
For Finitary Induction-Induction,1

Induction is Enough2

Ambrus Kaposi3

Eötvös Loránd University, Budapest, Hungary4

akaposi@inf.elte.hu5

András Kovács6

Eötvös Loránd University, Budapest, Hungary7

kovacsandras@inf.elte.hu8

Ambroise Lafont9

IMT Atlantique, Inria, LS2N CNRS, Nantes, France10

ambroise.lafont@gmail.com11

Abstract12

Inductive-inductive types (IITs) are a generalisation of inductive types in type theory. They allow13

the mutual definition of types with multiple sorts where later sorts can be indexed by previous ones.14

An example is the Chapman-style syntax of type theory with conversion relations for each sort where15

e.g. the sort of types is indexed by contexts. In this paper we show that if a model of extensional16

type theory (ETT) supports indexed W-types, then it supports finitely branching IITs. We use a17

small internal type theory called the theory of signatures to specify IITs. We show that if a model of18

ETT supports the syntax for the theory of signatures, then it supports all IITs. We construct this19

syntax from indexed W-types using preterms and typing relations and prove its initiality following20

Streicher. The construction of the syntax and its initiality proof were formalised in Agda.21

2012 ACM Subject Classification Theory of computation → Logic22

Keywords and phrases type theory, inductive types, inductive-inductive types23

Digital Object Identifier 10.4230/LIPIcs.TYPES.2019.624

Funding Ambrus Kaposi: this author was supported by the National Research, Development and25

Innovation Fund of Hungary, financed under the Thematic Excellence Programme funding scheme,26

Project no. ED_18-1-2019-0030, by the New National Excellence Program of the Ministry for27

Innovation and Technology, Project no. ÚNKP-19-4-ELTE-874, and by the Bolyai Fellowship of the28

Hungarian Academy of Sciences, Project no. BO/00659/19/3.29

András Kovács: this author was supported by the European Union, co-financed by the European30

Social Fund (EFOP-3.6.3-VEKOP-16-2017-00002).31

Ambroise Lafont: this author was supported by the CoqHoTT ERC Grant 637339.32

Acknowledgements The authors would like to thank Thorsten Altenkirch, Rafaël Bocquet, Simon33

Boulier, Fredrik Nordvall-Forsberg and Jakob von Raumer for discussions on the topics of this paper.34

We also thank the anonymous reviewers for their helpful comments and suggestions.35

1 Introduction36

Many mutual inductive types can be reduced to indexed inductive types, where the index37

disambiguates different sorts. For example, consider the mutual inductive datatype with two38

sorts isEven and isOdd, defined by the following constructors.39

isEven : N→ Set40

isOdd : N→ Set41

zeroEven : isEven zero42

© Ambrus Kaposi, András Kovács and Ambroise Lafont;
licensed under Creative Commons License CC-BY

25th International Conference on Types for Proofs and Programs (TYPES 2019).
Editors: Marc Bezem and Assia Mahboubi; Article No. 6; pp. 6:1–6:31

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository of the Academy's Library

https://core.ac.uk/display/333872873?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://orcid.org/0000-0001-9897-8936
mailto:akaposi@inf.elte.hu
https://orcid.org/0000-0002-6375-9781
mailto:kovacsandras@inf.elte.hu
https://orcid.org/0000-0002-9299-641X
mailto:ambroise.lafont@gmail.com
https://doi.org/10.4230/LIPIcs.TYPES.2019.6
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


6:2 For Finitary Induction-Induction, Induction is Enough

sucEven : (n : N)→ isOddn→ isEven (sucn)43

sucOdd : (n : N)→ isEvenn→ isOdd (sucn)44
45

This can be reduced to the following single inductive family where isEven? true represents46

isEven and isEven? false represent isOdd.47

isEven? : Bool→ N→ Set48

zeroEven : isEven? true zero49

sucEven : (n : N)→ isEven? falsen→ isEven? true (sucn)50

sucOdd : (n : N)→ isEven? truen→ isEven? false (sucn)51
52

Inductive-inductive types (IITs [26]) allow the mutual definition of a type and a family of53

types over the first one. IITs were originally introduced to represent the well-typed syntax of54

type theory itself, and a prominent example is still Chapman’s [13] syntax for a type theory.55

A minimised version is the IIT of contexts and types given by the following constructors.56

Con : Set57

Ty : Con→ Set58

empty : Con59

ext : (Γ : Con)→ Ty Γ → Con60

U : (Γ : Con)→ Ty Γ61

El : (Γ : Con)→ Ty (ext Γ (U Γ))62
63

This type has two sorts, Con and Ty. The ext constructor of Con refers to Ty and the Ty-64

constructor U refers to Con, hence the two sorts have to be defined simultaneously. Moreover,65

Ty is indexed over Con. This precludes a reduction analogous to the reduction of isEven–isOdd,66

as we would get a type indexed over itself. Another unique feature of IITs (which also holds67

for higher inductive types [29]) is that later constructors can refer to previous constructors:68

in our case, El mentions ext.69

The elimination principle for the above IIT has the following two motives (one for each70

sort) and four methods (one for each constructor).71

ConD : Con→ Set72

TyD : ConD Γ → Ty Γ → Set73

emptyD : ConD empty74

extD : (ΓD : ConD Γ)→ TyD ΓD A→ ConD (ext Γ A)75

UD : (ΓD : ConD Γ)→ TyD ΓD (U Γ)76

ElD : (ΓD : ConD Γ)→ TyD (extD ΓD (UD ΓD)) (El Γ)77
78

Above we used implicit quantifications for Γ : Con and A : Ty Γ to ease readability, e.g. TyD79

has an implicit parameter Γ before its explicit parameter of type ConD Γ .80

Given the above motives and methods the elimination principle provides two functions81

elimCon : (Γ : Con)→ ConD Γ82

elimTy : (A : Ty Γ)→ TyD (elimCon Γ)A83
84

with the following computation rules.85

elimCon empty = emptyD86



A. Kaposi, A. Kovács and A. Lafont 6:3

elimCon (ext Γ A) = extD (elimCon Γ) (elimTyA)87

elimTy (U Γ) = UD (elimCon Γ)88

elimTy (El Γ) = ElD (elimCon Γ)89
90

The functions elimCon and elimTy are an example of a recursive-recursive definition (using91

nomenclature from [26]). This means two mutually defined functions where the type of the92

second function depends on the first function. The proof assistant Agda [28] allows defining93

such functions (even from non-IITs) and is currently the only proof assistant supporting94

IITs1.95

Reducing IITs to inductive types (more precisely, to indexed W-types) is an open problem.96

Forsberg [26] presented a reduction in extensional type theory, however, this only provides97

a simpler, non-recursive-recursive elimination principle. Hugunin [19] reduced several IITs98

to inductive types, working inside a cubical type theory, but he also only constructed the99

simple eliminator. To illustrate the difference, we list the motives, methods and the simple100

elimination principle for the Con–Ty example. Again, we use implicit quantifications.101

ConS : Con→ Set102

TyS : Ty Γ → Set103

emptyS : ConS empty104

extS : ConS Γ → TyS A→ ConS (ext Γ A)105

US : ConS Γ → TyS (U Γ)106

ElS : ConS Γ → TyS (El Γ)107

selimCon : (Γ : Con)→ ConS Γ108

selimTy : (A : Ty Γ)→ TyS A109
110

This simple elimination principle is not capable of defining standard (metacircular) interpret-111

ation [4] of our small syntax. Using pattern matching notation, this interpretation is the112

following:113

J–K : Con→ Set1114

J–K : JΓK→ Set1115

JemptyK := >116

Jext Γ AK := (γ : JΓK)× JAK γ117

JU ΓK γ := Set118

JEl ΓK (γ,X) := X119
120

The reason that we need the general elimination principle to define J–K is that J–K for types121

refers to J–K for contexts, hence this function is recursive-recursive.122

Kaposi, Kovács, and Altenkirch [21] introduced a small type theory, called the theory of123

signatures, to describe quotient inductive-inductive types (QIIT). QIITs are generalisations124

of IITs where equality constructors are also allowed. A QIIT signature is a context in125

the theory of QIIT signatures, for example natural numbers are specified by the context126

(Nat : U, zero : Nat, suc : Nat → Nat) of length three (Nat, zero and suc are variable127

names). The theory of QIIT signatures is itself a QIIT. In ibid., it is proved that if a model128

of extensional type theory supports the theory of QIIT signatures, then it supports all QIITs.129

1 An experimental version of Coq with IITs is also available on GitHub.

TYPES 2019



6:4 For Finitary Induction-Induction, Induction is Enough

By omitting the equality type former from the theory of QIIT signatures, we obtain a130

theory of IIT signatures and the construction is still valid. It follows that if a model of131

extensional type theory supports the theory of IIT signatures, it supports all IITs.132

In this paper we show that any model of extensional type theory with indexed W-types133

supports the theory of IIT signatures, and as a consequence all IITs. The difficulty in this134

construction is that the theory of IIT signatures is itself a QIIT, it is both inductive-inductive135

and has equality constructors. However, it can be seen as the well-typed syntax of a small136

type theory without any computation rules. Hence we can represent the syntax of normal137

forms without quotienting. We construct this well-typed normal syntax using preterms and138

typing relations from indexed W-types. Finally, we prove the elimination principle in the139

style of the initiality proof of Streicher.140

Streicher [30] constructs the syntactic model of type theory using well-typed preterms141

and then shows initiality of this model by (1) defining a partial map to any other model142

by induction on preterms and (2) showing that whenever this partial function receives a143

well-typed preterm on its input it actually gives an output. Instead of defining a partial144

function, we define the graph of the same function as a relation and then show that it is145

functional as a second step. This can be seen as an indexed variant of the construction using146

partial functions.147

Just as [21], we only consider finitary IITs, that is, constructors can only have a finite148

number of recursive arguments. An example constructor for Con–Ty which is not allowed is149

the following:150

Π∞ : (Γ : Con)→ (N→ Ty Γ)→ Ty Γ151

Structure of paper and list of contributions152

We describe related work in Section 1.1, and explain our notation and Agda formalisaton in153

Section 1.2. Then the following three sections describe our three contributions:154

Section 2. We define what it means for a model of extensional type theory (ETT,155

Definition 1) to support all inductive-inductive types (IITs): Definition 12. The novel156

contribution here is a (predicative) Church encoding of signatures following [8].157

Section 3. In Theorem 23, we show that if a model of ETT supports the theory of IIT158

signatures (Definition 15), then it supports IITs. This is an adaptation of a proof in [21].159

Section 4. Our main contribution is showing that if a model of ETT supports indexed160

W-types, then it supports the theory of IIT signatures (Theorem 57), and hence, all IITs161

(Corollary 58).162

We list further work in Section 5.163

The contents of this paper were presented at the TYPES 2019 conference in Oslo [22].164

1.1 Related Work165

The current work builds heavily on the work of Kaposi et al. [21] on finitary quotient166

inductive-inductive types (QIITs); we reuse both QIIT syntax and semantics by restricting167

to IITs, and we reuse the term model construction of QIITs as well. We also make use of the168

extension to infinitary QIITs [24] to derive the specification of the elimination principle for169

the theory of IIT signatures.170

IITs (although not by this name) were first used to describe the well-typed syntax of type171

theory [15, 13]. Agda supported these general inductive definitions even before they were172

named IITs and given semantics by Nordvall Forsberg and Setzer [27]. Nordvall Forsberg’s173



A. Kaposi, A. Kovács and A. Lafont 6:5

thesis [26] contains a specification similar in style to Dybjer and Setzer’s codes for inductive-174

recursive types [17]. He also develops a categorical semantics based on dialgebras and provides175

a reduction of IITs to indexed inductive types, however only constructs the simple elimination176

principle as opposed to the general one. Altenkirch et al. [2] define signatures for QIITs177

(thus IITs as well) and their categorical semantics, however without proving existence of178

initial algebras. Their notion of signature, like Nordvall Forsberg’s, involves more encoding179

overhead than ours.180

Cartmell [12] introduced generalised algebraic theories using a type-theoretic syntax.181

Removing equations from his signatures and only considering finite signatures, we obtain182

finitary IIT signatures similar to ours. He does not consider constructing initial algebras183

using simpler classes of inductive types.184

Hugunin [19] constructs several IITs in cubical Agda from inductive types. In this setting,185

the lack of UIP makes constructions significantly more involved, and essentially involves186

coinductive-coinductive well-formedness predicates defined as homotopy limits. Hugunin187

does not consider a generic syntax of IITs and only works on specific examples (although the188

examples vary greatly). He also only constructs simple elimination principles.189

Streicher [30] presents an interpretation of the well-formed presyntax of a type theory190

into a categorical model, which is an important ingredient in constructing an initial model,191

although he does not present details on the construction of the term model or its initiality192

proof. Our initiality proof can be seen as an indexed variant of his construction (see Subsection193

4.2 for a comparison).194

Voevodsky was interested in constructing initial models of type theories from presyntaxes.195

Inspired by this, Brunerie et al. [10] formalised Streicher’s proof in Agda for a type theory196

with Π, Σ, N, identity types and an infinite hierarchy of universes. They used UIP, function197

extensionality and quotient types in the formalisation. In this paper we construct a type198

theory without computation rules, hence we avoid using quotients.199

Intrinsic (well-typed) syntaxes for type theories were constructed using IITs [13], inductive-200

recursive types [15, 6] and QIITs [4]. In this paper we avoid using such general classes of201

inductive types as our goal is to reduce IITs to indexed inductive types.202

Reducing general classes of inductive types to simpler classes has a long tradition in type203

theory. Indexed W-types were reduced to W-types [3] (using the essentially Streicher’s idea204

of preterms and a typing predicate), small inductive-recursive types to indexed W-types [25],205

mutual inductive types to indexed W-types [23], W-types to natural numbers and quotients206

[1]. (Q)IITs can be reduced to quotient inductive types using the reduction of generalised207

algebraic theories to essentially algebraic theories [12]. Using the same reduction as mutual208

inductive types to indexed inductive types, (Q)IITs with more than two sorts can be reduced209

to (Q)IITs with only two sorts [20].210

Awodey, Frey and Speight [8] construct inductive types using a restricted Church encoding211

in a type theory with an impredicative universe. We use the predicative version of their212

encoding to define IIT signatures.213

Our reduction of IITs to indexed inductive types goes through two steps: first we construct214

a concrete QIIT using inductive types, then we construct all IITs from this particular QIIT.215

A more direct approach is proposed by [5]: here the initial algebra would be constructed216

directly for any IIT signature without going through an intermediate step.217

1.2 Notation and Formalisation218

I Definition 1 (Model of extensional type theory (ETT)). By a model of ETT we mean a219

category with families (CwF) [16, 18] with a countable predicative hierarchy of universes220

TYPES 2019



6:6 For Finitary Induction-Induction, Induction is Enough

closed under the following type formers: Π, Σ, > and an identity type with uniqueness of221

identity proofs and equality reflection.222

We will use Agda-like type theoretic syntax to work in the internal language of models of223

ETT:224

Universes are written Seti. We usually omit level indices in this paper.225

Π types are notated as (x : A)→ B, or as A→ B when non-dependent. We sometimes226

omit function arguments, by implicitly generalising over variables.227

Σ-types, notated either as (x : A)×B, or as
∑
x
B when we want to leave the type of the228

first projection implicit. Projections are either named or given by proj1 and proj2. We229

use A×B for non-dependent pairs.230

The unit type > has the constructor tt which is definitionally equal to all elements of >.231

The equality (identity) type is written t = u, it has a constructor refl : t = t, and equality232

reflection, hence we use the same = sign for definitional equality. We occasionally indicate233

by e1,...,en#t that t is well-typed thanks to the equalities e1,. . . ,en. To construct proofs,234

sometimes we write equational reasoning, e.g. fa e= fb where e : a = b. We also have235

uniqueness of identity proofs (UIP), expressing (e : t = t)→ e = refl. Note that function236

extensionality, expressing ((x : A)→ f x = g x)→ f = g is derivable.237

The contents of Section 4 were formalised in Agda, the formalisation is available at238

https://github.com/amblafont/UniversalII. Agda’s pattern matching mechanism im-239

plies uniqueness of identity proofs, we assumed function extensionality as an axiom and used240

rewrite rules [14] to obtain limited equality reflection.241

2 A Definition of Inductive-Inductive Types242

In this section we specify what it means that a model of ETT supports IITs. We first define243

the notion of IIT signature. Signatures for algebraic theories are usually given by inductive244

definitions. On the one hand, we take this even further: our notion of signature is given245

by a small type theory tailor-made to describe signatures, which we call the theory of IIT246

signatures. On the other hand we would like to avoid using a complicated inductive definition247

(a type theory is a quotient inductive-inductive type [4]) to describe a simpler class of248

inductive types. Hence we use a Church encoding [8] of the theory of IIT signatures, thereby249

avoiding the need for pre-existing inductive definitions. Another feature of our signatures is250

that they can include types from the model of ETT (such as N in the isEven–isOdd). This is251

why signatures are specified internally to the particular model of ETT.2252

We define the theory of IIT signatures by saying what its algebras (models) are. We call253

the theory of IIT signatures algebras simply signature algebras. The theory of signatures is a254

small type theory consisting of a (1) a substitution calculus (category with families, CwF255

[16]) equipped with (2) a universe, (3) a function space where the domain is in the universe256

and (4) another function space with external domain. We explain the usage of these type257

formers through examples after the definition.258

2 There is another method inspired by Capriotti [11] which allows stating what it means that any CwF C
(not necessarily a model of ETT) supports IITs with definitional computation rules. In this method,
signatures are described in the internal language of Ĉ, the presheaf model over C. We do not use this
approach because it is more technical, and it would not strengthen our main result Corollary 58 as the
proof of Theorem 57 needs C to be a model of ETT.

https://github.com/amblafont/UniversalII


A. Kaposi, A. Kovács and A. Lafont 6:7

I Definition 2 (Signature algebra, SignAlg). In a model of ETT, a signature algebra is an259

iterated Σ type consisting of the following four (families of) sets, 17 operations and 18260

equalities.261

(1) Substitution calculus262

Con : Set263

Ty : Con→ Set264

Sub : Con→ Con→ Set265

Tm : (Γ : Con)→ Ty Γ → Set266

id : Sub Γ Γ267

– ◦ – : Sub Θ ∆→ Sub Γ Θ → Sub Γ ∆268

ass : (σ ◦ δ) ◦ ν = σ ◦ (δ ◦ ν)269

idl : id ◦ σ = σ270

idr : σ ◦ id = σ271

– [– ] : Ty ∆→ Sub Γ ∆→ Ty Γ272

– [– ] : Tm ∆A→ (σ : Sub Γ ∆)→ Tm Γ (A[σ])273

[id] : A[id] = A274

[◦] : A[σ ◦ δ] = A[σ][δ]275

[id] : t[id] = t276

[◦] : t[σ ◦ δ] = t[σ][δ]277

· : Con278

ε : Sub Γ ·279

·η : (σ : Sub Γ ·)→ σ = ε280

– B – : (Γ : Con)→ Ty Γ → Con281

– , – : (σ : Sub Γ ∆)→ Tm Γ (A[σ])→ Sub Γ (∆ BA)282

π1 : Sub Γ (∆ BA)→ Sub Γ ∆283

π2 : (σ : Sub Γ (∆ BA))→ Tm Γ (A[π1σ])284

π1β : π1(σ, t) = σ285

π2β : π2(σ, t) = t286

πη : (π1 σ, π2 σ) = σ287

, ◦ : (σ, t) ◦ δ = (σ ◦ δ, t[δ])288

(2) Universe289

U : Ty Γ290

El : Tm Γ U→ Ty Γ291

U[] : U[σ] = U292

El[] : (El a)[σ] = El (a[σ])293

(3) Inductive parameters294

Π : (a : Tm Γ U)→ Ty (Γ B El a)→ Ty Γ295

– @ – : Tm Γ (Π aB)→ (u : Tm Γ (El a))→ Tm Γ (El (B[id, u]))296

Π[] : (Π aB)[σ] = Π (a[σ]) (B[σ ◦ p, q])297

@[] : (t@α)[σ] = (t[σ]) @(α[σ])298

TYPES 2019



6:8 For Finitary Induction-Induction, Induction is Enough

(4) External parameters299

Π̂ : (T : Set)→ (T → Ty Γ)→ Ty Γ300

– @̂ – : Tm Γ (Π̂T B)→ (α : T )→ Tm Γ (B α)301

Π̂[] : (Π̂T B)[σ] = Π̂T (λα.(B α)[σ])302

@̂[] : (t @̂α)[σ] = (t[σ]) @̂α303
304

Given an M : SignAlg, we denote its components by ConM , TyM , SubM , TmM , idM , and so305

on. We omit the indices if there is only one signature algebra in scope (e.g. in Definition 3306

and Example 4).307

I Definition 3 (Abbreviations). For a signature algebra, we use wk : Sub (Γ BA) Γ to mean308

π1 id. We recover de Bruijn indices by setting 0 := π2 id and 1 + n := n[wk]. Π a (B[wk]) is309

abbreviated by a⇒ B, Π̂T (λ_.B) by T ⇒̂B.310

I Example 4 (Example contexts in a signature algebra). Given a signature algebra, we can311

define a context which specifies natural numbers. For readability, an informal version of the312

same context is displayed on the right using variable names.313

· B U B z : El 0 B s : 1⇒ El 1 · BN : U B z : ElN B s : N ⇒ ElN314

We start with the empty context ·, then we declare a sort U, then we declare an operator315

producing an element of the sort denoted by El 0 where 0 is the de Bruijn index referring to316

the sort. Finally, we declare an operator which takes as input an element of the sort (now it317

became de Bruijn index 1) and produces an element of the same sort. Note the asymmetry318

of the function type ⇒: the domain needs to be an element of U, while the codomain can be319

any type (including another function type). This ensures strict positivity of the operators.320

Lists with elements of a given T : Set type are given by the following context. Here we use321

the function space with external domain ⇒̂ to include a T in the signature. For readability,322

we omit the λ and the superscripts and we do not write the compatibility condition. On the323

right we list the same signature with variable names.324

· BU B El 0 B T ⇒̂ 1⇒ El 1 · BL : U B nil : ElL B cons : T ⇒̂ L⇒ ElL325
326

The Con–Ty example from Section 1 is given by the following context.327

· B · B328

UB Con : UB329

0⇒ UB Ty : Con⇒ UB330

El 1B empty : ElConB331

Π 2 (2 @ 0⇒ El 3)B ext : Π (Γ : Con) (Ty @ Γ ⇒ ElCon)B332

Π 3 (El (3 @ 0))B U : Π (Γ : Con) (El (Ty @ Γ))B333

Π 4 (El (4 @(2 @ 0 @(1 @ 0)))) El : Π (Γ : Con) (El (Ty @(ext@ Γ @(U @ Γ))))334
335

The above examples are contexts in any signature algebra, and we could take this as a336

definition of signature: (M : SignAlg) → ConM is the usual Church-encoding of contexts.337

However (as we will see in Remark 24) the notion of constructor for such signatures would338

be too strong. Another approach would be to assume that there is a syntax for signature339

algebras (an initial signature algebra), and then a signature would be a context in this340

signature algebra. We will define syntactic signatures using this approach in the next section341



A. Kaposi, A. Kovács and A. Lafont 6:9

(Definition 16), but for now we do not want to assume the existence of any inductive type.342

Instead, we will use a restricted Church encoding. This requires the notion of morphism of343

signatures.344

The notion of morphism is determined by the notion of algebra [24], but we include it345

here for completeness.346

I Definition 5 (Signature morphism, SignMor). A morphism from signature algebras M to N347

denoted SignMorM N consists of four functions and 17 equalities expressing that the functions348

preserve the operations of the two algebras. We use the same naming as in Definition 2 and349

use superscripts to denote which algebra is meant.350

(1) Substitution calculus351

Con : ConM → ConN352

Ty : TyM Γ → TyN (Con Γ)353

Sub : SubM Γ ∆ → SubN (Con Γ) (Con ∆)354

Tm : TmM Γ A → TmN (Con Γ) (TyA)355

id : Sub idM = idN356

◦ : σ ◦M δ = Subσ ◦N Sub δ357

[] : A[σ]M = TyA[Subσ]N358

[] : t[σ]M = Tm t[Subσ]N359

· : Con ·M = ·N360

ε : Sub εM = εN361

B : Con (Γ BM A) = Con Γ BN TyA362

, : Sub (σ,M t) = Subσ,N Tm t363

π1 : Sub (π1
M σ) = π1

N (Subσ)364

π2 : Tm (π2
M σ) = π2

N (Subσ)365

(2) Universe366

U : Ty UM = UN367

El : Ty (ElM a) = ElN (Tm a)368

(3) Inductive parameters369

Π : Ty (ΠM aB) = ΠN (Tm a) (TyB)370

@ : Tm (t @M u) = Tm t @N Tmu371

(4) External parameters372

Π̂ : Ty (Π̂M T B) = Π̂N T (λα.Ty (B α))373

@̂ : Tm (t @̂
M α) = Tm t @̂

N α374
375

Given an f : SignMorM N , we denote its first four components just by fCon, fTy, fSub, fTm376

or just write f if it is clear which one is meant.377

We define IIT signatures using the Church encoding introduced by Awodey, Frey and378

Speight [8]. A difference is that we avoid impredicativity. This restricts the possible379

eliminations on signatures: we can only eliminate into a universe which is smaller than the380

level of signatures. However, this still covers all eliminations in this paper, and it is also not381

an issue for us that signatures do not live in the smallest universe.382

TYPES 2019



6:10 For Finitary Induction-Induction, Induction is Enough

I Definition 6 (IIT signature). An IIT signature is a context in an arbitrary signature algebra,383

which is also compatible with morphisms:384

Sign :=
(
sig : (M : SignAlg)→ ConM

)
×385 (

(M N : SignAlg)(f : SignMorM N)→ fCon (sigM) = sig N
)
.386

387

The compatibility condition says that if we obtain an M -context using sig at signature388

algebra M and then we transport it to N using f , we get the same N -context as directly389

applying sig to N .390

The lack of impredicativity implies that our notion of signatures do not form a signature391

algebra.392

I Lemma 7. There is no M : SignAlg, in which ConM = Sign.393

Proof. If the Con component in SignAlg is Seti, then SignAlg is in Seti+1, but as Sign is394

defined as (SignAlg→ . . . )× . . . , it is at least in Seti+1, so we can’t choose ConM : Seti to395

be Sign : Seti+1. J396

Note that the notion of IIT signature is relative to a model of ETT: it is expressed as a397

term (of a function type) in the model. This is necessary because of the function space Π̂,398

which has as domain an arbitrary type in the model. We make use of Π̂ in signatures with399

external parameters, like the type of the elements in lists.400

I Example 8 (Example signature). Now we can formally describe the contexts given in401

Example 4 as signatures. For natural numbers, we have the following pair of functions. The402

second function returns an equality proof which we describe using equational reasoning.403

(nat, natc) :=404 (
λM.(·M BM UM BM ElM 0M BM 1M ⇒M ElM 1M ),405

λM N f . fCon (·M BM UM BM ElM 0M BM 1M ⇒M ElM 1M ) =406

fCon (·M BM UM BM ElM 0M ) BN fTy (1N ⇒N ElN 1N ) =407

fCon (·M BM UM ) BN fTy (ElM 0M ) BN fTm 1N ⇒M fTy (ElN 1N ) =408

fCon ·M BN fTy UM BN ElN (fTm 0M ) BN 1M ⇒M ElM (fTm 1N ) =409

·N BN UN BN ElN 0N BN 1N ⇒N ElN 1N
)

410
411

The first component builds the context describing natural numbers in M , the second one412

uses the fact that f is a morphism, that is, it preserves all operations.413

The signatures for lists and Con–Ty can be given analogously.414

Given a model of ETT and an IIT signature in it, we would like to say what it means415

that the model supports the given IIT. For this we define the signature algebra ADS which416

will provide notions of algebras, displayed algebras and sections for each signature. This is417

the same as the –A, –D and –S operations in [21]. Before defining ADS, we illustrate its418

usage by an example.419

I Example 9 (Algebras, displayed algebras and sections for natural numbers). For the signature420

of natural numbers as given in Example 8, algebras are given by the Σ-type (N : Set)×N ×421

(N → N). A displayed algebra over (N, z, s) is given by the Σ-type422

(ND : N → Set)×ND z × ((n : N)→ ND n→ ND (s n)),423



A. Kaposi, A. Kovács and A. Lafont 6:11

and a section of a displayed algebra (ND, zD, sD) over (N, z, s) is given by the Σ-type424

(NS : (n : N)→ ND n)× (NS z = zD)× ((n : N)→ NS (s n) = sD n (NS n)).425

Displayed algebras over the initial algebra are called motives and methods of the eliminator,426

while a section of a displayed algebra over the initial algebra is the eliminator together with427

its computation rules.428

I Definition 10 (The signature algebra ADS). We define an element of SignAlg by listing all429

its components Con, Ty, Sub, and so on, one per row. Each such component has three parts430

denoted by A, D and S, respectively. The equality components of SignAlg are omitted as they431

are all reflexivity.432

(ΓA : Set) ×(ΓD : ΓA → Set) ×(ΓS : (γ : ΓA)→ ΓD γ → Set)433

(AA : ΓA → Set) ×(AD : ΓD γ → AA γ → Set) ×(AS : ΓS γ γD → (α : AA γ)→434

AD γD α→ Set)435

(σA : ΓA → ∆A) ×(σD : ΓD γ → ∆D (σA γ)) ×(σS : ΓS γ γD →436

∆S (σA γ) (σD γD))437

(tA : (γ : ΓA)→ AA γ) ×(tD : (γD : ΓD γ)→ ×(tS : (γS : ΓS γ γD)→438

AD γD (tA γ)) AS (tA γ) (tD γD))439

idA γ := γ idD γD := γD idS γS := γS440

(σ ◦ δ)A γ := σA (δA γ) (σ ◦ δ)D γD := σD (δD γD) (σ ◦ δ)S γS := σS (δS γS)441

(A[σ])A γ := AA (σA γ) (A[σ])D γD := AD (σD γD) (A[σ])S γS := AS (σS γS)442

(t[σ])A γ := tA (σA γ) (t[σ])D γD := tD (σD γD) (t[σ])S γS := tS (σS γS)443

·A := > ·D _ := > ·S __ := >444

εA _ := tt εD _ := tt εS _ := tt445

(Γ BA)A := (Γ BA)D (γ, α) := (Γ BA)S (γ, α) (γD, αD) :=446

(γ : ΓA)×AA γ (γD : ΓD γ)×AD γD α (γS : ΓS γ γD)×AS γS ααD447

(σ, t)A γ := (σA γ, tA γ) (σ, t)D γD := (σD γD, tD γD) (σ, t)S γS := (σS γS , tS γS)448

(π1 σ)A γ := proj1 (σA γ) (π1 σ)D γD := proj1 (σD γD) (π1 σ)S γS := proj1 (σS γS)449

(π2 σ)A γ := proj2 (σA γ) (π2 σ)D γD := proj2 (σD γD) (π2 σ)S γS := proj2 (σS γS)450

UA γ := Set UD γD T := T → Set US γS T TD := (α : T )→ TD α451

(El a)A γ := aA γ (El a)D γD α := aD γD α (El a)S γS ααD := (aS γS α = αD)452

(Π aB)A γ := (Π aB)D γD f := (Π aB)S γS f fD := (α : aA γ)→453

(α : aA γ)→ BA (γ, α) (αD : aD γD α)→ BS (γS , reflaS γS α) (f α)454

BD (γD, αD) (f α) (fD (aS γS α))455

(t@u)A γ := tA γ (uA γ) (t@u)D γD := tD γD (uD γD) (t@u)S γS :=uS γS# tS γS (uA γ)456

(Π̂T B)A γ := (Π̂T B)D γD f := (Π̂T B)S γS f fD := (α : T )→457

(α : T )→ (B α)A γ (α : T )→ (B α)D γD (f α) (B α)S γS (f α) (fD α)458

(t @̂α)A γ := tA γ α (t @̂α)D γD := tD γD α (t @̂α)S γS := tS γS α459460

Definition 10 can be explained by columns (see [21, Sections 4 and 6] for more details) or by461

rows (see [21, Section 7.4]).462

We first explain it by columns: the first column (A components) corresponds to the463

standard model (set model, metacircular interpretation [4]): contexts are sets, types are464

TYPES 2019



6:12 For Finitary Induction-Induction, Induction is Enough

families, terms are functions, the universe U is given by Set, function spaces are given by the465

external function space. The D column is a logical predicate interpretation, A and D together466

are a unary version of the parametric model for dependent types [7]. Contexts are predicates,467

types are families of predicates, terms say that the A interpretation respects the predicates468

(this is ususally called fundamental lemma of the logical predicate). U is given by predicate469

space, the predicate at a Π type holds for a function if it respects the predicates. For Π̂, the470

predicate is defined pointwise. The last column S is a modified dependent logical relation471

which refers to both A and D. Contexts are binary relations where the second parameter472

depends on the first one, types are dependent variants of this, terms say that the relation473

is respected by A and D, respectively. U is however not relation space, but a function and474

(El a)S is the graph of the function aS. ΠS for a function again says that the function respects475

the relation, however we do not simply say476

(Π aB)S γS f fD := (α : aA γ)(αD : aD γD α)(αS : (El a)S γS ααD)→ BS . . . ,477

as (El a)S γS ααD is just an equality aS γS α = αD which we can singleton contract. So we478

omit αD and this equality as an input and replace αD by aS γS α in the definition.479

When viewing ADS by rows, we can see that it is a part of the CwF model of type theory480

[21, Section 7.4]. In the CwF model, a context is given by a CwF. Now, from the category481

part of the CwF, we only have objects (ΓA), and from the families, we have the families for482

types ΓD and terms ΓS. Types are the corresponding parts of displayed CwFs, substitutions483

are parts of CwF morphisms, terms are parts of CwF sections. U is part of the CwF of sets,484

El a is the part of the discrete displayed CwF coming from a (which is a CwF-morphism485

from Γ to the CwF of sets). Π is given by a dependent product of displayed CwFs where it486

is essential that the domain is discrete, Π̂ is the pointwise direct product.487

I Definition 11 (The set signature algebra A). A : SignAlg is given by the first A components488

of ADS (Definition 10), that is, ConA := Set, TyA Γ := Γ → Set, SubA Γ ∆ := Γ → ∆, and489

so on. There is a morphism from ADS to A defined by –A at each component, which we also490

denote by –A : SignMor ADS A.491

I Definition 12 (A model of ETT supports IITs). A model of ETT supports IITs if for any492

signature (sig, sigc) : Sign there is a493

consig : (sig ADS)A
494

and an495

elimsig : (γD : (sig ADS)D consig)→ (sig ADS)S consig γD.496

In other words, for any signature, we have an algebra called con (constructors) and for any497

displayed algebra over the constructors, we have a section (called the eliminator).498

One can check that Definition 12 gives the right notion of constructors and elimination499

principle for the signatures in Example 8.500

I Example 13 (A model of ETT supports natural numbers). For the signature (nat, natc) of501

natural numbers in Example 8, the type of connat is502

(natADS)A =503

(·ADS BADS UADS BADS ElADS 0ADS BADS 1ADS ⇒ADS ElADS 1ADS)A =504 ((
(· B U) B El (π2 id)

)
B
(
π2 (π1 id)

)
⇒ El

(
π2 (π1 id)

))A
=505



A. Kaposi, A. Kovács and A. Lafont 6:13

(
γ′′ :

(
γ′ : ((γ : ·A)× UA γ)

)
× (El (π2 id))A γ′

)
×
(

Π
(
π2 (π1 id)

) (
π2 (π1 (π1 id))

))A
γ′′ =506 (

γ′′ :
(
γ′ : ((γ : >)× Set)

)
× (proj2 γ′)

)
×
(
proj2 (proj1 γ′′)→ proj2 (proj1 γ′′)

)
,507

508

which is a left-nested Σ type isomorphic to its right-nested counterpart509

(N : Set)×
(
N × (N → N)

)
.510

Writing (((tt,Nat), zero), suc) for connat, the type of elimnat computes as follows.511

(γD : (natADS)D connat)→ (natADS)S connat γD =512 (
γD :

((
(· B U) B El (π2 id)

)
B
(
π2 (π1 id)

)
⇒ El

(
π2 (π1 id)

))D
connat

)
→513 ((

(· B U) B El (π2 id)
)
B
(
π2 (π1 id)

)
⇒ El

(
π2 (π1 id)

))S
connat γD =514 (

γD :
((

(· B U) B El (π2 id)
)
B
(
π2 (π1 id)

)
⇒ El

(
π2 (π1 id)

))D
515

(
((tt,Nat), zero), suc

))
→516 ((

(· B U) B El (π2 id)
)
B
(
π2 (π1 id)

)
⇒ El

(
π2 (π1 id)

))S (
((tt,Nat), zero), suc

)
γD =517 ((

((tt, ND), zD), sD
)

:
(
γD

′′ :
(
γD

′ : ((γD : ·D tt)× UD γD Nat)
)
× (El (π2 id))D γD

′ zero
)
×518 (

Π
(
π2 (π1 id)

) (
π2 (π1 (π1 id))

))D
γD

′′ suc
)
→519 ((

(· B U) B El (π2 id)
)
B
(
π2 (π1 id)

)
⇒ El

(
π2 (π1 id)

))S
(((tt,Nat), zero), suc)520 (

((tt, ND), zD), sD
)

=521 ((
((tt, ND), zD), sD

)
:
(
γD

′′ :
(
γD

′ : ((γD : ·D tt)× UD γD Nat)
)
× (El (π2 id))D γD

′ zero
)
×522 (

Π
(
π2 (π1 id)

) (
π2 (π1 (π1 id))

))D
γD

′′ suc
)
→523 (

γS
′′ :
(
γS

′ : ((γS : ·S tt tt)× US γS NatND)
)
× (El (π2 id))S γS

′ zero zD
)
×524 (

Π
(
π2 (π1 id)

) (
π2 (π1 (π1 id))

))S
γS

′′ suc sD =525 ((
((tt, ND), zD), sD

)
:
(
γD

′′ :
(
γD

′ : ((γD : >)× (Nat→ Set))
)
× proj2 γD

′ zero
)
×526

(
proj2 (proj1 γD

′′)n→ proj2 (proj1 γD
′′) (sucn)

))
→527 (

γS
′′ :
(
γS

′ : ((γS : >)× ((n : Nat)→ ND n))
)
× proj2 γS

′ zero = zD
)
×528 ((

n : Nat
)
→ proj2 (proj1 (proj1 γS

′′)) (sucn) = sD
(
proj2 (proj1 (proj1 γS

′′))n
))

529530

This is again a left-nested version of the expected elimination principle531

(ND : Nat→ Set)(zD : ND zero)
(
sD : (n : Nat)→ ND n→ ND (sucn)

)
→532 (

NS : (n : Nat)→ ND n
)
× (NS zero = zD)×

(
(n : Nat)→ NS (sucn) = sD (NS n)

)
533
534

TYPES 2019



6:14 For Finitary Induction-Induction, Induction is Enough

I Remark 14. The computation rules of the elimination principle are only expected up to the535

internal equality type, but as we work with a model of ETT, we also get them as definitional536

equalities by equality reflection.537

3 Constructing all IITs from the Theory of IIT Signatures538

In the previous section, using the notions of signature algebras and signature morphisms,539

we defined IIT signatures and what it means for a model of ETT to support all IITs. In540

this section we show that if a model of ETT supports the theory of IIT signatures, then541

it supports all IITs. Using the Church encoding of Definition 6, every model of ETT can542

describe ITT signatures. In contrast, in Definition 15, we will require existence of an initial543

signature algebra.544

The contents of this section are an adjustment of [21, Sections 4 and 6] to our setting.545

I Definition 15. A model of ETT supports the theory of IIT signatures if there is a signature546

algebra I : SignAlg equipped with a unique morphism J–KM : SignMor IM into any algebra M .547

Sometimes we omit the subscript M . We call I the syntax or initial algebra, the morphism548

J–K is called recursor.549

I Definition 16 (Syntactic signatures). In a model of ETT supporting the theory of ITT550

signatures, we call elements of ConI syntactic signatures.551

One may wonder what is the relationship between the two notion of signatures.552

I Lemma 17. In a model of ETT supporting the theory of ITT signatures, signatures and553

syntactic signatures are isomorphic.554

Proof. We can turn a (sig, sigc) : Sign into ConI by sig I and an Ω : ConI into a Sign by555 (
λM.JΩKM , λM N f.

(
f JΩKM = (f ◦ J–KM ) Ω = JΩKN

))
where the equality proof in the556

second component comes from uniqueness of the recursor (we have to define composition557

of morphisms ◦ for this). The compositions of these two maps are the identities: (sig, sigc)558

is mapped to (λM.Jsig IKM , . . . ) = (λM.J–KM (sig I), . . . ) which is equal to (λM.sigM, . . . )559

because of sigc; Ω is mapped to JΩKI = Ω by uniqueness of J–K. J560

We will define the term signature algebra by which we obtain the constructors con for any561

IIT signature. Then we will define another signature algebra which provides the eliminator.562

Before doing these, we illustrate the idea of both constructions on natural numbers.563

I Example 18. For natural numbers, we will define the constructors con as the following564

natural number algebra (Nat, zero, suc). We write variable names instead of de Bruijn indices565

for readability.566

Nat := TmI (·BN : U B z : ElN B s : N ⇒ ElN) (ElN)567

zero := z568

suc := λt.(s@ t)569
570

Natural numbers are simply I-terms of type ElN in the context which is the syntactic571

signature for natural numbers. In this context, the only way to define a term of type ElN is572

to use z and s, corresponding to the zero and suc constructors.573

To define the action of the eliminator on a natural number n : Nat, let’s look at the type574

of the displayed algebra interpretation of the number:575

JnKADS
D : (γD : J·BN : U B z : ElN B s : N ⇒ ElNKD con)→ JElNKD (JnKA con)576



A. Kaposi, A. Kovács and A. Lafont 6:15

This says that for a displayed algebra γD = (ND, zD, sD) over con (i.e. the motives and577

methods of the eliminator), we get a witness of the predicate JElNKD = ND at the algebra578

interpretation of n. This is not yet good, as we would like to getND n instead ofND (JnKA con)579

as a result. However, interpretation into the term signature algebra will imply that n =580

JnKA con.581

I Definition 19 (Term signature algebra IC– ). For an Ω : ConI , we define ICΩ : SignAlg which582

we call the term signature algebra. It is equipped with a morphism – I : SignMor (ICΩ) I. We583

define ICΩ by listing its components Con, Ty, Sub, and so on, one per row. Each component584

has two parts denoted by I and C. The I part just reuses the corresponding components from585

I, and thus the morphism – I is defined as the obvious projection. We omit the equality586

components, as they come from UIP or are trivial. We also omit the components for terms587

and substitutions as their C parts consist of uninformative equational reasoning.588

Γ I : ConI ΓC : SubI Ω Γ I → JΓKA589

AI : TyI Γ I AC : (ν : SubI Ω Γ I)→ TmI Ω (AI[ν])→ JAKA (ΓC ν)590

σI : SubI Γ I ∆I σC : ∆C (σI ◦ ν) = JσKA (ΓC ν)591

tI : TmI Γ I AI tC : AC ν (tI[ν]) = JtKA (ΓC ν)592

(A[σ])I := AI[σI]I (A[σ])C ν t := AC (σI ◦ ν) t593

·I := ·I ·C ν := tt594

(Γ BA)I := Γ I BI AI (Γ BA)C ν := (ΓC (π1 ν), AC (π1 ν) (π2 ν))595

UI := UI UCν a := TmI Ω (ElI a)596

(El a)I := ElI aI (El a)C ν t :=aC ν# t597

(Π aB)I := ΠI aI BI (Π aB)C ν t := λα.BC (ν,aC ν# α) (t@ aC ν#α)598

(Π̂T B)I := Π̂I T BI (Π̂T B)C ν t := λα.(B α)C ν (t @̂α)599
600

I Example 20. Now, given a syntactic signature Ω : ConI, we get the constructors as an601

Ω-algebra by ω := (JΩKICΩ )C idI : JΩKA. If Ω is the syntactic signature for natural numbers,602

we get the constructors as in Example 18.603

An a : TmI Ω U is a sort term for the syntactic signature Ω. If Ω is the syntactic signature604

for natural numbers, a can only be N (1 as a de Bruijn index). If Ω is the syntactic signature605

for Con–Ty (Example 4), a can be Con, Ty @ empty, Ty @(ext@ empty @(U @ empty)), and606

so on. In any case, for such an a, we obtain (JaKICΩ )C idI : TmI Ω (El a) = JaKA ω. That is, the607

algebra interpretation of a sort term at the constructors is equal to terms of that sort.608

A t : TmI Ω (El a) is a term of a sort type a constructed using the constructors in Ω. For609

natural numbers, such a t can only be s applied iteratively to z. For such a t, we obtain610

(JtKICΩ )C idI : (t = JtKA ω). That is, a constructor term is equal to its algebra interpretation at611

the constructors. This is exactly the equation needed at the end of Example 18.612

I Definition 21 (Eliminator signature algebra IE– ). Given an Ω : ConI, we use the abbreviation613

ω := JΩKICΩ idI as in Example 20. Assuming an ωD : (JΩKADS)D ω, we define the signature614

algebra IEωD . It is equipped with a morphism – I : SignMor IEωD I. We define IEωD by listing615

its components Con, Ty, Sub, and so on, one per row. Each component has two parts denoted616

by I and E. The I part just reuses the corresponding components of I, thus the morphism – I is617

defined as the obvious projection. We omit the equality components, as they come from UIP618

or are trivial. We also omit the components for terms and substitutions as their E parts are619

uninformative equational reasonings.620

Γ I : ConI ΓE : (ν : SubI Ω Γ I)→ JΓKS (JνKA ω) (JνKD ωD)621

TYPES 2019



6:16 For Finitary Induction-Induction, Induction is Enough

AI : TyI Γ I AE : (ν : SubI Ω Γ I)(t : TmI Ω (AI[ν]))→622

JAKS (ΓE ν) (JtKA ω) (JtKD ωD)623

σI : SubI Γ I ∆I σE : ∆E (σI ◦ ν) = JσKS (ΓE ν)624

tI : TmI Γ I AI tE : AE ν (tI[ν]) = JtKS (ΓE ν)625

(A[σ])I := AI[σI]I (A[σ])E ν t := AE (σI ◦ ν) t626

·I := ·I ·E ν := tt627

(Γ BA)I := Γ I BI AI (Γ BA)E ν := (ΓE (π1 ν), AE (π1 ν) (π2 ν))628

UI := UI UEν a := λα.JαKC id#
(
JJαKC id#αKD ωD

)
629

(El a)I := ElI aI (El a)E ν t :=
(
JaKS (ΓE ν) (JtKA ω) JtKC id= JaKS (ΓE ν) t a

E ν= JtKD ωD
)

630

(Π aB)I := ΠI aI BI (Π aB)E ν t :=631

λα.JαKC id#
(
BE (ν,JaKC id,JνKC id# α) (t@ JaKC id,JνKC id#u)

)
632

(Π̂T B)I := Π̂I T BI (Π̂T B)E ν t := λα.(B α)E ν (t @̂α)633
634

I Example 22. Given the assumptions Ω, ωD of IE, we obtain the eliminator by JΩKIE
ωD idI :635

JΩKS ω ωD. The eliminator is a section of the displayed algebra ωD, that is, a dependent636

function together with equalities witnessing that all the operations are preserved. If Ω is the637

syntactic signature for natural numbers, we get the eliminator of Example 18.638

For a sort term a : TmI Ω U, the interpretation (JaKIEωD )E id says that (λα.JαKD ωD) =639

JaKS (JΩKE id), that is, the function for the sort a in the eliminator section is the displayed640

algebra interpretation at ωD (motives and methods). For natural numbers, this is the same641

as
(
λn.JnKD (ND, zD, sD)

)
=
(
λn.elimNat (ND, zD, sD)n)

)
.642

The interpretation of a constructor term t : TmI Ω (El a) is uninteresting as it provides an643

equality between two different equality proofs of the computation (β) rule for t.644

I Theorem 23. If a model of ETT supports the theory of IIT signatures, then it supports645

all IITs.646

Proof. For a signature (sig, sigc), we define constructors as647

consig := (Jsig IKICsig I)C idI : (sig ADS)A
648

This typechecks as Jsig IKA = J–KA (sig I) sigc= sig A = (sig ADS)A. We define the eliminator649

by and an650

elimsig γ
D := (Jsig IKIEγD )E idI : (sig ADS)S consig γD.651

This typechecks firstly because the type of γD matches the type of the parameter of IE:652

(sig ADS)D consig
sigc= (J–KADS (sig I))D consig = (Jsig IKADS)D consig,653

and the result also has the correct type:654

Jsig IKS consig γD = (J–KADS (sig I))S consig γD
sigc= (sig ADS)S consig γD.655

J656

I Remark 24. In the above proof, we crucially relied on the sigc property to define the657

constructors (and the eliminator). This is why the simple Church encoding of signatures is658

not sufficient.659



A. Kaposi, A. Kovács and A. Lafont 6:17

4 Constructing the Theory of IIT Signatures660

In this section we show that any model of ETT which supports indexed W-types also661

supports the theory of signatures, and as a consequence of Theorem 23, all IITs. For this, we662

work in the internal language of a model of ETT supporting indexed W-types [3]. Indexed663

W-types correspond to the usual notion of (possibly mutual) indexed inductive types. We664

use Agda-style notation to define such inductive families: we list the sorts and constructors665

and use pattern matching when eliminating from them. For an encoding of mutual inductive666

families as indexed W-types, see e.g. [23].667

We construct the theory of IIT signatures in the following steps:668

1. We view the theory of signatures as a type theory, and we define its untyped syntax as669

mutual inductive types together with typing judgments given by inductive relations on670

the untyped syntax. Then the syntax I : SignAlg is constructed using those untyped terms671

for which the typing relation holds.672

2. We construct J–K : SignMor IM for arbitrary M : SignAlg, by:673

a. defining a relation – ∼ – between the well-typed syntax and a given signature algebra.674

The idea is that given a syntactic context Γ and a semantic context ΓM of the signature675

algebra M , we have Γ ∼ ΓM if and only if JΓK = ΓM , and similarly for types, terms,676

and substitutions;677

b. showing that this relation is functional and thus obtaining a morphism.678

3. Proving the uniqueness of this morphism by showing that any morphism f : SignMor IM679

satisfies the relation. For example, for any syntactic context Γ we have Γ ∼ f Γ .680

The next sections detail each of these steps.681

4.1 Syntax682

The goal is to define the syntactic signature algebra where contexts are pairs of a precontext683

together with a well-formedness proof, and similarly for types, terms and substitutions.684

Crucially, we do not have conversion relations for typed syntax, nor do we need to use685

quotients when constructing the syntax. This is possible because there are no β-rules in686

the theory of signatures. Hence, we consider only normal terms in the untyped syntax, and687

define weakening and substitution by recursion. Avoiding quotients is important for two688

reasons. First, it greatly simplifies formalisation. Second, we aim to reduce the theory of689

signatures only to inductive types, thus making Theorem 57 stronger.690

Now we present the definition of the untyped syntax and the associated typing judgments.691

4.1.1 Untyped Syntax and its Properties692

I Definition 25 (Untyped syntax). The untyped syntax is defined as the following inductive693

datatype.694

(1) Substitution calculus695

Conp : Set696

Typ : Set697

Subp : Set698

Tmp : Set699

·p : Conp
700

εp : Subp
701

TYPES 2019



6:18 For Finitary Induction-Induction, Induction is Enough

– Bp – : Conp → Typ → Conp
702

– ,p – : Subp → Tmp → Subp
703

varp : N→ Tmp
704

(2) Universe705

Up : Typ
706

Elp : Tmp → Typ
707

(3) Inductive parameters708

Πp : Tmp → Typ → Typ
709

– @p – : Tmp → Tmp → Tmp
710

(4) External parameters711

Π̂p : (T : Set)→ (T → Typ)→ Typ
712

Π̃p : (T : Set)→ (T → Tmp)→ Tmp
713

– ˆ̃@ – : Tmp → (α : T )→ Tmp
714

(5) Default value715

errp : Tmp
716
717

Variables are modeled as de Bruijn indices, i.e. as natural numbers pointing to a position in718

the context. We use the additional default constructor errp : Tmp in case of error (ill-scoped719

substitution). The typing judgments will not mention errp. The main interest of errp is that720

it behaves like a closed term (which the theory of signatures lacks), in the sense that it is721

invariant under substitution. This makes expected equalities about substitution true even in722

the ill-typed case, thus reducing the number of hypotheses for the corresponding lemmas723

(see Lemma 32).724

We will define substitutions – [– ] of types and terms recursively.725

Note that (Πp AB)[σ] should be defined as Πp (A[σ]) (B[wk0 σ ,p varp 0]), and thus we726

need to define wk0, the weakening of substitutions. The basic idea is to increment the de727

Bruijn indices of all the variables. Actually, this is not so simple because of the Πp type: we728

want to define wk0 (Πp AB) as the Π type of the weakening of A and B, but here, B must729

be weakened with respect to the second last variable of the context, rather than the last one.730

For this reason, we need to generalise the weakening as occuring anywhere in the context.731

I Definition 26 (Untyped weakening). We define untyped weaking recursively on terms by732

the following functions.733

wkn : Typ → Typ
734

wkn : Tmp → Tmp
735

wk0 : Subp → Subp
736
737

The natural number n specifies at which position of the context the weakening occurs. Here,738

wk0 weakens with respect to the last variable.739

Later, in Lemma 36, we show that weakening preserves typing. Stating a typing rule for740

this operation requires weakening at the middle of a context. This is why we define pairs of741

untyped contexts, which should be thought of as a splitting of a context at some position.742

We call the second context a telescope over the first one.743

I Definition 27 (Untyped telescopes). An untyped telescope is given simply by a Conp.744



A. Kaposi, A. Kovács and A. Lafont 6:19

I Definition 28 (Merging of a context and a telescope).

– ; – : Conp → Conp → Conp
745

Γ ; · := Γ746

Γ ; (∆ Bp A) := (Γ ; ∆) Bp A747
748

I Definition 29 (Weakening for telescopes). Weakening for telescopes is defined pointwise.749

‖Γ‖ denotes the length of the context Γ .750

wk0 : Conp → Conp
751

wk0 ·p := ·p752

wk0 (∆ Bp A) := wk0 ∆ Bp wk‖∆‖ A753
754

This will be used to give typing rules for telescopes in Definition 35.755

I Definition 30 (Untyped unary substitution). We define single substitution by recursion on756

the presyntax:757

– [– := – ] : Typ → N→ Tmp → Typ
758

– [– := – ] : Tmp → N→ Tmp → Tmp
759
760

This is enough to state the typing judgments: indeed, the typing rule for application involves761

only a unary substitution.762

However, to construct the syntax as a signature algebra, we need to define parallel763

substitutions:764

I Definition 31 (Untyped substitution calculus).

– [– ] : Typ → Subp → Typ
765

– [– ] : Tmp → Subp → Tmp
766

– ◦ – : Subp → Subp → Subp
767
768

These can be defined either by iterating unary substitutions, or by recursion on untyped769

syntax: the two ways yield provably equal definitions. In the following, we assume that they770

are defined by recursion. We also make use of the following definition:771

keep : Subp → Subp
772

:= λσ.(wk0 σ ,p varp 0)773
774

The idea is that if σ is a substitution from Γ to ∆, then keepσ is a substitution between775

contexts Γ BA[σ] and ∆ BA for any type A where the last term is just a de Bruijn index 0.776

This occurs when defining (Πp AB)[σ] as Πp (A[σ]) (B[keepσ]).777

We define the identity substitution on a context Γ as follows, where keep‖Γ‖ is keep778

iterated ‖Γ‖ times:779

idp : Conp → Subp
780

:= λΓ .keep‖Γ‖εp781
782

I Lemma 32 (Exchange laws for weakening and substitution). Below, Z denotes either a term783

or a type and keepn denotes the n times iteration of keep.784

wk-wk : wkn+p+1(wkn Z) = wkn(wkn+p Z)785

TYPES 2019



6:20 For Finitary Induction-Induction, Induction is Enough

wkn[n] : (wkn Z)[n := z] = Z786

wk+[] : (wkn+p+1 Z)[n := wkp u] = wkn+p (Z[n := u])787

wk[+] : (wkn Z)[n+ p+ 1 := u] = wkn (Z[n+ p := u])788

[][+] : Z[n := u][n+ p := z] = Z[n+ p+ 1 := z][n := (u[p := z])]789

[keepn-wk0] : Z[keepn (wk0 σ)] = wkn(Z[keepn σ])790

wkn[keepn-, ] : (wkn Z)[keepn (σ ,p u)] = Z[keepnσ]791

[:=][keep] : Z[n := u][keepn σ] = Z[keepn+1 σ][n := u[σ]]792
793

Proof. By induction on the untyped syntax. J794

I Corollary 33. As particular cases for n = 0, we get795

◦wk0 : σ ◦ (wk0τ) = wk0(σ ◦ τ)796

wk0◦, : wk0 σ ◦ (τ ,p t) = σ ◦ τ797

[wk0] : t[wk0 σ] = wk0(t[σ])798

wk0[, ] : (wk0 Z)[σ ,p u] = Z[σ]799

[0 :=][] : Z[0 := u][σ] = Z[keepσ][0 := u[σ]]800
801

I Lemma 34 (Composition functor law and associativity).

[][] : Z[σ][τ ] = Z[σ ◦ τ ]802

ass : (σ ◦ δ) ◦ τ = σ ◦ (δ ◦ τ)803
804

We defer laws for identity substitutions after the definition of the typing judgments, as805

the proofs require that some inputs are well-typed.806

4.1.2 Typing Relations and Their Properties807

I Definition 35 (Typing relations). The typing relations are defined as the following inductive808

type indexed over the untyped syntax:809

(1) Substitution calculus810

– ` : Conp → Set811

– ` – : Conp → Typ → Set812

– ` – ∈N – : Conp → N→ Typ → Set813

– ` – ∈ – : Conp → Tmp → Typ → Set814

– ` – ⇒ – : Conp → Subp → Conp → Set815

·w : ·p `816

εw : Γ ` εp ⇒ ·p817

– Bw – : (Γ `)→ (Γ ` A)→ Γ Bp A `818

,w : (∆ `)→ (Γ ` σ ⇒ ∆)→ (∆ ` A)→ (Γ ` t ∈ A[σ])→ Γ ` σ ,p t⇒ ∆ Bp A819

varw : (Γ ` n ∈N A)→ Γ ` varpn ∈ A820

0w : (Γ `)→ (Γ ` A)→ Γ Bp A ` 0 ∈N wkp A821

Sw : (Γ `)→ (Γ ` A)→ (Γ ` n ∈N A)→ (Γ ` B)→ Γ Bp B ` Sn ∈N wkp A822

(2) Universe823



A. Kaposi, A. Kovács and A. Lafont 6:21

Uw : (Γ `)→ Γ ` Up
824

Elw : (Γ `)→ (Γ ` a ∈ Up)→ Γ ` Elp a825

(3) Inductive parameters826

Πw : (Γ `)→ (Γ ` a ∈ Up)→ (Γ Bp Elp a ` B)→ Γ ` Πp aB827

appw : (Γ `)→ (Γ ` a ∈ Up)→ (Γ Bp Elp a ` B)828

→ (Γ ` t ∈ Πp aB)→ (Γ ` u ∈ Elp a)→ Γ ` t @p u ∈ B[0 := u]829

(4) External parameters830

Π̂w : (T : Set)→ (A : T → Typ)→ (Γ `)→ ((t : T )→ Γ ` A t)→ Γ ` Π̂p T A831

ˆappw : (T : Set)→ (A : T → Typ)→ (Γ `)→ ((t : T )→ Γ ` A t)832

→ (Γ ` t ∈ Π̂p T A)→ (u : T )→ Γ ` t ˆ̃@ u ∈ Au833834

There is possibility of redundancy in the arguments of the constructors. Here, we are835

“paranoid” (nomenclature from [9]), so that we get more inductive hypotheses when performing836

recursion.837

I Lemma 36 (Weakening preserves typing).

wk0
w : (Γ ` A)→ (Γ ; ∆ `)→ Γ Bp A; wk0 ∆ `838

wkw : (Γ ` A)→ (Γ ; ∆ ` B)→ Γ Bp A; wk0 ∆ ` wk‖∆‖ B839

wkw : (Γ ` A)→ (Γ ; ∆ ` t ∈ B)→ Γ Bp A; wk0 ∆ ` wk‖∆‖ t ∈ wk‖∆‖ B840

wk0
w : (Γ ` A)→ (Γ ` σ ⇒ ∆)→ Γ Bp A ` wk0 σ ⇒ ∆841

842

Proof. By mutual induction on the typing relations. J843

We show that judgments are stable under substitution.844

I Lemma 37 (Substitution preserves typing).

[]w : (Γ `)→ (∆ ` A)→ (Γ ` σ ⇒ ∆)→ Γ ` A[σ]845

[]w : (Γ `)→ (∆ ` t ∈ A)→ (Γ ` σ ⇒ ∆)→ Γ ` t[σ] ∈ A[σ]846

[]w : (∆ ` x ∈N A)→ (Γ ` σ ⇒ ∆)→ Γ ` x[σ] ∈ A[σ]847

◦w : (Γ `)→ (Γ ` σ ⇒ ∆)→ (∆ ` τ ⇒ E)→ Γ ` τ ◦ σ ⇒ E848
849

Proof. By mutual induction on the typing relations. J850

We show the category and functor laws involving identity substitution for well-formed851

types, terms and substitutions.852

I Lemma 38 (Identity laws).

[idp] : (Γ ` A)→ A[idp Γ ] = A853

[idp] : (Γ ` x ∈N A)→ x[idp Γ ] = V x854

[idp] : (Γ ` t ∈ A)→ t[idp Γ ] = t855

idrp : (Γ ` σ ⇒ ∆)→ σ ◦ idp Γ = σ856

idlp : (Γ ` σ ⇒ ∆)→ idp ∆ ◦ σ = σ857
858

Finally, we show that the identity substitution itself is well-typed:859

TYPES 2019



6:22 For Finitary Induction-Induction, Induction is Enough

I Lemma 39 (Typing for the identity substitution).

idw : (Γ `)→ Γ ` idp Γ ⇒ Γ860
861

I Definition 40 (Proposition). A type is a proposition, or proof-irrelevant, if it has at most862

one inhabitant.863

is-propT := (a : T )→ (a′ : T )→ a = a′
864

I Lemma 41 (Proof irrelevance of typing relations).

Conwp : is-prop (Γ `)865

Tywp : is-prop (Γ ` A)866

Varwp : is-prop (Γ ` x ∈N A)867

Tmwp : is-prop (Γ ` t ∈ A)868

Subwp : is-prop (Γ ` σ ⇒ ∆)869
870

I Lemma 42 (Unicity of typing).

Tmw=Ty : (Γ ` t ∈ A)→ (Γ ` t ∈ B)→ A = B871

Varw=Ty : (Γ ` x ∈N A)→ (Γ ` x ∈N B)→ A = B872
873

Let us consider for instance the application constructor appw: for a codomain type B it yields874

an overall type C = B[0 := u] for an application. Even if C is known a priori, there may be875

another B for which B[0 := u] = C, possibly leading to many proofs that t @p u has type C.876

Unicity of typing solves this issue, as B is then uniquely determined by the type Πp AB of t.877

4.1.3 The Syntax as a Signature Algebra878

I Definition 43 (Syntax for the theory of signatures). We define the syntax as an element of879

SignAlg by pairs of untyped syntax and typing relations:880

ConI :=
∑

Γ
Γ `881

TyI (Γ ,Γw) :=
∑
A

Γ ` A882

TmI (Γ ,Γw)(A,Aw) :=
∑
t

Γ ` t ∈ A883

SubI (Γ ,Γw)(∆,∆w) :=
∑
σ

Γ ` σ ⇒ ∆884

885

The other fields are given straightforwardly. Regarding the equations, it is enough to prove886

them only for the untyped syntactic part: as we argued in Lemma 41, the proofs of typing887

judgments are automatically equal.888

I Remark 44. Up until Definition 43, UIP is not used. Function extensionality on the other889

hand is necessary because the untyped metatheoretic Π takes a metatheoretic function as890

an argument. An example induction step that uses function extensionality is in Lemma 38,891

in particular in the case (Π̂T A)[id] = Π̂T A. Indeed, the left hand side of this equation892

is equal to Π̂T (λt.(A t)[id]) by definition, whereas the induction hypothesis states that893

(t : T )→ (A t)[id] = A t.894



A. Kaposi, A. Kovács and A. Lafont 6:23

4.2 Relating the Syntax to a Signature Algebra895

It remains to show that the constructed syntax I is the initial signature algebra. To achieve896

this, we first define a relation between the syntax and any signature algebra, then show that897

the relation is functional, which lets us extract a signature morphism from the relation.898

This approach is an alternative presentation of Streicher’s method for interpreting preterms899

in an arbitrary model of type theory [30]. Streicher first defines a family of partial maps900

from the presyntax to a model, then shows that the maps are total on well-formed input. We901

have found that our approach is significantly easier to formalise. To see why, note that the902

right notion of partial map in type theory, which does not presume decidable definedness, is903

fairly heavyweight:904

PartialMapAB := A→
(
(P : Set)× is-propP × (P → B)

)
905

In the above definition, we notice an opportunity for converting a fibered definition of a type906

family into an indexed one; if we drop the propositionality for P for the time being, we may907

equivalently return a family indexed over B, which is exactly just a relation A→ B → Set.908

Then, in our approach, we recover uniqueness of P through the functionality requirement on909

the A→ B → Set relation, and totality by already assuming well-formedness of A. In type910

theory, using indexed families instead of display maps is a common convenience, since the911

former are natively supported, while the latter require carrying around auxiliary propositional912

equalities.913

4.2.1 The Functional Relation914

Given an M : SignAlg, we define the functional relation satisfied by the J–K : SignMor IM915

by recursion on the typing judgments. If Γ is a context in I and ΓM is a semantic context916

(i.e. a context in the signature algebra M), we want to define a type Γ ∼ ΓM equivalent to917

JΓK = ΓM . Of course, at this stage, J–K is not available yet since the point of defining this918

relation is to construct J–K in the end.919

For a type A in a context Γ , we want to define a relation A ∼ AM that is equivalent to920

JAK = AM . For this equality to make sense, the semantic type AM must live in the semantic921

context JΓK. But again, J–K is not yet available at this stage. Exploiting the expected922

equivalence between Γ ∼ ΓM and JΓK = ΓM , we may consider defining A ∼ AM under the923

hypotheses that AM lies in a semantics context ΓM which is related to Γ . Then, the type of924

the relation for types is925

(Γ : ConI)→ (A : TyI Γ)→ (ΓM : ConM )→ (Γ ∼ ΓM )→ (AM : TyM ΓM )→ Set926

Note that the relation on contexts must be defined mutually with the relation on types (see927

for example the case of context extension), but here, the relation on contexts appears as the928

type of an argument of the relation on types. We want to avoid using such recursive-recursive929

definitions as they are not allowed by the elimination principles of indexed inductive types,930

so we instead just remove the hypothesis Γ ∼ ΓM from the list of arguments. We proceed931

similarly for terms and substitutions. Actually, this removal is not without harm. For932

example, consider relating the empty substitution Γ ` εp ⇒ ·p to a semantic substitution933

σM : SubM ΓM ∆M . We would like to assert that σM equals the empty semantic substitution934

εM , but this is not possible because typechecking requires that ∆M is the empty semantic935

context. This is precisely what was ensured by the hypothesis ·I ∼ ∆M we removed. Our936

way out here is to state that σM is related to the empty substitution if the target semantic937

context ∆M is empty, and, acknowledging this equality, if σM is the empty substitution.938

TYPES 2019



6:24 For Finitary Induction-Induction, Induction is Enough

Let us mention another possible solution for avoiding recursion-recursion: defining939

A ∼ AM so that it is equivalent to (e : JΓK = ΓM ) × (JAK =e# AM ). In comparison, our940

approach yields a more concise definition of the relation. For example, in the case of the941

universe, this would lead to the definition Uw Γw ∼ AM := (Γw ∼ ΓM ) × (AM = UM ),942

instead of our definition Uw Γw ∼ AM := (AM = UM ).943

IDefinition 45 (Relation – ∼ –). We define the relation by recursion on the typing judgments.944

In the following, we abbreviate Aw ∼ΓM AM by Aw ∼ AM when ΓM can be inferred, and945

similarly for terms and substitutions.946

(1) Substitution calculus947

– ∼ – : Γ `→ ConM → Set948

– ∼ΓM – : Γ ` A → TyM ΓM → Set949

– ∼ΓM`AM – : Γ ` t ∈ A → TmM ΓM AM → Set950

– ∼ΓM`AM – : Γ ` x ∈N A → TmM ΓM AM → Set951

– ∼ΓM⇒∆M – : Γ ` σ ⇒ ∆ → SubM ΓM ∆M → Set952

953

·w ∼ ΓM := ΓM = ·M954

εw ∼ΓM⇒EM δM := (eE : EM = ·M )× (δM =eE# εM )955

(Γw Bw Aw) ∼ ∆M :=
∑
ΓM

(Γw ∼ ΓM )×
∑
AM

(Aw ∼ AM )×956

(∆M = ΓMBMAM )957

(,w∆wσwAwtw) ∼ΓM⇒EM δM :=
∑
∆M

(∆w ∼ ∆M )×
∑
σM

(σw ∼ σM )×958 ∑
AM

(Aw ∼ AM )×
∑
tM

(tw ∼ tM )×959

(eE : EM = ∆MBMAM )×960

(δ =eE# σM ,M tM )961

varw xw ∼ tM := xw ∼ tM962

0wΓwAw ∼∆M`BM tM :=
∑
ΓM

(Γw ∼ ΓM )×
∑
AM

(Aw ∼ AM )×963

(e∆ : ∆M = ΓMBMAM )×964

(eB : BM =e∆# wkM AM )× (tM =e∆,eB# vzM )965

SwΓwAwnwBw ∼∆M`CM tM :=
∑
ΓM

(Γw ∼ ΓM )×
∑
AM

(Aw ∼ AM )×966 ∑
BM

(Bw ∼ BM )×
∑
nM

(nw ∼ nM )×967

(e∆ : ∆M = ΓMBMBM )×968

(eC : CM =e∆# wkM AM )×969

(tM =e∆,eC# vsM nM )970

(2) Universe971

Uw ΓwAw ∼ AM := AM = UM972



A. Kaposi, A. Kovács and A. Lafont 6:25

Elw Γwaw ∼ AM :=
∑
aM

(aw ∼ aM )× (AM = ElM aM )973

(3) Inductive parameters974

Πw ΓwawBw ∼ CM :=
∑
aM

(aw ∼ aM )×
∑
BM

(Bw ∼ BM )975

× (CM = ΠM aM BM )976

appw ΓwawBwtwuw ∼ΓM`CM xM :=
∑
aM

(aw ∼ aM )×
∑
BM

(Bw ∼ BM )×977 ∑
tM

(tw ∼ tM )×
∑
uM

(uw ∼ uM )×978

(eC : CM = BM [0 := uM ]M )×979

(xM =eC# tM@MuM )980

(4) Metatheoretic parameters981

Π̂wT AΓwAw ∼ BM :=
∑
AM

((t : T )→ Aw ∼ AM t)× (BM = Π̂M T AM )982

ˆappwT AΓwAwtwu ∼ΓM`BM xM :=
∑
AM

((t : T )→ Aw ∼ AM t)×
∑
tM

(tw ∼ tM )×983

(eB : BM = Π̂M T AM )× (xM =eB# tM @̂
Mu)984

985

4.2.2 Right Uniqueness986

Next, we prove that this relation is right unique. Then, we show that the relation is stable987

under weakening and substitution. The last step consists of showing left-totality, i.e. giving a988

related semantic counterpart to any well-typed context, type or term. Everything is proved989

by induction on the typing judgments.990

I Lemma 46 (Right uniqueness). The relation is right unique in the following sense:991

Σ∼p : (Γw : Γ `) → is-prop (
∑
ΓM

Γw ∼ ΓM )992

Σ∼p : (Aw : Γ ` A) → is-prop (
∑
AM

Aw ∼ AM )993

Σ∼p : (tw : Γ ` t ∈ A) → is-prop (
∑
tM

tw ∼ tM )994

Σ∼p : (xw : Γ ` x ∈N A)→ is-prop (
∑
xM

xw ∼ xM )995

Σ∼p : (σw : Γ ` σ ⇒ ∆) → is-prop (
∑
σM

σw ∼ σM )996

997

I Remark 47. We mentioned that in order to avoid a recursive-recursive definition, we998

removed some hypotheses in the list of arguments of the relation. Such hypotheses are999

sometimes missed, for example in the case of the empty substitution or in the case of1000

variables, requiring us to state additional equalities. Because of this, we need UIP to show1001

that
∑

ΓM Γ ∼ ΓM and
∑
AM A ∼ AM are propositions. One may think that the use of1002

UIP could be avoided by using the alternative verbose definition that we suggested before,1003

expecting that
∑

ΓM
∑
AM A ∼ AM , rather than

∑
AM A ∼ AM , is a proposition. However,1004

this is not obvious. For example, we were not able to define Elw Γw aw ∼ AM in this fashion.1005

TYPES 2019



6:26 For Finitary Induction-Induction, Induction is Enough

In related work, Hugunin investigated constructing IITs without UIP [19] in cubical type1006

theory, and demonstrated that well-formedness predicates used in syntactic algebras can1007

subtly break in that setting. Also, while Hugunin does not use UIP, he only shows the1008

simple version version of dependent elimination for the constructed IITs. Hence, the question1009

whether IITs are reducible to inductive types in a UIP-free setting remains open.1010

4.2.3 Stability under Weakening and Substitution1011

Stability of the relation under weakening must be proved before stability under substitution.1012

Indeed, in the proof of stability under substitution, the Π case requires to show that1013

Π (A[σ]) (B[keepσ]) is related to ΠM (AM [σ]M ) (BM [keepM σ]M ). We would like to apply1014

the induction hypothesis, so we need to show that keepσ = wk0 σ ,
p varp 0 is related to1015

keepM σM , knowing that σ is related to σM . As keepσ = wk0 σ ,
p varp 0, we are left with1016

showing that wk0 σ = σ ◦ wk (where wk = wk0 id) relates to its semantic counterpart.1017

To achieve that, we show that wk0 preserves the relation, for types and terms. This1018

requires to generalise a bit and show that wkn preserves the relation, as wk0 (ΠAB) =1019

Π (wk0 A) (wk1 B). But remember that wkn performs a weakening in the middle of a context,1020

so we first define the semantic counterpart of this:1021

Σwk0⇒M : (Γw : Γ `)→ (Γw ∼ ΓM )→1022

(∆w : Γ ; ∆ `)→ (∆w ∼ ∆M )→1023

(AM : TyMΓM )→ (∆′M : ConM )× (SubM∆′M∆M )1024
1025

Here, ∆′M should be thought of as the context ∆M where the weakening has happened in1026

the middle of the context, by inserting the type AM after the prefix ΓM . Indeed, we expect1027

that ΓM is a prefix of ∆M , as ΓM relates to Γ and ∆M to Γ ; ∆. The substitution from1028

the weakened context to the original one must be computed at the same time otherwise the1029

induction hypothesis is not strong enough. Then, we separate the two components under the1030

same (implicit) hypotheses:1031

wk0
M AM ∆M : ConM1032

wk⇒M AM ∆M : SubM (wk0
MAM ∆M )∆M

1033
1034

Note that if recursion-recursion is available in the metatheory, wk0
M and wk⇒M can be1035

defined directly without introducing this intermediate Σwk0 ⇒M .1036

I Lemma 48 (Weakening preserves typing). The following statements are all under the1037

hypotheses (Γw : Γ `), (Γw ∼ ΓM ), (∆w : Γ ; ∆ `), (∆w ∼ ∆M ), (Aw : Γ ` A), and1038

(Aw ∼ AM ).1039

wk0∼ : wk0
w Aw ∆w ∼ wk0

MAM∆M
1040

wk∼ : (Tw : Γ ; ∆ ` T )→ (Tw ∼ TM )→ wkw Aw Tw ∼ TM [wk0⇒MAM∆M ]M1041

wk∼ : (tw : Γ ; ∆ ` t ∈ T )→ (tw ∼ tM )→ wkw Aw tw ∼ tM [wk0⇒MAM∆M ]M1042

wk∼ : (xw : Γ ; ∆ ` t ∈N T )→ (xw ∼ xM )→ wkw Aw xw ∼ xM [wk0⇒MAM∆M ]M1043
1044

Proof. By mutual induction on the typing judgments. J1045

I Lemma 49 (Weakening of substitution preserves – ∼ –).

wk0∼ : (Γw : Γ `)→ (Γw ∼ ΓM )→ (Aw : Γ ` A)→ (Aw ∼ AM )→1046

(σw : Γ ` σ ⇒ ∆)→ (σw ∼ σM )→ (wk0
wAwσw ∼ σM◦MwkM )1047

1048



A. Kaposi, A. Kovács and A. Lafont 6:27

Proof. By induction on the typing judgments. J1049

Next, we want to prove that given any well-typed substitution σ : Sub Γ ∆ and semantic1050

contexts ΓM and ∆M , related to Γ and ∆, respectively, there is a semantic substitution1051

related to σ. In the extension case Γ ` σ ,p t⇒ ∆ Bp A, the induction hypothesis provides1052

σM , ∆M , AM related to their syntactic counterpart. However, the premises of the induction1053

hypothesis for getting a relevant tM require showing that the type AM [σM ]M is related to1054

the syntactic type A[σ].1055

I Lemma 50 (Preservation of the relation by substitution for variables).

[]∼ : (σw : Γ ` σ ⇒ ∆)→ (σw ∼ σM )→ (xw : ∆ ` x ∈N A)→ (xw ∼ xM )→1056

[]wxwσw ∼ xM [σM ]M1057
1058

Proof. Induction on typing. J1059

I Lemma 51 (Preservation of the relation by substitution for types and terms). We assume1060

(σw : Γ ` σ ⇒ ∆), (σw ∼ σM ), (Γw : Γ `), (Γw ∼ ΓM ), (∆w : ∆ `), and (∆w ∼ ∆M ):1061

[]∼ : (Aw : ∆ ` A)→ (Aw ∼ AM )→ []wΓwAwσw ∼ AM [σM ]M1062

[]∼ : (tw : ∆ ` t ∈ A)→ (tw ∼ tM )→ []wΓwtwσw ∼ tM [σM ]M1063
1064

Proof. Mutual induction on typing. J1065

I Lemma 52 (The relation is preserved by composition and identity). We have the same1066

hypotheses as in the previous lemma.1067

◦∼ : (Ew : E `)→ (Ew ∼ EM )→ (δw : ∆ ` δ ⇒ E)→ (δw ∼ δM )→1068

◦w Γw δw σw ∼ δM ◦M σM1069

id∼ : (Γw : Γ `)→ (Γw ∼ ΓM )→ idw Γw ∼ idΓM1070
1071

4.2.4 Left-Totality and the Recursor1072

Before defining the recursor J–K, we show left totality of the relation: that is, the image of a1073

syntactic context is a unique semantic context which is related to it, and similarly for types1074

and terms.1075

I Lemma 53 (Left totality of – ∼ –).

ΣCon∼ : (Γw : Γ `)→
∑
ΓM

Γw ∼ ΓM
1076

ΣTy∼ : (Γw : Γ `)→ (Γw ∼ ΓM )→ (Aw : Γ ` A)→ (AM : TyMΓM )× (Aw ∼ AM )1077

ΣTm∼ : (Γw : Γ `)→ (Γw ∼ ΓM )→ (Aw : Γ ` A)→ (Aw ∼ AM )→1078

(tw : Γ ` t ∈ A)→ (tM : TmMΓMAM )× (tw ∼ tM )1079

ΣVar∼ : (Γw : Γ `)→ (Γw ∼ ΓM )→ (Aw : Γ ` A)→ (Aw ∼ AM )→1080

(xw : Γ ` x ∈N A)→ (xM : TmMΓMAM )× (xw ∼ xM )1081

ΣSub∼ : (Γw : Γ `)→ (Γw ∼ ΓM )→ (∆w : ∆ `)→ (∆w ∼ ∆M )→1082

(σw : Γ ` σ ⇒ ∆)→ (σM : SubMΓM∆M )× (σw ∼ σM )1083
1084

TYPES 2019



6:28 For Finitary Induction-Induction, Induction is Enough

Proof. By induction on well-formedness judgments. The right uniqueness of the relation is1085

used in this induction. J1086

I Lemma 54 (Existence of the recursor). For any M : SignAlg there is a J–K : SignMor IM1087

where I is given in Definition 43.1088

Proof. Using the first projections in the construction of the left-totality construction and1089

right uniqueness. J1090

4.3 Uniqueness1091

It remains to show that the morphism constructed in Lemma 54 is unique. We exploit right1092

uniqueness of the relation: it is enough to show that any such morphism maps a syntactic1093

context to a related semantic context, and similarly for types and terms.1094

I Lemma 55. We assume an arbitrary signature morphism f from I to M . This induces1095

the following maps:1096

Conf : (Γ `)→ ConM1097

Tyf : (Γw : Γ `)→ (Γ ` A)→ TyM (ConfΓw)1098

Tmf : (Γw : Γ `)→ (Aw : Γ ` A)→ (Γ ` t ∈ A)→ TmM (ConfΓw) (TyfΓw Aw)1099

Varf : (Γw : Γ `)→ (Aw : Γ ` A)→ (Γ ` x ∈N A)→ TmM (ConfΓw) (TyfΓw Aw)1100

Subf : (Γw : Γ `)→ (∆w : ∆ `)→ (Γ ` σ ⇒ ∆)→ SubM (ConfΓw) (Conf∆w)1101
1102

The images of the above maps are related by – ∼ –:1103

∼Conf : (Γw : Γ `)→ Γw ∼ Conf Γw
1104

∼Tyf : (Γw : Γ `)→ (Aw : Γ ` A)→ Γw ∼ Tyf Γw Aw
1105

∼Tmf : (Γw : Γ `)→ (Aw : Γ ` A)→ (tw : Γ ` t ∈ A)→ Γw ∼ Tmf Γw Aw tw1106

∼Varf : (Γw : Γ `)→ (Aw : Γ ` A)→ (xw : Γ ` x ∈N A)→ Γw ∼ Varf Γw Aw xw
1107

∼Subf : (Γw : Γ `)→ (∆w : ∆ `)→ (σw : Γ ` σ ⇒ ∆)→ Γw ∼ Subf Γw ∆w σw
1108
1109

Proof. By induction on typing relations. J1110

I Corollary 56 (Uniqueness of the recursor). By right uniqueness of – ∼ –, there is only one1111

morphism SignMor IM for any M .1112

I Theorem 57. If a model of ETT supports indexed W-types, it supports the theory of IIT1113

signatures.1114

Proof. We define the syntax I by Definition 43 which only used indexed W-types, the recursor1115

by Lemma 54 and we prove its uniqueness property by Corollary 56. J1116

I Corollary 58. If a model of ETT supports indexed W-types, it supports all IITs.1117

Proof. Combining Theorem 57 and Theorem 23. J1118



A. Kaposi, A. Kovács and A. Lafont 6:29

5 Further Work1119

The current work only concerns finitary IITs. An extension would be to also allow infinitely1120

branching inductive types such as W-types. This would first require giving semantics for1121

infinitary IITs and adapting the term model construction. These would be straightforward1122

following [24]. However, it seems to be more difficult to construct the syntax of infinitary1123

IIT signatures without using quotients. The reason is that such syntax would not be1124

strictly restricted to neutral terms: the term model construction for infinitary IITs requires1125

λ-abstraction and βη-rules for infinitary Π types. A definition of normal preterms and typing1126

judgments on them may still be possible, but it appears to be much more complicated than1127

before (the current authors have attempted this without conclusive success).1128

As mentioned in Section 4.2.2, it also remains an open problem whether IITs are reducible1129

to inductive types in a UIP-free setting. To show this, we would need to construct the syntax1130

of signatures without UIP, and also reproduce the semantics and term model construction1131

for IITs without UIP.1132

References1133

1 Benedikt Ahrens, Ralph Matthes, and Anders Mörtberg. From signatures to monads in unimath.1134

Journal of Automated Reasoning, 63(2):285–318, Aug 2019. doi:10.1007/s10817-018-9474-4.1135

2 Thorsten Altenkirch, Paolo Capriotti, Gabe Dijkstra, Nicolai Kraus, and Fredrik Nordvall Fors-1136

berg. Quotient inductive-inductive types. In Christel Baier and Ugo Dal Lago, editors,1137

Foundations of Software Science and Computation Structures, pages 293–310, Cham, 2018.1138

Springer International Publishing.1139

3 Thorsten Altenkirch, Neil Ghani, Peter Hancock, Conor McBride, and Peter Morris. In-1140

dexed containers. J. Funct. Program., 25, 2015. URL: http://dx.doi.org/10.1017/1141

S095679681500009X, doi:10.1017/S095679681500009X.1142

4 Thorsten Altenkirch and Ambrus Kaposi. Type theory in type theory using quotient inductive1143

types. In Rastislav Bodik and Rupak Majumdar, editors, Proceedings of the 43rd Annual1144

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2016,1145

St. Petersburg, FL, USA, January 20 - 22, 2016, pages 18–29. ACM, 2016. URL: http:1146

//doi.acm.org/10.1145/2837614.2837638, doi:10.1145/2837614.2837638.1147

5 Thorsten Altenkirch, Ambrus Kaposi, András Kovács, and Jakob von Raumer. Constructing1148

inductive-inductive types via type erasure. In Marc Bezem, editor, 25th International Con-1149

ference on Types for Proofs and Programs, TYPES 2019. Centre for Advanced Study at the1150

Norwegian Academy of Science and Letters, 2019.1151

6 Thorsten Altenkirch, Nuo Li, and Ondřej Rypáček. Some constructions on Ω-groupoids. In1152

Proceedings of the 2014 International Workshop on Logical Frameworks and Meta-languages:1153

Theory and Practice, LFMTP ’14, pages 4:1–4:8, New York, NY, USA, 2014. ACM. URL:1154

http://doi.acm.org/10.1145/2631172.2631176, doi:10.1145/2631172.2631176.1155

7 Robert Atkey, Neil Ghani, and Patricia Johann. A relationally parametric model of dependent1156

type theory. In Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of1157

Programming Languages, POPL ’14, page 503–515, New York, NY, USA, 2014. Association1158

for Computing Machinery. doi:10.1145/2535838.2535852.1159

8 Steve Awodey, Jonas Frey, and Sam Speight. Impredicative encodings of (higher) inductive1160

types. In Anuj Dawar and Erich Grädel, editors, Proceedings of the 33rd Annual ACM/IEEE1161

Symposium on Logic in Computer Science, LICS 2018, Oxford, UK, July 09-12, 2018, pages1162

76–85. ACM, 2018. doi:10.1145/3209108.3209130.1163

9 Andrej Bauer, Philipp G. Haselwarter, and Théo Winterhalter. A modular formalization of1164

type theory in Coq. In Ambrus Kaposi, editor, 23rd International Conference on Types for1165

Proofs and Programs, TYPES 2017. Eötvös Loránd University, 2017.1166

TYPES 2019

https://doi.org/10.1007/s10817-018-9474-4
http://dx.doi.org/10.1017/S095679681500009X
http://dx.doi.org/10.1017/S095679681500009X
http://dx.doi.org/10.1017/S095679681500009X
https://doi.org/10.1017/S095679681500009X
http://doi.acm.org/10.1145/2837614.2837638
http://doi.acm.org/10.1145/2837614.2837638
http://doi.acm.org/10.1145/2837614.2837638
https://doi.org/10.1145/2837614.2837638
http://doi.acm.org/10.1145/2631172.2631176
https://doi.org/10.1145/2631172.2631176
https://doi.org/10.1145/2535838.2535852
https://doi.org/10.1145/3209108.3209130


6:30 For Finitary Induction-Induction, Induction is Enough

10 Guillaume Brunerie. A formalization of the initiality conjecture in agda. Slides of a talk1167

at the Homotopy Type Theory 2019 Conference, Carnegie Mellon University, Pittsburgh,1168

Pennsylvania, August 2019. URL: https://guillaumebrunerie.github.io/pdf/initiality.1169

pdf.1170

11 Paolo Capriotti. Notions of type formers. In Ambrus Kaposi, editor, 23rd International1171

Conference on Types for Proofs and Programs, TYPES 2017. Eötvös Loránd University, 2017.1172

12 John Cartmell. Generalised algebraic theories and contextual categories. Annals of Pure and1173

Applied Logic, 32:209–243, 1986.1174

13 James Chapman. Type theory should eat itself. Electronic Notes in Theoretical Computer1175

Science, 228:21–36, January 2009. URL: http://dx.doi.org/10.1016/j.entcs.2008.12.114,1176

doi:10.1016/j.entcs.2008.12.114.1177

14 Jesper Cockx and Andreas Abel. Sprinkles of extensionality for your vanilla type theory. In1178

Silvia Ghilezan and Ivetić Jelena, editors, 22nd International Conference on Types for Proofs1179

and Programs, TYPES 2016. University of Novi Sad, 2016.1180

15 Nils Anders Danielsson. A formalisation of a dependently typed language as an inductive-1181

recursive family. In Thorsten Altenkirch and Conor McBride, editors, TYPES, volume 4502 of1182

Lecture Notes in Computer Science, pages 93–109. Springer, 2006.1183

16 Peter Dybjer. Internal type theory. In Lecture Notes in Computer Science, pages 120–134.1184

Springer, 1996.1185

17 Peter Dybjer and Anton Setzer. A finite axiomatization of inductive-recursive definitions. In1186

Typed Lambda Calculi and Applications, volume 1581 of Lecture Notes in Computer Science,1187

pages 129–146. Springer, 1999.1188

18 Martin Hofmann. Syntax and semantics of dependent types. In Semantics and Logics of1189

Computation, pages 79–130. Cambridge University Press, 1997.1190

19 Jasper Hugunin. Constructing inductive-inductive types in cubical type theory. In Mikołaj1191

Bojańczyk and Alex Simpson, editors, Foundations of Software Science and Computation1192

Structures, pages 295–312, Cham, 2019. Springer International Publishing.1193

20 Ambrus Kaposi. Re: separate definition of constructors? Email to the Agda mailing list, May1194

2019. URL: https://lists.chalmers.se/pipermail/agda/2019/011176.html.1195

21 Ambrus Kaposi, András Kovács, and Thorsten Altenkirch. Constructing quotient inductive-1196

inductive types. Proc. ACM Program. Lang., 3(POPL):2:1–2:24, January 2019. doi:10.1145/1197

3290315.1198

22 Ambrus Kaposi, András Kovács, and Ambroise Lafont. Closed inductive-inductive types are1199

reducible to indexed inductive types. In Marc Bezem, editor, 25th International Conference on1200

Types for Proofs and Programs, TYPES 2019. Centre for Advanced Study at the Norwegian1201

Academy of Science and Letters, 2019.1202

23 Ambrus Kaposi and Jakob von Raumer. A syntax for mutual inductive families. In 5th1203

International Conference on Formal Structures for Computation and Deduction (FSCD 2020),1204

2020. To appear.1205

24 András Kovács and Ambrus Kaposi. Large and infinitary quotient inductive-inductive types. In1206

35th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2020, Saarbrücken,1207

Germany, July 8-11, 2020, 2020. To appear.1208

25 Lorenzo Malatesta, Thorsten Altenkirch, Neil Ghani, Peter Hancock, and Conor McBride.1209

Small induction recursion, indexed containers and dependent polynomials are equivalent, 2013.1210

TLCA 2013.1211

26 Fredrik Nordvall Forsberg. Inductive-inductive definitions. PhD thesis, Swansea University,1212

2013.1213

27 Fredrik Nordvall Forsberg and Anton Setzer. Inductive-inductive definitions. In Anuj Dawar1214

and Helmut Veith, editors, CSL 2010, volume 6247 of Lecture Notes in Computer Science,1215

pages 454–468. Springer, Heidelberg, 2010.1216

28 Ulf Norell. Towards a practical programming language based on dependent type theory. PhD1217

thesis, Chalmers University of Technology, 2007.1218

https://guillaumebrunerie.github.io/pdf/initiality.pdf
https://guillaumebrunerie.github.io/pdf/initiality.pdf
https://guillaumebrunerie.github.io/pdf/initiality.pdf
http://dx.doi.org/10.1016/j.entcs.2008.12.114
https://doi.org/10.1016/j.entcs.2008.12.114
https://lists.chalmers.se/pipermail/agda/2019/011176.html
https://doi.org/10.1145/3290315
https://doi.org/10.1145/3290315
https://doi.org/10.1145/3290315


A. Kaposi, A. Kovács and A. Lafont 6:31

29 The Univalent Foundations Program. Homotopy type theory: Univalent foundations of1219

mathematics. Technical report, Institute for Advanced Study, 2013.1220

30 Thomas Streicher. Semantics of Type Theory: Correctness, Completeness, and Independence1221

Results. Birkhauser Boston Inc., Cambridge, MA, USA, 1991.1222

TYPES 2019


	Introduction
	Related Work
	Notation and Formalisation

	A Definition of Inductive-Inductive Types
	Constructing all IITs from the Theory of IIT Signatures
	Constructing the Theory of IIT Signatures
	Syntax
	Untyped Syntax and its Properties
	Typing Relations and Their Properties
	The Syntax as a Signature Algebra

	Relating the Syntax to a Signature Algebra
	The Functional Relation
	Right Uniqueness
	Stability under Weakening and Substitution
	Left-Totality and the Recursor

	Uniqueness

	Further Work

