel the
elimination paths in Pelim

f (determined in Step 6) are all contained in Ms4Mopt;

let Pelim = ∪f∈ErelPelim
f .

Step 9?: Computing remaining masculine paths. LetMr denote the set of
distinguished men in M?

0 not covered by any of the elimination paths in Pelim.
For each m ∈ Mr we compute an augmenting path Pm disjoint from F such
that the number of edges that block Ms4(F ∪Pr) but not Ms4F is minimized,
where Pr is the union of all paths Pm, m ∈ Mr. We accomplish this with the
exact same method as in Step 9 of the algorithm for Theorem 11. Finally, we
output the matching Mout = Ms4(F ∪ Pelim ∪ Pr).

Note that the number of guesses made in Steps 1 to 6 are bounded by a
function of |W?

0 |, and the guesses made in Step 7? result in at most 2(∆M−1)|W?|

possibilities. Since all computations in a branch can be performed in time poly-
nomial in the size |I| of the instance, we obtain a fixed-parameter algorithm with
parameter |W?|+∆M. It remains to prove its correctness.

Proof (of Theorem 12.). The proof is a straightforward adaptation of our proof
for Theorem 11. The only difference is that instead of finding some elimination
paths that eliminate the necessary number of relevant volatile edges blocking in
Ms4F , our algorithm now directly finds all of the relevant edges among those
volatile edges that block Ms4F , together with the corresponding elimination



paths; this is a consequence of Lemma 12 and the definition of Step 7?. As Step 8?

can also be viewed as a simplification of Step 8 as defined for the algorithm for
Theorem 11, it can be verified that the exact same arguments that prove the
correctness of Step 8 in our algorithm for Theorem 11 also imply the correctness
of Step 8? for our algorithm for Theorem 12 in a straightforward manner. ut

7 Discussion

We provided a systematic study of the computational complexity of Stable
Marriage with Covering Constraints. Our main result is a complete com-
putational complexity trichotomy into polynomial-time solvable cases, NP-hard
and fixed-parameter tractable cases, and NP-hard and W[1]-hard cases, for all
possible combinations of five natural parameters:

– |M?|: the number of distinguished men,
– |W?|: the number of distinguished women,
– ∆M: the maximum length of preference lists for men,
– ∆W : the maximum length of preference lists for women, and
– b: the number of blocking pairs allowed.

As a special case, we solved a problem by Hamada et al. [24].
Fig. 10 provides a decision diagram showing that our results indeed fully

determine the computational complexity of SMC with respect to the set S =
{b, |W?|, |M?|, ∆M, ∆W} of possible parameters. Going through this decision
diagram should convince the reader that any parameterized restriction of SMC
with respect to the set S is classified as either polynomial-time solvable (P) or
NP-hard, and in the latter case, either fixed-parameter tractable (FPT), or W[1]-
hard with the given parameterization (if any). In particular, when we provide
parameterized results, this means that the parameterized restriction of SMC in
question is NP-hard without parameterization.

Given the strong polynomial-time inapproximability bounds, as well as the
parameterized intractability results of this paper, we pose as an open question
whether fixed-parameter approximation algorithms can beat either of these ob-
stacles for solving SMC.

Another challenge for future research is to investigate possible adaptations of
the proposed algorithms to the Hospitals/Residents model (note that, naturally,
all our hardness results for SMC-1 apply to the HRLQ problem), or to a setting
where ties are allowed in the preference lists.
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toires. Les Presses de l’Université de Montréal, Montreal, Que., 1976.
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