
A Novel JWT Revocation Algorithm

László Viktor Jánoky, János Levendevoszky, Péter Ekler

Abstract: JSON Web Tokens (JWT)[1] provide a scalable, distributed way of user access control
for modern web-based systems. The main advantage of the scheme, is that the tokens are valid
by themselves - through the use of digital signing - also imply its greatest weakness. Once
issued, there is no trivial way to revoke a JWT token. In our work, we present a novel approach
for this revocation problem, overcoming some of the problems of currently used solutions.

Keywords: JWT, JSON Web Tokens, User access control

1 Introduction

In our previous paper in the field, titled as An analysis on the revoking mechanisms for JSON
Web Tokens[2], we examined the currently used solutions of token revocation and laid out the
mathematical foundations and introdued a novel approach. In this paper, we further elaborate
on the new solution and provide general guidelines how to use it in a real-world application.

This paper is structured as follows: (I) in this first section, we quickly recap the currently
used revocation schemes and their main characteristics, (II) in the second section, in which
we provide a detailed description of our new approach and give some recommendations for
its real-world use, (III) the third section deals with the evaluation of performance in different
cases, comparing our solution with existing one, and finally (IV) the fourth and final section
wraps the discussion by providing an overview of the work done.

A JWT token used to determine access for a protected resource is called an access token. The
token is usually digitally signed, or otherwise cryptographically secured [3], in both cases we
simply refer to the signing key or the public key as secret. In most scenarios, the access tokens
are issued along with a second, more traditional; server-side token called a refresh token. This
second token makes it possible for the client to acquire a new access token in the future.

When a client logs out from the system, the refresh token is destroyed, and existing JWT
tokens are revoked. There are three main methods of this revocation that are currently used[4].

Short-lived tokens: Each generated JWT token has a finite, usually very short lifespan. In
this scheme, a token is never directly revoked, but the means of acquiring new tokens are made
unavailable, hence when the short lifespan runs out, no further access is possible to the system.

Blacklist: In case of a blacklist, revoked tokens are placed in a shared location (typically a
database), where each consuming service can check for invalidated tokens. The big downside
of this approach is that it requires data access for each request served - even for ones with valid
tokens thus, the validity of the token can no longer be determined in itself.

Secret change: A rarely used solution for invalidation, is the changing of the cryptographic
secret used to issue and check the validity of tokens. Changing this secret leads to all tokens
being revoked, but still logged in users can apply for new ones using their refresh token.

2 The revocation algorithm

Our novel revocation strategy is based on the extension of the third option, which is changing
the secret. In this section, we give a quick overview of this approach.

2.1 Basic principle

When a JWT secret is changed, all the tokens issued with it become invalid. In practice, this
means that if a user logs out, every other user in the system must request a new token.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository of the Academy's Library

https://core.ac.uk/display/333873046?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


This effect can be controlled by arranging the users in groups (for example, by hashing their
usernames) and assigning a different secret for each group. If a token is revoked in a group,
only tokens signed with the group secret will be revoked, instead of all the tokens.

As log-outs are typically infrequent events, one can use statistical methods (such as de-
scribed in our previous paper), to calculate an optional group size, which minimizes the num-
ber of unnecessary revocations, while maintaining a manageable number of secrets.

2.2 Propagating secret change events

With this method, revocation is instantaneous, and the basic premise of JWT tokens remain
intact, that the tokens are valid by themselves.

This solution requires the existence of a channel for propagating the information about the
change of the JWT secret. The channel must be available between the token issuer and each
service consuming the tokens.

For cases when such a channel is unavailable, we have come up with an alternate solution.
In this approach the JWT Secret is generated as a rolling code by a pseudo random number
generator[6], each service keeping track of the currently active value. When a token is revoked
and the group’s secret is changed, the new tokens are issued with the new secret. When a
service, still using the old code, receives a token signed with the new secret (a next value from
the rolling code), it will also update the secret accordingly.

This method provides eventual consistency for the system in the long run, without the need
for a dedicated channel for JWT secret change event prorogation. As a trade-off, the instanta-
neous revocation is lost, a token is only revoked after the code is rolled (another token, using
the new secret is received).

2.3 Cost model of running the algorithm

In our previous work on the topic, we prove that any system can be parametrized in a way, for
our solution to be better in terms of performance than the previous solutions.

In this paper, we further examine the performance and the costs of our solution and provide
a mathematical model to aid in system design and capacity planning.

To accurately model the performance impact of different solutions, a common framework
must be set. As the basis of this framework, we determined a set of basic operations, which
make up each approach. The costs of these operations can be parametrized, which can be based
on estimations or measurements. The following main costs are identified:

• Ci (Issue cost): the cost of issuing a new token.

• Cv (Validation cost): the cost of checking the validity of a token.

• Cc (Communication cost): the cost of system modules communicating with each other.

• Cd (Data access cost): the cost of accessing data stored in a persistent storage.

In order to predict the performance of a system, it is not enough to know the cost of these
atomic operations, one must also calculate how many times they will occur. The performance
cost of a system comes from the clients consuming its service. By characterizing the client ses-
sions, one can come up with predictions for their impact on the system[5]. In order to calculate
the former, the following properties must be known (by measurements or estimation).

• N : the number of clients in the system.

• fi(t): probability distribution of client session lengths.



• r: average number of protected resource access / client / second.

As we have demonstrated in our earlier work on the topic, from these metrics, one can cal-
culate the average time between token revocations in a group of clients. This value is denoted
as Trvk.

Knowing both the cost and occurrences of typical operations in the system, one can come
up with a cost function, which describes the average cost of operation.

3 Performance evaluation

To predict the performance characteristics of a system, one must first determine the costs asso-
ciated with the operations defined in the previous section. The second step is to measure the
characteristics of the client population. The third step is to choose a revocation algorithm.

These three steps together determine the overall performance metrics. Each revocation al-
gorithm has a unique cost function, which maps the client pool behavior to system operations,
which in turn are used to calculate the overall performance cost of a given solution. Some revo-
cation algorithms have variable parameters, which can be optimized trough the usual means.

3.1 Short-lived tokens

The short-lived approach has one parameter, Tlife, which denotes the lifetime of a token. As
for maximizing the performance of this approach, this Tlife should be chosen as the longest
tolerable time for token revocation after logout.

The overall cost function consists of two parts, the cost of validating the tokens of the in-
coming requests, and the cost of issuing new tokens to replace the expiring ones.

C = (N ∗ r ∗ Cv) + (N ∗ 1

Tlife
∗ Ci)

3.2 Blacklist

In the case of a blacklist, the main cost factor comes from the necessity to check whether a token
is on the blacklist for each request. This extra checking makes this approach the worst in terms
of scaling in the case of an increasing number of requests.

After accounting for this factor, there are no other costs associated with this method. There-
fore the cost function can be defined as the following.

C = N ∗ r ∗ Cv ∗ Cd

3.3 Secret change

In case of a secret change, the baseload of authorizing incoming request is still present, but it is
accompanied by the load of new token generation for each client in case of each revocation.

C = (N ∗ r ∗ Cv) + (N ∗ 1

Trvk
∗ Ci)

Notice that the formula is very similar to the short-lived cost function. This is not a coinci-
dence; in both cases, the number of token revocations depends heavily on the average lifespan
of a token. In the first case its purely determined by the age of token itself, while in the second
case, client logout events trigger it.



3.4 The cost evaluation of our method

As our method builds on the secret change event, the cost function is similar too. The main
difference being, the introduction of parameter K, which denotes the number of groups the
clients are separated to. Because of this separation, the Trvk calculated for the whole client
population size must be recalculated to the number of N

K clients. This value is denoted by Trvk.
As K increases, Trvk monotonously increasingly approaches the mean value of fi(t).

C = (N ∗ r ∗ Cv) + (K ∗ 1

T ′
rvk

)(
N

K
∗ Ci + Cc)

4 Overview

In this paper, we described the main approaches of JWT revocation and introduced our novel
solution. We provided a toolset for characterizing different systems based on the cost of com-
mon operations when dealing with JWT tokens. We outlined the necessary parameters to mea-
sure in a client population of such a system. We determined the cost functions for each solution,
based on the previously described characteristics and client behaviour.

With the mathematical framework at hand, one can find the optimal revocation solution for
any system, by choosing the minimal cost function. In cases where the function has additional
variable parameters, traditional approaches like linear search can be used to find the optimal
solutions.

Ultimately, we hope that our work will aid capacity planning and system design of dis-
tributed systems, as the JWT based solutions have the highest potential in this area.

Acknowledgements

This work was supported by the BME-Artificial Intelligence FIKP grant of EMMI (BME FIKP-
MI/SC) and by the János Bolyai Research Fellowship of the Hungarian Academy of Sciences.

References

[1] M. Jones, J. Bradley, and N. Sakimura, "JSON Web Token (JWT)," RFC Editor, RFC 7519,
May 2015.

[2] L. V. Jánoky, J. Levendovszky, and P. Ekler, "An analysis on the revoking mechanisms for
JSON Web Tokens," International Journal of Distributed Sensor Networks, vol. 14, no. 9, p.
1550147718801535, Sep. 2018, doi: 10.1177/1550147718801535.

[3] M. Jones, J. Bradley, and N. Sakimura, "JSON Web Signature (JWS)," RFC Editor, RFC 7515,
May 2015.

[4] dWTV, "Learn how to revoke JSON Web Tokens," developerWorks TV, 27-Jul-2017. [Online].
Available: https://developer.ibm.com/tv/learn-how-to-revoke-json-web-tokens/.

[5] M. Arlitt, "Characterizing web user sessions," ACM SIGMETRICS Performance Evaluation
Review, vol. 28, no. 2, pp. 50â63, 2000.

[6] M. Blum and S. Micali, "How to generate cryptographically strong sequences of pseudo-
random bits," SIAM journal on Computing, vol. 13, no. 4, pp. 850â864, 1984.


