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Abstract

We prove a Tauberian theorem for the Laplace–Stieltjes transform and Karamata-type
theorems in the framework of regularly log-periodic functions. As an application we determine
the exact tail behavior of fixed points of certain type smoothing transforms.
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1 Introduction

A function f : [0,∞) → [0,∞) is regularly log-periodic, f ∈ RL or f ∈ RL(p, r, ρ), if it is
measurable, there is a slowly varying function at infinity `, real numbers ρ ∈ R, r > 1, and a
positive logarithmically periodic function p ∈ Pr, such that

lim
n→∞

f(xrn)

(xrn)ρ`(xrn)
= p(x), x ∈ Cp, (1)

where Cp stands for the set of continuity points of p, and for r > 1

Pr =
{
p : (0,∞)→ (0,∞) : inf

x∈[1,r]
p(x) > 0, p is bounded, right-continuous,

and p(xr) = p(x), ∀x > 0
}
.

This function class is a natural and important extension of regularly varying functions, and it
appears in different areas of theoretical and applied probability. This class arises in connection
with various random fixed point equations, such as the smoothing transformation. Regularly log-
periodic functions are the basic ingredients in the theory of semistable laws. The tail of the limiting
random variable of a supercritical Galton–Watson process is also regularly log-periodic. These are
spelled out in details in Section 3. Here we only mention some results for the perpetuity equation

X
D
= AX +B, (2)
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where (A,B) and X on the right-hand side are independent. Under appropriate assumptions,
Grincevičius [17, Theorem 2] showed that the tail of the solution of (2) is regularly log-periodic with
constant slowly varying function. Under similar assumptions the same asymptotic behavior was

shown for the max-equation X
D
= max{AX,B}, which corresponds to the maximum of perturbed

random walks; see Iksanov [22, Theorem 1.3.8]. More generally, this type of tail behavior appears
in implicit renewal theory in the arithmetic case; see Jelenković and Olvera-Cravioto [23, Theorem
3.7], and Kevei [24]. In general, functions of the form p(x)eλx, λ ∈ R, where p is a periodic
function, are solutions of certain integrated Cauchy functional equations, see Lau and Rao [26].
For physical relevance of log-periodicity we refer to Sornette [32].

The name ‘regularly log-periodic’ comes from Buldygin and Pavlenkov [9, 10], where a function
f is called regularly log-periodic, if

f(x) = xρ`(x)p(x), x > 0, (3)

where `, ρ and r are the same as above, and p ∈ Pr is continuous. This condition is clearly much
stronger than (1) even without the continuity of p. In the examples given above, the continuity
assumption does not necessarily hold, and this is the reason for the extension of the definition.
Moreover, our main motivation originates in the studies of the St. Petersburg distribution, where
the corresponding p function is not continuous; see Example 2 at the end of Subsection 3.1.

In what follows, we assume that U : [0,∞)→ [0,∞) is a nondecreasing function, and

Û(s) =

∫ ∞
0

e−sxdU(x)

denotes its Laplace–Stieltjes transform. Since we need monotonicity, for r > 1 we further introduce
the sets of functions

Pr,ρ =
{
p : (0,∞)→ (0,∞) : p ∈ Pr, and xρp(x) is nondecreasing

}
, ρ ≥ 0,

Pr,ρ =
{
p : (0,∞)→ (0,∞) : p ∈ Pr, and xρp(x) is nonincreasing

}
, ρ < 0.

(4)

In order to characterize the Laplace–Stieltjes transform of regularly log-periodic functions, for
r > 1, ρ ≥ 0, put

Qr,ρ =
{
q : (0,∞)→ (0,∞) : s−ρq(s) is completely monotone, and q(sr) = q(s), ∀s > 0

}
. (5)

For ρ = 0 the sets Pr,0,Qr,0 are just the set of constant functions.

The aim of the present paper is to prove Tauberian theorem for the Laplace–Stieltjes transform,
and Karamata-type theorems in the framework of regularly log-periodic functions. The ratio
Tauberian theorem [8, Theorem 2.10.1], a general version of the Tauberian theorem for Laplace-
Stieltjes transforms, holds for O-regular varying functions. The equivalence of the behavior of U
at infinity and Û at zero holds, if and only if U∗(λ) = lim supx→∞ U(λx)/U(x) is continuous at 1.
The latter condition for functions defined in (3) is equivalent to the continuity of p; see Proposition
2. In particular, the discontinuity of p is the reason that the ratio Tauberian theorem [8, Theorem
2.10.1] does not hold in this setup. However, in Theorem 1 below we do provide an equivalence
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between the tail behavior of the function, and the behavior of its Laplace–Stieltjes transform at
zero. In [9, 10], Buldygin and Pavlenkov proved Karamata theorems in the sense of Theorems
1.5.11 (direct half) and 1.6.1 (converse half) of Bingham, Goldie and Teugels [8], for functions
satisfying (3) with continuous p. Here we extend these results.

Section 2 contains the main results of the paper. After some preliminaries, first we deal with
a Tauberian theorem for the Laplace–Stieltjes transform, then we prove the direct half of the
Karamata theorem, and a monotone density theorem. In Section 3 we give some applications. We
prove that the tail of a nonnegative random variable is regularly log-periodic, if and only if the
same is true for its Laplace transform at 0. Using this result we determine the tail behavior of
fixed points of certain smoothing transforms. We reprove, in a special case, a result by Watanabe
and Yamamuro [35] for tails of semistable random variables. Finally, we spell out some related
results on the limit of supercritical branching processes.

2 Results

2.1 Preliminaries

First we discuss the place of regularly log-periodic functions among well-known function classes,
such as regularly varying functions, extended and O-regularly varying functions.

In the following we always assume that f : [0,∞)→ [0,∞) is nonnegative and measurable. For
λ > 0 let

f∗(λ) = lim sup
x→∞

f(λx)

f(x)
, f∗(λ) = lim inf

x→∞

f(λx)

f(x)
.

A function f is extended regularly varying if for some constants c, d

λd ≤ f∗(λ) ≤ f∗(λ) ≤ λc, λ > 1, (6)

and it is O-regularly varying if
0 < f∗(λ) ≤ f∗(λ) <∞.

First we note that general regularly log-periodic functions can be quite irregular.

Example 1. Consider the function

f(x) =

{
n, if x ∈ [(1 + n−1)2n, (1 + 2n−1)2n], n ≥ 2,

1, otherwise.
(7)

Then (1) holds with `(x) ≡ 1, ρ = 0, r = 2, and p(x) ≡ 1. Indeed, limn→∞ f(2nx) = 1 for every
x > 0, but f is not even bounded, and the exceptional intervals are large.

For monotone log-periodic functions the situation is not so bad. A function f : [0,∞)→ [0,∞)
is ultimately monotone if it is monotone (increasing or decreasing) for large enough x.

Proposition 1. Let f ∈ RL(p, r, ρ) be an ultimately monotone regularly log-periodic function.
Then

lim sup
x→∞

f(x)

xρ`(x)
<∞,

and f is O-regularly varying.
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Proof. Assume that f is ultimately monotone increasing. The decreasing case follows the same
way. Indirectly assume that f(xn)/(xρn`(xn)) → ∞ for some xn ↑ ∞. Write xn = rknzn, where
zn ∈ [1, r). Using the Bolzano–Weierstrass theorem, we may assume that zn → λ ∈ [1, r]. With
some λ < η ∈ Cp, for large enough n

f(rknzn)

(rknzn)ρ`(rknzn)
≤ f(rknη)

(rkn)ρ`(rknzn)
→ ηρp(η),

which is a contradiction. The O-regular variation follows from the boundedness and strict positivity
of p.

For the extended regular variation, and for the continuity of f∗ stronger conditions are needed.

Proposition 2. Assume that for a slowly varying function `, for ρ ∈ R, r > 1, and p ∈ Pr

f(x) = xρ`(x)p(x).

Then f is

(i) extended regularly varying if and only if p is Lipschitz on [1, r];

(ii) regularly varying if and only if p is constant.

Moreover, f∗ is continuous at 1, if and only if p is continuous.

Note that a logarithmically periodic function is globally Lipschitz if and only if it is constant.

Proof of Proposition 2. The logarithmic periodicity of p implies

f∗(λ) = λρ sup
x∈[1,r]

p(λx)

p(x)
,

from which we see that f∗ is continuous at 1 if and only if p is continuous.
We turn to (i). Let λ > 1. If p is Lipschitz with Lipschitz constant L, then for x ∈ [1, r] we

have p(λx) ≤ p(x) + Lx(λ− 1), thus

sup
x∈[1,r]

p(λx)

p(x)
≤ 1 + L(λ− 1) sup

x∈[1,r]

x

p(x)
≤ λc−ρ

for some c > 0. The proof of the lower bound is similar. For the converse, assume indirectly that
p is not Lipschitz. Then there are two sequences λn ↓ 1, and xn → x ∈ [1, r] such that

|p(λnxn)− p(xn)| ≥ nxn(λn − 1),

consequently (6) cannot hold. Finally, (ii) is obvious.
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2.2 Tauberian theorem for the Laplace transform

Recall (4) and (5). There is a natural correspondence between Pr,ρ and Qr,ρ.

Lemma 1. For p ∈ Pr,ρ, ρ > 0, define the operator Ar,ρ = Aρ as

Aρp(s) = sρ
∫ ∞
0

e−sxd(p(x)xρ). (8)

Then Aρ : Pr,ρ → Qr,ρ is one-to-one.

Proof of Lemma 1. It is clear from the definition that Aρp ∈ Qr,ρ.
Conversely, let q ∈ Qr,ρ be given. Since s−ρq(s) is completely monotone, there is a nondecreas-

ing right-continuous function g : [0,∞)→ [0,∞), g(0) = 0 such that

s−ρq(s) =

∫ ∞
0

e−sxdg(x). (9)

To prove that p(x) := x−ρg(x) ∈ Pr,ρ we only have to show the logarithmic periodicity of p.
Substituting s→ rs in (9) and using that q(rs) = q(s) we obtain that∫ ∞

0
e−sxdg(x) =

∫ ∞
0

e−sxd[rρg(x/r)].

Uniqueness of the Laplace–Stieltjes transform implies

g(x) = rρg(x/r), x ∈ Cg,

from which
p(x) = p(x/r), x ∈ Cp.

If two right-continuous functions agree in all but countable many points, then they agree every-
where.

For a real function f the set of its continuity points is denoted by Cf . In the following, ` stands
for a slowly varying function either at infinity, or at zero. The set of slowly varying functions at
infinity (zero) is denoted by SV∞ (SV0).

Theorem 1. Let U : [0,∞) → [0,∞) be an increasing function, ρ ≥ 0, r > 1, and ` ∈ SV∞ be a
slowly varying function. Then

lim
n→∞

U(rnz)

(rnz)ρ`(rnz)
= p(z) for each z ∈ Cp, for some p ∈ Pr, (10)

and
Û(s) ∼ s−ρ`(1/s)q(s) as s ↓ 0, for some q ∈ Pr, (11)

are equivalent. In each case, necessarily p ∈ Pr,ρ, q ∈ Qr,ρ, and Aρp = q for ρ > 0, and p = q for
ρ = 0.

Moreover, if p is continuous, then (10) implies

U(x) ∼ xρ`(x)p(x) as x→∞. (12)
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Remark 1. (i) For ρ = 0 the result follows from [8, Theorem 1.7.1].

(ii) The equivalence of U(rnz) = o(rn`(rn)) and Û(s) = o(s−ρ`(1/s)) also follows from [8, The-
orem 1.7.1].

(iii) For continuous p the ratio Tauberian theorem [8, Theorem 2.10.1], (Korenblyum [25], Feller
[15], Stadtmüller and Trautner [33]) states that (11) and (12) are equivalent. Indeed, by
Propositions 1 and 2 U is always O-regularly varying and p is continuous if and only if U∗(λ)
is continuous at 1. Moreover, the Laplace–Stieltjes transform of xρp(x) is s−ρq(s). Theorem
2.10.1 (iii) in [8] states that the continuity of U∗ at 1, is also necessary in general for the
equivalence of (11) and (12).

Proof of Theorem 1. Concerning the first remark above, we may assume that ρ > 0. The proof fol-
lows the standard idea of Tauberian theorems (see Theorem 1.7.1 [8]) combined with the following
lemma from [24].

Lemma 2. Assume that p ∈ Pr is continuous, ` ∈ SV∞, α ∈ R, U is monotone, and for any
z ∈ [1, r)

lim
n→∞

U(zrn)

(zrn)α`(rn)
= p(z).

Then
U(x) ∼ xα`(x)p(x).

The monotonicity of U and (10) readily imply that p ∈ Pr,ρ. From Proposition 1

lim sup
x→∞

U(x)

xρ`(x)
= K <∞ (13)

follows. Using Potter’s bounds we obtain

Û(x−1) =

∫ ∞
0

e−y/xdU(y)

≤ U(x) +
∞∑
n=1

e−2
n−1

U(2nx)

≤ 2Kxρ`(x)

[
1 +

∞∑
n=1

e−2
n−1

2n(ρ+1)

]
.

Therefore Û(x−1)/(xρ`(x)) is bounded. Introduce the notation

Ux(y) =
U(xy)

xρ`(x)
.

Using the logarithmic periodicity, for any z > 0 we have

lim
n→∞

Urnz(y) = yρp(zy) =: Vz(y) for all y such that zy ∈ Cp.
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Simply

Ûx(s) =
Û(s/x)

xρ`(x)
.

Since Urnz(y) converges, using the continuity and uniqueness theorem for Laplace–Stieltjes trans-
forms, we obtain that

lim
n→∞

Û(s/(rnz))

(rnz)ρ`(rnz)
= V̂z(s)

for all s > 0, since V̂z, being a Laplace–Stieltjes transform, is continuous. Choosing s = 1, after
short calculation we have

lim
n→∞

Û(1/(rnz))

(rnz)ρ`(rnz)
= q(1/z),

with q = Aρp. Since q is continuous, Lemma 2 implies

Û(s) ∼ s−ρ`(1/s)q(s) as s ↓ 0,

as stated.
For the converse, note that (11) implies

Ûx(s) =
Û(s/x)

xρ`(x)
∼ s−ρq(s/x) as x→∞.

Since q ∈ Pr we have for any z > 0

lim
n→∞

Ûrnz(s) = s−ρq(s/z). (14)

Therefore, the continuity theorem gives

lim
n→∞

Urnz(y) = uz(y), y ∈ Cuz

for some nondecreasing function uz. Thus ûz(s) = s−ρq(s/z), which implies q ∈ Qr,ρ. Short
calculation shows that the right-hand side of (14) is the Laplace–Stieltjes transform of uz(y) :=
yρp(zy). Note that 1 ∈ Cuz whenever z ∈ Cp, thus (10) holds for all z ∈ Cp. The second statement
follows from Lemma 2.

The same proof gives analogous result in the case x ↓ 0, s→∞; see [8, Theorem 1.7.1’].

2.3 Karamata and monotone density theorems

Let Pmr,ρ denote the set of functions in Pr,ρ, which are m-times differentiable on (0,∞) (we do
not assume continuity of the mth derivative). For r > 1 and ρ > 0 introduce the operator
Br,ρ = Bρ : Pr → P1

r,ρ

Bρp(x) = x−ρ
∫ x

0
yρ−1p(y)dy. (15)
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Using the logarithmic periodicity, short calculation shows that∫ rm

0
sρ−1p(s)ds =

rmρ

rρ − 1

∫ r

1
sρ−1p(s)ds,

and thus

Bρp(x) = r−ρ{logr x}

[
1

rρ − 1

∫ r

1
sρ−1p(s)ds+

∫ r{logr x}

1
sρ−1p(s)ds

]
, (16)

where {x} = x−bxc stands for the fractional part of x. It is easy to see that Bρp ∈ P1
r,ρ. Moreover,

it is one-to-one with inverse

B−1ρ q(x) = x1−ρ
d

dx
[xρq(x)], q ∈ P1

r,ρ. (17)

The following statement is a Karamata type theorem for regularly log-periodic functions; see
[8, Theorem 1.5.11].

Theorem 2. Assume that for some ρ > 0,

lim
n→∞

u(rnz)

(rnz)ρ−1`(rnz)
= p0(z) for each z ∈ Cp0 , for some p0 ∈ Pr, (18)

and

lim sup
x→∞

u(x)

xρ−1`(x)
<∞. (19)

Then

U(x) =

∫ x

0
u(y)dy ∼ xρ`(x)p(x) as x→∞, (20)

where p = Bρp0.

Remark 2. (i) For continuous p0, condition

u(x) ∼ xρ−1`(x)p0(x) as x→∞,

implies (20); see Lemma 3 by Buldygin and Pavlenkov [10]. (Compare with formula (16).
Note that our ρ and their ρ are different.)

(ii) It is again straightforward to extend this result to the case when the limit in (18) is zero.

Proof of Theorem 2. From (19) we readily obtain as in [8, Proposition 1.5.8] that

lim sup
x→∞

U(x)

xρ`(x)
<∞. (21)

Short calculation gives for any 0 < ε < 1

U(rnz)− U(rnzε)

(rnz)ρ`(rnz)
=

∫ 1

ε

u(rnzt)

(rnzt)ρ−1`(rnzt)
tρ−1

`(rnzt)

`(rnz)
dt.
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Whenever tz ∈ Cp the integrand converges to p0(tz)t
ρ−1. Since the set of discontinuity points of a

right-continuous function is at most countable, and integrable majorant exists by (19) we see

lim
n→∞

U(rnz)− U(rnzε)

(rnz)ρ`(rnz)
=

∫ 1

ε
tρ−1p0(tz) dt.

Finally, (21) implies

lim sup
ε↓0

lim sup
n→∞

U(rnzε)

(rnz)ρ`(rnz)
= 0.

Combining the latter two limit relations we obtain

lim
n→∞

U(rnz)

(rnz)ρ`(rnz)
=

∫ 1

0
tρ−1p0(tz)dt = z−ρ

∫ z

0
sρ−1p0(s)ds = Bρp0(z). (22)

Since Bρp0 is continuous, the statement follows from Lemma 2.

The statement remains true for ρ = 0 in the following version.

Lemma 3. Assume that for some p0 ∈ Pr

lim
n→∞

rnz u(rnz)

`(rnz)
= p0(z) for each z ∈ Cp0 , (23)

and

0 < lim inf
x→∞

xu(x)

`(x)
≤ lim sup

x→∞

xu(x)

`(x)
<∞. (24)

Then U(x) =
∫ x
0 u(y)dy is slowly varying, and limx→∞ U(x)/`(x) =∞.

Remark 3. As for Theorem 2, condition (24) is not very restrictive, and necessary in general.

Proof. The proof is almost identical to the proof of [8, Proposition 1.5.9a].
Put

lim inf
x→∞

xu(x)

`(x)
=: k > 0.

Then

lim inf
x→∞

U(x)

`(x)
≥ k

2
lim inf
x→∞

1

`(x)

∫ x

εx

`(y)

y
dy =

k

2
log ε−1.

As ε ↓ 0 we get limx→∞ U(x)/`(x) =∞. Put ε(x) = xu(x)/U(x). We showed that limx→∞ ε(x) =
0. Noticing

d

dx
logU(x) =

U ′(x)

U(x)
=
ε(x)

x
,

the representation theorem of slowly varying functions ([8, Theorem 1.3.1]) implies the statement.

The converse part of Theorem 2 is the corresponding monotone density theorem.
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Theorem 3. Assume that U(x) =
∫ x
0 u(y)dy, u is ultimately monotone, and (10) holds with ρ ≥ 0.

If ρ > 0, then p = Bρp0 for some p0 ∈ Pr. For ρ = 0 let p0(x) ≡ 0. In both cases

lim
n→∞

u(rnz)

(rnz)ρ−1`(rnz)
= p0(z) for each z ∈ Cp0 .

Moreover, if p0 is continuous, then

u(x) ∼ xρ−1`(x)p0(x) as x→∞.

Remark 4. (i) We see from the statement that if (10) holds, and U has an ultimately monotone
density, then necessarily p in (10) is differentiable.

(ii) Note that for ρ = 0 the statement follows from the ‘usual’ monotone density theorem [8,
Theorem 1.7.2], since p ∈ Pr is necessarily constant. Theorem 1.7.2 in [8] also implies that
the result remains true when the limit p in (10) is zero.

Proof of Theorem 3. By (10)

U(bx)− U(ax)

xρ`(x)
=

∫ b

a

u(sx)

xρ−1`(x)
ds

is bounded as x → ∞. Since u is ultimately monotone, this readily implies that the integrand
is bounded too as x → ∞, which allows us to use Helly’s selection theorem. Fix z > 0, and
consider the sequence rnz. By the selection theorem, there is a subsequence nk and a monotone
limit function vz such that

lim
k→∞

u(rnkzs)

(rnkz)ρ−1`(rnkz)
= vz(s) for each s ∈ Cvz . (25)

On the other hand, U(xy)/(xρ`(x)) converges on the sequence rnz, thus for the limit function vz∫ b

a
vz(s)ds = bρp(bz)− aρp(az) (26)

for 0 < a < b < ∞ such that az, bz ∈ Cp. This clearly determines the limit function in its
continuity points, and so the convergence in (25) holds along the whole sequence n. The latter
implies that vz(rs) = rρ−1vz(s). From (26) we have that p ∈ P1

r,ρ. Let p0 = B−1ρ p. By (17)

vz(s) =
d

ds
(sρp(sz)) = sρ−1p0(sz).

If z ∈ Cp0 , then s = 1 is a continuity point of vz in (25), and the first statement follows. The
second follows from Lemma 2.

The following statements are versions of the previous results, which we need later. Since the
proofs are the same, we omit them.
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First we deal with the case when ρ < 0. Similarly as before let P1
r,ρ denote the set of functions

in Pr,ρ, which are differentiable on (0,∞). For r > 1 and ρ < 0 introduce the operator Br,ρ = Bρ :
Pr → P1

r,ρ

Bρp(x) = x−ρ
∫ ∞
x

yρ−1p(y)dy. (27)

As before Bρp ∈ P1
r,ρ, and it is one-to-one with inverse

B−1ρ q(x) = −x1−ρ d

dx
[xρq(x)], q ∈ P1

r,ρ. (28)

Proposition 3. Let U(x) =
∫∞
x u(y)dy, where u is ultimately monotone, r > 1, ρ < 0. Then

lim
n→∞

u(rnz)

(rnz)ρ−1`(rnz)
= p0(z) for each z ∈ Cp0 , for some p0 ∈ Pr,

if and only if

lim
n→∞

U(rnz)

(rnz)ρ`(rnz)
= p(z) for each z ∈ Cp, for some p ∈ Pr.

Moreover, p = Bρp0, in particular p ∈ Pr,ρ is continuous, thus

U(x) ∼ xρ`(x)p(x) as x→∞.

For ρ = 0 assume further that
∫∞
0 u(y)dy <∞. Then U ∈ SV∞, and limx→∞ U(x)/`(x) =∞.

For continuous p see [10, Lemma 3].
At 0 the corresponding result is the following.

Proposition 4. Let U(x) =
∫ x
0 u(y)dy, where u is ultimately monotone, r > 1, ρ > 0, and ` ∈ SV0.

Then

lim
n→∞

u(r−nz)

(r−nz)ρ−1`(r−nz)
= p0(z) for each z ∈ Cp0 , for some p0 ∈ Pr,

if and only if

lim
n→∞

U(r−nz)

(r−nz)ρ`(r−nz)
= p(z) for each z ∈ Cp, for some p ∈ Pr.

Moreover, p = Bρp0, in particular p is continuous, thus

U(x) ∼ xρ`(x)p(x) as x ↓ 0.

3 Applications

3.1 Tails of nonnegative random variables

In this subsection we prove the log-periodic analogue of Theorem A by Bingham and Doney [7]
(Theorem 8.1.8 in [8]).
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Let X be a nonnegative random variable with distribution function F . If EXm <∞, then its
Laplace transform

F̂ (s) =

∫ ∞
0

e−sxdF (x) (29)

can be written as

F̂ (s) =
m∑
k=0

µk
(−s)k

k!
+ o(sm) as s ↓ 0,

where µk = EXk. Define for m ≥ 0

fm(s) = (−1)m+1

[
F̂ (s)−

m∑
k=0

µk
(−s)k

k!

]
,

gm(s) =
dm

dsm
fm(s) = µm − (−1)mF̂ (m)(s).

(30)

Theorem 4. Let ` ∈ SV∞, m ∈ {0, 1, . . .}, α = m + β, β ∈ [0, 1], q̃m, qm, p ∈ Pr. The following
are equivalent:

fm(s) ∼ sα`(1/s)q̃m(s) as s ↓ 0; (31)

gm(s) ∼ sβ`(1/s)qm(s) as s ↓ 0; (32)
limn→∞ `(r

n)−1
∫∞
rnz y

mdF (y) = p(z) for each z ∈ Cp, β = 0,

limn→∞
(rnz)α

`(rnz) F (rnz) = p(z) for each z ∈ Cp, β ∈ (0, 1),

limn→∞ `(r
n)−1

∫ rnz
0 ym+1dF (y) = p(z) for each z ∈ Cp, β = 1.

(33)

If β > 0, then (31)–(33) are further equivalent to

(−1)m+1F̂ (m+1)(s) ∼ sβ−1`(1/s)qm+1(s) as s ↓ 0, (34)

and qm+1 = B−1β qm.
Moreover, the relations between the appearing functions are the following:

qm = B−1α−(m−1)B
−1
α−(m−2) . . .B

−1
α q̃m, β ∈ [0, 1], q0 = q̃0,

p0,m = B−11−βA−11−βqm, β ∈ (0, 1),

p = p0,m −mB−m−βp0,m, p0,m = p+mB−βp, β ∈ (0, 1).

If β ∈ {0, 1}, then necessarily p(x) ≡ p > 0, qm(s) ≡ qm > 0, and p = qm.

Since p(x) is constant for β ∈ {0, 1}, by Lemma 2 (33) is further equivalent to
∫∞
x ymdF (y) ∼

p`(x), and
∫ x
0 y

m+1dF (y) ∼ p`(x) as x→∞, respectively.

Proof of Theorem 4. We follow the proof of Theorem 8.1.8 in [8].
The equivalence of (31) and (32) follows from iterated application of Proposition 4. (Note

that the derivatives of fm are monotone.) We obtain that qm = B−1α−(m−1)B
−1
α−(m−2) . . .B

−1
α q̃m.

Furthermore, for β > 0 both (31) and (32) are equivalent to (34), and qm+1 = B−1β qm.
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Put

Um(x) =

∫ x

0

∫ ∞
t

ymdF (y)dt,

and note that Ûm(s) = gm(s)/s. Therefore (32) is equivalent to

Ûm(s) ∼ sβ−1`(1/s)qm(s). (35)

For β ∈ [0, 1], using Theorem 1 with ρ = 1− β this is equivalent to

lim
n→∞

Um(rnz)

(rnz)1−β`(rnz)
= pm(z) z ∈ Cpm , (36)

where pm = A−11−βqm, for β 6= 1, and pm = qm for β = 1.
First assume β ∈ (0, 1). By Theorems 2 and 3 with ρ = 1− β, the latter holds if and only if

lim
n→∞

um(rnz)

(rnz)−β`(rnz)
= p0,m(z) z ∈ Cp0,m , (37)

where um(x) =
∫∞
x ymdF (y), and B1−βp0,m = pm. Note that for m = 0 this is exactly (33). Partial

integration gives

um(x) = xmF (x) +m

∫ ∞
x

ym−1F (y)dy. (38)

If (33) holds, then by Proposition 3 with ρ = −β, we obtain (37) with p0,m = p+mB−βp, so (32)
follows.

Conversely, using Fubini’s theorem, we get

xmF (x)

um(x)
= 1− mxm

um(x)

∫ ∞
x

y−m−1um(y)dy. (39)

Now, Proposition 3 with ρ = −m− β shows that (37) is further equivalent to

lim
n→∞

∫∞
rnz y

−m−1um(y)dy

(rnz)−m−β`(rnz)
= B−m−βp0,m(z). (40)

Thus, if (37) holds, then by (39)

lim
n→∞

(rnz)m+β

`(rnz)
F (rnz) = p0,m(z)−mB−m−βp0,m(z) z ∈ Cp0,m ,

which is exactly (33).

For β = 0 conditions (36) and (37) are still equivalent. If (37) holds, then the monotonicity of
u forces that p0,m is constant, thus (33) follows with p = p0,m. The converse is obvious.

For β = 1 note that (−1)m+1F̂ (m+1)(s) is the Laplace–Stieltjes transform of
∫ x
0 y

m+1dF (y).
Therefore, by Theorem 1, (33) and (34) are equivalent, and qm+1 = p.

We spell out this result in the most important special case, when m = 0. In this case f0(s) =
g0(s) = 1− F̂ (s).
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Corollary 1. Let ` ∈ SV∞, α ∈ [0, 1], q0, p ∈ Pr. The following are equivalent:

1− F̂ (s) ∼ sα`(1/s)q0(s) as s ↓ 0; (41){
limn→∞

(rnz)α

`(rnz) F (rnz) = p(z) for each z ∈ Cp, α ∈ [0, 1),

limn→∞ `(r
n)−1

∫ rnz
0 ydF (y) = p(z) for each z ∈ Cp, α = 1.

(42)

If α > 0, then (41), (42) are further equivalent to

−F̂ ′(s) ∼ sα−1`(1/s)q1(s) as s ↓ 0, (43)

and q1 = B−1α q0.
Moreover, p = B−11−αA−11−αq0, if α ∈ (0, 1). If α ∈ {0, 1}, then necessarily p(x) ≡ p > 0,

q0(s) ≡ q0 > 0, and p = q0.

Example 2. St. Petersburg distribution. The random variable X has generalized St. Petersburg
distribution with parameter α ∈ (0, 1] (and p = q = 1/2) if P{X = 2n/α} = 2−n, n = 1, 2, . . .. The
tail of the distribution function

F (x) = P{X > x} =
2{α log2 x}

xα
, x ≥ 21/α,

where {x} stands for the fractional part of x. On generalized St. Petersburg distributions we refer
to Csörgő [13], Berkes, Györfi, and Kevei [3], and the references therein.

With the notation of Corollary 1, for α < 1 we have r = 21/α, p(z) ≡ 2{α log2 z}, and `(x) ≡ 1,
while if α = 1 then r = 2, p(z) ≡ 1, and `(x) = log2 x. In this special case for the Laplace
transform

F̂ (s) =
∞∑
n=1

e−2
n/αs2−n

explicit computation shows that

1− F̂ (s) ∼ sα
∞∑

m=−∞

(
1− exp

[
2(m−{α log2 s

−1})/α
])

2−m+{α log2 s
−1}

=: sαq0(s)

as s ↓ 0, whenever α < 1, and

1− F̂ (s) ∼ s log2 s
−1 as s ↓ 0,

for α = 1. This is exactly the statement of Corollary 1. A somewhat lengthy but straightforward
calculation shows that q0 = A1−αB1−αp for α < 1.

3.2 Fixed points of smoothing transforms

Let T = (Ti)i∈N be a sequence of nonnegative random variables; it can be finite, or infinite,
dependent, or independent. A random variable X, or its distribution, is the fixed point of the
(homogeneous) smoothing transform corresponding to T , if

X
D
=
∑
i≥1

XiTi, (44)
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where on the right-hand side X1, X2, . . . are iid copies of X, and they are independent of T .
The theory of smoothing transforms goes back to Mandelbrot [28]. Existence and behavior of

the solution of equations of type (44) was investigated by Durrett and Liggett [14], Guivarc’h [19],
Liu [27], Biggins and Kyprianou [5], Alsmeyer, Biggins, and Meiners [1], to mention just a few. For
applications and references we refer to Section 5.2 in the monograph [11] by Buraczewski, Damek,
and Mikosch.

Most of the results on the tail behavior of the solution provide conditions which imply exact
power-law tail. We are aware of very few exceptions. Theorem 2.2 in [27] states that in the
arithmetic case, under appropriate conditions there is an α > 0, such that

0 < lim inf
x→∞

xαP{X > x} ≤ lim sup
x→∞

xαP{X > x} <∞.

Guivarc’h [19, p.268] noted without proof that in the arithmetic case under appropriate conditions
the tail of X, the solution of (44) behaves as p(x)x−α, for some p ∈ Pr,α. The implicit renewal
theory for the (nonhomogeneous) smoothing transform was worked out by Jelenković and Olvera-
Cravioto [23] both in the arithmetic case and nonarithmetic case.

In order to state the main result in [1] we need some further definition and assumptions. Let
N =

∑
i I(Ti > 0) denote the number of positive terms in the right-hand side in (44) and put

m(θ) = E
∑N

i=1 T
θ
i . Assume that

(i) P{T ∈ {0, 1}N} < 1;

(ii) EN > 1;

(iii) there exists an α ∈ (0, 1], such that 1 = m(α) < m(β), for each β ∈ [0, α);

(iv) either E
∑

i≥1 T
α
i log Ti ∈ (−∞, 0) and E(

∑
i≥1 T

α
i ) log+

∑
i≥1 T

α
i < ∞, or there is a θ ∈

[0, α), such that m(θ) <∞;

(v) there exists a nonnegative random variable W , which is not identically 0, such that

W
D
=
∑
i≥1

Tαi Wi,

where on the right-hand side W1,W2, . . . are iid copies of W , they are independent of T , and
T has the same distribution as in (44);

(vi) the positive elements of T are concentrated on rZ for some r > 1, and r is the smallest such
number.

Under the above assumptions in [1, Corollary 2.3] it was showed that the Laplace transform ϕ of
the solution of the fixed point equation (44) has the form

ϕ(t) = ψ(h(t)tα), t ≥ 0, (45)

where α ∈ (0, 1], h is a logarithmically r-periodic function such that h(t)tα is a Bernstein-function,
i.e. its derivative is completely monotone, and ψ is a Laplace transform of the random variable W
in (v), such that (1− ψ(t))t−1 is slowly varying at 0.
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The tail behavior of the solutions was not discussed in [1]. Theorem 4, in particular Corollary
1, allows us the determine the tail behavior of such solutions. Indeed, if ` ∈ SV∞, then ˜̀(x) =
`(xαh(x)) ∈ SV∞. Therefore, from (45)

1− ϕ(t) = tα ˜̀(1/t)h(t),

which allows us to apply Corollary 1. Noting that `(xαh(x)) ∼ `(xα) as x → ∞, we obtain the
following.

Corollary 2. Assume (i)–(vi). If α < 1, then for the tail F (x) = P{X > x} of the solution of
equation (44) we have

lim
n→∞

(rnz)α

`(rαn)
P{X > rnz} = p(z), z ∈ Cp,

where p = B−11−αA−11−αh. While, if α = 1, then h(t) ≡ h is necessarily a constant, and∫ x

0
ydF (y) ∼ h `(x) as x→∞.

3.3 Semistable laws

Logarithmically periodic functions, and regularly log-periodic functions naturally arise in the anal-
ysis of semistable distributions. The class of semistable laws, introduced by Paul Lévy, is an im-
portant subclass of infinitely divisible laws. The semistable laws are the stable laws, and those
infinitely divisible distributions, which has no normal component, and the Lévy measure µ in the
Lévy–Khinchin representation satisfies

µ((x,∞)) = x−αp+(x), µ((−∞, x)) = x−αp−(x), x > 0,

where α ∈ (0, 2), r > 1, and p+, p− ∈ Pr,−α∪{0} (0 is the identically 0 function), such that at least
one of them is not identically 0. For properties, characterization, applications and some history of
semistable laws we refer to Megyesi [30], Huillet, Porzio, and Ben Alaya [21], and Meerschaert and
Scheffler [29], and the references therein. For a more recent account on semistability see Chaudhuri
and Pipiras [12]. We note that in the characterization of the domain of geometric partial attraction
regularly log-periodic functions play an important role; see Grinevich and Khokhlov [18], and
Megyesi [30].

Although there has been large interest in semistable laws in the last 50 years, the tail behavior
was determined completely only in 2012 by Watanabe and Yamamuro [35]; for partial results for
nonnegative semistable distributions see [21, p.357] with continuous p function, and Shimura and
Watanabe [31, Theorem 1.3] with general p. We reprove some of the results in [35], emphasizing
that more precise and more general results were shown in [35]. In particular, we restrict ourselves
to the nonnegative semistable laws, since the technique developed in this paper works only for
one-sided laws.

The Laplace transform of a nonnegative semistable random variable W has the form

Ee−sW = exp

{
−as−

∫ ∞
0

(1− e−sy)ν(dy)

}
, (46)
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where a ≥ 0, and ν is a Lévy measure such that ν(x) = p(x)x−α, with p ∈ Pr,−α, α ∈ (0, 1), and
ν(x) = ν((x,∞)), x > 0. Partial integration gives∫ ∞

0
(1− e−sy)ν(dy) =

∫ ∞
0

e−sysν(y)dy = sÛ(s),

where

U(x) =

∫ x

0
ν(y)dy = x1−αB1−αp(x).

From Theorem 1 we have
Û(s) ∼ sα−1q(s) as s ↓ 0,

with q = A1−αB1−αp. Thus, (46) gives

1−Ee−sW ∼ as+

∫ ∞
0

(1− e−sy)ν(dy) ∼ sαq(s) as s ↓ 0.

Corollary 1 implies
lim
n→∞

(rnz)αP{W > rnz} = p(z) for each z ∈ Cp,

or, which is the same

lim
n→∞

rnαP{W > rnz} = ν(z) for each z ∈ Cp.

This is the statement in Theorem 1 [35]. However, there the limit above is determined for any
z > 0.

3.4 Supercritical Galton–Watson process

Consider a supercritical Galton–Watson process (Zn)n∈N, Z0 = 1, with offspring generating func-
tion f(s) = EsZ1 , and offspring mean µ = EZ1 ∈ (1,∞). Let q ∈ [0, 1) denote the extinction
probability, i.e. the smaller root of f(s) = s in [0, 1]. Denote fn the n-fold iterate of f , which is
the generating function of Zn. On general theory of branching processes see Athreya and Ney [2].

Further assume EZ1 logZ1 <∞, which assures that

Zn
µn
−→W as n→∞ a.s., (47)

with EW = 1. The Laplace transform of W , ϕ(t) = Ee−tW , t ≥ 0, satisfies the Poincaré functional
equation

ϕ(µt) = f(ϕ(t)).

The latter equation always has a unique (up to scaling) solution, which is a Laplace transform of
a distribution. However, the law of W can be determined explicitly only in very few special cases.
Therefore, it is important to obtain asymptotic behavior of the tail probabilities. Assume that we
are in the Schröder case, that is γ = f ′(q) > 0. Put α = − log γ/ logµ. Harris [20, Theorem 3.3]
proved that

ϕ(s)− q ∼ K(s)

sα
as s→∞, (48)
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where K is a logarithmically periodic function with period µ. Note that the limit distribution in
(47) puts mass q at 0, therefore lims→∞ ϕ(s) = q. From a version of Theorem 1, with n→ −∞ in
(10) and s→∞ in (11), it follows for the distribution function G(x)− q = P{W ≤ x} that

lim
n→∞

[G(r−nz)− q](r−nz)−α = p(z), (49)

with p = A−1α K.
A much stronger result was shown by Biggins and Bingham [4, Theorem 4], namely

G′(x) ∼ xα−1V (x) as x ↓ 0,

where V is a continuous, positive, logarithmically periodic function with period µ. For further
results on tail asymptotics of W we refer to Bingham [6], Biggins and Bingham [4], and to the
more recent papers by Fleischmann and Wachtel [16] and by Wachtel, Denisov, and Korshunov
[34].
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