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Chromatin mapping and single-cell immune
profiling define the temporal dynamics
of ibrutinib response in CLL
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The Bruton tyrosine kinase (BTK) inhibitor ibrutinib provides effective treatment for patients

with chronic lymphocytic leukemia (CLL), despite extensive heterogeneity in this disease. To

define the underlining regulatory dynamics, we analyze high-resolution time courses of

ibrutinib treatment in patients with CLL, combining immune-phenotyping, single-cell tran-

scriptome profiling, and chromatin mapping. We identify a consistent regulatory program

starting with a sharp decrease of NF-κB binding in CLL cells, which is followed by reduced

activity of lineage-defining transcription factors, erosion of CLL cell identity, and acquisition of

a quiescence-like gene signature. We observe patient-to-patient variation in the speed of

execution of this program, which we exploit to predict patient-specific dynamics in the

response to ibrutinib based on the pre-treatment patient samples. In aggregate, our study

describes time-dependent cellular, molecular, and regulatory effects for therapeutic inhibition

of B cell receptor signaling in CLL, and it establishes a broadly applicable method for epi-

genome/transcriptome-based treatment monitoring.
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Chronic lymphocytic leukemia (CLL) is among the most
frequent blood cancers1. It is a disease characterized by
extensive clonal proliferation and accumulation of malig-

nant B lymphocytes in the blood, bone marrow, spleen, and
lymph nodes. On a cellular level, this process is driven by con-
stitutively activated B-cell receptor (BCR) signaling, which can be
caused by erroneous (auto)antigen recognition and/or cell-
autonomous mechanisms2.

CLL shows remarkable clinical heterogeneity, with some
patients pursuing an indolent course, while others progress
rapidly and require early treatment. Extensive heterogeneity exists
also at the genetic, epigenetic, and transcriptional level. Recent
research has identified genetically defined CLL subtypes3–6 and
patient-specific transcriptional programs7–9. Moreover, char-
acteristic DNA methylation patterns appear to reflect differences
in the CLL’s cell-of-origin10–12, and chromatin profiles predict
the BCR immunoglobulin heavy-chain variable (IGHV) gene
mutation status13.

Despite widespread clinical and molecular heterogeneity,
therapeutic inhibition of BCR signaling using the Bruton tyrosine
kinase (BTK) inhibitor ibrutinib14 has remarkable efficacy in
essentially all patients with CLL. Most notably, ibrutinib treat-
ment achieves high clinical response rates even in patients car-
rying high-risk genetic markers predictive of fast disease
progression, such as TP53 aberrations15–18. Due to its excellent
clinical efficacy and usually tolerable side effects, ibrutinib treat-
ment is becoming the standard of care for most patients with CLL
that require treatment.

Successful ibrutinib therapy often causes an initial increase of
CLL cells in peripheral blood that can take months to resolve19,20.
This observation has been explained by the drug’s effect on
cell–cell contacts21,22, which triggers relocation of CLL cells from
their protective microenvironment to the peripheral blood. As the
result of this ibrutinib-induced lymphocytosis, the correlation
between the CLL cell count in peripheral blood and the clinical
response to ibrutinib therapy is generally low20, and there is an
unmet need for early molecular markers of response to ibrutinib
therapy.

Ibrutinib’s molecular mechanism of action is rooted in the
drug’s inhibition of BTK, which results in downregulation of BCR
signaling. Previous studies have investigated specific aspects of
the molecular response to ibrutinib, for example investigating
immunosuppressive mechanisms23 and identifying decreased NF-
κB signaling as a cause of reduced cellular proliferation24–26.
However, a genome-scale, time-resolved analysis of the regulatory
response to ibrutinib in primary patient samples has been lacking.

To dissect the precise cellular and molecular changes induced
by ibrutinib therapy, and to identify candidate molecular markers
of therapy response, here we follow individual patients with CLL
(n= 7) at high temporal resolution (up to eight time points) over
a standardized 240-day time course of ibrutinib treatment. Per-
ipheral blood samples are analyzed for cell composition by flow
cytometry, for epigenetic/regulatory cell state by ATAC-seq27 on
six different FACS-purified immune cell populations (158 ATAC-
seq profiles in total), and for cell type specific transcriptional
changes by single-cell RNA-seq28 (scRNA-seq) applied to a subset
of time points (>43,000 single-cell transcriptomes in total).

Integrative bioinformatic analysis of the resulting dataset
identify a consistent regulatory program of ibrutinib-induced
changes that is shared across all patients: Within the first days
after the start of ibrutinib treatment, CLL cells display reduced
NF-κB binding, followed by reduced activity of lineage-defining
transcription factors, and erosion of CLL cell identity. Finally,
after an extended period of ibrutinib treatment, CLL cells acquire
a quiescence-like gene signature.

This drug-induced regulatory program is present in all
patients, and we are able to validate it in an independent CLL
cohort. We further observe substantial patient-to-patient varia-
tion in the speed with which these consecutive events unfold.
Taking advantage of our time series data, we identify predictors of
the time it takes for each patient to acquire an ibrutinib-induced
molecular response, some of which were detectable already in
pre-treatment samples.

In aggregate, our study provides a comprehensive, time-
resolved analysis of the molecular and cellular dynamics upon
ibrutinib treatment in CLL. It constitutes one of the first high-
resolution, multi-omics time series of the molecular response to
targeted therapy in cancer patients. The study also establishes a
broadly applicable approach for analyzing drug-induced reg-
ulatory programs and identifying molecular response markers for
targeted therapy. Importantly, the study’s high temporal resolu-
tion with three complementary assays provides robust and
informative results based on a small patient cohort. The presented
approach may therefore be particularly relevant for obtaining
maximum insight from early-stage clinical trials and cases of
experimental off-label drug use that are intrinsically limited to
few individuals.

Results
Ibrutinib therapy induces broad changes among immune cells.
To investigate the cellular dynamics and regulatory program
induced by the inhibition of BCR signaling in CLL patients, we
followed seven individuals from the start of ibrutinib therapy over
a standardized time course of 240 days (Fig. 1a). All patients
received the same treatment regimen with daily doses of ibrutinib
and underwent extensive clinical monitoring. The patients cov-
ered a range of different demographic, clinical, and genetic
parameters, representative of the spectrum of refractory CLL
encountered in clinical practice (Supplementary Data 1).

For all patients and up to eight time points (0, 1, 2, 3, 8, 30,
120/150, 240 days after the start of ibrutinib therapy), we
performed immunophenotyping by flow cytometric analysis of
peripheral blood mononuclear cells (PBMCs), systematically
quantifying changes in cell composition in response to ibrutinib
therapy (Supplementary Fig. 1a and Supplementary Data 2). A
gradual decrease in the percentage of CLL cells was observed over
time (Fig. 1b), but with extensive temporal heterogeneity across
patients (Supplementary Fig. 1b, c). The progressive reduction in
CLL cells coincided with an increase in the percentage of non-
malignant natural killer (NK) and T cell populations, consistent
with a recent report21. This trend was most visible for CD8+

T cells (Fig. 1b, c and Supplementary Data 2), while CD4+ T cells
remained largely unaffected. Although these differences were not
statistically significant due to small cohort size, they were
consistent with published data and provided both characteriza-
tion and validation of our patient cohort.

Based on flow cytometry, we further observed a statistically
significant loss of CLL-associated surface receptors (CD5, CD38)
at the protein level specific to CLL cells, indicative of regulatory
changes in CLL cells upon ibrutinib treatment (Fig. 1d, Supple-
mentary Fig. 2, and Supplementary Data 3). For a systematic
analysis of the ibrutinib-induced changes in gene expression, we
performed single-cell RNA-seq28 on the total PBMC population
for a subset of patients and time points (Supplementary Data 4),
capturing both the transcriptomes of CLL cells and of matched
non-malignant immune cells. Overall, ~43,000 single-cell tran-
scriptomes passed quality control (Supplementary Fig. 3a, b) and
were integrated into a two-dimensional map using the UMAP
method for unsupervised dimensionality reduction (Fig. 1e).
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Cell type specific marker genes such as CD79A, CD3D, CD14,
and NKG7 were clearly detectable in the single-cell RNA-seq
data and largely unaffected by ibrutinib treatment (Supplemen-
tary Fig. 3c), thus allowing for robust marker-based assignment
of cell types. Cell counts inferred from scRNA-seq were almost
perfectly correlated with those obtained by flow cytometry
(Spearman’s ρ= 0.95, Supplementary Fig. 3d), which provided
independent validation of our dataset and of the analytical
approach. Moreover, based on scRNA-seq data we were able to
infer patient-specific copy number aberrations (Fig. 1f), which
identified characteristic CLL-specific chromosomal aberrations

including deletion of chromosome 11q and 17p, and trisomy of
chromosome 12.

Comparing the single-cell transcriptomes for each sample and
cell type to the patient’s corresponding pre-treatment (day 0)
sample (Supplementary Fig. 3e–j and Supplementary Data 5),
we found cell type specific trends in the molecular response to
ibrutinib therapy (Fig. 1g, h and Supplementary Fig. 4). In CLL
cells, we observed reduced expression of the ibrutinib target
BTK, of CD52 (a CLL disease activity marker29), and of CD27
(a regulator of B-cell activation30). Among the non-malignant
immune cell types, CD8+ T cells were most strongly affected,

Ibrutinib treatment
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which included downregulation of genes important for immune
cell activation such as CD28, JUN, and ZAP70. This pattern was
shared to a lesser extent by CD4+ T cells, while CD14+ cells
showed strong upregulation of the NF-κB regulator NFKBIA.

Looking beyond individual genes, we characterized the
response to ibrutinib by quantifying the transcriptome dynamics
of predefined gene sets and transcriptional modules relevant to
CLL and immunity (Fig. 1i and Supplementary Figs. 5, 6). We
observed robust downregulation of B cell specific genes in CLL
cells, including target gene sets of NF-κB subunits RELA and
NF-κB1, and of the NF-κB associated transcription factors ATF2
and SPI1/PU.1. Genes involved in oxidative phosphorylation
were also downregulated, consistent with widespread dampening
of cellular activities in CLL cells under ibrutinib therapy. Among
the non-malignant immune cell types, CD8+ T cells showed
broad downregulation that was less pronounced but similar to
the response observed in CLL cells, and CD14+ monocytes/
macrophages showed specific upregulation of inflammatory
response signatures including interferon gamma, TNF, and
NF-κB signaling.

In summary, immunophenotyping and scRNA-seq over a
dense time course of ibrutinib therapy uncovered widespread
changes not only in CLL cells, but also in non-malignant immune
cells. Most notably, we observed downregulation of NF-κB
signaling and loss of B-cell surface markers in CLL, suggesting
these are key contributors to the progressive reduction of the CLL
cell fraction over time, and we observed a surprising degree of
transcriptional change in non-CLL immune cells concomitant
with an increase in the CD8+ T cell fraction.

ATAC-seq uncovers an ibrutinib-induced regulatory program.
To dissect the regulatory basis of the ibrutinib-induced changes in
the CLL cell transcriptomes and immunophenotypes, we per-
formed ATAC-seq on FACS-purified CD19+CD5+ cells over the
ibrutinib time course (Fig. 2a, Supplementary Fig. 7, and Sup-
plementary Data 6). We modeled the temporal progression as
Gaussian processes (a statistical method for handling time series
data31) and identified 6797 genomic regions that underwent
significant changes in chromatin accessibility in response to
ibrutinib (Supplementary Data 7). Four major clusters were
detected among these genomic regions (Fig. 2b): (i) regions that
gradually lost chromatin accessibility (n= 3412); (ii) regions that
gradually gained chromatin accessibility (n= 2199); (iii) regions
that followed a bimodal, oscillating pattern (n= 369); and (iv)
regions characterized by a peak in chromatin accessibility around
30 days after the start of ibrutinib treatment (n= 354).

We inferred the putative regulatory roles of these four clusters
by region set enrichment analysis using the LOLA software32

(Fig. 2c). Cluster 1 (decrease in chromatin accessibility) was
strongly enriched for binding sites of transcription factors with a
role in lymphoid differentiation and gene regulation, and for
enhancers specific to CLL cells and/or B cells. Cluster 2 (increase
in chromatin accessibility) was enriched for B cell and T cell
specific enhancers. Cluster 3 (bimodal, oscillating chromatin
accessibility) was enriched for NF-κB binding sites. Lastly, cluster
4 (peak in chromatin accessibility around day 30) was enriched
for transcribed regions marked by histone H3K36me3 in
hematopoietic cells.

To identify potential regulators of the ibrutinib-induced
modulation of CLL cell state, we focused on the enriched
transcription factors (from Fig. 2c) and estimated their change in
global binding activity over the ibrutinib time course, aggregating
the ATAC-seq signal across each factor’s putative binding sites
(based on publicly available ChIP-seq data). As expected, several
key transcription factors involved in B cell development
(including NF-κB and PAX5) and B cell proliferation (including
MEF2C and FOXM1) showed marked reduction of chromatin
accessibility at their binding sites (Fig. 2d and Supplementary
Fig. 8a). This effect was shared between CLL cells and non-
malignant B cells, while it was not detected in other immune
cell types.

Integrative analysis of chromatin accessibility and cell type
specific transcription further refined this picture. When we
performed parallel enrichment analysis for transcription factors
and their putative binding sites (Fig. 2e), we observed concerted
changes for key regulators of B cell development such as BCL11A,
EBF1, IKZF1, IRF4, MEF2A, NFATC1, PAX5, and POU2F2,
indicating that BTK inhibition may trigger loss of B cell identity in
CLL cells. In support of this interpretation, we found global B cell
specific gene expression signatures consistently downregulated
upon ibrutinib treatment in CLL cells (Fig. 2f and Supplementary
Fig. 8b).

Taken together, these results define a characteristic temporal
order in which the ibrutinib-induced regulatory changes in CLL
cells unfold. Already after one day of ibrutinib treatment, CLL cells
showed reduced chromatin accessibility at NF-κB binding sites.
This was followed by a gradual decrease in chromatin accessibility
at binding sites of transcription factors that NF-κB regulates
(PU.133, IRF434,35) or that interact with NF-κB (ATF236).
Moreover, we observed reduced B cell specific regulatory activity,
including decreased chromatin accessibility at regulatory regions
specific to B cells and at the binding sites of B cell transcription
factors such BCL11A, NFATC1, and RUNX3. These results
highlight NF-κB mediated loss of B cell identity as the central
regulatory change in CLL cells of patients undergoing ibrutinib
therapy.

Fig. 1 Multi-omics analysis of ibrutinib time courses reveals broad changes among immune cells. a Schematic representation of the study design.
Peripheral blood from patients with CLL undergoing single-agent ibrutinib therapy was collected at defined time points and assayed by flow cytometry (cell
composition and immunophenotype), single-cell RNA-seq (gene expression), and ATAC-seq (chromatin accessibility). b Cell type abundance over the
ibrutinib time course, as measured by flow cytometry. Triangles represent the mean for each time point and dashed lines indicate the 75% confidence
interval around the mean, calculated across seven patients. c Flow cytometry scatterplots showing the abundance of T cell subsets for one representative
patient at three time points (day 0: before the initiation of ibrutinib therapy, day 30 (120): 30 (120) days after the initiation of ibrutinib therapy). Cells
positive for CD3 or CD8 were gated as indicated by the black rectangles and quantified as percentages of live PBMCs. d Flow cytometry histograms
showing CD5 and CD38 expression on CLL cells (pre-gated for live, single CD19+CD5+ cells) for a representative patient and three time points. e Two-
dimensional similarity map (UMAP projection) showing all 43,049 single-cell transcriptome profiles that passed quality control. Cells are color-coded
according to their assigned cell types based on the expression of known marker genes. f DNA copy number profiles for CLL cells, as inferred from single-
cell RNA-seq data. Three genetic aberrations common in CLL are indicated. For illustration, 2500 randomly selected CLL cells are shown for each patient.
g Clustered single-cell transcriptome heatmap for the most differentially expressed genes between time points. For illustration, 20,000 randomly selected
from a total of 43,049 cells are displayed. h Violin plots showing the distribution of gene expression levels for selected differentially expressed genes over
the time course. i Differential gene expression signatures in four cell types, comparing each sample to the matched pre-treatment sample and averaging
across patients. e–g, i Based on scRNA-seq data for 12 samples obtained from four patients.
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Immune cell subsets acquire a quiescence-like gene signature.
To characterize the effect of ibrutinib therapy on gene regulation
in non-malignant immune cells, we performed ATAC-seq on
FACS-purified CD19+CD5− B cells, CD3+CD4+ T helper cells,
CD3+CD8+ cytotoxic T cells, CD56+ NK cells, and CD14+

monocytes/macrophages from the same patients and time points
(Supplementary Data 8). We identified a total of 12,574 tempo-
rally dynamic regulatory regions in these five cell types (Fig. 3a, b,
Supplementary Fig. 9, and Supplementary Data 9).

Unsupervised clustering detected shared temporal dynamics
across the five types of non-malignant immune cells, with sets of
regions showing gradually decreasing or increasing chromatin
accessibility over time, and a bimodal, wave-like cluster that was
characterized by an initial decrease followed by a subsequent
increase in chromatin accessibility (Fig. 3c and Supplementary
Fig. 9a–c). Despite these shared temporal dynamics, the contribut-
ing genomic regions were highly cell type specific (Supplementary
Fig. 9d), suggesting that the different immune cell types react in
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Fig. 2 Changes in chromatin accessibility define an ibrutinib-induced regulatory program in CLL cells. a Heatmap showing changes in chromatin
accessibility for CLL cells over the time course of ibrutinib treatment, based on ATAC-seq data for 33 samples obtained from seven patients. b Mean
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characteristic ways to the direct and indirect effects of ibrutinib
treatment.

Among the non-malignant immune cell types, CD19+CD5−

B cells were most strongly affected by ibrutinib therapy,
consistent with the central role of BCR signaling and of the
ibrutinib target BTK for normal B cell function. Regions with
decreasing chromatin accessibility in non-malignant B cells were
enriched for similar transcription factor binding as CLL cells,
and to a lesser extent also for NF-κB binding sites (Fig. 3d). We
detected fewer regions with increasing chromatin accessibility
upon ibrutinib treatment, and those regions lacked distinctive
functional enrichment, suggesting that they are indirect effects
downstream of the cells’ direct response to ibrutinib treatment
(Supplementary Data 9).

Ibrutinib-induced changes were not restricted to B cells. For
example, regions with decreasing chromatin accessibility in CD4+

T cells were enriched for binding sites of CTCF and RAD21,
which are involved in three-dimensional chromatin organization;
and regions with decreasing chromatin accessibility in CD8+

T cells were enriched for histone marks associated with repressed
chromatin in other cell types (Fig. 3d). Conversely, regions with
increasing chromatin accessibility in CD4+ T cells were enriched
for interferon signaling and open, promoter-associated chromatin
in T cells, while the enrichment observed for CD8+ T cells
included CpG islands and H3K4me1-marked regulatory regions
(Fig. 3d).

Comparing the scRNA-seq data across cell types, we identified a
characteristic set of genes that underwent similar transcriptional
changes in CLL cells and in non-malignant immune cells (Fig. 3e
and Supplementary Fig. 9e). This shared ibrutinib response
signature was enriched for genes involved in ribosomal functions,
mRNA processing, oxidative phosphorylation/metabolism, trans-
lation factors, senescence, and autophagy (Fig. 3f). For example,
the shared ibrutinib response signature included CD44, a pan-
lymphocyte cell adhesion molecule; CD99, a regulator of leukocyte
migration, T cell adhesion, and cell death; CD37, which mediates
the interaction of B and T cells; various surface proteins involved
in cell adhesion (CD52, CD164, ICAM3, and ITGB7); the protein
tyrosine kinase FGR, which is a negative regulator of cell
migration; TPT1, a regulator of cellular growth and proliferation;
and several factors involved in protein translation (EEF2, EID1,
EIF1, and EIF3E) as well as ribosomal proteins (Supplementary
Fig. 10a).

Interestingly, the shared ibrutinib response signature com-
prised genes that are involved in senescence and/or quiescence,
including CXCR4, a chemokine receptor required for hemato-
poietic stem cell quiescence37,38; ZFP36L2, an RNA binding
protein that promotes quiescence in developing B cells39; and
HMGB2, a chromatin protein involved in the regulation of gene
expression in senescent cells40 (Supplementary Fig. 10). Our data
thus suggest that CLL cells and non-malignant immune cells
respond to ibrutinib therapy with shared transcriptional changes,
including downregulation of genes involved in leukocyte function
and cell–cell interactions, and upregulation of genes involved in
quiescence and senescence.

To assess the reproducibility of this shared ibrutinib response
signature in an independent validation cohort, we utilized
recently published bulk RNA-seq data for PBMCs from patients
with CLL (n= 19) that underwent single-agent ibrutinib treat-
ment at a different medical center26. We indeed observed
consistent changes in the expression of our gene signature for
the vast majority of patients from the validation cohort (Fig. 3g).
The difference was statistically significant at both time points
compared to day 0 (month 1: p= 7.6e−6; month 6: p= 1.0e−7;
paired t-test), and an accurate distinction was possible between
patient samples collected before and during ibrutinib therapy

(receiver operating characteristic area under curve values of 0.89
and 0.79, respectively) (Fig. 3h).

In summary, our data show that ibrutinib therapy induces
time-dependent regulatory changes not only in CLL cells but also
in other immune cell types. Changes in non-malignant B cells
mirrored those in CLL cells (albeit with a weaker NF-κB
signature), while CD4+ T cells, CD8+ T cells, NK cells, and
myeloid cells responded in cell type specific ways. Moreover, we
identified and validated a gene expression signature that captures
broad ibrutinib-induced downregulation of immune cell func-
tions and acquisition of a quiescent-like state in response to
ibrutinib therapy.

Patient heterogeneity predicts response to ibrutinib therapy.
Our dataset and analyses clearly support the existence of an
ibrutinib-induced regulatory program that is consistent across
patients. Nevertheless, we also observed substantial patient-to-
patient variability at the genetic (Fig. 1f), transcriptional (Fig. 3g),
chromatin-regulatory (Fig. 2d), and cellular level (Supplementary
Fig. 1b). Such heterogeneity in the presence of a shared regulatory
program could be explained by patient-to-patient differences in the
speed of progression through the program. If this is true, it could
provide us with an opportunity to monitor or predict, based on
molecular profiles, which patients pursue a faster or slower time
course toward a sustained cellular response upon ibrutinib therapy.

We first investigated genetic heterogeneity over the ibrutinib
time course, using copy number profiles inferred from the
scRNA-seq data. This analysis identified changes in the subclonal
composition of CLL cells over time within patients (Supplemen-
tary Fig. 10a–d). We did not observe a strong correlation between
individual copy number aberrations and our single-cell “ibrutinib
molecular response score”, calculated as the expression intensity
of our validated ibrutinib response signature (Fig. 3e) in
individual CLL cells based on their scRNA-seq profiles (Supple-
mentary Fig. 10e–h). However, we did observe an association
between the subclonal genetic heterogeneity over the time course
of ibrutinib treatment, quantified by a measure that we validated
on simulated data and on the changing ratio of CLL cells versus
non-malignant cells upon ibrutinib treatment (Fig. 4a and
Supplementary Fig. 10i–l), and the speed of the cellular response
to ibrutinib treatment as measured by flow cytometry (Fig. 4b).
This finding suggests that, over the time course of 120 days
covered by our study, ibrutinib effectively depletes the CLL
majority clone in the most rapidly responding patients, thereby
unmasking subclonal genetic heterogeneity present in these
patients.

Second, we investigated the association of chromatin accessi-
bility in CLL cells at day 0 with a range of patient-specific
characteristics. To that end, we performed principal component
analysis on the chromatin profiles for all patients and cell types,
and we tested for statistical associations with clinical annotations
(Supplementary Fig. 11a). We observed a strong association
between the second principal component of the chromatin
profiles in CLL cells at day 0 and the cellular response to
ibrutinib treatment at day 120, suggesting that this chromatin
signature provides an epigenomic marker for the subsequent
cellular response to ibrutinib therapy (Fig. 4c, d). This chromatin
signature separated patients into fast versus slow responders to
ibrutinib therapy independently of other clinical annotations
(Supplementary Fig. 11b). Genomic regions associated with a
slow response to ibrutinib therapy showed similar enrichments
as regions with reduced chromatin accessibility in CLL cells
(Fig. 2c), including preferential overlap with broadly active
enhancer regions and transcription factor binding sites (Supple-
mentary Fig. 11c). Moreover, we observed specific enrichment
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Fig. 4 Heterogeneity across patients reflects and predicts the patient-specific temporal response to ibrutinib. a Computational approach to quantify
changes in genetic diversity based on copy number profiles inferred from the single-cell RNA-seq data. Shifts in the distribution of pairwise distance
similarities between time points indicate changes in the genetic diversity of the cell population. b Scatterplot comparing across patients the change in
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for gene sets associated with metabolic activity, consistent with
reports that ibrutinib-resistant cells exhibit a distinct metabolic
state compared to sensitive cells41,42.

Third, based on the scRNA-seq data we derived and evaluated
gene expression signatures that capture the molecular response to
ibrutinib treatment in individual cells. Using machine learning,
we predicted the time of sample collection (day 0, 30, or 120/150)
for each of the ~19,000 single-cell transcriptomes for CLL cells
from four donors. Both support vector machines and elastic
net classifiers achieved excellent prediction performance with
cross-validated test set ROC area under curve (AUC) values in
the range of 0.975 to 0.999, and these results were robust to
differences in the number of detected genes across cells
(Supplementary Fig. 12a). Our results indicate that the tran-
scriptome profiles of single CLL cells undergo changes that reflect
the duration of ibrutinib therapy—a finding that may be exploited
for molecular staging of patient-specific ibrutinib responses.
Using a classifier that was trained and evaluated by patient-
stratified cross-validation, we observed that cells from specific
patients were consistently predicted to have progressed faster
(CLL5) or slower (CLL6) along the trajectory of the transcrip-
tional response to ibrutinib treatment (Fig. 4e), indicating that
individual patients indeed follow their own timelines in the
molecular response to ibrutinib therapy.

Finally, for a more quantitative assessment of these temporal
dynamics, we trained and evaluated regression models that
predict the precise time (i.e., number of days) after the start of
ibrutinib therapy for each individual CLL cell transcriptome. We
observed excellent test set prediction performance for three
patients (CLL1, CLL6, and CLL8), with r2 values (i.e., percent
variance explained) of 92.3, 84.2, and 78.1%, respectively
(Supplementary Fig. 12b, c). Lower performance was observed
for CLL5 (r2= 36.6%), where the day-0 time point already
showed a signature reminiscent of ibrutinib treatment (Fig. 4f).
To interpret the fitted models, we compared the regression
coefficients across patients (Supplementary Fig. 13a, b). This
analysis identified gene sets that were consistently associated with
faster or slower reduction of CLL cells at day 120 (Supplementary
Fig. 13c–g). For example, expression levels of the transcription
factor JUN, the translation initiation factor EIF1, the ubiquitin
protein UBC, the interleukin 4 receptor IL4R, and the MHC class
II co-receptor CD74 were associated with slow reduction of CLL
cell numbers, while the p53 cofactor DDX5, the TNF receptor
protein CD27, and the signaling protein CD24 were associated
with fast reduction. Consistent with the classification analysis
(Fig. 4e), our regression models predicted individual patients
progressing faster (CLL5) or slower (CLL6) along the trajectory of
the transcriptional response to ibrutinib, while the two remaining
patients (CLL1, CLL8) followed similar timelines (Fig. 4f). When
we compared predictions based on CLL single-cell transcriptomes
at day 0 across patients, we found that the observed molecular
signature prior to the start of ibrutinib treatment indeed
anticipated the subsequent cellular response (i.e., reduction of
CLL cells on day 120/150 compared to day 0) (Fig. 4g).

These results indicate that genetic, epigenetic, and transcrip-
tional heterogeneity across patients captures inter-individual
differences in the response to ibrutinib treatment. The different
molecular profiling technologies applied in this study may
provide complementary sources of candidate markers that can
predict the patient-specific time until a strong cellular response to
ibrutinib treatment is achieved for individual patients with CLL.

Discussion
Multi-omics analysis of clinical time courses has emerged as a
powerful method for dissecting the molecular response to

targeted therapy, allowing us to define the precise temporal
order of induced molecular changes and to unravel underlying
regulatory programs. Here, we applied flow cytometry, scRNA-
seq, and chromatin mapping in six FACS-purified cell types to a
dense time course of patients with CLL who are starting ibru-
tinib therapy. These three assays provide comprehensive and
complementary information comprising cell composition and
immunophenotypes (flow cytometry), transcriptional changes
across all major immune cell populations (scRNA-seq), and
chromatin dynamics that may explain and predict the observed
changes in transcription regulation and epigenetic cell state
(ATAC-seq).

Integrative bioinformatic analysis identified a characteristic
regulatory program that was shared across all patients. Among
the earliest changes following the start of ibrutinib therapy, we
observed a decrease of NF-κB binding signatures in CLL cells,
which was followed by a rapid reduction in the regulatory activity
of transcription factors involved in B cell development and
function (such as EBF1, FOXM1, IRF4, PAX5, and PU.1). This
decrease was accompanied by (and may indeed cause) the
downregulation of CLL-specific gene signatures and a decrease in
surface marker levels such as CD5 and CD19, together indicating
a broad erosion of CLL cell identity.

Ibrutinib-induced changes were not exclusive to CLL cells but
shared with other immune cell types. Non-malignant B cells
largely mirrored the changes observed in CLL cells—which was
expected given the important role of the ibrutinib target BTK
in BCR signaling. We further observed a dampening effect of
ibrutinib on immune pathway regulation in CD8+ T cells, while
there was an increase of inflammatory gene signatures in
monocytes/macrophages. These changes in immune cell types
that do not express BTK could be due to a combination of direct
effects via ibrutinib’s promiscuous inhibition of kinases other
than BTK (including BLK, BMX, ITK, TEC, TXK, and EGFR43)
and indirect effects arising from the ibrutinib-induced relocation
of CLL cells from the protective microenvironment into the
peripheral blood.

Interestingly, both for CLL cells and for non-malignant
immune cells, sustained ibrutinib therapy eventually resulted in
the acquisition of a shared, quiescence-like gene signature. We
successfully validated our gene signature in an independent
clinical cohort of patients with CLL who start ibrutinib treatment.
This gene signature may help explain certain cellular and clinical
phenotypes observed in patients under ibrutinib therapy,
including changes in the immune microenvironment44 and
increased susceptibility to infections45–47. For example, down-
regulation of CD99 indicates that Fas-mediated T-cell death may
be impaired48,49, which has been proposed as a cause of CD8+ T
cell accumulation in peripheral blood21. Moreover, two genes in
the signature (CXCR4 and ZFP36L2) have established biological
functions in senescence and quiescence of hematopoietic
cells37,38. Moreover, ibrutinib is known to inhibit CXCR4-
mediated expression of CD20 in CLL cells50, which could have
implications for clinical trials combining ibrutinib and anti-CD20
antibodies (e.g., NCT02007044).

Our comprehensive, time-resolved, multi-omics analysis of
ibrutinib therapy provides integration and context for previous
studies that have focused on specific aspects of the response to
ibrutinib, including reduced proliferation25, decreased cell-cell
contacts21,22, and downregulation of NF-κB24–26. Moreover, the
identification of a regulatory program that was shared across all
patients allowed us to explore patient-to-patient heterogeneity in
the speed with which this program is executed, suggesting that it
may be possible to define predictive molecular markers for the
cellular response to ibrutinib therapy. Most notably, our chro-
matin analysis identified a patient-specific signature present prior

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-14081-6 ARTICLE

NATURE COMMUNICATIONS |          (2020) 11:577 | https://doi.org/10.1038/s41467-019-14081-6 | www.nature.com/naturecommunications 9

www.nature.com/naturecommunications
www.nature.com/naturecommunications


to treatment that correlated with the speed of CLL cell clearance,
and our scRNA-seq data predicted the cellular response measured
120/150 days after the start of ibrutinib therapy. Our results
capture complementary aspects of CLL biology and demonstrate
the power of combined multi-omics profiling for patient-specific
treatment monitoring. While these findings remain exploratory
due to the small number of patients in our study, they raise the
future perspective of quantifying and predicting the molecular
response for a growing class of targeted cancer therapies that are
not primarily cytotoxic and for which simple cell-based bio-
markers (e.g., leukemic cell count or minimal residual disease) are
poor predictors of clinical response. Moreover, when combined
with our recent analysis of chromatin profiles and single-cell drug
responses in CLL51, the opportunity arises for deriving patient-
specific, mechanistically justified, combination therapies for
individual patients.

While we consider our approach broadly applicable in the
context of precision oncology and targeted therapy, the following
limitations apply: First, such comprehensive profiling (up to 8
time points, dozens of genome-wide ATAC-seq profiles, and
thousands of single-cell transcriptomes per patient) is challenging
to implement for large patient cohorts. Second, given the small
size of our cohort, we could not systematically account for known
genetic risk markers in CLL. However, recent studies have shown
that established prognostic markers have lost much of their
predictive power with ibrutinib therapy16,52, and the same may
apply to other emerging treatments such as CAR T cell therapy53.
Third, while we found evidence of subclonal heterogeneity in our
single-cell transcriptome data, the current throughput of scRNA-
seq does not (yet) enable deep characterization of the subclonal
architecture. Fourth, most patients that start ibrutinib therapy
have previously been treated with other drugs (1–5 prior treat-
ments in our cohort), which may explain some of the differences
in the speed of the molecular response to ibrutinib. Fifth, time
series data support only a weak form of causal inference (Granger
causality54,55), where earlier events may cause later events but not
vice versa (e.g., the observed decrease in NF-κB binding was
followed by a downregulation of B cell transcription factors and
an erosion of B cell identity among the CLL cells). Such results
should therefore be considered causal in a strict biological sense
only after mechanistic experimental validation in suitable disease
models. When these limitations are taken into account, we expect
that the presented approach will readily generalize to other tar-
geted therapies, supporting the precise and robust definition of
regulatory programs, molecular response monitoring, and iden-
tification of markers for the clinical response to therapy.

In conclusion, our study demonstrates the power of multi-omics
and single-cell profiling, combined with integrative bioinformatic
analysis, for dissecting the cellular, transcriptional, transcription-
regulatory, and epigenetic impact of targeted therapies. A key
strength of this approach is the high level of detail and biological
insight that can be obtained from a small number of patients,
which makes it particularly well-suited for applications in perso-
nalized medicine where each patient may follow a different disease
trajectory. Moreover, the approach appears promising for early-
stage clinical trials of new targeted therapies, where it is critical to
obtain a robust assessment of the induced molecular and cellular
dynamics, in order to inform dose finding and to provide bio-
marker candidates for molecular response monitoring.

Methods
Sample acquisition and clinical data. All patients were treated at the Department
of Hematology and Stem Cell Transplantation, Central Hospital of Southern Pest,
Budapest, Hungary, according to the revised guidelines of the International
Workshop Chronic Lymphocytic Leukemia/National Cancer Institute56. The study
complied with all relevant ethical regulations for working with patients and patient

samples. Informed consent was obtained from all participants. The study was
approved by the ethical committees of the contributing institutions (Dél-Pesti
Centrumkórház, Semmelweis University, and Medical University of Vienna).

Flow cytometry and FACS. Patient PBMCs were thawed and washed twice with
PBS containing 0.1% BSA and 5 mM EDTA (PBS+BSA+EDTA). Cells were then
incubated with anti-CD16/CD32 (clone 93, 1:200, Cat# 101301) to prevent non-
specific binding. Single-cell suspensions were stained with combinations of anti-
bodies against CD3 (FITC, clone UCHT1, 1:200, Cat# 300452), CD4 (PE-TxRed,
clone OKT4, 1:200, Cat# 317448), CD5 (PE-Cy7, clone UCHT2, 1:100, Cat#
300622), CD8 (APC-Cy7, clone SK1, 1:150, Cat# 344746), CD14 (PerCp-Cy5.5,
clone M5E2, 1:100, Cat# 301824), CD19 (APC, clone HIB19, 1:100, Cat# 302212),
CD25 (PE-Cy7, clone BC96, 1:100, Cat# 302612), CD38 (PE, clone HB-7, 1:100,
Cat# 356604), CD45RA (PerCp-Cy5.5, clone HI100, 1:100, Cat# 304122), CD45RO
(AF700, clone 304218, 1:100, Cat# 304218), CD56 (AF700, clone NCAM16.2,
1:100, Cat# 340363, BD Bioscience), CD127 (APC, clone A019D5, 1:100, Cat#
351342), CD197 (CCR7, PE, clone G043H7, 1:100, Cat# 353204), and DAPI via-
bility dye (all obtained from Biolegend unless stated otherwise) for 30 min at 4 °C
followed by two washes with PBS+BSA+EDTA. For flow cytometry, cells were
acquired with an LSRFortessa Cell Analyzer (BD). For FACS, cells were sort-
purified with a MoFlo Astrois (Beckman Coulter) using the gating strategy depicted
in Supplementary Fig. 1a. Data analysis was performed with the FlowJo (Tree Star)
software. In Fig. 1d, control cells in CD5-PE-Cy7 channel are CD14+ myeloid
cells, and control cells in CD38-PE channel are CD3+ CD4-CD8- cells (these cell
populations do not express the respective markers and are therefore used to esti-
mate background levels).

Droplet-based single-cell RNA-seq. Single-cell libraries were generated using the
Chromium Controller and Single Cell 3′ Library & Gel Bead Kit v2 (10× Geno-
mics) according to the manufacturer’s protocol. Briefly, an aliquot of patient
PBMCs was stained with DAPI for discrimination between live and dead cells, and
a maximum of 100,000 live, doublet-excluded cells were sorted into 1.5 ml tubes.
Cells were pelleted by centrifuging for 5 min at 4 °C at 300 × g and resuspended in
PBS with 0.04% BSA. Up to 17,000 cells suspended in reverse transcription
reagents, along with gel beads, were segregated into aqueous nanoliter-scale Gel
Beads in Emulsion (GEMs). The GEMs were then reverse-transcribed in a C1000
Thermal Cycler (Bio-Rad) programmed at 53 °C for 45 min, 85 °C for 5 min, and
hold at 4 °C. After reverse transcription, single-cell droplets were broken, and the
single-strand cDNA was isolated and cleaned with Cleanup Mix containing
Dynabeads MyOne SILANE (Thermo Fisher Scientific). cDNA was then amplified
with a C1000 Thermal Cycler programmed at 98 °C for 3 min, 10 cycles of (98 °C
for 15 s, 67 °C for 20 s, 72 °C for 1 min), 72 °C for 1 min, and hold at 4 °C. Sub-
sequently, the amplified cDNA was fragmented, end-repaired, A-tailed, and index
adapter ligated, with cleanup in-between steps using SPRIselect Reagent Kit
(Beckman Coulter). Post-ligation product was amplified with a T1000 Thermal
Cycler programmed at 98 °C for 45 s, 10 cycles of (98 °C for 20 s, 54 °C for 30 s,
72 °C for 20 s), 72 °C for 1 min, and hold at 4 °C. The sequencing-ready library was
cleaned up with SPRIselect beads and sequenced by the Biomedical Sequencing
Facility at CeMM using the Illumina HiSeq 3000/4000 platform and the 75 bp
paired-end configuration.

Assay for transposase-accessible chromatin (ATAC-seq). For chromatin
accessibility mapping, a maximum of 50,000 sorted cells were pelleted by cen-
trifuging for 5 min at 4 °C at 300 × g. After centrifugation, the pellet was carefully
resuspended in the transposase reaction mix (12.5 µl 2 × TD buffer, 2 µl TDE1
(Illumina), and 10.25 µl nuclease-free water, 0.25 µl 5% Digitonin (Sigma)) for
30 min at 37 °C. Following DNA purification with the MinElute kit eluting in 11 µl,
1 µl of the eluted DNA was used in a quantitative PCR reaction to estimate the
optimum number of amplification cycles. Library amplification was followed by
SPRI size selection to exclude fragments larger than 1200 bp. DNA concentration
was measured with a Qubit fluorometer (Life Technologies). Library amplification
was performed using custom Nextera primers27. The libraries were sequenced by
the Biomedical Sequencing Facility at CeMM using the Illumina HiSeq 3000/4000
platform and the 50 bp single-read configuration.

Preprocessing and analysis of single-cell RNA-seq data. Preprocessing of the
single-cell RNA-seq data was performed using Cell Ranger version 2.0.0 (10×
Genomics). Raw sequencing files were demultiplexed using the Cell Ranger com-
mand “mkfastq”. Each sample was aligned to the human reference genome
assembly “refdata-cellranger-GRCh38-1.2.0” using the Cell Ranger command
“count”, and all samples were aggregated using the Cell Ranger command “aggr”
without depth normalization. Raw expression data were then loaded into R version
3.4.0 and analyzed using the Seurat package version 2.0.1 with the parameters
suggested by the developers57. Specifically, single-cell profiles with less than 200
detected genes (indicative of no cell in the droplet), more than 3000 detected genes
(indicative of cell duplicates), or more than 15% of UMIs stemming from mito-
chondrial genes were discarded. Read counts were normalized dividing by the total
UMI count in each cell, multiplied by a factor of 10,000, and log transformed. The
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number of UMIs per cell and the percent of mitochondrial reads per cell were then
regressed out using Seurat’s standard analysis pipeline.

Dimensionality reduction and analysis of gene expression. Principal compo-
nent analysis, t-SNE analysis, hierarchical clustering, and differential expression
analyses were carried out in R, using the respective functions of the Seurat package.
t-SNE and cluster analyses were based on the first ten principal components. A
negative binomial distribution test was used for differential analysis on genes
expressed in at least 10% of cells in one group. Results were aggregated across
patients by taking the mean for log fold changes and by Fisher’s method for
p-values. Enrichment analyses were done using Enrichr API58 against the following
databases: Transcription Factor PPIs, ENCODE, ChEA Consensus TFs from ChIP-
X, NCI-Nature 2016, WikiPathways 2016, Human Gene Atlas, and Chromosome
Location. Aggregate gene expression values for gene sets (signatures) were quan-
tified as follows: Log-normalized transcript per 104 UMI counts were scaled
between 0 and 1. The values for all genes of a given set were then summed to obtain
a raw value for each gene set and cell. To remove cell specific effects such as
differences in UMI distributions due to sequencing depth, raw values were trans-
formed to Z-scores using a distribution of raw values of 500 randomly picked gene
sets of the same size. Differences in signatures between time points were assessed
using “t.test” in R. Results were aggregated across patients by taking the mean for
log fold changes and by Fisher’s method for p-values. Multiple testing correction of
differentially expressed genes, enriched terms, and differences in signatures was
carried out using the Benjamini-Hochberg procedure as implemented by the
“p.adjust” function in R. The selected gene sets included 50 ‘hallmark signatures’
from MSigDB59, as well as ATF2, BATF, NFIC, NFKB1, RELA, RUNX3, and SPI
target genes, and B cell signatures from Human Gene Atlas, NCI Nature 2016, and
WikiPathways 2016, all obtained from Enrichr58. For data representation, we
denoised the dataset with the Deep Count Autoencoder (DCA) in Python60, using
raw UMI counts as input and the “Zero-Inflated Negative Binomial” model (which
explained the relationship between mean expression and observed dropout rates
significantly better than the “Negative Binomial” model). The DCA-denoised data
were then normalized per cell, log-transformed, and scaled. Dimensional reduction
was performed by principal component analysis, and the resulting dimensions were
used for neighbor graph construction followed by Uniform Manifold Approx-
imation and Projection (UMAP) with Scanpy’s default parameters61.

Preprocessing and analysis of ATAC-seq data. ATAC-seq reads were trimmed
using Skewer62 and aligned to the GRCh37/hg19 assembly of the human genome
using Bowtie263 with the “-very-sensitive” parameter. Duplicate reads were
removed using the sambamba64 “markdup” command, and reads with mapping
quality >30 and alignment to the nuclear genome were kept. All downstream
analyses were performed on these filtered reads. Peak calling was performed with
MACS265 using the “-nomodel” and “-extsize 147” parameters, and peaks over-
lapping blacklisted features as defined by the ENCODE project66 were discarded.
We created a consensus region set by merging the called peaks from all samples
across patients and cell types, and we quantified the accessibility of each region in
each sample by counting the number of reads from the filtered BAM file that
overlapped each region. To normalize the chromatin accessibility signal across
samples, we first performed quantile normalization using the R implementation in
the preprocessCore package (“normalize.quantiles” function). We then performed
principal component analysis (scikit-learn, sklearn.decomposition.PCA imple-
mentation) on the normalized chromatin accessibility values of all chromatin-
accessible regions across all samples. Upon inspection of the sample distribution
along principal components, we noticed an association of several (but not all)
samples from one processing batch with a specific principal component, while we
did not observe any association of these samples with any known biological factor.
To remove the effect of this latent variable while retaining variation from other
(biological) sources, we performed principal component analysis on the matrix of
raw counts on a per cell type basis (except myeloid cells, which contained no such
samples) and removed the latent variable (first principal component) by sub-
tracting the outer product of the transformed values of each sample in this com-
ponent and the loadings of each regulatory element in the same component from
the original matrix. We re-normalized the corrected count matrix and component
analysis jointly for all cell types.

Time series modeling of chromatin accessibility dynamics. We modeled the
temporal effect of ibrutinib in each cell type as a function of time by a latent process,
which has emerged as a powerful approach for time series analysis67–69. To that end,
we used the Python library GPy to fit Gaussian process regression models (GPy.
models.GPRegression) on the log2 transformed sampling time on ibrutinib therapy
(independent variable) and the normalized chromatin accessibility values for each
regulatory element (dependent variable) for each cell type separately. We then fitted
a variable radial basis function (RBF) kernel as well as a constant kernel (both with
an added noise kernel), and we compared the log-likelihood and standard deviation
of the posterior probability of the two as previously described67–69. Dynamic reg-
ulatory elements were defined as those for which the survival function of the chi-
square of the D statistic (twice the difference between the log-likelihood of the
variable fit minus the log-likelihood of the constant fit) was lower than 0.05 and the

standard deviation of the posterior was higher than 0.05. We then used the “mixture
of hierarchical Gaussian process” (MOHGP) method to cluster regulatory elements
according to their temporal pattern. The MOHGP class from the GPclust library
(GPclust.MOHGP) was fitted with the same data as before, this time with a
Matern52 kernel (GPy.kern.Matern52) and an initial guess of four region clusters.
Regions with posterior probability higher than 0.8 were selected as dynamic and
included in the downstream analysis.

Region set enrichment analysis. We performed region set enrichment analysis on
the clusters of dynamic genomic regions using LOLA32 and its core database,
which comprises transcription factor binding sites from ENCODE66, tissue-specific
DNase hypersensitive sites70, the CODEX database71, UCSC Genome Browser
annotation tracks72, the Cistrome database73, and data from the BLUEPRINT
project74. Enrichment of genes associated with regulatory elements (annotated with
the nearest transcription start site from Ensembl) was performed through the
Enrichr API58 for the following databases of gene sets: BioCarta 2016, ChEA 2016,
Drug Perturbations from GEO down, Drug Perturbations from GEO up, ENCODE
and ChEA Consensus TFs from ChIP-X, ENCODE TF ChIP-seq 2015, ESCAPE,
GO Biological Process 2017b, GO Molecular Function 2017b, KEGG 2016, NCI-
Nature 2016, Reactome 2016, Single Gene Perturbations from GEO down, Single
Gene Perturbations from GEO up, and WikiPathways 2016.

Inference of global transcription factor activity. Global transcription factor
accessibility was assessed by aggregating the normalized chromatin accessibility
values of regulatory elements that overlap a consensus of regions (union of all sites)
from ENCODE ChIP-seq peaks of the same factor across all cell types profiled. The
mean accessibility of each sample in the sites overlapping binding sites of each
factor was computed and subtracted by the mean accessibility of each sample
across all measured regulatory elements. For visualization, we aggregated samples
by cell type and sampling time point, displaying either the mean or a Z-score of
chromatin accessibility. For all gene-level measures of chromatin accessibility, we
used the mean of all regulatory elements associated with a gene, defined as the gene
with the closest transcription start site as annotated by the RefSeq gene models for
the hg19 genome assembly.

Integrative analysis of ATAC-seq and scRNA-seq data. To assess the agreement
between the two analyses at the enrichment level, we performed enrichment
analysis with Enrichr for genes differentially expressed across patients in the same
cell type, and we compared the significance of terms for transcription factors in the
“ENCODE TF ChIP-seq 2015” gene set library with the significance of transcrip-
tion factors enriched in the LOLA analysis for each ATAC-seq cluster. To identify a
common transcriptional signature associated with ibrutinib treatment across cell
types, we selected all genes that were differentially expressed with the same
direction in at least ten combinations of cell type and time point. These genes were
split according to the direction of change with time and used for enrichment
analysis with Enrichr as described above. The same genes were used to derive a
score calculated as the mean expression of the upregulated genes over the mean
expression of downregulated genes. An independent cohort of RNA-seq on bulk
PBMCs from CLL patients26 was used to assess the reproducibility of the signature
by observing the significance of the difference between scores upon ibrutinib
treatment with a paired-samples t-test. To assess the performance of the score as a
classifier, we generated a ROC curve by counting true positive and negative rates
with a sliding score threshold and calculated the area under the curve with scikit-
learn’s function “sklearn.metrics.auc”.

Inference of DNA copy number variation from scRNA-seq data. To infer DNA
copy number profiles at the single-cell level, we started with DCA-denoised, nor-
malized, and scaled single RNA-seq data of all cells. We removed per-cell differ-
ences by subtracting the median expression of each cell from all genes and per-gene
differences by subtracting the median and dividing by the standard deviation. We
then calculated a rolling mean of expression across genes ordered by their chro-
mosomal position for each chromosome individually. To improve the repre-
sentation of DNA copy number profiles, we centered the resulting matrix by
subtracting the mean of all values in the matrix and applied smoothing by cubing
the matrix values (which shrinks small changes relative to all cells) and multiplying
them by 3 (which scales values back to usual copy number variation bounds).
Visual inspection of DNA copy number profiles identified copy number aberra-
tions that are commonly observed in CLL. Moreover, for a subset of time points
and patients, the results were validated by panel sequencing data for the same
samples75. To discover clusters of genetically distinct cells within patients, we
performed dimension reduction using principal component analysis on the
smoothed matrix, computed a neighbor graph between cells, and fitted a UMAP
manifold for the CLL cells of each sample (i.e., per patient and time point). This
was overlaid with the response to ibrutinib of each single cell based on ibrutinib
response signature described above. To assess global changes in genetic diversity
within cells of a patient over time, we developed a global metric of genetic diversity
based on inferred copy number profiles from single-cell RNA-seq data. We cal-
culated pairwise Pearson correlation coefficients between all cells and used the
square of the mean of this distribution as a measure of genetic diversity. To
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benchmark this approach, we first established simulated copy number profiles with
the same dimensions are the inferred one but for varying total numbers of cells. We
created two populations where we simulated gain or loss of chromosome 12 (log
change: −1 or 1) whereas the remainder of the genome was Gaussian noise of
mean zero and standard deviation 0.1. We assessed performance by mixing the two
populations together in different ratios and computing Pearson correlation
between the population fraction (ground truth) and the predicted global diversity.
An additional benchmark was performed by taking advantage of natural, known
mixtures of cell types in the data. For these data, the inferred change in genetic
diversity is simply the difference between global diversity measures between time
points of ibrutinib treatment for each patient.

Prediction of patient-specific response time from scRNA-seq. The time point
of sample collection (day 0, 30, or 120/150) for each CLL single-cell transcriptome
was predicted using the glmnet package in R with a multinomial response variable
(for classification) and the “alpha” parameter (lasso penalty) set to 1. Prediction
performance was assessed by 3-fold cross-validation for each patient, where opti-
mal “lambda” parameters were obtained separately for each (outer) fold in a 5-fold
inner cross-validation using the function cv.glmnet. Parameter “lambda” for the
final prediction across patients were obtained by 5-fold cross-validation on all data
for each patient using cv.glmnet. Predictions were aggregated for each patient by
taking the mean of dummy variables (1: early, 2: mid, 3: late) across the three other
patients. Classification performance for support vector machines was assessed
using the LiblineaR package in R. Classifiers were trained with “type” parameter 0
and “cost” parameters estimated by the heuristicC method on the training data,
where cells were split ten times into 70% for training and 30% for testing.
Quantitative prediction of the precise time (number of days) after the start of
ibrutinib therapy was performed using the glmnet package in R with a Gaussian
response variable (for regression) and the “alpha” parameter (lasso penalty) set to
1. Prediction performance was assessed using the “lambda” parameter that pro-
vided the highest R2 in the training data of each fold. The regularization parameter
“lambda” for the final prediction was obtained based on the mean squared error in
a 3-fold cross-validation repeated five times on all data from each patient. Pre-
dictions were aggregated by taking the mean across three patients. For the analysis
of regression coefficients, we retrieved these coefficients for each patient under the
chosen “lambda” parameter, and we calculated summary statistics for each gene
across patients. Based on these results, we identified the genes with high correlation
to CLL cell reduction on day 120 (absolute Pearson correlation coefficient above
0.9), for which we illustrated the relationship between genes by calculating pairwise
correlation matrices of coefficients across patients. In all Python analysis, we set the
pseudo-random number generation seed state to 1142101101 in both the standard
library “random” and in “numpy”.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All data are available through the Supplementary Website (http://cll-timecourse.
computational-epigenetics.org/). Single-cell RNA-seq and ATAC-seq data have been
deposited in the NCBI GEO database and are publicly available under accession number
GSE111015.

Code availability
The analysis source code underlying the final version of the paper is openly accessible as
a Git repository on Github (https://github.com/epigen/cll-ibrutinib_time).
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