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Given a CNF formula � with clauses C1, . . . , Cm and variables V = {x1, . . . , xn}, a truth 
assignment a : V → {0, 1} of � leads to a clause sequence σ�(a) = (C1(a), . . . , Cm(a)) ∈
{0, 1}m where Ci(a) = 1 if clause Ci evaluates to 1 under assignment a, otherwise Ci(a) = 0. 
The set of all possible clause sequences carries a lot of information on the formula, e.g. 
SAT, MAX-SAT and MIN-SAT can be encoded in terms of finding a clause sequence with 
extremal properties.
We consider a problem posed at Dagstuhl Seminar 19211 “Enumeration in Data Manage-
ment” (2019) about the generation of all possible clause sequences of a given CNF with 
bounded dimension. We prove that the problem can be solved in incremental polyno-
mial time. We further give an algorithm with polynomial delay for the class of tractable 
CNF formulas. We also consider the generation of maximal and minimal clause sequences, 
and show that generating maximal clause sequences is NP-hard, while minimal clause se-
quences can be generated with polynomial delay.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The concept of well-designed pattern trees was introduced by Letelier et al. [1] as a convenient graphic representation of 
conjunctive queries extended by the optional operator. The nodes of such a tree correspond to the queries, while the tree 
itself represents the optional extensions. Well-designed pattern trees have been studied from a complexity point of view in 
several aspects. One of the most interesting problems in the context of query languages is the generation problem, that is, 
generating the solutions one after the other without repetition.

Previous work The generation problem was studied for First-Order and Conjunctive Queries [2–5] and for well-designed 
pattern trees [1]. Recently, Kröll et al. [6] initiated a systematic study of the complexity of the generation problem of well-
designed pattern trees. They identified several tractable and intractable cases of the problem both from a classical and 
from a parameterized complexity point of view. One class of pattern trees however remained unclassified. For a class C of 
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conjunctive queries, a well-designed pattern tree T is globally in C if for every subtree T ′ of T the corresponding conjunctive 
query is also in C . The treewidth of a conjunctive query is the treewidth of its Gaifman-graph [7]. In [6], the complexity of 
the generation problem for the class of well-designed pattern trees falling globally in the class of queries of treewidth at 
most k and having c-semi-bounded interface was left open (see [6, Table 1 on page 16]).

At the Dagstuhl Seminar 19211 “Enumeration in Data Management”, Kröll proposed an open problem on the generation 
of clause sequences of CNF formulas [8, Problem 4.7]. The problem is motivated by the fact that it can be reduced to 
the above mentioned unsolved case of pattern trees, thus any bound on the generation complexity would be helpful in 
understanding the general problem. A generation algorithm outputs the objects in question one by one without repetition. We 
call it a polynomial delay procedure if the computing time between any two consecutive outputs is bounded by a polynomial 
of the input size. We call it incrementally polynomial, if for any k the first k objects can be generated in polynomial time in 
the input size and k. Finally, it is called total polynomial if all N objects are generated in polynomial time in the input size 
and N .

The problem studied in this paper can be formalized as follows. Let V = {x1, . . . , xn} be a set of n Boolean variables. We 
denote by x̄ j = 1 − x j the negation of variable x j . Variables and their negations together are called literals. A clause is an 
elementary disjunction of literals and a CNF is a conjunction of clauses. We view clauses also as subsets of the literals, and 
CNFs as sets of clauses. Given a CNF � = C1 ∧ · · ·∧ Cm and an assignment a : V → {0, 1}, the corresponding binary sequence 
σ�(a) = (C1(a), . . . , Cm(a)) is called a signature1 of �, that is, Ci(a) = 1 if clause Ci evaluates to 1 under assignment a, 
and Ci(a) = 0 otherwise. In particular, this means that � is satisfiable if and only if there exists some assignment a with 
σ�(a) = (1, . . . , 1). Moreover, MAX-SAT and MIN-SAT can be encoded by asking for a signature with the largest and smallest 
sum of elements, respectively.

As an example, consider the CNF formula � = C1 ∧ C2 ∧ C3 ∧ C4, where C1 = x1 ∨ x̄3, C2 = x̄2, C3 = x1 ∨ x2 ∨ x3 and 
C4 = x2 ∨ x̄3. Then assignment a1 = {x1 �→ 1, x2 �→ 1, x3 �→ 1} leads to signature σ�(a1) = (1, 0, 1, 1), while assignment 
a2 = {x1 �→ 0, x2 �→ 0, x3 �→ 1} leads to signature σ�(a2) = (0, 1, 1, 0). It is easy to see that � has six different signatures. In 
general, if the number of signatures is �(2n), then generating them in total polynomial time is not difficult. However, their 
number may be o(2n), presenting a potential challenge for generation.

Given a CNF � = C1 ∧ · · · ∧ Cm , the number of literals in clause Ci is denoted by |Ci |. We denote by dim(�) =
maxi=1,...,m |Ci |, where |Ci| denotes the number of literals of Ci . We call � a d-CNF if dim(�) ≤ d. The number of clauses
and the number of literals appearing in � are denoted by |�| and ‖�‖, respectively. The occurrence of a variable in a CNF 
is the number of clauses involving that variable or its negation. Vectors are written using bold fonts throughout, e.g. x. The 
problem asked in [8] is for d-CNF formulas where d is a fixed positive integer, but we also consider the same problem for 
general CNFs.

Motivated by MAX-SAT and MIN-SAT, we also consider maximal and minimal signatures. A signature of a CNF � is called 
maximal (resp. minimal) if an inclusionwise maximal (resp. minimal) subset of the clauses takes value 1.

Our results We give a polynomial delay algorithm for the class of tractable CNF formulas in Section 2. Section 3 discusses 
CNFs with bounded dimension. For the class of formulas with bounded dimension and variable occurrences, we give an in-
cremental polynomial algorithm in Section 3.1. In Section 3.2, we show that G S(�) can be solved in incremental polynomial 
time for formulas with a bounded dimension, thus answering the open problem posed by Kröll. The generation of maximal 
and minimal signatures is considered in Section 4. Finally, we conclude the paper in Section 5, where a ‘reversed’ variant of 
the problem is proposed as an open question.

2. Tractable CNFs

Let � and � be two CNFs. If the clauses of � are also clauses in �, then � is called a sub-CNF of �, denoted by � ⊆ �. 
We call a family of CNFs tractable if for any CNF � in this family the satisfiability of any sub-CNF of � can be decided in 
polynomial time even after fixing any subset of the variables at arbitrary values. For example, the classes of 2-CNFs or Horn 
CNFs are tractable.

Theorem 1. If � belongs to a tractable family and has m clauses, then its signatures can be generated with polynomial delay.

1 We prefer the term signature over the term clause sequence proposed by Kröll, since it is a binary string, not a sequence of clauses. Therefore we use 
the term signature in the rest of the paper.
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Proof. The idea is to apply the so-called ‘flashlight’ approach in the signature space, using SAT as a ‘flashlight’ [9]. Let 
� = ∧m

i=1 Ci . We are going to build a binary tree in which the paths from the root to the vertices of the tree correspond 
to binary values of initial segments of the set of clauses, that is, C1, . . . , Ck for some 1 ≤ k ≤ m. The tree is built layer by 
layer, each new layer corresponding to a new clause being added to the examined prefix. There exists a signature with this 
prefix if and only if the CNF formed by the clauses set to value one in this sequence is satisfiable even after all the forced 
fixing of variables that appear in clauses whose value is zero (note that a clause has value 0 if and only if all the literals in 
it are 0). If such a CNF is not satisfiable, we backtrack and do not explore the subtree rooted at this vertex as there exists 
no signature with this prefix. If the CNF is satisfiable, we continue building the corresponding subtree which in this case 
is guaranteed to contain at least one signature. The algorithm will not backtrack above this vertex before outputting all (at 
least one) signatures in this subtree. It is not difficult to verify that after at most 2m calls to SAT we can output a new 
signature not generated before. After outputting the last signature, the procedure terminates after at most m SAT calls.

By the above, the signatures of � can be generated with a delay of O (m) SAT-calls. As � belongs to a tractable family, 
this implies a polynomial delay algorithm, concluding the proof of the theorem. �
Remark 2. Let us remark that the family of monotone CNFs is tractable, but for this case there is a more efficient polynomial 
delay generation of the signatures. Indeed, in this case we can view a clause as a subset of the variables. Consequently, the 
set of zeros in a signature corresponds to a union of clauses. It is easy to see that such unions can be generated with 
O (nm) delay and O (n) average delay, where n is the number of variables, and m = |�| is the number of clauses, see [10, 
Proposition 11] and [11, Theorem 15].

Note that in this case Theorem 1 guarantees only an O (‖�‖m) delay, because every SAT call requires O (‖�‖) time.

3. CNFs with bounded dimension

3.1. Bounded variable occurrence

Given a CNF �, we denote by H� = (�, E) the conflict graph of �. The vertices of H� are the clauses of � and edges 
are exactly the conflicting pairs of clauses, i.e., pairs (Ci, C j) for which there exists a literal u ∈ Ci such that ū ∈ C j .

Let S ⊆ � be a maximal independent set of H� , and let L(S) = ⋃
Ci∈S Ci denote the set of literals appearing in the 

clauses of S . We define a partial assignment aS : L(S) → {0, 1} by setting all literals of L(S) to zero (and hence the com-
plementary literals are set to 1). The signature associated to S is then defined as σ�(S) := σ�(aS ) = (y1, . . . , ym) ∈ {0, 1}m . 
The coordinates of σ�(S) are well-defined as yi = 0 if and only if Ci ∈ S for i = 1, ..., m. We will dismiss the subscript �
whenever the CNF in question is clear from the context. Note that for different maximal independent sets S �= S ′ of H�

we have σ(S) �= σ(S ′). It is worth mentioning that all maximal independent sets of H� can be generated with polynomial 
delay [12–14], which is hence a good start for CNF signature generation.

Assume that � has bounded dimension, i.e., for a constant d we have |Ci | ≤ d for all i = 1, ..., m. Let us define X j = {Ci ∈
� | x j ∈ Ci or x̄ j ∈ Ci}. We say that � is of ω-bounded occurrence if |X j| ≤ ω for j = 1, ..., n and ω is a fixed constant.

Theorem 3. If � has bounded dimension and occurrence, then its signatures can be generated in incremental polynomial time.

Proof. An induced matching of an undirected graph is a matching which forms an induced subgraph, that is, no two of 
its edges are joined by an edge of the graph. A maximal induced matching can be found by a simple greedy approach: 
repeatedly select an edge e, add it to the solution, and delete the end-vertices of the edge together with the set of vertices 
adjacent to at least one of them.

Let M ⊆ E be a maximal induced matching in H� . Let us denote by μ the number of edges in M and by N the 2μ

vertices incident to edges in M . Note that H� has at least 2μ maximal independent sets (by choosing arbitrarily one of the 
endpoints from each edge of M and then greedily extending this set to a maximal independent set) and hence at least this 
many signatures can be generated with polynomial delay, as explained above. We denote by W ⊆ � the set of clauses that 
have edges in H� connecting them to some of the clauses in N , formally

W = {C ∈ � | ∃C ′ ∈ N : (C, C ′) ∈ E}
Note that N ⊆ W . Moreover, let us denote U = � \ W . It is easy to see that U is an independent set in H� , since any edge 
with both endpoints in U could be used to enlarge M , thus contradicting its maximality.

Assume that |Ci | ≤ d for all i = 1, ..., m, and |X j| ≤ ω for all j = 1, ..., n, where d and ω are fixed constants. Observe that 
with these assumptions all clauses in N contain together at most 2μd literals and so we have |W | ≤ 2μdω. Let K be the 
set of variables involved in clauses of W and let us denote n′ = |K |. Now we have n′ ≤ d|W |, implying

n′ ≤ 2μd2ω.

Finally, let us denote by L the (possibly empty) set of variables that appear only in clauses of U . Clearly, all variables in L are 
monotone in � (some variables appear only positively while some others appear only negatively) since U is an independent 
set in H� . Thus all literals in � that correspond to variables in L can be simultaneously assigned zero.
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The procedure that generates all signatures of � works in three steps. In the first step, all literals in L are set to 0 and 
the resulting CNF in n′ variables from K is denoted �′ . Then we generate with polynomial delay the maximal independent 
sets S� , � = 1, ..., k of H�′ (see [12–14]), and the corresponding signatures σ(S�), � = 1, ..., k of �, where k ≥ 2μ (note that 
a signature of �′ in this case extends uniquely to a signature of � by adding zeros for clauses that consist only of variables 
from L).

In the second step we generate all the remaining signatures stemming from assignments where all literals in L are set 
to zero. We try all 2n′

binary assignments to the variables in K and check for each of them whether a new signature was 
generated. Note that k ≥ 2μ ≥ (2n′

)1/2d2ω using the inequality n′ ≤ 2μd2ω, which in turn implies 2n′ ≤ k2d2ω . Hence this 
step can be done in an incremental polynomial time, in particular in O (mnk2d2ω) time since generating a signature for a 
given assignment takes O (mn) time.

For the third step let us assume that k′ ≥ k distinct signatures were generated in the first and second step. By switching 
the assignment to literals in L, we may get new signatures, resulting from changing some of the zeros in a signature to 
one. For any partial assignment to the variables in K we obtain a monotone CNF on variables in L, and hence this is a 
set-union generation problem that can be solved with polynomial delay as observed in the previous section. Since it suffices 
to consider only those partial assignments to the variables in K which produced a signature in the first two steps, we may 
get in this way the same signature multiple times, but no more than k′ times, and thus at this step the additional signatures 
are also generated in incremental polynomial time. �
3.2. Unbounded occurrence

In the previous section, we considered CNFs with bounded dimension and occurrence. The running time of the algorithm 
provided by Theorem 3 depends exponentially on ω, hence it is not suitable for handling the general case. In the present 
section, a more general procedure is given based on a different approach.

For a CNF �, we denote by G� = (�, E) the so called dual graph of � [15]. The vertices of G� are the clauses of � and 
edges are exactly the pairs of clauses (Ci, C j) for which there exists a variable that occurs in both Ci and C j (complemented 
or not). If S ⊆ � is an independent set of G� , then the clauses of S have pairwise disjoint sets of variables involved.

Theorem 4. There exists an algorithm A that generates the signatures of a CNF � consisting of m clauses in n binary variables in 
O (dm2nk(d

2)) total time, where d = dim(�) and k is the number of signatures.

Proof. We prove the claim by induction on d. For d ≤ 2 the claim follows by Theorem 1.
Assume now that we already proved the claim for all d′ < d, and let us consider a CNF � = C1 ∧ C2 ∧ · · · ∧ Cm with 

dim(�) = d. Let us associate to � its dual graph G� as defined above. Let S ⊆ � be a maximal independent set of G� . Such 
a set can be obtained by a simple greedy procedure in polynomial time in the size of �. Note that clauses in S involve 
pairwise disjoint sets of variables, due to the fact that S is an independent set of G� . Thus, we can choose a literal uC ∈ C
for each clause C ∈ S , set all other literals in C to zero, set all other variables not occurring in clauses of S to zero, and 
make all possible truth assignment to the literals uC , C ∈ S . This way we obtain k0 = 2|S| different binary signatures of �. 
Note that we can output these k0 signatures with polynomial delay.

The total number of variables involved in clauses of S is n′ ≤ d|S|. Hence we can assign in all possible ways values to 
these variables, and produce 2n′ ≤ kd

0 subproblems � j , j = 1, ..., 2n′
in the remaining variables in O (mn2n′

) = O (mnkd
0) time 

which is polynomial in the input size and k0, since d is a fixed constant. Note that each of these subproblems is obtained 
from � by fixing the n′ variables at a binary assignment, and such a substitution can be done in O (mn) time. Note also, 
that each of these residual problems is of dimension at most d − 1. Indeed, each of the clauses not in S shares at least 
one variable with the clauses of S , since S is a maximal independent set of G� , and now that shared variable is fixed at a 
binary value.

We apply algorithm A to each of the residual sub-CNFs � j , j = 1, ..., 2n′
, one by one. This way we produce signatures 

that extend the pattern on S defined by x j ∈ {0, 1}n′
, for all j = 1, ..., 2n′

one by one. Two of these extended signatures may 
coincide, but only if they are extensions of two different x j-s, since for a fixed x j algorithm A generates pairwise distinct 
extensions. Thus, we may produce the same signature no more than 2n′

times. Since 2n′ = O (kd
0), we can show that this 

procedure works in total polynomial time.
To see this let us introduce some additional notation. We denote by X j ⊆ Y = {0, 1}n′

, j = 1, ..., 2|S| the nonempty sets of 
(partial) assignments that produce the same signature on the clauses of S . Note that the X j-s partition the set Y of partial 
truth assignments. For x ∈ Y , let us denote by �(x) the residual CNF, and by k(x) the number of signatures of �(x). We 
denote by g(�) the running time of the above described recursive algorithm on CNF � and let G(m, n, d, k) be the maxima 
of g(�) over all CNFs with at most m clauses on n variables having dim(�) ≤ d and having at most k signatures.

The total computational time in the first phase of the above procedure that ends with producing a list of 2n′
residual 

CNFs, each of dim ≤ d − 1 is bounded by O (m2n) + O (mnk0) + O (mnkd
0) ≤ Km2nkd

0 for a suitable constant K that does not 
depend on m, n, and k0. The first term on the left hand side is the time to build G� and to find a maximal independent 
set S . The second term is the time we need to generate the k0 initial signatures. The third term is the time to generate the 
2n′ ≤ kd subproblems.
0
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For x ∈ X j and x′ ∈ X j′ with j �= j′ the CNFs �(x) and �(x′) cannot share signatures, since those must already differ 
on S by the definition of the sets X j for j = 1, ..., k0. However, for x, x′ ∈ X j CNFs �(x) and �(x′) may share (some, even 
many) signatures. Discounting the one signature we already produced with the given 0-1 values on S , we can still expect 
k j different signatures produced by algorithm A when we use it for CNFs �(x), x ∈ X j , where maxx∈X j [k(x) − 1] ≤ k j ≤∑

x∈X j
[k(x) − 1]. Thus, in total we get k = k0 + k1 + · · · + k2|S| different signatures for �. The total running time on CNFs 

�(x), x ∈ X j can be bounded by
∑

x∈X j

g(�(x)) ≤ |X j|G(m,n,d − 1,k j).

Thus, for the total running time of algorithm A on � we get

g(�) ≤ G(m,n,d,k) ≤ Km2nkd
0 +

k0∑

j=1

|X j|G(m,n,d − 1,k j)

≤ Km2nkd
0 + kd

0G(m,n,d − 1,k),

where for the last inequality we used k j ≤ k for all j = 1, ..., k0, implying G(m, n, d − 1, k j) ≤ G(m, n, d − 1, k), which allows 
this quantity to be factored out of the sum, that can be then upper bounded by 

∑k0
j=1 |X j | = 2n′ ≤ kd

0. Using this we can 

show by induction on d that G(m, n, d, k) ≤ Ldm2nk(d
2) for some constant L (we will choose L ≥ K ) which will complete the 

proof of our claim. Now

G(m,n,d,k) ≤ Km2nkd
0 + kd

0G(m,n,d − 1,k)

≤ Km2nkd
0 + kd

0L(d − 1)m2nk(d−1
2 )

≤ Lm2nkd + kd L(d − 1)m2nk(d−1
2 )

≤ Lm2nkd + L(d − 1)m2nk(d−1
2 )+d ≤ Ldm2nk(d

2). �
Remark 5. Since 2-CNFs are tractable, the running time of the algorithm can be slightly improved by stopping the recursion 
when d = 2, as pointed out by Strozecki [16].

Corollary 6. The algorithm constructed in the above proof works in incremental polynomial time.

Proof. Using the above theorem, we can prove this claim by induction on the dimension d. When d = 1, the claim is trivially 
true.

Consider now the general case, as in the proof of the above theorem. As we remarked there, producing the first k0 = 2|S|
signatures in fact can be done with polynomial delay. After this we start processing the CNFs �(x) for x ∈ X j , j = 1, ..., k0. 
Note that the signatures produced from �(x), x ∈ X j and �(x′), x′ ∈ X j′ are all different if j �= j′ . Note also that dim(�(x)) ≤
d − 1 for all x ∈ X j , j = 1, ..., k0, and thus we can assume by induction that their signatures can be produced in incremental 
polynomial time in the size of �(x), which is bounded by the size of �. Thus, if X j = {x1, ..., x�}, then we can produce 
k(x1) new signatures in incremental polynomial time, in fact regardless how many we produced previously (including the 
k0 we have from the first phase). Let us denote by q(m, n, k(x1)) the polynomial bounding the total time processing �(x1). If 
k(x2) > k(x1), then maybe the first k(x1) signatures produced from �(x2) coincide with the ones we already generated from 
�(x1), but still after at most q(m, n, k(x1)) time we get a new signature. In the worst case, we have k j = k(x1) ≥ k(xi) for all 
xi ∈ X j , i �= 1, in which case processing �(xi), i = 2, ..., � may not produce any new signatures. Since � ≤ kd

0, this means that 
the largest gap between the output of the last signature of �(x1) and next new signature is not more than kd

0q(m, n, k(x1)), 
at a moment when we have already produced k′ ≥ k0 + k(x1) signatures. Thus this largest time gap between two outputs is 
still bounded by a polynomial of m, n, and the number of signatures k′ ≥ k0 + k(x1) produced so far. As both n and m are 
bounded by the input size ‖�‖, the corollary follows. �
4. Generating maximal and minimal signatures

Generation of maximal signatures is difficult as it includes SAT as a special case.

Theorem 7. Unless P=NP, the maximal signatures cannot be generated in total polynomial time.

Proof. Let us consider a CNF �, and observe that its unique maximal signature is the all-one vector if and only if � is 
satisfiable. Assume by contradiction that we have a total polynomial time algorithm for generating all maximal signatures, 
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and denote by t(k, �) the polynomial bound for its termination when the input has size k and output involves exactly �
signatures. Let us run this algorithm for t(||�||, 1) time, which is polynomial in the input size for input �. If this algorithm 
outputs the all-one vector then � is satisfiable, and otherwise it is not. Hence it would decide the satisfiability of � in 
polynomial time. As SAT is NP-complete [17], the theorem follows. �

It turns out that minimal signatures can be generated efficiently.

Theorem 8. Minimal signatures can be generated with polynomial delay for arbitrary CNF formulas.

Proof. We claim that there is a one-to-one correspondence between minimal signatures of a CNF � and maximal indepen-
dent sets of its conflict graph H� . Since H� can be built in polynomial time from � and maximal independent sets of a 
graph can be generated with polynomial delay [12–14], this would prove the theorem.

To see the above claim, assume first that a signature σ = {σC | C ∈ �} is a minimal signature of �. Note that the set 
S = {C ∈ � | σC = 0} is an independent set in H� . For any C ∈ � with σC = 1 there must exist a conflict between C
and some C ′ ∈ S , since otherwise we could set σC to zero without forcing any of the clauses in S to change their values, 
contradicting the minimality of σ . Thus S must be a maximal independent set.

The other direction follows from the fact that if S is a maximal independent set of H� and we set all the clauses in S to 
zero, then all other clauses of � are forced to take value one due to the conflicts between S and other vertices of H� . �
5. Conclusions

In this paper we show that all signatures of a given CNF with a bounded dimension can be generated in incremental 
polynomial time, answering an open problem posed by Kröll [8, Problem 4.7]. A faster incremental polynomial algorithm is 
provided for the class of formulas where both the dimension and the occurrence are bounded. Moreover, it is also shown 
that the same task can be done with polynomial delay if the input CNF is from a tractable class (in this case no bound on 
dimension or occurrence is necessary). Finally, it is proved that maximal signatures cannot be generated in total polynomial 
time unless P = N P , while minimal signatures can be generated with polynomial delay for arbitrary CNF formulas.

In this context it is interesting to note that given a 3-CNF � with m clauses and the vector y = (1, 1, ..., 1) ∈ {0, 1}m it 
is NP-hard to test whether y is a signature of �, or not ( y is a signature if and only if � is satisfiable). On the other hand, 
our results show that generating all signatures of � can be done in incremental polynomial time. This is a rather unusual 
behavior for a generation problem. Typically, if all solutions of a given problem can be generated in incremental polynomial 
time, checking if a given candidate is a solution or not is computationally easy.

An additional problem related to CNF signatures was stated at the Dagstuhl Seminar 19211 by Turán. Given a set S ⊆
{0, 1}m , does there exist a CNF with m clauses such that S is exactly its set of all signatures? If yes, can such a CNF be 
computed efficiently? This ‘reverse’ problem (get the signatures, output clauses) to the problem presented in this paper (get 
the clauses, output signatures) is to the best of our knowledge completely open.
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