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Summary  

The pathomechanism of orofacial pain and headache disorders, including migraine is complex 

and need further elucidation. Nevertheless, the activation and sensitization of the 

trigeminovascular system has especially important role in the development of symptoms. For 

better understanding of the pathomechanism of these disorders, animal models with the 

activation of nociceptive pathways of the trigeminovascular system are used. Complete 

Freund’s adjuvant (CFA)-induced orofacial pain model serves for the induction of peripheral 

inflammation. Therefore, the investigation of the neurochemical profile of this model could 

provide meaningful information regarding pain processing.  

In the field of neuroscience, the information obtained via the measurement of biomarkers may 

aid the diagnosis, prevention and treatment of different neurological disorders. The main 

purpose of the bioanalytical assessments is to reveal whether there are changes on molecular 

levels during the development, course and treatment of a disease, either from a clinical or 

preclinical point of view. 

Our aim was to investigate the concentration changes of some biomarkers, including glutamate 

(Glu), γ-aminobutyric acid (GABA), and serotonin, and in light of its influence on 

glutamatergic neurotransmission, we further expanded the investigation of the neurochemical 

profile with the measurement of the level of kynurenic acid (KYNA) and its precursors in the 

kynurenine (KYN) pathway (KP) of tryptophan metabolism. Furthermore, due to the 

importance of the KP, we also aimed at the method optimization and validation on six different 

biological matrices, including human plasma and cerebrospinal fluid (CSF), mouse brain and 

plasma, and rat central nervous system (CNS) and plasma. 

The CFA model consisted of the CFA (1 mg/ml, 50 μl/animal) injection into the right whisker 

pad of male Sprague-Dawley rats. The samples were collected 24 and 48 h after injection, 

whereas the control group rats, injected with saline, were processed at 24 h after injection. Two 

important brain regions were chosen to determine the concentration of the above-mentioned 

metabolites in the trigeminal nucleus caudalis (TNC) and somatosensory cortex (ssCX), as both 

have an important role in the pain processing. We applied high-performance liquid 

chromatography (HPLC) coupled with UV and fluorescence detection, using separate internal 

standards for each detector: 3-nitro-L-tyrosine and the newly utilized 4-hydroxyquinazoline-2-

carboxylic, respectively, to determine the concentration changes of the metabolites. For further 
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method validation process, carried out on the different biological matrices, the same HPLC 

method was used in each case, with slight modifications. 

In the CFA model, our results demonstrated that 24 h after CFA treatment, the level of Glu, 

KYNA and that of its precursor, KYN, were still elevated in the TNC, all diminishing by 48 h. 

In the ssCX, significant concentration increases of KYNA and serotonin were found. Regarding 

the assessment of some TRP metabolites, the method was successfully utilized for 

measurements from human plasma and CSF, mouse brain and plasma, and rat CNS and plasma. 

Regarding murine CNS samples, serotonin was successfully measured as well in one single run 

with TRP, KYN and KYNA. During the method validation, good intra- and inter-day precision 

values were obtained with coefficient of variation <5%, and bias <6.5% (except the serotonin 

levels in murine CNS samples), respectively. The recoveries varied between 79.6% and 116%, 

with all results being in line with the official guidelines. 

The results from the CFA animal model confirm the dominant role of Glu in early pain 

processing and a compensatory elevation of KYNA with anti-glutamatergic properties. 

Furthermore, the current findings draw attention to the limited time interval where medications 

can target the glutamatergic pathways. During the validation process of the CNS samples, the 

high bias values of serotonin draws attention to the necessity of brain homogenization right 

before the measurement in line with our currently applied laboratory practice. The optimized 

and validated methods on six different biological matrices yield opportunities for the 

assessment of concentration changes in the TRP metabolism from a wide range samples related 

to neuroscience research; therefore, they may be utilized well in future clinical and preclinical 

studies. 
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1. Introduction 

Neurological disorders are recognized as the leading cause of disability and second leading 

cause of death worldwide (GBD 2015 DALYs and HALE Collaborators, 2016). Therefore, their 

contribution to the overall burden from all health conditions is increasing (GBD 2016 

Neurology Collaborators, 2019). These diseases, including headache disorders (e.g. migraine, 

tension-type headache and medication overuse headache), multiple sclerosis, epilepsy or 

neurodegenerative conditions, such as Alzheimer’s disease (AD) or Parkinson’s disease (PD) 

represent three percent of the worldwide burden of disease (GBD 2016 Neurology 

Collaborators, 2019). Although it may seem to be a small rate, however, regarding disability-

adjusted life years (DALYs) the numbers are increasing: migraine, stroke, epilepsy and 

dementia rank in the top 50 causes of DALYs (Murray et al., 2012). Moreover, from all 

neurological disorders, headache disorders have a considerably high prevalence, with a 46% of 

population suffering from headache in general for 1-year prevalence and 64% for lifetime 

prevalence, from which the majority are diagnosed with primary headache. The prevalence of 

this type is very high, with 14.4% from migraine, 26.1 % from tension-type headache (GBD 

2016 Headache Collaborators, 2018) and 3% to 5% from chronic daily headache (Silberstein, 

2005). Secondary headaches are resulting from the traction or inflammation of pain-sensitive 

structures (Rizzoli & Mullally, 2018). In 2011, a report presented by World Health Organization 

(World Health Organization and Lifting The Burden, 2011) described that only 7% of the 

headaches are diagnosed as a secondary headache. In neurological disorders, including 

headache disorders and neuropathies resulting from primary or secondary etiologies, the 

prevalence of pain, both central or peripheral, is very high (Borsook, 2012). Furthermore, 

patients suffering from neurodegenerative disorders complain about painful symptoms as well 

with a prevalence varying from 38 to 75% in AD and 40% to 86% in PD (de Tommaso et al., 

2016). Although in AD the pain features have not been defined (Zwakhalen et al., 2009), in PD 

and amyotrophic lateral sclerosis a prevalent nonneuropathic origin of pain has been described 

(de Tommaso et al., 2016). 

There are three neuronal levels involved in the pain signaling process (Figure 1). The first 

neurons, which have special receptors called nociceptors, have their cell bodies within the 

dorsal root or the sensory ganglia of the cranial nerves (e.g. trigeminal ganglia (TG)) and they 

are activated through various stimuli (chemical, thermal and mechanical), both external and 

internal (Garland, 2012).  
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Figure 1. Schematic representation of relevant pain related projections of trigeminal system, including 

the glutamatergic and serotonergic projections. Straight arrows ( ̶ ) represent the migraine and head 

pain relevant projections (Tajti et al., 2011; Goadsby et al., 2017), dashed (--) arrows the 

glutamatergic projections (Noseda & Burstein, 2013; Goadsby et al., 2017), the dotted arrows (···) the 

serotonergic projections (Deen et al., 2017). *Both NRM and LC are implicated in the serotonergic 

and noradrenergic projections. **Cross-projection are described in the TNC (TCC) area. ACC anterior 

cingulate cortex, C1-C2 upper part of cervical spine, DRG dorsal root ganglion, LC locus coeruleus, 

NRM nucleus raphe magnus, PAG periaqueductal grey matter, PfCx prefrontal cortex, S1/S2 primary 

and secondary somatosensory cortex, TCC trigeminocervical complex, TG trigeminal ganglion, TNC 

trigeminal nucleus caudalis, V1 primary visual cortex. The schematic representation is based on the 

work of Tajti and his colleagues (Tajti et al., 2011). 

 

The signals are further conveyed to the dorsal horn of the spinal cord or to the trigeminal nucleus 

caudalis (TNC), recently also called as trigeminocervical complex (TCC), leading to the release 

TNC (TCC)  
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of the neurotransmitters such as glutamate (Glu), calcitonin gene related peptide (CGRP), 

substance P, neurokinin A and pituitary adenylate cyclase activating peptide (PACAP). The co-

release of Glu and CGRP is controlled by calcium influx via the P/Q-type channels (Xiao et al., 

2008b), the latter leading to the activation of CGRP receptors, further evoking the release of 

Glu and Substance P. Moreover, CGRP receptors were identified presynaptically in the dorsal 

spinal horn on nerve terminals of glutaminergic neurons and their activation sensitizes the α-

amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) and N-methyl-D-aspartate 

(NMDA) receptors (Benarroch, 2011), which may promote the release of Glu at this level too 

(Marvizón et al., 2007). The release of Glu subsequently increases NMDA receptor expression 

(Newcomer et al., 2000), further promoting and maintaining a sensitized state (Latremoliere & 

Woolf, 2009). The ionotropic Glu receptors, namely the NMDA, AMPA and kainate receptors, 

along with the metabotropic Glu receptors, are localized within various parts of the TS and 

TNC as well (Tallaksen-Greene et al., 1992). High densities of the mentioned ionotropic 

receptors can be found in the superficial laminae I and II of the Sp5 subdivision of the TNC 

(Furuyama et al., 1993). NMDA receptor mRNA was found in the trigeminal ganglion cells as 

well (Watanabe et al., 1981 ). Substance P transmits nociceptive signals via primary afferent 

fibers to the spinal cord and brainstem second level neurons (Zieglgänsberger,  019). CGRP 

and PACAP show similar pattern in both TG and TNC during the activation of TS (Aczél et 

al., 2018; Edvinsson et al.,  018; Körtési et al., 2019), and PACAP even shows a more obvious 

increasing trend during repetitive stimuli compared to CGRP (Edvinsson et al., 2018).  

The axons of second level neurons, the cell bodies of which are generally located in the spinal 

cord or brainstem, ascend further to the thalamus, from where the third level neurons project to 

the primary somatosensory cortex (Bolay & Moskowitz, 2002; Garland, 2012). At this level, 

there are several other neurotransmitters and neuromodulators, which are able to modulate the 

presented process of pain sensation, e.g. via the activation of γ-aminobutyric acid (GABA)-

ergic or glycinergic inhibitory neurons. The major inhibitory neurotransmitter, GABA is 

involved in the augmentation of the descending inhibition of spinal nociceptive neurons (Jasmin 

et al., 2003). GABA may be capable to restore the impaired inhibitory-excitatory balance (Wu 

& Sun, 2015) and thereby has a role in the modulation of pain perception as well (Enna & 

McCarson, 2006). Not only GABA, but both serotonergic and noradrenergic axons, originating 

from different brainstem regions, such as the nucleus raphe magnus (NRM) or locus coeruleus 
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(LC), are involved in the descending inhibition that project to the spinal cord and brainstem 

(Beitz, 1982; Braz et al., 2009; Michael-Titus et al., 2010). 

As partially mentioned above, during the process of orofacial pain and headache, the major 

mechanism is the activation and sensitization of the trigeminovascular system (TS) (Tallaksen-

Greene et al., 1992; Sahara et al., 1997; Quartu et al., 2002; Pietrobon & Moskowitz, 2013; 

Noseda & Burstein, 2013; Brennan & Pietrobon, 2018). Continuous activation of peripheral 

trigeminal afferents leads to peripheral sensitization (throbbing feature of headache and 

exercise and physical activity-induced headache) (Burstein et al., 1998), resulting in primary 

hyperalgesia, i.e., increased perception of the painful stimuli. This may result in the 

sensitization of the second and ultimately that of the third level neurons, a phenomenon called 

central sensitization (Goadsby et al., 2017), when non-painful stimuli are perceived as painful 

(allodynia – cephalic or extracephalic) and secondary hyperalgesia evolves. It was also 

demonstrated that if the central sensitization develops, the treatment becomes less effective 

(Burstein et al., 2004).  

Taken together, Glu and both its ionotropic and metabotropic receptors have pivotal role in the 

pathophysiology of headache and pain (Soliman et al., 2005). The importance of the NMDA 

receptors culminates at the point where their activation becomes one of the most important steps 

in initiating and maintaining the central sensitization (Latremoliere & Woolf, 2009). The 

increase of Glu level is demonstrated in different animal models of headache and pain 

(Oshinsky & Luo, 2006). The stimulation of the trigeminal nerve resulted in elevated Glu levels 

in the spinal part of the TNC (Oshinsky & Luo, 2006). The peripheral application of Glu to 

deep craniofacial tissue proved to activate and sensitize nociceptive afferents and neurons in 

the upper cervical cord (Lam et al., 2009). Data from human studies, regarding head pain, 

consistently showed elevated Glu levels in the cerebrospinal fluid (CSF) samples of patients 

with chronic migraine (Peres et al., 2004), or migraine with and without aura (Martínez et al., 

1993), whereas in plasma samples the results were not consistent across studies (Ferrari et al., 

1990; Cananzi et al., 1995; Campos et al., 2013). Nevertheless, the available data indicate the 

presence of hyperexcitability in headache-related disorders (Vécsei et al., 2015). The 

importance of NMDA receptors in pain processing, including migraine, is underlined by the 

fact that ketamine, as one of its antagonist, showed promising therapeutic effects in patients 

with severe or long lasting migraine with aura (Afridi et al., 2013). Substances, such as 
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tezampanel, which can act at AMPA and kainate receptors, has been proved to have promising 

beneficial effects on migraine as well (Sang et al., 2004). 

GABA receptor agonists as well as inhibitors of GABA uptake and metabolism display 

significant antinociceptive activity in animal models of different pain conditions (Levy & 

Proudfit, 1977; Kendall et al., 1982; Malan et al.,  00 ; Polgár et al., 2003; Sands et al., 2004). 

The serotoninergic system is involved in the primary headaches, including migraine, in many 

ways. During migraine attack the concentration of the main metabolite of 5-HT, 5-

hydroxyindole acetic acid, increases in the urine (Sicuteri et al., 1961), whereas platelet 5-HT 

concentration decreases (Anthony et al., 1967). The reserpine- and fenfluramine-induced 5-HT 

release might lead to migraine attacks (Silberstein, 1994), whereas when applied intravenously, 

5-HT injection will block these attacks (Kimball et al., 1960). 

Kynurenic acid (KYNA), a product of the kynurenine (KYN) pathway (KP) of tryptophan 

(TRP) metabolism (Figure 2), is also capable of influencing the glutamatergic 

neurotransmission in a complex way (Zádori et al., 2011b). It acts as a competitive antagonist 

at the NMDA receptor (Kessler et al., 1989) and has weak antagonistic effects at the AMPA 

and kainate receptors as well (Birch et al., 1988). The KP of the essential amino acid TRP 

accounts for 95% of its degradation, whereas the remaining 5% is degraded through the 5-HT 

pathway. With its biologically active metabolites, including the above-mentioned KYNA with 

mostly neuroprotective properties (Kessler et al., 1989; Grant et al.,  009; Vécsei et al., 2013), 

the KP of TRP metabolism became of interest in different research field (Schwarcz et al., 2012; 

Vécsei et al., 2013). The antinociceptive properties of KYNA has been proved in different 

animal models of pain: in the study of chronic osteoarthritis-like joint pain (Tuboly et al., 2015), 

in carrageenan-induced thermal hyperalgesia (Kekesi et al., 2002) or in a model of inflamed 

joint (Mecs et al., 2009). Furthermore, some of the developed analogs also displayed promising 

results in different animal models of headache, including the formalin model of trigeminal pain 

as well (Knyihar-Csillik et al.,  008; Vámos et al., 2010; Park et al., 2011; Fejes-Szabó et al., 

2014; Veres et al., 2017). Furthermore, TRP, KYN and KYNA have been related to migraine 

and other headache disorders (Curto et al., 2015a, 2015b), i.e., significant reductions in the 

serum levels of KYN and KYNA were demonstrated, whereas increased concentration levels 

of TRP were found in migraine and cluster headache.  
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Figure 2. The partial kynurenine and serotonin pathway of the tryptophan metabolism. 3-HAO 

3‑hydroxyanthranilate oxidase, KAT kynurenine aminotransferase, KMO kynurenine 

3‑monooxygenase, IDO indoleamine  ,3‑dioxygenase, NAD nicotinamide adenine dinucleotide, TDO 

tryptophan  ,3‑dioxygenase. 

 

The concentration changes of neurotransmitters and the above-mentioned neuropeptides, 

including CGRP and PACAP has been studied deeply in experimental models of pain including 

that of migraine (Kendall et al., 1982; Ferrari et al., 1990; Cananzi et al., 1995; Polgár et al., 

2003; Sands et al.,  004; Oshinsky & Luo,  006; Vámos et al., 2010; Markovics et al., 2012; 

Tuka et al., 2012, 2013; Syed et al., 2012; Campos et al.,  013; Körtési et al., 2019). However, 
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no studies have been carried out aiming at finding a shift point between the concentration 

changes of small molecule neurotransmitters and neuropeptides, which data could yield 

substantial information for the selection between different therapeutic paradigms regarding 

different phases of disorders with the activation of the TS. 

On the whole the measurement of these compounds of interest, which may be designated as 

biomarkers, is crucial, as they may have a potential role in the development, course, treatment 

and diagnosis of the diseases. Biomarkers, measured accurately and reproducibly from different 

biological fluids, including blood plasma or serum, CSF or tissues can predict the progression 

and outcome of a disease, and moreover, can be used to track any effect of applied and potential 

novel drugs either at cellular or molecular level (WHO, 2001; Strimbu & Tavel, 2010). 

Biomarkers represent a very important part of the neuroscience research, which aims to assess 

the nervous system under physiological and pathological conditions. 

Regarding the measurement of the main excitatory neurotransmitter, Glu, it is often detected 

alongside with GABA, to give a better picture on excitatory-inhibitory balance of the CNS. 

These neurotransmitters can be detected with different high-performance liquid 

chromatography (HPLC) techniques, however, each of them has its own drawback. 

Electrochemical detection represents the least applied method, as the use of such detectors can 

be very circumstantial, however, an advantage could be the high sensitivity, which can be 

further increased by using appropriate derivatizing agents (Polta & Johnson, 1983; Clarke et 

al., 1999). Previously, the ion exchange chromatography method seemed to take its place, as it 

provides simplicity in sample preparation and high reproducibility, but the long running time 

was its main drawback (Fekkes et al., 2000). Nevertheless, in the recent years these methods 

are used less, as some derivatization agents seem to provide the same sensitivity via the 

application of fluorescent light detector (FLD), a detection method that is simpler and more 

widely applied in a reverse-phase HPLC. One of the mainly used derivatization agents is the o-

phthalaldehyde (OPA), in the presence of 3-mercaptopropionic acid ((3MP; (de Freitas Silva et 

al., 2009; Perucho et al., 2015; Stragierowicz et al., 2017; Veres et al., 2019)), as it furnishes 

fast reactions, its derivates can be obtained in aqueous solutions at ambient temperature and 

they are fluorescent compounds with high selectivity and sensitivity (Molnár-Perl, 2011). 

Furthermore, it does not break down or react further to form byproducts if it is added in excess 

(Cooper et al., 1984). Although its disadvantage may be its unstable character and sensitive 

reaction to the change of pH in sample preparation (Molnár-Perl, 2011), OPA can be used pre-
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column, yielding a relatively short running time resulting in a relatively easy simultaneous 

measurement of Glu and GABA (Veres et al., 2019). 

The determination of the concentrations of various TRP metabolites, including KYNA, from 

biological matrices represents a great challenge due to their distinct chemical properties or their 

different concentrations in samples (Sadok et al., 2017). The main problem of method 

development was the determination of metabolites in one single run which mostly needed a 

multi-step sample preparation and/or a complex instrumental background, such as the gas 

chromatography-mass spectrometry (Sano et al., 2014), ultra- or HPLC mass spectrometry 

(Tömösi et al., 2020). The latter one is a costly method, and in each case requires a longer 

sample preparation time. However, even fluorescent detection sometimes necessitates a pre-, 

on- or post-column derivatization, which gives fluorescent metabolites at the end of the 

procedure. Therefore, the detection with FLD can yield lower limit of detection (LOD) value 

(Mawatari et al., 1989; Mitsuhashi et al., 2006; Xiao et al., 2008a), which may have a special 

importance especially in light of low sample amount in several cases (e.g. mouse CNS samples). 

Accordingly, the partial assessment of the KP is a widely applied approach using simple HPLC 

methods with different detection techniques, including the UV detector (UVD), diode array 

detector, FLD (Zhao et al., 2011; Veres et al., 2015; Sadok et al., 2017), or electrochemical 

detector (Zhang et al., 2009). The quantification of some TRP metabolites with HPLC was first 

described by Werner (Werner et al., 1987), who measured TRP, KYN, 3-hydroxy anthranilic 

acid (3HANA) and anthranilic acid using FLD and UVD, by changing the wavelengths in time, 

and later by Hervé (Hervé et al., 1996), who included the use of two different detectors 

simultaneously, and described a method suitable for the detection of TRP, KYN, KYNA, 

3HANA and 3-hydroxy kynurenine from standard solution. However, in a real-life situation 

this latter method was only suitable for the detection of TRP, KYN, KYNA and 3HANA from 

human serum. The first method which assessed some KP metabolites from tissue samples and 

used internal standard (IS) was described by Werner (Werner-Felmayer et al., 1989), who 

applied 3-nitro-L-tyrosine (3NLT) regarding UVD, as its structure is very similar to that of 

KYN (Figure 3).  
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Figure 3. Similarities between the UVD IS, 3NLT and KYN, and FLD IS, HCA and KYNA. 

3NLT 3-nitro-L-tyorisne, HCA 4-hydroxyquinolizone carboxylic acid, KYN kynurenine, KYNA 

kynurenic acid. 

Accordingly, 3NLT remained one of the most widely applied ISs for the HPLC methods 

suitable for KP metabolite detection, as its use does not interfere with any other metabolite. 

Beside this, some researchers used norvaline (Myint et al., 2007), methyl-tryptophan (Dazzi et 

al., 2001; Vignau et al., 2004; Dario et al., 2017) and creatine (Zhao et al., 2011; Zhao, 2013). 

In case of biological samples, the application of ISs is essential as these yield the only way to 

calculate the sample loss during sample preparation and analysis. Nonetheless, only 37.7% of 

the articles of interest applied ISs at all (Cseh et al., 2019), and none of them utilized ISs 

separately for each detector. This may be due to that two requirements of the ISs are rarely 

taken into account: compatibility with the detector response and similarity in structure and 

properties with the analyzed compounds, beside the obviously necessary features of ISs 

(stability, pure form, absence in native sample, or no interference with another compound) 

(Dolan, 2012). Accordingly, the application of different ISs is required for each detector as the 

concentrations are calculated from a calibration plot where the concentration values are plotted 

against the response ratios. In case of the above-mentioned partial assessment of TRP 

metabolites, TRP, 5-HT and KYNA are detected by FLD, whereas KYN by UVD, and 

accordingly, at least 2 ISs should be applied during their detection. In light of these 

requirements, 3NLT is appropriate for the UVD, whereas a newly synthetized compound, 4-

hydroxyquinazoline-2-carboxylic acid (HCA) was utilized for FLD (Cseh et al., 2019) (Figure 

3).  

Regarding all the above-mentioned analytical procedures, a detailed validation process, 

including at least selectivity, linearity, LOD, limit of quantification (LOQ), precision and 
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recovery, is essential to be able to determine the robustness of the developed method in 

harmonization with the official guidelines (International Conference on Harmonization, 2005). 
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2. Aims 

The aims of our study were as follows:  

(i) To explore the neurochemical profile of CFA-induced orofacial pain in rats, including the 

assessment of Glu, GABA, TRP, 5-HT, KYN and KYNA, and finding the shift point regarding 

small molecule neurotransmitter concentration changes versus that of the previously described 

pain-related neuropeptides. 

(ii) To optimize and validate a HPLC-UVD/FLD method for the determination of TRP, 5-HT, 

and that of the neuroprotective branch of the KP from several different biological matrices, 

including mouse and rat CNS and plasma, and human CSF and plasma, by using two ISs, one 

for each detector. 
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3. Materials and methods 

3.1 CFA model of orofacial pain 

Twenty-seven young adult (10-12 weeks old, 250-300 g) male Sprague-Dawley rats (Charles 

River Laboratories, Wilmington, MA, USA), were used for the experiments. The animals were 

bred and maintained under standard laboratory conditions with 12 h-12 h light/dark cycle at 24 

± 1ºC and 50% relative humidity, 3 animals per each home cage in the Laboratory Animal 

House of the Department of Neurology, University of Szeged. The rats had free access to 

standard rat chow and water. The experiment was not pre-registered. All experimental 

procedures performed in this study complied fully with the guidelines of Act 1998/XXVIII of 

the Hungarian Parliament on Animal Experiments (243/1988) and with the recommendations 

of the International Association for the Study of Pain and European Communities Council 

(86/609/ECC). The studies were in harmony with the Ethical Codex of Animal Experiments 

and were approved by the Ethics Committee of the Faculty of Medicine, University of Szeged, 

with a permission number of XI./1102/2018. Complete Freund adjuvant (CFA; killed 

mycobacteria suspended in paraffin oil, 1 mg/ml) was obtained from Sigma-Aldrich (St. Louis, 

MO, USA), and 50 µl was administered per animal. We tried to minimize the use of animals 

by adopting the key aspects of the 3Rs (Replacement, Reduction and Refinement). Therefore, 

the experimental groups were added in a sequential manner, starting from 24 h following CFA 

administration with 24 h steps till the time point where the proposed alterations diminish. 

Therefore, no randomization was performed to allocate subjects in the study. By the end of the 

experiments we had three groups, one control and two with CFA treatment (Figure 4).  

 

 

Figure 4. Time-line of the experimental procedure applied in this study. CFA Complete Freund’s 

adjuvant, n number of the animals per group. *One animal died in cage after CFA injection. 

 

CFA injection CFA 24 h.

Sample collection

Day 0.

ControlSaline injection

n = 18 

n = 9

Day 1.

n = 9

n = 9

CFA 48 h.

n = 8*

Day 2.
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The control (CO) group was chosen to be at 24 h, as previous experiments demonstrated that 

there is no difference in the controls, when they do not receive PBS at all in the whisker pad vs. 

treated with PBS and perfused 24 h after treatment vs. treated with PBS and perfused 48 h after 

treatment (n = 3 animal/group; measured analytes: GABA and Glu, TRP metabolites). 

The rats were anesthetized with intraperitoneal 4% chloral hydrate solution mainly based on its 

safe application (Sigma-Aldrich, St. Louis, MO, USA; 10 ml/kg body weight dose) in the 

morning and 50 µl of CFA was injected into the right whisker pad. No other analgesic was 

applied, otherwise the activation/sensitization phenomena during pain processing, an essential 

characteristic of the CFA model as well, would have been influenced. Control rats were injected 

with an equal volume of saline. CSF was taken from the suboccipital cistern, including the 

control group (n = 9), 24 (n = 9) and 48 hours (n = 9 initially, finally n = 8 as one animal died 

during the experiment) applying the above-described anesthetic procedure after injection, and 

following that the animals were perfused transcardially with 200 ml phosphate-buffered saline 

(PBS). The spinal tap procedures were unsuccessful in 5 occasions and 7 of the CSF samples 

were excluded from analysis due to contamination with blood. Accordingly, 5-5 samples 

remained in the control and CFA 24 h groups, and 4 in the CFA 48 h group for analysis. 

Therefore, this part of the study was only exploratory due to the low statistical power. Blood 

samples were taken from the left ventricle into ice-cold glass tubes containing disodium 

ethylenediaminetetraacetate dihydrate (Na2EDTA, Lach-Ner s.r.o, Neratovice, Chech 

Republic) and the plasma was separated by centrifugation (3500 RPM for 10 min at 4°C). 

Following decapitation two different brain structures were dissected, the TNC and the 

somatosensory cortex (ssCX). Both right- and left-sided samples were separately removed on 

ice and stored at -80°C until further use in each case. Prior to all measurements, during the 

tissue weighting or plasma/CSF precipitation process, all samples were relabeled, and a blind 

study was conducted, i.e., the experimenter was no aware of which samples were part of CO or 

24 h groups. Therefore, in each case a randomization was applied as well. Validated HPLC 

measurements were performed during the experiment. First, the brain samples were 

homogenized in 0.5 M perchloric acid (PCA), at 1:5 w/v containing the ISs (3NLT and HCA), 

applied in the measurement of TRP metabolites as detailed below. Then, supernatants were 

aliquoted and kept at -80°C until the bioanalytical procedure. Regarding Glu and GABA 

measurements, 100 µl of the brain supernatant was diluted to 1:100 v/v with distilled water and 

100 µl of this dilution was derivatized with 100 µl solution (2 ml OPA (Sigma-Aldrich, Saint 
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Louis, MO, USA), 7.94 ml 0.2 M borate puffer (pH = 9.9; Sigma-Aldrich, Saint Louis, MO, 

USA) and 60 μl 3MP (Sigma-Aldrich, Saint Louis, MO, USA) and further diluted with 50 µl 

distilled water containing the corresponding IS, the homoserine (Sigma-Aldrich, Saint Louis, 

MO, USA). For the separation, gradient elution was applied. Mobile phase ‘A’ was 95:5 v/v 

0.05 M sodium acetate (pH = 5.5):methanol, whereas mobile phase ‘B’ was 45:45:10 v/v 

methanol:acetonitrile (ACN):water. ACN was purchased from Scharlau (Barcelona, Spain) and 

methanol from Sigma-Aldrich (Saint Louis, MO, USA). Chromatographic separations were 

performed on a Kinetex C18 150x4.6 i.d. 5 μm particle size column (Phenomenex Inc., 

Torrance, CA, USA) after passage through a SecurityGuard pre-column C18, 4x3 mm i.d., 5 

μm particle size (Phenomenex Inc., Torrance, CA, USA) applying gradient elution. The elution 

started with 95% ‘A’ decreasing linearly to 50% then staying there for 2 min and re-

equilibrating to 95% in 1 min for a total 16 min runtime. The flow rate was 1 ml/min, injection 

volume was 10 μl and the FLD was set to 230/440 nm for excitation/emission wavelengths. The 

validation process was carried out as described previously (Veres et al., 2019). Regarding the 

Glu and GABA measurements from CFS samples, the initial amount of mobile phase ‘A’ 

applied for the brain samples was 95%, but for CSF samples it was changed to 93%, as coelution 

was observed under the initial circumstances. The ratios applied for the CSF sample preparation 

(1:1:0.5 = sample: derivatization solution: IS) remained the same, similar to brain supernatants. 

For the TRP, 5-HT, KYN and KYNA measurements from brain samples, the mobile phase 

consisted of 200 mM zinc-acetate (ZnAc) solution at pH 5.8, adjusted with acetic acid. The 

organic component (ACN) in the mobile phase was 5%, and the solution was filtered through 

a cellulose membrane with 0.  μm pore size. The flow rate was 1.  ml/min and the injection 

volume was 50 μl. During the measurement of CSF and plasma samples, TRP, KYN and KYNA 

was separated by a mobile phase similar to the one used for the CNS methods, except that pH 

was set at 6.2. The injection volume was 50 μl and  0 μl, respectively. 

3.2 Quantification of TRP, 5-HT, KYN and KYNA from different biological samples 

Due to the importance of TRP and its metabolites in different neurological disorders and their 

animal model as well, paying a special attention to pain models, their analyses may be of 

interest, not only in rats, but in human and mouse samples too. Therefore, method optimization 

and validation processes are described below, regarding human plasma and CSF, rat plasma 

and CNS (brain and upper part of the cervical spinal cord), and mouse brain and plasma 

samples. 
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All chromatographic analyses described below were performed using an Agilent 1100 HPLC 

system (Santa Clara, CA, USA) with Agilent G1314A UV detector (UVD) and G1321A 

fluorescent detector (FLD) attached. Chromatographic separations were performed on a 

Kinetex C18 150×4.6 i.d. 5 μm particle size column (Phenomenex Inc., Torrance, CA, USA) 

after passage through a SecurityGuard pre-column C18, 4×3 mm i.d., 5 μm particle size 

(Phenomenex Inc., Torrance, CA, USA). The purity of all standards and solutions were 

analytical grade or HPLC grade. The IS used for the FLD, HCA, was synthesized at the 

Department of Pharmaceutical Chemistry, University of Szeged. Before the method 

optimization process, the spectral analyses of the UV-detected compounds were made with an 

Agilent 8453 UV-Vis Spectroscopy System (Santa Clara, CA, USA). The reference 

compounds, including the TRP, 5-HT, KYN, KYNA, 3NLT; PCA, ZnAc and phosphoric acid 

were purchased from Sigma-Aldrich (Saint Louis, MO, USA). ACN was obtained from 

Scharlau (Barcelona, Spain) and acetic acid from VWR International (Radnor, PA, USA). The 

di-sodium-hydrogen phosphate dihydrate was obtained from VWR International (Radnor, PA, 

USA) and potassium dihydrogen phosphate from Applichem Panreac (Darmstadt, Germany).  

Regarding the mobile phase, it consisted of 200 mM ZnAc solution at pH of 6.2 for human and 

murine plasma and CSF samples, and at pH of 5.8 for murine CNS samples, the pH value was 

adjusted with acetic acid. The organic component (ACN) in the mobile phase was 5%, and the 

solution was filtered through a cellulose membrane with 0.  µm pore size. The flow rate was 

1.  ml/min and  0 µl of the plasma supernatants were injected, whereas in case of CSF and 

CNS homogenate the injection volume was 50 µl. In each case, two ISs were applied: 3NLT 

for the UVD, and HCA for the FLD, both chosen by their similarities with one of the metabolites 

detected (Introduction; Figure 3). 

We applied ZnAc at a relatively high concentration (200 mM), which is in the middle of the 

100−500 mM, a range widely used in previously described methods (Sadok et al., 2017), as 

ZnAc increases the fluorescence intensity of KYNA by creating a complex with the Zn2+ ions, 

which seems essential for its detection above LOQ (Figure 5). However, it is worth to mention 

that we focused on the prevention of precipitation as well and we did not observe any signs of 

precipitation and the lifespan of the applied column was not affected at all. 
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Figure 5. The effect of ZnAc on the achieved signal intensity for KYNA. KYNA kynurenic acid, LU 

luminescence, ZnAc zinc acetate. 

 

Not only the ZnAc, but the applied pH value seemed to have a large influence on the sensitivity 

of KYNA detection as well (Figure 6), as its reduction was necessary during the development 

of the method suitable for the brain samples. 

 

 

 Figure 6. The effect of pH on the achieved signal intensity for KYNA. KYNA kynurenic acid, LU 

luminescence, ZnAc zinc acetate. 

 

Furthermore, not only the pH value was changed during the method development, but we tested 

different water phase:organic phase ratios as well, therefore the effect of the ACN on the 

sensitivity of KYNA detection was also assessed (Figure 7). However, it did not have such a 

large impact as the ZnAc concentration and pH value on the sensitivity of the methods. 
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Figure 7. The effect of ACN on the achieved signal intensity for KYNA. ACN acetonitrile, KYNA 

kynurenic acid, LU luminescence. 

 

As the pH value was changed during the method optimization process, the UV-Vis spectra data 

were collected from 200-800 nm in cases of KYN and 3NLT to determine the optimal 

wavelengths for measurements (Figure 8A and B), whereas the determination of optimal 

wavelengths in case of FLD was carried out via the collection of spectral data in the ranges of 

  0‒380 nm (excitation) and 300‒495 nm (emission) for each fluorescent compound, i.e., TRP, 

5-HT, KYNA and HCA (Figure 9). For the two different pH values, the metabolites showed 

different optimal detection wavelengths. 

 

 
Figure 8. Absorption spectral analyses of KYN and 3NLT, with mobile phase pH set at 6.2 (A) and 

5.8 (B). 3NLT 3-nitro-L-tyrosine, AU absorbance unit, KYN kynurenine. 
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Figure 9. Fluorescence 3D spectral scan (for both mobile phases: pH 6.2: A1, B1, C1 and pH 5.8 A2, 

B2, C2, D2) of the quantified compounds (TRP, A; KYNA, B; HCA, C; 5-HT, D). X axis represents 

the emission from 300 to 480 nm, whereas y axis the excitation from 220 to 380 nm. Colors represent 

the intensity of luminescence from 300 (dark blue) to different intensity values (red). 5-HT serotonin, 

HCA 4-hydroxyquinolizone carboxylic acid, KYNA kynurenic acid, TRP tryptophan 

 

Following the assessment of all parameters, the most appropriate ones were chosen in case of 

the brain samples as well (Figure 10), and the validation process was completed.  
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Figure 10. The UVD and FLD chromatograms of pooled rodent brain samples, in different conditions. 

The X axis represents the running time of a sample, whereas the Y axis the detector response (mAU 

for the UVD, LU for the FLD). 3NLT 3-nitro-L-tyrosine, 5-HT serotonin, ACN acetonitrile, FLD 

fluorescence detector, HCA 4-hydroxyquinazoline-2-carboxylic acid, KYN kynurenine, KYNA 

kynurenic acid, LU luminescence, mAU mili absorbance unit, TRP tryptophan, UVD UV detector. 

 

During the method development and validation process, the used solutions were made from 

stock solutions of 100 µM prepared by dissolving accurately weighed standard compounds in 

0.5 M PCA solution, except the KYNA, which was dissolved in phosphorous buffer, with pH 

set at 6.2 with 85% phosphoric acid, due to solubility issues. A series of working solutions 

(WS) of the analytes with different concentration ranges for each matrix was prepared 

containing the ISs at final concentration of   µM for 3NLT and 100 nM for HCA. During the 

validation process, for the calibration curve, which is further used for LOD and LOQ value 

determination, six calibration standards were prepared by spiking the respective WSs into blank 

biological matrices, i.e., blank human and rat plasma and CSF, and blank mouse plasma, 

respecting the same dilution ratios as the ones applied in the sample preparation as well. Due 

to hard sampling and contamination issues, the amount of the obtained rat CSF samples was 

enough only for the linearity study, along with the LOD and LOQ determination. With regard 

to rat and mouse CNS samples, the first step was the homogenization of the respective CNS 

regions, and thereafter the appropriate amount of the WSs was added to the supernatant. TRP, 
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5-HT, KYN and KYNA were prepared in the presented final concentration ranges (Table 1). 

The peak area response ratios were plotted against the corresponding concentration, and the 

linear regression computations were carried out by the least square method with the freely 

available R software (R Development Core Team, 2002). 

 

Table 1. The concertation range applied for different biological matrices 

Biological sample Analyte Concentration range 

Human plasma 

TRP (µM) 5–50 

KYN (µM) 0.1–5 

KYNA (nM) 2–100 

Human CSF 

TRP (µM) 0.1–5 

KYN (µM) 0.05–3 

KYNA (nM) 2–60 

Mouse plasma 

TRP (µM) 1– 30 

KYN (µM) 0.05–3 

KYNA (nM) 2–100 

Mouse brain 

TRP (µM; nmol/g ww) 0.2–10; 0.816–40.8 

5-HT (µM; nmol/g ww) 0.25–1; 0.102–4.08 

KYN (µM; nmol/g ww) 0.1–3; 0.408–12.2 

KYNA (nM; pmol/g ww) 0.5–60; 2–245 

Rat plasma 

TRP (µM) 1–60 

KYN (µM) 0.1–5 

KYNA (nM) 1–100 

Rat CNS 

TRP (µM; nmol/g ww) 0.1–5; 0.470–26.8 

5-HT (µM; nmol/g ww) 0.25–1; 0.157–6.11 

KYN (µM; nmol/g ww) 0.1–3; 0.686–14.49 

KYNA (nM; pmol/g ww) 1–60; 4.79–322.21 

Rat CSF 

TRP (µM) 1–60 

KYN (µM) 0.1–3 

KYNA (nM) 1–60 
5-HT serotonin, CNS central nervous system, CSF cerebrospinal fluid, KYN kynurenine, KYNA 

kynurenic acid, TRP tryptophan, ww wet weight. 

 

The same procedure was applied for the preparation of the quality controls (QCs), i.e., spiking 

the blank biological matrices with the appropriate solutions, containing the analytes in three 

different concentration levels (low (LOQ), medium and high) for performing the accuracy 

assays. Both calibration standards and QCs were prepared freshly, on the day of the 

measurements, whereas stock solutions and WSs were stored at –80ºC. 

During the sample acquisition, mouse plasma samples and mouse brain tissues were obtained 

from 3-4 months old C57Bl/6 mice. Rat plasma, CSF and CNS samples were obtained from 
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10-12 weeks old male Sprague-Dawley rats. The blood samples were collected into Na-EDTA-

containing tubes and centrifuged at 3500 RPM for 10 min and the resulting plasma samples 

were stored at -80°C until analysis. In both cases, frozen plasma was thawed at room 

temperature, then deproteinized with 0.5 M PCA solution (1:1 v/v), containing both ISs at final 

concentration of 100 nM HCA and   µM 3NLT, and centrifuged for 10 min at 1 000 RPM at 

4°C. For the validation process, the individual samples were pooled, whereas for the 

demonstration of the applicability of the method and comparison of the obtained results with 

those from the literature, the metabolites of interest were measured from 8 independent samples. 

Regarding the freshly prepared mouse brain and rat CNS samples, the tissues were weighed 

and then sonicated for 90 s in an ice-cooled solution, 1:5 w/v, comprising 0.5 M PCA and the 

2 ISs in an Eppendorf tube. The content of the Eppendorf tube was centrifuged for 10 min at 

1 000 RPM at 4°C. For the validation process, pooled CNS homogenates were applied, 

whereas the applicability of the method was tested on 8 independent CNS samples, obtained 

from the same mice and rats as used for plasma sample measurements. The animal experiments 

were authorized by the local ethical committee of University of Szeged with adherence to the 

NIH guidelines and the EU directive 2010/63/EU for the protection of animals used for 

scientific purposes. 

Human plasma samples were obtained from 26-39 years old healthy subjects following 

obtaining written informed consent. Sample handling was almost the same as in case of mouse 

plasma samples, only the deproteinization process differed somewhat (the ratio of plasma and 

0.5 M PCA solution was 1:3 v/v). The assessment of the applicability of the method was also 

carried out on 8 independent samples. The CSF samples were taken from 17-71 years old 

patients with headache who were initially suspected to have subarachnoid hemorrhage and 

underwent a spinal tap, but the CSF analysis was negative. Written informed consent was also 

obtained in each case. For the CSF samples, the same preparation procedure was applied as in 

cases of plasma samples, except using a dilution of 5:6 v/v. The applicability of the method was 

also tested on 8 independent CSF samples. All the human samples were obtained with the 

approval of the local Ethical Committee of the University of Szeged (46/2014), adhering to the 

tenets of the most recent revision of the Declaration of Helsinki. 

3.3 Statistics 

All statistical calculations were performed with the use of the freely available R software 3.5.3 

(R Development Core Team). During the method validation and concentration calculation 
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steps, the peak area response ratios were plotted against the corresponding concentration, and 

the linear regression computations were carried out by the least square method. 

In the CFA study, the distribution of our data population was not determined as the applied 

statistical tests do not need assumptions regarding the distribution of underlying data. 

Accordingly, first we performed the Levene test to assess the homogeneity of variances. As the 

variances were equal, we performed a general independence test for two sets of variables 

measured on arbitrary scales, where the reference distribution was approximative based on the 

Monte-Carlo method. Afterwards, we carried out permutation t-tests as post hoc analysis for 

pairwise comparison. Permutations were applied via the Monte-Carlo method (10 000 random 

permutations) and Type I errors from multiple comparisons were controlled with false 

discovery rate. No test for outliers was conducted. With the key aspects of 3Rs in mind [43] we 

tried to keep the sample size as low as we can based on experiences from previous experiments. 

For every statistically significant result, we calculated the corresponding effect size (Cohen’s d 

in this case) and based on its value, we decided whether the increase of sample size is necessary 

or not.  
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4. Results 

4.1 CFA model of orofacial pain 

First of all, a short study was conducted to demonstrate that there are no differences in the level 

of the metabolites of interest, in either TNC or ssCX, between the three CO groups, i.e., sham-

injected rats processed 24 h and 48 h following the injection and the treatment naïve group 

(Table 2). Therefore, in the experimental set-up, only the sham-injected rats, processed at 24 h 

after the treatment were included as a CO group, similar to the previous experiment on PACAP 

and CGRP in the same model (Körtési et al., 2019).  

 

Table 2. The concentration of analyzed metabolites in a pilot study conducted on three different control 

groups 

Metabolites/groups 
Control  

0 

Control 

 24 h 

Control 

 48 h 

Trigeminal nucleus caudalis  

Glutamate (µg/g ww) 
703  

(697–711) 

712  

(667–746) 

689  

(676–709) 

GABA (µg/g ww) 
139  

(138–140) 

140  

(121–143) 

132 

(126–133) 

Tryptophan (nmol/g ww) 
18.8 

(18.5–18.8) 

19.1 

(18.6–19.8) 

19.9 

(19.6–20.5) 

Serotonin (nmol/g ww) 
3.74 

(3.71–3.86) 

3.69 

(3.32–4.06) 

3.64 

(3.63–3.66) 

Kynurenine (nmol/g ww) 
0.520 

(0.509–0.545) 

0.626 

(0.353–0.660) 

0.615 

(0.400–0.760) 

Kynurenic acid (pmol/g ww) 
20.4 

(12.5–26.0) 

10.8 

(6.50–31.4) 

14.1 

(6.59–41.3) 

Somatosensory cortex  

Glutamate (µg/g ww) 
1166 

(1083–1175) 

1191 

 (1163–1412) 

1228 

(1059–1328) 

GABA (µg/g ww) 
181 

(159–196) 

215 

(188–214) 

179 

(117–181) 

Tryptophan (nmol/g ww) 
15.8 

(14.4–16.1) 

17.7 

(13.9–20.9) 

19.0 

(12.4–21.3) 

Serotonin (nmol/g ww) 
2.56 

(2.53–2.93) 

2.86 

(2.52–2.83) 

2.87 

(2.34–3.20) 

Kynurenine (nmol/g ww) 
0.556 

(0.389–0.563) 

0.504 

(0.461–0.837) 

0.459 

(0.375–0.636) 

Kynurenic acid (pmol/g ww) 
20.8 

(12.2–21.5) 

10.9 

(10.6–13.1) 

10.2 

(9.3–10.6) 
0 naïve group, 24 h sham-injected rats, processed at 24 h after treatment, 48 h sham-injected rats, 

processed at 48 h after treatment, ww wet wight. 



 

34 

 

 
 
 

Both contralateral and ipsilateral CNS regions were measured separately, but we did not find 

significant differences in concentrations of any of the metabolites between the two sides, so the 

coherent data were pooled for further analysis. Therefore, the concentration values presented in 

Table 3 demonstrate the mean values of the two analyzed sides of each CNS region.  

 

Table 3. Concentration levels of the measured metabolites in the analyzed brain regions 

 
Control group 

(n = 9) 

CFA 24 h 

(n = 9) 

CFA 48 h 

(n = 8†) 

Trigeminal nucleus caudalis (TNC) 

Glu (µg/g ww) 
684 

(644‒746) 

772*,# 

(74 ‒859) 

731 

(687‒745) 

GABA (µg/g ww) 
167 

(154‒187) 

180 

(174‒ 35) 

167 

(164‒171) 

TRP (nmol/g ww) 
20.3 

(19. ‒  .4) 

20.3 

(18. ‒ 4.5) 

19.4 

(17.7‒ 0.8) 

KYN (nmol/g ww) 
0.656 

(0.4 8‒0.671) 

0.876*,# 

(0.830‒1.13) 

0.532 

(0.480‒0.597) 

KYNA (pmol/g ww) 
22.8 

( 1. ‒ 4. ) 

52.6**,# 

(34.6‒7 .3) 

25.8 

( 1.9‒ 8.8) 

5-HT (nmol/g ww) 
2.99 

(2.92‒3.33) 

2.84 

(2.63‒3.46) 

3.32 

(3.09‒3.44) 

Somatosensory cortex (ssCX) 

Glu (µg/g ww) 
1178 

 (108 ‒1 90) 

1269 

(1 06‒1397) 

1152 

(105 ‒1 87) 

GABA (µg/g ww) 
215 

( 07‒ 18) 

230 

( 17‒ 51) 

199 

(178‒ 11) 

TRP (nmol/g ww) 
20.6 

(17.8‒ 3.5) 

22.6 

( 1.5‒ 3.7) 

21.6 

( 0.9‒  .7) 

KYN (nmol/g ww) 
0.824 

(0.743‒0.970) 

0.974 

(0.714‒1.15) 

0.616 

(0.55 ‒0.663) 

KYNA (pmol/g ww) 
16.2 

(9.70‒18.8) 

27.3*,# 

(17.3‒39.3) 

9.73 

(7.01‒1 .8) 

5-HT (nmol/g ww) 
2.55 

(1.66‒2.68) 

2.27# 

(2.17‒2.53) 

2.89 

(2.65‒3.17) 

Results are shown as median (1st−3rd quartile). †One animal died in cage after CFA injection. * p < 0.05 

vs. CO, ** p < 0.01 vs. CO, # p < 0.05 vs. 48 h. 5-HT serotonin, CFA Complete Freund’s adjuvant, 

GABA gamma-aminobutyric acid, Glu glutamate, KYN kynurenine, KYNA kynurenic acid, n number of 

the animals per group, TRP tryptophan, ww wet weight.  

 

Regarding TNC, pairwise permutation t-tests following the independence tests revealed a 

significant elevation in the concentration of Glu (p = 0.0319, Cohen’s d = 1.49), KYN (p = 

0.01 3, Cohen’s d = 1.58) and KYNA (p = 0.0098, Cohen’s d = 1.9 )  4 h following CFA 
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injection compared to the controls and a significant decrease could be observed in Glu (p = 

0.0357, Cohen’s d = 1. 9), KYN (p = 0.01 3, Cohen’s d = 1.85) and KYNA (p = 0.0 63, 

Cohen’s d = 1.39) levels by 48 h compared to the  4 h group, whereas there was no difference 

between the control and 48 h groups (Table 3, Figure 11).  

 

  

Figure 11. Concentration changes in the assessed metabolites in the TNC. * p < 0.05 vs. CO, ** p < 

0.01 vs. CO, # p < 0.05 vs. 48 h. n = 9 in the control and 24 h groups and n = 8 in the 48 h group. The 

boxplots are displayed as the intervals between the 1st and 3rd quartiles presenting the median values as 

well. 24 and 48 h CFA treated groups, 5-HT serotonin, GABA γ-aminobutyric acid, KYN kynurenine, 

KYNA kynurenic acid, n number of the animals per group, TRP tryptophan, TNC trigeminal nucleus 

caudalis, ww wet weight. 

 

Regarding ssCX samples, an elevation in KYNA concentration (p = 0.0 37, Cohen’s d = 1.36) 

could be observed 24 h following CFA administration, followed by a significant decrease by 

48 h (p = 0.0173, Cohen’s d = 1.80) and there was no difference between control and 48 h 

groups. Furthermore, in the ssCX, there was a significant increase in 5-HT levels in the 48 h 
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group compared to the controls (p = 0.0479, Cohen’s d = 1. 1) and to the  4 h group (p = 

0.0479, Cohen’s d = 1. 0; Table 3, Figure 12). We calculated the KYN/TRP and KYNA/KYN 

ratios as well. The KYN/TRP ratio was significantly elevated in the 24 h group compared to 

the controls (p = 0.0419, Cohen’s d = 1.19) or to the 48 h group (p = 0.0419, Cohen’s d = 1.35; 

Table 3). With regard to the KYNA/KYN ratio, there was no difference in any of the 

investigated biological matrices (data no shown). 

 

 

Figure 12. Concentration changes in the assessed metabolites in the somatosensory cortex. * p < 0.05 

vs. CO, # p < 0.05 vs. 48 h. n = 9 in the control and 24 h groups and n = 8 in the 48 h group. The 

boxplots are displayed as the intervals between the 1st and 3rd quartiles presenting the median values as 

well. 24 and 48 h CFA treated groups, 5-HT serotonin, GABA γ-aminobutyric acid, KYN kynurenine, 

KYNA kynurenic acid, n number of the animals per group, TRP tryptophan, ww wet weight. 

 

Regarding CSF samples, TRP metabolites, Glu and GABA were measured. We found no 

significant alterations in the CSF, however, the power of the statistical tests in this case is low 

due to low case number (n = 5, 5, 4 for control, 24 h and 48 h groups, respectively) and the 

concentration values of KYN in the control and CFA treated 48 h groups were below LOD 
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(0.107 µM), except one case from each group (Table 4; due to the low amount of 5-HT in the 

CSF samples, we could not quantify it, as the values were below LOD, LOD = 0.0 74 µM).  

 

Table 4. Concentration levels of the measured metabolites in the cerebrospinal fluid 

 
Control group 

(n = 5) 

CFA 24 h 

(n = 5) 

CFA 48 h 

(n = 4) 

Cerebrospinal fluid 

Glu (µM) 
6.08 

6.04−9.60 

9.87 

4.90−16.5 

8.61 

6.13−9.96 

GABA (µM) 
1.38 

1.04−1.49 

1.35 

1.23−2.10 

1.54 

1.40−1.73 

TRP (µM) 
1.40 

0.96−1.60 

1.32 

1.24−3.77 

1.55 

1.13−1.95 

KYN (µM) < LOD 
0.21 

0.13−0.22 
< LOD 

KYNA (nM) 
3.57 

1.61−11.0 

3.29 

3.23−4.94 

4.10 

3.14−6.32 

Results are shown as median (1st−3rd quartile). CFA Complete Freund’s adjuvant, GABA gamma-

aminobutyric acid, Glu glutamate, KYN kynurenine, KYNA kynurenic acid, n number of animals per 

group, TRP tryptophan  

 

In case of plasma samples, only the TRP metabolites were measured, and no significant 

differences were observed (Table 5).  

 

Table 5. Concentration levels of the measured metabolites in the plasma samples 

 
Control group 

(n = 9) 

CFA 24 h 

(n = 9) 

CFA 48 h 

(n = 8†) 

Plasma 

TRP (µM) 
63.9 

(5 .4‒78. ) 

81.4 

(54.3‒88.1) 

56.4 

(51.6‒76.1) 

KYN (µM) 
4.58 

(3. 9‒4.98) 

4.72 

(4.45‒5.1 ) 

3.27 

( .83‒4.79) 

KYNA (nM) 
129 

(1 0‒184) 

172 

(99.9‒ 14) 

139 

(95.0‒173) 

Results are shown as median (1st−3rd quartile). †One animal died in cage after CFA injection. CFA 

Complete Freund’s adjuvant, KYN kynurenine, KYNA kynurenic acid, n number of animals per group, 

TRP tryptophan  
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4.2 Quantification of TRP, 5-HT, KYN and KYNA from different biological samples 

Due to the importance of the TRP metabolites, as presented in the previous parts, the validation 

process was carried out on six different biological matrices, including human plasma and CSF, 

mouse brain and plasma and rat CNS and plasma. During sample acquirement for the method 

optimization of rat samples, including the brain, CSF and plasma samples, a lot of unsuccessful 

CSF tap procedures were noted, therefore we did not collect enough CSF volume for the whole 

validation procedure. For the validation process, in addition to the linear equation calculated 

according to the applied concentration range (Table 1), LOD, LOQ (Table 6), intra- and inter-

day precision were given as well (Table 7), along with the recovery values (Table 8). As a last 

step, the applicability of all methods was checked by comparing our data with literature data 

(Table 9).  

LOD and LOQ were calculated by the equations LOD = 3.3·σ ∕ S′ and LOQ = 10·σ ∕ S’; where 

σ is the standard error of the intercept and S’ is the slope of the calibration curve of the analyte, 

presented in Table 6. Furthermore, a linearity study was conducted for rat CSF samples to 

determine LOD and LOQ values. Accordingly, the LOD and LOQ values for rat CSF were 31.1 

and 10  nM for TRP, 0.107 and 0.70  µM for KYN and 1.04 and 3.45 nM for KYNA, 

respectively, whereas 5-HT was undetectable in each case. 
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Table 6. Limit of detection and limit of quantification values for tryptophan, serotonin, kynurenine and 

kynurenic acid in different biological matrices. 

Biological sample Analyte LOD LOQ 

Human plasma 

TRP (µM) 1.04 3.14 

KYN (µM) 0.100 0.303 

KYNA (nM) 1.32 4.02 

Human CSF 

TRP (µM) 0.102 0.308 

KYN (µM) 0.0274 0.0832 

KYNA (nM) 1.23 3.72 

Mouse plasma 

TRP (µM) 0.557 1.69 

KYN (µM) 0.025 0.076 

KYNA (nM) 1.33 4.03 

Mouse brain 

TRP (µM; nmol/g ww) 0.204; 0.890 0.619; 2.47 

5-HT (µM; nmol/g ww) 0.0086; 0.034 0.102; 0.104 

KYN (µM; nmol/g ww) 0.0647; 0.259 0.196; 0.785 

KYNA (nM; pmol/g ww) 0.456; 1.82 1.38; 5.50 

Rat plasma 

TRP (µM) 0.102 0.308 

KYN (µM) 0.027 0.083 

KYNA (nM) 1.23 3.72 

Rat CNS 

TRP (µM; nmol/g ww) 0.08; 0.36 0.27; 1.21 

5-HT (µM; nmol/g ww) 0.031; 0.138 0.102; 0.461 

KYN (µM; nmol/g ww) 0.04; 0.16 0.12; 0.53 

KYNA (nM; pmol/g ww) 1.02; 4.62 3.40; 15.4 
5-HT serotonin, CSF cerebrospinal fluid, KYN kynurenine, KYNA kynurenic acid, LOD limit of 

detection, LOQ limit of quantification, TRP tryptophan, ww wet wight. 

 

The precision of the method was determined for each analyte in all matrices (Table 6). Intra-

assay precision, expressed as CV%, was evaluated by running six consecutive replicates, 

whereas inter-assay precision was calculated by measuring the same samples used for the intra-

assay precision with separate calibrations curves, after three days.  

 

Table 7. Intra-assay (CV%) and inter-assay (bias%) coefficients for tryptophan, serotonin, kynurenine 

and kynurenic acid in the different biological matrices. 

Sample type 
Tryptophan Serotonin Kynurenine Kynurenic acid 

CV% Bias% CV% Bias% CV% Bias% CV% Bias% 

Human plasma 1.14 3.23 - - 2.81 6.37 2.01 2.05 

Human CSF 1.79 1.72 - - 1.66 3.48 2.58 4.37 

Mouse plasma 1.36 1.19 - - 2.59 1.33 3.24 4.27 

Mouse brain 2.41 1.11 4.25 52.4 2.32 6.16 3.42 3.79 

Rat plasma 1.27 1.98 - - 3.98 4.59 2.08 2.04 

Rat CNS 1.03 5.99 1.91 19.73 4.00 10.6 3.70 5.96 

CSF cerebrospinal fluid, CV coefficient of variation 
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Recovery studies were performed using spiked samples at three different concentration levels 

(LOQ, medium and high), with three replicates for each concentration. Recovery percentages 

were calculated as R=100 x [(Css-Cns)/Cspike], where Css is the concentration in the spiked 

homogenate sample, whereas Cns is the concentration of the homogenate native sample 

(without spiking) and Cspike is the added concentration (Table 8). 

 

Table 8. Recovery values (%) of compounds in different biological matrices 

Conc. level of QCs Analyte Recovery (%) Conc. level of QCs Analyte 
Recovery 

(%) 

Human plasma Human CSF 

Low (LOQ) 

TRP  

116 Low (LOQ) 

TRP 

116 

Medium 109 Medium 96.5 

High 114 High 106 

Low (LOQ) 

KYN  

84.9 Low (LOQ) 

KYN 

90.3 

Medium 95.1 Medium 86.7 

High 99.2 High 112 

Low (LOQ) 

KYNA  

107 Low (LOQ) 

KYNA 

90.2 

Medium 94.3 Medium 86.7 

High 87.1 High 111.7 

Mouse plasma Rat plasma 

Low (LOQ) 

TRP 

113 Low (LOQ) 

TRP  

101 

Medium 103 Medium 103 

High 107 High 92.4 

Low (LOQ) 

KYN 

82.5 Low (LOQ) 

KYN  

104 

Medium 110 Medium 88.2 

High 100 High 107 

Low (LOQ) 

KYNA  

104 Low (LOQ) 

KYNA  

97.3 

Medium 101 Medium 101 

High 115 High 103 

Mouse brain Rat brain 

Low (LOQ) 

TRP 

107 Low (LOQ) 

TRP 

106 

Medium 103 Medium 79.6 

High 108 High 108 

Low (LOQ) 
 

5-HT 

111 Low (LOQ) 
 

5-HT 

115 

Medium 105 Medium 90.3 

High 103 High 86.6 

Low (LOQ) 
 

KYN  

113 Low (LOQ) 
 

KYN  

86.2 

Medium 111 Medium 111 

High 95.9 High 115 

Low (LOQ) 

KYNA 

97.8 Low (LOQ) 

KYNA  

88.3 

Medium 91.2 Medium 109 

High 93.8 High 92.1 

Conc. concentration, CSF cerebrospinal fluid, KYN kynurenine, KYNA kynurenic acid, LOQ 

limit of quantification, TRP tryptophan, QC quality control solution 
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Regarding the applicability of the method, 8 independent samples were used. In case of rat CNS 

samples, we determined the concentrations by mixing different CNS regions, as in some cases, 

the literature data did not specify the brain regions used for the measurements (Table 9).   

 

Table 9. The concentration of tryptophan, serotonin, kynurenine and kynurenic acid in different 

biological matrices, compared to literature data* 

Biological sample TRP 5-HT KYN KYNA 

Human 

plasmaa 

Current data 
43.2 

(36.7–49.7) 
- 

2.14 

(1.90–2.35) 

26.8 

(23.9–32.9) 

Literature data 34.8–71.8 - 1.17–2.55 13.8–140 

Human 

CSFa 

Current data 
2.72 

(2.04–3.31) 
- 

0.0836 

(0.0586–0.109) 

1.83 

(1.15–8.05) 

Literature data 0.16–2.52 - 0.03–1.15 1.27–6.45 

Mouse 

STRb 

Current data 
15.3 

(13.3–30.2) 

2.68 

(1.79–3.17) 

0.441 

(0.302–0.502) 

7.91 

(< LOD–12.6) 

Literature data 23.8–100 1.04–2.10 0.100–2.60 2–31.9 

Mouse 

CXb 

Current data 
14.6 

(14.4–19.5) 

2.09 

(1.74–2.66) 

0.138 

(< LOD–0.300) 

< LOD 

(< LOD–4.04) 

Literature data 14–50 0.500-2.00 0.100–3.20 1.5–7.72 

Mouse 

HCb 

Current data 
14 

(12.4–16.7) 

2.13 

(1.82–2.86) 

0.307 

(< LOD–0.349) 

2.71 

(< LOD–4.05) 

Literature data 14–30.7 0.55–3.90 0.070–3.10 1.2–7.66 

Mouse 

plasmaa 

Current data 
27.6 

(26.3–29.7) 
- 

0.980 

(0.82–1.37) 

78.2 

(61.2–92.6) 

Literature data 22.2–100.3 - 0.54–1.12 29–301 

Rat 

CNS**,b 

Current data 
20.47 

(15.1–22.4) 

3.13 

(2.81–3.34) 

0.65 

(0.39–0.68) 

22.65 

(16.1–25.1) 

Literature data 12.16–74.4 0.722–6.00 0.4–3.7 1–101 

Rat 

plasmaa 

Current data 
68.5 

(41.8–78.58) 
- 

4.57 

(2.51–4.85) 

129 

(103–172) 

Literature data 14.4–84.02 - 0.6–2.55 40–90 
Current data are presented as median (IQR), whereas the whole range of median/mean values are 

presented in case of literature data. 

aFor human and murine plasma and CSF samples, data are presented in µM for TRP and KYN, and nM 

for KYNA. 

bFor murine brain samples, data are presented in nmol/g ww for TRP, 5-HT and KYN and pmol/g ww 

for KYNA 

*The literature data was used from articles presented in Supplementary file Table S1 from (Cseh et al., 

2019) and the related articles from (Sadok et al., 2017) were included. 
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**For rat CNS samples, pooled regions, including the brain and the upper part of the spinal cord 

containing the TNC, were used. 5-HT serotonin, CSF cerebrospinal fluid, IQR interquartile range, KYN 

kynurenine, KYNA kynurenic acid, TNC trigeminal nucleus caudalis, TRP tryptophan. 
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5. Discussion 

5.1 CFA model of orofacial pain 

Headache is one of the most common neurological disorders and it is one of the leading causes 

of health-related problems worldwide. In 2010, tension type headache and migraine were the 

second and third most prevalent conditions in the world, respectively, according to the Global 

Burden of Disease (GBD) study (Abraham et al., 2012; Saylor & Steiner, 2018). Furthermore, 

the GBD study in 2015 established that headache is responsible (GBD 2015 DALYs and HALE 

Collaborators, 2016) for more disability adjusted life years than all other neurological disorders 

in combination. The treatment of primary headache disorders is challenging, requiring both 

acute and preventive therapeutic measures (Schuster & Rapoport, 2016; American Headache 

Society, 2019). The preventive treatment aims at reducing the frequency, severity and duration 

of headaches, and to avoid medication-overuse headache. The efficacy of the currently applied 

drugs is not always satisfactory and the contraindications and side-effects often limit the options 

of the physician (Obermann et al., 2015; Diener et al., 2015). Therefore, there is a constant 

need to study and develop new molecules. 

Glutamate and migraine 

Peripheral and central sensitization manifest mainly in forms of hyperalgesia and allodynia. 

The activation of the peripheral terminals of the nociceptors is responsible for Glu release at 

central sites with the activation of ionotropic and metabotropic Glu receptors (Sarchielli et al., 

2007). This process was demonstrated not only in preclinical studies (Bereiter & Benetti, 1996; 

Oshinsky & Luo,  006; Lukács et al., 2017), but in migraine patients as well (Martínez et al., 

1993; Peres et al., 2004). Accordingly, the role of glutamatergic pathways in association with 

different types of pain is well established (Osikowicz et al., 2013) and several antagonists of 

ionotropic glutamate receptors were investigated and found to be effective to decrease 

nociceptive transmission (Bleakman et al., 2006). However, they had severe side effects, and 

therefore, the interest in this direction of research diminished (Eide et al., 1995; Jevtovic-

Todorovic et al., 1998). Nevertheless, ketamine, an NMDA receptor antagonist, is so far the 

only promising option in the treatment of severe or long-lasting migraine aura (Afridi et al., 

2013), and tezampanel, which acts on the AMPA and kainate subtypes of ionotropic Glu 

receptors (Alt et al., 2006), has also shown promising results in acute migraine therapy (Sang 

et al., 2004). 
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Tryptophan metabolism and migraine 

It has been already demonstrated that the level of KYNA and some other KP metabolites are 

altered in migraine and cluster headache patients as well: there are significant reductions in the 

serum levels of KYN, KYNA, 3-hydroxy-kynurenine, 3HANA and quinolinic acid, whereas 

concentrations of TRP and anthranilic acid were significantly increased (Curto et al., 2015a, 

2015b). KYNA as an endogenous NMDA receptor antagonist, is a molecule of interest for CNS 

drug development in case of several neurological conditions (Schwarcz, 2004), but due to its 

poor ability to cross the blood-brain barrier (BBB) and its rapid clearance from the body (Zádori 

et al., 2011a), its application for most CNS-related alterations is limited, and therefore, several 

KYNA analogs were synthetized (Szalardy et al.,  01 ; Vámos,  01 ; Vécsei et al., 2013; 

Bohár et al., 2016). However, the first order neuron of pain processing is located outside the 

BBB (Messlinger & Russo, 2019), so KYNA itself may have therapeutic potential as well. 

Accordingly, the antinociceptive properties of KYNA were proved in animal models of pain 

(Knyihár-Csillik et al., 2004; Tuboly et al., 2015). Furthermore, some of the developed analogs 

also displayed promising results in different animal models of headache (Knyihar-Csillik et al., 

 008; Vámos et al., 2010; Park et al., 2011; Fejes-Szabó et al., 2014; Veres et al., 2017). In an 

earlier study we investigated two KYNA analogs where both of them proved to be effective in 

the formalin model of trigeminal pain (Veres et al., 2017). However, one of them was more 

effective than the other and according to our analyses the better performing compound caused 

a more pronounced elevation of KYNA concentration on the periphery, whereas in the CNS the 

concentrations of KYNA were similar. Based on these results we hypothesized that the 

peripheral elevation of KYNA may be enough to exert beneficial effects on pain processing and 

targeting this component could provide an option to pharmaceutical drug design without the 

obligation of good penetration through the BBB. 

Elevated Glu concentration in the TNC of CFA-treated rats, demonstrated by the current study, 

is accompanied by increased KYN and KYNA levels, which may serve as a feedback 

mechanism to the sensitization process caused by Glu. This hypothesis is supported by the 

above-mentioned findings (Curto et al., 2015a, 2015b) that decreased KP metabolite levels are 

associated with those headache disorders, where increased NMDA receptor activation may play 

a crucial role. These results may have a great importance especially in light of the finding that 

the slightly, but not significantly elevated GABA level may not be enough to counterbalance 

the effects of increased Glu levels. With regard to 5-HT, its cortical elevation by 48 h may serve 
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as a feedback inhibitory response as well to ameliorate the activation of the trigeminovascular 

pathway (Noseda et al., 2017). 

The results of this study draw attention to the limited time interval for therapies targeting 

glutamatergic pathways as well, as based on our previous experiments, a clear shift to 

dominantly peptide-mediated pain processing can be seen even from 24 h after CFA application 

(Körtési et al., 2019). This time point corresponds to the onset of peripheral and central 

sensitization of the TS as well in this model (Imbe et al., 2001; Park et al., 2008; Kopach et al., 

2012). At this stage, mainly novel antibody-based therapies may come into account (Bigal et 

al., 2015; Castle & Robertson, 2018; Raffaelli & Reuter, 2018; Vollesen et al., 2018). With 

regard to these novel therapies, the focus of attention is on monoclonal antibodies targeting the 

CGRP pathway for the prophylactic treatment of migraine. Currently, four of these antibodies 

are in clinical trials (eptinezumab, galcanezumab, fremanezumab, erenumab) with promising 

results. However, the cost of these therapies is considerably higher than that of acute phase 

treatments. 

5.2 Quantification of TRP, 5-HT, KYN and KYNA from different biological samples 

During the method validation, all the calculated parameters (LOD, LOQ, intra- and interassay 

precision, and recovery) were in line with literature data (FDA, 2001; International Conference 

on Harmonisation, 2005). Intra-day precision, expressed with CV% was below 5% in each case 

(Table 7). Inter-assay values were all below 15%, the maximum limit recommended by 

guidelines (FDA, 2001; International Conference on Harmonisation, 2005), except that for the 

5-HT in the mouse brain and rat CNS samples, where a decrease of 52% and 19% was observed, 

respectively. This bias is higher than the maximum recommended value, but it can be easily 

explained, as due to the heterogeneity of the bioanalytical studies (Bischoff et al., 2007), there 

are many cases where the official guideline (FDA, 2001) proposed limits may not be applicable. 

In case of the brain samples of the current study, the inter-assay precision measurements were 

done from the already homogenized samples, as we considered that brain sample regions cannot 

be divided into two homogenous parts compared to the supernatant samples. Therefore, the bias 

value draws attention to the necessity of brain homogenization right before the measurement in 

line with our currently applied laboratory practice. Accordingly, the freshly homogenized 

mouse brain and rat CNS samples show stable concentration values, all below the recommended 

5%, i.e., 4.25 CV%, and 1.91 CV%, respectively. During the recovery study, the values should 

be within 15% of the nominal value, except the LOQ spiked recovery values, which should not 



 

46 

 

 
 
 

deviate by more than 20%, as recommended by the official guidelines (FDA, 2001; 

International Conference on Harmonisation, 2005). Regarding metabolite concentration values 

all of them were presented to be in the ranges from literature data (Table 9). 
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6. Conclusion 

In our study of CFA model of orofacial model, we presented the assessment of small molecule 

changes in the TNC and ssCX following CFA treatment for the first time, confirming a 

dominant role of glutamate in early pain processing and a compensatory elevation of KYNA 

with anti-glutamatergic properties. The time interval for the intervention targeting the 

glutamatergic system is presumed to be limited to the first 24 h. The results of our previous 

therapeutic studies with KYNA or with its analogs strongly support this theory. 

Due to the presented importance of KYNA, we further optimized, validated and checked the 

applicability of the methods on six different biological matrices, including human plasma and 

CSF, mouse brain and plasma, and rat CNS and plasma samples. Only a small modification 

was needed to optimize the method for murine CNS samples and it became applicable for the 

assessment of all the 4 above mentioned metabolites, i.e., TRP, 5-HT, KYN and KYNA, along 

with two internal standards, one for each detector.  
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A B S T R A C T

The development of a validated method, applicable for the measurement of tryptophan (TRP) and serotonin (5-
HT), and that of the neuroprotective branch of the kynurenine pathway from several different biological ma-
trices, including mouse brain, is described. Following the spectral analysis of the metabolites, they were
quantified with reversed-phase high-performance liquid chromatography (HPLC), using separate internal stan-
dards (ISs) for UV (3-nitro-L-tyrosine) and fluorescent (the newly utilized 4-hydroxyquinazoline-2-carboxylic
acid) detectors. With regard to validation parameters, selectivity, linearity, limit of detection, limit of quanti-
fication, precision and recovery were determined. Although the linearity ranges were different for the assessed
matrices, the correlation coefficient was>0.999 in each case. Furthermore, good intra- and inter-day precision
values were obtained with coefficient of variation<5%, and bias< 6.5% (except the 5-HT level in brain
samples), respectively. The recoveries varied between 82.5% and 116%. The currently developed methods yield
opportunities for the assessment of concentration changes in the TRP metabolism from a wide range of biological
matrices, therefore they may well be utilized in future clinical and preclinical studies, especially in view that so
many metabolites with the application of ISs have not been detected from mouse brain with such a simple HPLC
method before.

1. Introduction

Tryptophan (TRP), the essential amino acid obtained from diet, is
mainly metabolized through the kynurenine (KYN) pathway (KP;
Fig. 1), whereas only a small proportion of it is catabolized to the
neurotransmitter serotonin (5-HT) [1]. Recently, a special attention has
been paid to the KP in neuroscience research, especially in light of the
well documented alterations of the pathway in numerous neurological
disorders, such as Parkinson's disease, Alzheimer's disease, multiple
sclerosis and schizophrenia [2–6]. Accordingly, several methods have
been developed for the quantification of TRP and its metabolites, in-
cluding those with multiple-step sample preparation, pre- or post-

column derivatization or those needing complex instrumental back-
ground (e.g., high-performance liquid chromatography (HPLC) mass
spectrometry, gas chromatography mass spectrometry) [7]. The as-
sessment of TRP, KYN and kynurenic acid (KYNA), usually designated
as the neuroprotective branch of the KP, may yield meaningful in-
formation in several preclinical and clinical studies [1]. The detection
and quantification of these metabolites can be achieved in an easier
way compared to the other compounds of the KP [7–9]. The partial
assessment of the KP has been described with different HPLC methods,
using several detection techniques, including UV detector (UVD) and
fluorescence detector (FLD) [9,10], diode array detector [11], electro-
chemical detector [12] or mass spectrometry [13,14], targeting
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different biological matrices: human serum or plasma, and cere-
brospinal fluid (CSF) [5,13–16], murine serum or plasma [9,14], and
brain [9,17]. The heterogeneity of the methods is further increased by
the application of internal standards (ISs), although only some (37.7%)
of the articles of interest (Supplementary file, Table S1) applied ISs at
all, and none of them utilized ISs separately for each detector. This
especially makes sense when in addition to the obviously necessary
features of ISs (stability, pure form, absence in native sample, or no
interference with another compound) [18,19], two often neglected
characteristics are also taken into account: compatibility with the de-
tector response and similarity in structure and properties with the
analyzed compounds. Accordingly, the application of different ISs is
required for each detector as the concentrations are calculated from a
calibration plot where the concentration values are plotted against the
response ratios. In light of these requirements, 3-nitro-L-tyrosine
(3NLT) is not appropriate as an IS for the fluorescent detectable com-
pounds TRP, 5-HT and KYNA. Consequently, the application of 4-hy-
droxyquinazoline-2-carboxylic acid (HCA) emerged as a new IS for the
measurement of TRP, 5-HT and KYNA, with a special relevance to the
latter one due to the similarities in their structure, which probably
enables the detection of HCA at the same wavelength as KYNA, without
affecting the running time of the sample. 3NLT has already been ap-
plied widely as an IS for UVD, as its structure is similar to that of KYN
(Fig. 1).

The aim of the current study was to present a simple, rapid, precise,
robust and economical method (95% water in the mobile phase) for the
simultaneous quantification of TRP, 5-HT (present in detectable
amounts only in the mouse brain), KYN and KYNA by HPLC-UVD and
FLD, using ISs for each detector (3NLT for the UVD, and HCA for the
FLD), following a complete spectral analyses of each compound. To
demonstrate the robustness of the method, the validation process was
completed on four different biological matrices (mouse plasma and
brain, human plasma and CSF) according to the ICH and FDA guidelines
[20,21]. Furthermore, to verify the applicability of the currently de-
veloped methods, all of the metabolites of interest were quantified from

the above-mentioned matrices, and the obtained concentration values
were compared with the available literature data.

2. Material and methods

2.1. Instrumentation and reagents

The chromatographic analyses were performed using an Agilent
1100 HPLC system (Santa Clara, CA, USA) with Agilent G1314A UVD
and G1321A FLD. The spectral analyses of the UV-detected compounds
were made with an Agilent 8453 UV–Vis Spectroscopy System (Santa
Clara, CA, USA). The reference compounds TRP, 5-HT, KYN, KYNA,
3NLT; perchloric acid (PCA), zinc acetate (ZnAc) and phosphoric acid
were purchased from Sigma-Aldrich (Saint Louis, MO, USA).
Acetonitrile (ACN) was obtained from Scharlau (Barcelona, Spain) and
acetic acid from VWR International (Radnor, PA, USA). The di-sodium-
hydrogen phosphate dihydrate was obtained from VWR International
(Radnor, PA, USA) and potassium dihydrogen phosphate from
Applichem Panreac (Darmstadt, Germany). The IS used for the FLD
(HCA) was synthesized at the Department of Pharmaceutical Chemistry,
University of Szeged, involving the ring closure of anthranilamide with
diethyl oxalate, followed by the hydrolysis of the ester function [33].

2.2. Collection and preparation of biological samples

Mouse plasma samples and mouse brain tissues were obtained from
3 to 4 months old C57Bl/6 mice. The blood samples were collected into
Na-EDTA-containing tubes and centrifuged at 3500 RPM for 10min and
the resulting plasma samples were stored at −80 °C until analysis. The
frozen plasma was thawed at room temperature, then deproteinized
with 0.5M PCA solution (1:1 v/v), containing both ISs at final con-
centration of 100 nM HCA and 2 μM 3NLT, and centrifuged for
10min at 12000 RPM at 4 °C. For the validation process, the individual
samples were pooled, whereas for the demonstration of the applic-
ability of the method and comparison of the obtained results with those

Fig. 1. The partial metabolism of tryptophan through the
kynurenine and serotonin pathways and the structure of the
two internal standards used for the UV and fluorescence
detectors. 3-HAO 3-hydroxyanthranilate oxidase, IDO/TDO
indoleamine 2,3-dioxygenase/tryptophan 2,3-dioxygenase,
KAT kynurenine aminotransferase, NAD+ nicotineamide
adenine dinucleotide.
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from the literature, the metabolites of interest were measured from 8
independent samples. Regarding the freshly prepared mouse brain
samples, the tissues were weighed and then sonicated for 90 s in an ice-
cooled solution, 1:5 w/v, comprising 0.5 M PCA and the 2 ISs in an
Eppendorf tube. The content of the Eppendorf tube was centrifuged for
10min at 12000 RPM at 4 °C. For the validation process, pooled brain
homogenates were applied, whereas the applicability of the method
was tested on 8 independent striatum, cortex and hippocampus, ob-
tained from the same mice as used for plasma sample measurements.
The animal experiments were authorized by the local ethical committee
of University of Szeged with adherence to the NIH guidelines and the
EU directive 2010/63/EU for the protection of animals used for scien-
tific purposes. Human plasma samples were obtained from 26 to 39
years old healthy subjects following obtaining written informed con-
sent. Sample handling was almost the same as in case of mouse plasma
samples, only the deproteinization process differed somewhat (the ratio
of plasma and 0.5M PCA solution was 1:3 v/v). The assessment of the
applicability of the method was also carried out on 8 independent
samples. The CSF samples were taken from 17 to 71 years old patients
with headache who were initially suspected to have subarachnoid he-
morrhage and underwent a spinal tap, but the CSF analysis was nega-
tive. Written informed consent was also obtained in each case. For the
CSF samples, the same preparation procedure was applied as in cases of
plasma samples, except using a dilution of 5:6 v/v. The applicability of
the method was also tested on 8 independent CSF samples. All the
human samples were obtained with the approval of the local Ethical
Committee of the University of Szeged (46/2014), adhering to the te-
nets of the most recent revision of the Declaration of Helsinki.

2.3. Chromatographic conditions

Chromatographic separations were performed on a reversed-phase
C18 column (Kinetex, 150× 4.6mm I.D., 5 μm particle size;
Phenomenex Inc., Torrance, CA, USA) after passage through a pre-
column (SecurityGuard, 4×3.0mm I.D., Phenomenex Inc., Torrance,
CA, USA) with a mobile phase composition of 200mM ZnAc solution at
pH of 6.2 for plasma and CSF samples, and at pH of 5.8 for brain
samples, adjusted with acetic acid. The organic component (ACN) in the
mobile phase was 5%, and the solution was filtered through a cellulose
membrane with 0.2 μm pore size. The flow rate was 1.2ml/min and
20 μl of the plasma supernatants were injected, whereas in case of CSF
and brain homogenate the injection volume was 50 μl. The application
of ZnAc at such high concentration as 200 nM was necessary – focusing
on the parallel prevention of precipitation as well – in light of the
considerable increase of the fluorescence intensity of KYNA, which
seems essential for its detection above limit of quantification (LOQ;
Supplementary file, Fig. S3A). With the careful use of ZnAc at 200 nM,
we did not experience precipitation and the lifespan of the applied

column was not affected as well. The UV–Vis spectra data were col-
lected from 200 to 800 nm in cases of KYN and 3NLT to determine the
optimal wavelengths for measurements (Supplementary file Fig. S1).

The determination of optimal wavelengths in case of FLD was car-
ried out via the collection of spectral data in the ranges of 220–380 nm
(excitation) and 300–495 nm (emission) for each fluorescent com-
pound, i.e., TRP, 5-HT, KYNA, and HCA (Supplementary file, Figs. S2A,
B, C, D).

2.4. Method validation

The investigated validation parameters were selectivity, linearity,
limit of detection (LOD), LOQ, precision and recovery, respecting the
ICH [20] and FDA [21] guidelines. As insufficient amount of sample
was obtained from one animal (especially in case of mouse plasma),
following the recommendations provided by the FDA [21], pooled
samples were used in each case, for constancy of validation process.

2.4.1. Calibration curve and linearity
Stock solutions with the concentration of 100 μM were prepared by

dissolving accurately weighed standard compounds in 0.5 M PCA so-
lution, except the KYNA, which was dissolved in phosphorous buffer,
with pH set at 6.2 with 85% phosphoric acid, due to solubility issues. A
series of working solutions (WS) of the analytes with different con-
centration ranges for each matrix was prepared containing the ISs at
final concentration of 2 μM for 3NLT and 100 nM for HCA. For the
calibration curve, LOD and LOQ values, six calibration standards (CSs)
were prepared by spiking the respective WSs into blank biological
matrices, i.e., blank human plasma and CSF, and blank mouse plasma,
respecting the dilution ratios presented above. With regard to mouse
brain samples, the first step was the homogenization of the respective
brain regions, and thereafter the supernatant was added the appropriate
amount of the WSs. TRP, 5-HT, KYN and KYNA were prepared in the
presented final concentration ranges (Table 1). The peak area response
ratios were plotted against the corresponding concentration, and the
linear regression computations were carried out by the least square
method with the freely available R software (R Development Core
Team, 2002). The same procedure was applied for the preparation of
the quality controls (QCs), i.e., spiking the blank biological matrices
with the appropriate solutions, containing the analytes in three dif-
ferent concentration levels (low (LOQ), medium and high; Table 3) for
performing the accuracy assays. Both CSs and QCs were prepared
freshly, on the day of the measurements, whereas stock solutions and
WSs were stored at −80 °C.

Table 1
Linearity data, limit of detection and limit of quantification values for tryptophan, serotonin, kynurenine and kynurenic acid in different biological matrices.

Biological sample Analyte Concentration range Linear equation LOD LOQ

Human plasma TRP (μM) 5–50 y = 0.194x + 461 1.04 3.14
KYN (μM) 0.1–5 y = 0.00400x + 0.0871 0.100 0.303
KYNA (nM) 2–100 y = 7.17x – 0.0357 1.32 4.02

Human CSF TRP (μM) 0.1–5 y = 0.551x – 69.9 0.102 0.308
KYN (μM) 0.05–3 y = 0.0117x – 0.201 0.0274 0.0832
KYNA (nM) 2–60 y = 24.4x – 18.6 1.23 3.72

Mouse plasma TRP (μM) 1–30 y = 0.275x – 57.6 0.557 1.69
KYN (μM) 0.05–3 y = 0.00452x – 0.147 0.025 0.076
KYNA (nM) 2–100 y = 7.51x – 1.34 1.33 4.03

Mouse brain TRP (μM; nmol/g ww) 0.2–10; 0.816–40.8 y = 1.63x + 2493 0.204; 0.890 0.619; 2.47
5-HT (nM; pmol/g ww) 25–1000; 102–4082 y = 0.0821x + 2.69 8.55; 34.2 25.9; 104
KYN (μM; nmol/g ww) 0.1–3; 0.408–12.2 y = 0.0108x – 0.430 0.0647; 0.259 0.196; 0.785
KYNA (nM; pmol/g ww) 0.5–60; 2–245 y = 14.8x + 7.12 0.456; 1.82 1.38; 5.50

5-HT serotonin, CSF cerebrospinal fluid, KYN kynurenine, KYNA kynurenic acid, LOD limit of detection, LOQ limit of quantification, TRP tryptophan, ww wet wight.
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3. Results and discussion

3.1. Selection of the excitation and emission wavelengths

As a result of absorbance analyses for KYN and 3NLT
(Supplementary file, Fig. S1) the wavelength of the UVD was set to
365 nm when pH was 6.2, whereas a slight maximum absorbance shift
was observed at pH 5.8, therefore 360 nm was applied in this case.
Following spectral analyses in case of fluorescent detection, the ex-
citation and emission wavelengths at pH 6.2 were set to 246 and
396 nm for the determination of KYNA and HCA, and to 220 and
410 nm for the determination of TRP, whereas at pH 5.8 the excitation
and emission wavelengths were set to 239 and 400 nm for the de-
termination of 5-HT, KYNA and HCA, and to 220 and 355 nm for the
determination of TRP (Supplementary file, Fig. S2).

Table 2
Intra-assay (CV%) and inter-assay (bias%) coefficients for tryptophan, ser-
otonin, kynurenine and kynurenic acid in the different biological matrices.

Sample type Tryptophan Serotonin Kynurenine Kynurenic acid

CV% Bias% CV% Bias% CV% Bias% CV% Bias%

Human plasma 1.14 3.23 – – 2.81 6.37 2.01 2.05
Human CSF 1.79 1.72 – – 1.66 3.48 2.58 4.37
Mouse plasma 1.36 1.19 – – 2.59 1.33 3.24 4.27
Mouse brain 2.41 1.11 4.25 52.4 2.32 6.16 3.42 3.79

CSF cerebrospinal fluid, CV coefficient of variation.

Table 3
Detailed recovery values of the compounds for three levels of concentration (n=3) in different biological matrices.

Sample type Analyte Conc. level of QCs Added concentration Measured concentration Recovery (%)

Human plasma TRP (μM) Native – 43.5 –
Low (LOQ) 3.14 47.1 116
Medium 5 48.9 109
High 15 60.6 114

KYN (μM) Native – 1.59 –
Low (LOQ) 0.303 1.84 84.9
Medium 0.5 2.06 95.1
High 2 3.57 99.2

KYNA (nM) Native – 25.5 –
Low (LOQ) 4.03 29.8 107
Medium 10 34.9 94.3
High 50 69.1 87.1

Human CSF TRP (μM) Native – 3.08 –
Low (LOQ) 0.308 3.43 116
Medium 1.2 4.71 96.5
High 2.4 6.67 106

KYN (μM) Native – 0.0893 –
Low (LOQ) 0.0832 0.164 90.3
Medium 0.4 0.436 86.7
High 0.8 0.983 112

KYNA (nM) Native – 5.34 –
Low (LOQ) 3.72 9.10 90.2
Medium 10 15.9 86.7
High 40 49.2 111.7

Mouse plasma TRP (μM) Native – 27.7 –
Low (LOQ) 1.69 29.6 113
Medium 5 32.9 103
High 10 38.4 107

KYN (μM) Native – 0.844 –
Low (LOQ) 0.075 0.906 82.5
Medium 0.5 1.39 110
High 2 2.85 100

KYNA (nM) Native – 72.5 –
Low (LOQ) 4 76.6 104
Medium 20 92.7 101
High 50 130 115

Mouse brain TRP (nmol/g ww) Native – 11.1 –
Low (LOQ) 2.47 13.7 107
Medium 4.80 16.0 103
High 9.60 21.4 108

5-HT (pmol/g ww) Native – 3179 –
Low (LOQ) 104 3295 111
Medium 400 3386 105
High 2000 5237 103

KYN (nmol/g ww) Native – 1.12 –
Low (LOQ) 0.785 2.02 113
Medium 1.60 2.91 111
High 3.20 4.19 95.9

KYNA (pmol/g ww) Native – 5.51 –
Low (LOQ) 5.50 10.9 97.8
Medium 40 42 91.2
High 160 155 93.8

Conc. concentration, CSF cerebrospinal fluid, KYN kynurenine, KYNA kynurenic acid, LOQ limit of quantification, TRP tryptophan, QC quality control solution, ww
wet weight.
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3.2. Utilization of two internal standards and selectivity of the applied
methods

Several methods have already been published for the quantification
of TRP and some of its metabolites (Supplementary file, Table S1), but
from the published articles, only our research group reported the use of
the 3NLT, when quantifying the analytes of interest from brain samples
via the application of an Onyx Monolithic C18 column
(100mm×4.6mm I.D., Phenomenex Inc., Torrance, CA, USA) [9].
Indeed, the monolithic column provided a good running time (7min
[9]), but the introduction of the novel IS (HCA) for the FLD led to co-
elution on the monolithic column (Supplementary file, Fig. S4) which
resulted in the necessary change of the column. Accordingly, Kinetex
C18 column was chosen with the aim of the parallel improvement of
resolution. Although this novel setup with the optimization of flow rate
and detection wavelengths was found to be suitable for measurements
from plasma and CSF samples with appropriate selectivity and signal

amplitude (Fig. 2), in case of mouse brain samples, an interfering peak
was detected causing co-elution with both UVD and FLD (Fig. 3A and
B). Accordingly, a further adjustment (i.e., the change of pH value of
the mobile phase from 6.2 to 5.8, Fig. 3A and B) should be carried out
to regain the appropriate selectivity (Supplementary file, Fig. S4). The
further reduction of the pH considerably decreases the signal amplitude
of KYNA, so it should be avoided (Supplementary file, Fig. S3B).

3.3. Method validation

3.3.1. Linearity
With regard to the ranges for external standards, it was kept in mind

that under pathological or treatment conditions, a considerably large
alteration may occur compared to the physiological values detected in
different biological matrices. Accordingly, we tried to set up a relatively
wide concentration range for external standards focusing at carrying
out measurements with good linearity as well. The applied ranges

Fig. 2. Chromatograms of pooled mouse brain (A)
and plasma (B), and human plasma (C) and cere-
brospinal fluid (D) samples. UV chromatograms were
obtained at 365 nm (B, C, D) and 360 nm (A),
whereas for the fluorescence chromatograms, we
applied Ex/Em.: 246/396 nm for the first 7min and
220/410 nm for the remaining time (running time:
11min) (B, C, D). For the brain samples (A) 239/
400 nm and 220/335 nm were applied (running
time: 9 min). 3NLT 3-nitro-L-tyrosine, 5-HT ser-
otonin, CSF cerebrospinal fluid, FLD fluorescence
detector, HCA 4-hydroxyquinazoline-2-carboxylic
acid, LOQ limit of quantification, KYN kynurenine,
KYNA kynurenic acid, QC quality control solution,
TRP tryptophan, UVD UV detector.

Fig. 3. The UVD (A) and FLD (B) chromatograms of some pooled mouse brain samples, in different tested conditions. The X axis represents the running time of a
sample, whereas the Y axis the detector response (mAU for the UVD, LU for the FLD). 3NLT 3-nitro-L-tyrosine, 5-HT serotonin, ACN acetonitrile, FLD fluorescence
detector, HCA 4-hydroxyquinazoline-2-carboxylic acid, KYN kynurenine, KYNA kynurenic acid, LU luminescence, mAU mili absorbance unit, TRP tryptophan, UVD
UV detector.
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mentioned in Table 1 were confirmed to be linear in all cases, with a
correlation coefficient> 0.999 for each compound when either FLD or
UVD was applied.

3.3.2. LOD and LOQ
LOD and LOQ were determined based on the guidelines [20,21]

calculating by Equation (1), where σ is the standard error of the in-
tercept and S’ is the slope of the calibration curve of the analyte, pre-
sented in Table 1.

LOD=3.3·σ ∕ S′ and LOQ=10·σ ∕ S’ (1)

The obtained values were in line with literature data in each case
(Supplementary file, Table S1).

3.3.3. Precision
The precision of the method was determined for each analyte in all

matrices (Table 2). Intra-assay precision, expressed as CV%, was eval-
uated by running six replicates, with values ranging between 1.14 and
4.25%, i.e., all of them were below 5%, in line with the values expected
by the FDA [21]. Inter-assay precision was calculated by measuring the
same samples used for the intra-assay precision with separate calibra-
tions curves, after three days. The calculated values ranged between
1.11 and 6.37%, except for the 5-HT in the mouse brain sample, where
a decrease of 52% was observed. This bias is higher than the maximum
recommended value (15%) [21]. Due to the heterogeneity of the
bioanalytical studies [22], there are many cases where the FDA pro-
posed limits may not be applicable. In case of the brain samples of the
current study, the inter-assay precision measurements were done from
the already homogenized samples, as we considered that brain sample
regions cannot be divided into two homogenous parts compared to the
supernatant samples. Therefore, the bias value draws attention to the
necessity of brain homogenization right before the measurement in line
with our currently applied laboratory practice. Accordingly, the freshly
homogenized brain samples show stable concentration values (4.25 CV
%).

3.3.4. Accuracy
Recovery studies were performed using spiked samples at three

different concentration levels (LOQ, medium and high), representing
the entire range of values used for the calibration curve, with three
replicates for each concentration. Recovery percentages were calcu-
lated as R= 100 x [(Css-Cns)/Cspike], where Css is the concentration in
the spiked homogenate sample, whereas Cns is the concentration of the

homogenate native sample (without spiking) and Cspike is the added
concentration. The obtained values ranged between 82.5 and 116%
(Table 3), which are within 15% of the nominal value, except the LOQ-
spiked recovery values, which did not deviate by more than 20%, as
recommended by the official guidelines [20,21].

3.4. Application of the developed method on different biological matrices

The results of the measurements of the metabolites of interest from
the assessed biological matrices (mouse plasma and brain, human
plasma and CSF) with the developed and validated method are sum-
marized in Table 4. All the reported data in the current study are in line
with those obtained from the scientific literature [9,10,15,16,23–40].

4. Conclusion

In summary, in this paper we report an improved HPLC-UVD and
FLD method for the quantification of TRP and some of its metabolites
(5-HT, KYN, and KYNA). The novelty of this study is the utilization of
two different ISs, a widely applied one for the UVD and a novel one for
the FLD, proved to be adaptable for measurements from all the four
different biological matrices. Although the developed method, suitable
for measurements from mouse plasma and human plasma and cere-
brospinal fluid was not appropriate for measurements from the mouse
brain samples, the method could be further improved with slight
modifications (changing the pH from 6.2 to 5.8) to become applicable
for the assessment of all the 4 above-mentioned compounds from mouse
brain samples as well with a single run, which has not been published
before with HPLC-UVD and FLD (Supplementary file, Table S1). With
regard to validation process, in addition to the achievement of appro-
priate selectivity, the linearity, LOD, LOQ, recovery and intra-assay
precision values were all within the acceptable ranges provided by FDA
and ICH [20,21] and were in line with literature data proving the ro-
bustness of the method. The considerably high inter-assay value for 5-
HT draws attention to the necessity of brain homogenization right be-
fore the measurement. Moreover, to demonstrate the applicability of
the developed method, the above-mentioned metabolites were quanti-
fied in different biological matrices and all of the reported concentra-
tion values were within or near the ranges obtained from the scientific
literature. In conclusion, a fit-for-purpose, simple and economical
method with the simultaneous application of two ISs was developed
with one-step sample preparation, acceptable running time and with
applicability in either human or animal model studies.

Table 4
The concentration of tryptophan, serotonin, kynurenine and kynurenic acid in three different mouse brain regions and mouse plasma, and in human CSF and plasma
(n = 8 in each case).

Biological sample TRP 5-HT KYN KYNA References

Mouse striatuma Current data 15.3 (13.3–30.2) 2685 (1790–3173) 0.441 (0.302–0.502) 7.91 (< LOD – 12.6)
Literature data 23.8–100c 1040–2100c 0.100–2.60c 2–31.9c [9,24,35,36,39]

Mouse cortexa Current data 14.6 (14.4–19.5) 2093 (1741–2675) 0.138 (< LOD – 0.300) < LOD (< LOD – 4.04)
Literature data 14–50c 500–2000c 0.100–3.20c 1.5–7.72c [9,23,34,35,37,38,40]

Mouse hippocampusa Current data 14 (12.4–16.7) 2132 (1815–2857) 0.307 (< LOD – 0.349) 2.71 (< LOD – 4.05)
Literature data 14–30.7c 550–3900c 0.070–3.10c 1.2–7.66c [9,23,34–36,38,40]

Mouse plasmab Current data 27.6 (26.3–29.7) – 0.98 (0.82–1.37) 78.2 (61.2–92.6)
Literature data 22.2–100.3c – 0.54–1.12c 29–301 [23–26]

Human CSFb Current data 2.72 (2.04–3.31) – 0.0836 (0.0586–0.109) 1.83 (1.15–8.05)
Literature data 0.16–2.52 – 0.03–1.15 1.27–6.45 [16,27,28]

Human plasmab Current data 43.2 (36.7–49.7) – 2.14 (1.90–2.35) 26.8 (23.9–32.9)
Literature data 34.8–71.8 – 1.17–2.55 13.8–140 [10,15,29–33]

Current data are presented as median (IQR), whereas the whole range of median/mean values are presented in case of literature data.
5-HT serotonin, CSF cerebrospinal fluid, IQR interquartile range, KYN kynurenine, KYNA kynurenic acid, SD standard deviation TRP tryptophan.

a For mouse brain samples, data are presented in nmol/g ww for TRP and KYN, and pmol/g ww for 5–HT and KYNA.
b For human plasma and CSF samples, data are presented in μM for TRP and KYN, and nM for KYNA.
c In addition to literature data presented in Supplementary file Table S1, other references providing values of interest with different instrumental background (e.g.,

HPLC mass spectrometry) should also be included to be able to yield information for all the metabolites of interest.
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Spectral analyses of the investigated compounds 

 

 

Fig. S1. Absorption spectral analyses of KYN and 3NLT, with mobile phase pH set at 6.2 (A) and 5.8 (B). 

3NLT 3-nitro-L-tyrosine, AU absorbance unit, KYN kynurenine 
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Fig. S2. Fluorescence 3D spectral scan (for both mobile phases: pH 6.2: A1, B1, C1 and pH 5.8 A2, B2, C2, 

D2) of the quantified compounds (TRP, A; KYNA, B; HCA, C; 5-HT, D). X axis represents the emission 

from 300 to 480 nm, whereas y axis the excitation from 220 to 380 nm. Colors represent the intensity of 

luminescence from 300 (dark blue) to different intensity values (red). 5-HT serotonin, HCA 4-

hydroxyquinolizone carboxylic acid, KYNA kynurenic acid, TRP tryptophan.
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MOUSE BRAIN – METHOD DEVELOPMENT STEPS 

 

Fig. S3. The effect of ZnAc (A) and pH value (B) on the achieved signal intensity for KYNA. KYNA kynurenic 

acid, LU luminescence, ZnAc zinc acetate. 

 

Fig. S4. The FLD chromatograms demonstrate the improved selectivity with the application of Kinetex C18 

column compared to Onyx Monolithic C18 column. The UV chromatogram shows no interfering peaks 

affecting the selectivity.
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Supplementary Tables 

Table S1. Reported data about internal standards used for the determination of TRP and some of its metabolites using both UVD and FLD£  

References 
Publications 

by date 

Abs. det*, 

IS 
FLD-IS Analyzed metabolites 

Running time 

(min) 

Spectral analyses of 

compounds 

Method 

validation 
Sample type 

[1] 
Werner et al. 

1987 
- - 

TRP, KYN, AA // 3HAA 

(AA - only in standard solution) 
- - - Various human cells 

[2] 
Werner et al. 

1989 
3NLT - 

TRP, NFK, FAA, KYN, 3HAA, AA 

(detectable only in one or two 

cases) 

- - - Various human cells 

[3] 
Herve et al. 

1996 
- - 

TRP, KYN, KYNA, 3HAA, (3HK - 

only in standard solution) 
20 Yes (DAD and FLD) - Human serum 

[4] 
Widner et al. 

1997 
3NLT - TRP, KYN 5 - - Human serum 

[5] 
Wu et al. 

2000 
- - KYN, KYNA - - - Rat brain and serum 

[6] 
Dazzi et al. 

2001 
- Me-TRP 

TRP, KYN (NA, QA, PA - only in 

standard solution) 
15 Yes (DAD) - Human serum 

[7] 
Pawlak et al. 

2001 
- - TRP, KYNA, AA // KYN, XA - Yes (DAD and FLD) - Rat serum 

[8] 
Fujigaki et al.  

2002 
- - KYN, TRP - - - 

Mouse brain, lung and 

plasma  

[9] 
Laich et al. 

2002 
3NLT - TRP, KYN 7 - - Human serum 

[10] 
Widner et al 

2002 
3NLT - TRP, KYN - - - Human serum and CSF 

[11] 
Pertovaraa et al. 

2005 
- - TRP // KYN - - - Human serum 

[12] 
Vignau et al. 

2004 
- Me-TRP TRP, KYN 10 - Yes Human serum 

[13] 
Stoy et al. 

2005 
3NLT - TRP, KYN, KYNA - - - Human plasma 

[14] 
Hwang et al. 

2005 
- - TRP, KYN - - - Dendritic cells 

[15] 
Mackay et al. 

2006 
3NLT - TRP, KYN, KYNA - - - Human plasma 

[16] 
Schröcksnadel 

et al. 2006 
3NLT - TRP, KYN 7 - - Human serum 

[17] 
Forrest et al. 

2007 
3NLT - TRP, KYN, KYNA - - - 

Human plasma 
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Table S1. Reported data about internal standards used for the determination of TRP and some of its metabolites using both UVD and FLD£  

(continued) 

References 
Publications 

by date 

Abs. det*, 

IS 
FLD-IS Analyzed metabolites 

Running time 

(min) 

Spectral analyses of 

compounds 

Method 

validation 
Biological matrices 

[18] 
Guillemin et al. 

2007 
- - TRP, KYN, KYNA - - - Human fetal brain 

[19] 
Myint et al. 

2007 
- 

Norva-

line1// 
TRP // KYN, KYNA, 3HAA - - - Human plasma 

[20] 
Badawy et al. 

2010 
- - 

TRP, KYN, KYNA, 3HAA, XA, 

3HK (AA) 
13 - Yes, partially 

Human plasma, rat 

serum and liver 

[21] 
Gulaj et al. 

2010 
- - TRP, KYNA, AA// KYN // QUIN - Yes, partially - Human plasma 

[22] 
Zhao et al. 

2010 
- - TRP, KYN, KYNA 20 - Yes Human plasma 

[23] 
Oades et al. 

2010 
- - TRP, KYN, KYNA, 3HK, 5HIAA - - - Human serum 

[24] 
Krcmova et al. 

2011 
- - TRP, KYN, Creatine, NEO 8 - Yes Human serum 

[25] 
Baran et al. 

2012 
- - KYN, KYNA - - - Human brain 

[26] 
Linderholm et 

al. 2012 
- - TRP, KYN, KYNA ~16-17 - - Human CSF 

[27,28] 
Zhao et al. 

2011/2013 
Creatine2 - TRP, KYN, KYNA / 5HIAA 30 - - 

Human plasma and 

urine 

[29] 
Lesniak et al. 

2013 
- - TRP, KYN, KYNA, 5-HT, 5HIAA ~33 

Yes (both UV-Vis and 

FLD) 
Yes 

Rabbit brain and 

amniotic fluid 

[30] 
Lim et al. 

2013 
- - TRP, KYN - - - Macaque macrophages 

[31] 
Schwartz et al. 

2013 
- - TRP, KYN, KYNA, 3HK ~30 - - Human serum 

[32] 
Gibney et al. 

2013 
- 

Me-

5HT3 
TRP, KYN - - - Mouse brain 

[33] 
Krcmova et al. 

2015 
- - TRP, KYN, NEO 6 - Yes 

Human amniotic fluid, 

exudate and wounds 
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Table S1. Reported data about internal standards used for the determination of TRP and some of its metabolites using both UVD and FLD£  

(continued) 

References 
Publications 

by date 

Abs. det*, 

IS 
FLD-IS Analyzed metabolites 

Running time 

(min) 

Spectral analyses of 

compounds 

Method 

validation 
Biological matrices 

[34] 
Wang et al 

2015 
- - TRP, KYN 7 - 

Partially: 

precision only 

Murine bone marrow 

mesenchymal stem 

cells 

[35] 
Sheipouri et al. 

2015 
- - TRP, KYN, KYNA - - - 

Fibroblasts and 

keratinocytes 

[36] 
Guloksuz et al. 

2015 
- - TRP, KYN, KYNA, 3HAA // 3HK - - 

Partially: only 

for 3HK 
Mouse serum 

[37] 
Veres et.al 

2015 
3NLT - TRP, KYN, KYNA 7 - Yes Mouse serum and brain 

[38] 
Eminel et al. 

2016 
- - TRP, KYN, KYNA - - - PBMC culture 

[39] 
de Bie et al. 

2016 
- - TRP, KYN, KYNA - - - Human CSF 

[40] 
Comai et al. 

2016 
- - TRP, 5HTP, 5-HT // KYN - - - Human serum 

[41] 
Keegan et al. 

2016 
3NLT - TRP, KYN - - 

Partially: 

within- and 

between run 

Human plasma and 

CSF 

[42] 
Sekine et al.  

2016 
  TRP, KYN, KYNA - - - Mouse brain and serum 

[43] 
Jusof et al. 

2017 
- - TRP, KYN 15 - - 

Murine liver and 

plasma 

[44] 
Kubo et al. 

2017 
- - TRP, KYN, KYNA, AA  - - Mouse serum 

[45] 
Dario et al. 

2017 
- Me-TRP KYN, TRP ~9 - Yes Human hair 

[46] 
O’Farrel et al. 

2017 
- 

Me-

5HT3 
TRP, KYN, KYNA 18 - - 

Conditioned media of 

IFNγ-stimulated BV-2 

microglia 

[47] 
Oliveros et al. 

2017 
- - KYN, KYNA ~8 - - Mouse brain 

[48] 
Bartosiewicz et 

al. 2017 
- - TRP, KYN, KYNA, AA - Yes, partially - Rat plasma 

[49] 
Tufvesson- Alm 

et al. 2018 
- - KYN, KYNA ~8 - - Mouse brain 
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Table S1. Reported data about internal standards used for the determination of TRP and some of its metabolites using both UVD and FLD£  

(continued) 

References 
Publications 

by date 

Abs. det*, 

IS 
FLD-IS Analyzed metabolites 

Running time 

(min) 

Spectral analyses of 

compounds 

Method 

validation 
Biological matrices 

[50] 
Michels et al. 

2018 
3NLT - TRP. KYN, KYNA 30 - - Human serum 

[51] 
Bochinarz et al. 

2018 
- - TRP, KYN, KYNA - - - Cow serum and milk 

[52] 
O`Rourke et al. 

2018 
3NLT - TRP, KYN, KYNA 30 - - Breast milk 

[53] 

Giménez-

Gómez et al. 

2018 

- - KYN// KYNA - - - 
Mouse brain and 

plasma 

 

*Absorbance detector, including UV, DAD and PDA. 

£Some of the methods utilized electrochemical detector, the compounds detected by it are not presented on the Analyzed metabolites row 

//two different methods (i.e., column change AND/OR mobile phase change) were used 

1Norvaline; IUPAC NAME: (2S)-2-aminopentanoic acid: C5H11NO2 

2Creatine; IUPAC NAME: 2-[carbamimidoyl(methyl)amino]acetic acid; C4H9N3O2 

3N-methyl-5-hydroxitriptamine, IUPAC NAME: 3-[2-(methylamino)ethyl]-1H-indol-5-ol 

Highlighted rows indicate the studies which assessed TRP, KYN and KYNA simultaneously 

3HAA 3-hydroxyanthranilic acid, 3HK 3-hydroxy-kynurenine, 5HIAA 5-hydroxy-indole-acetic acid, 5-HT 5-hydroxitriptamine, AA anthranilic 

acid, CSF cerebrospinal fluid, FAA N-formylanthranilic acid, FLD fluorescent detector, IS internal standard, KYN kynurenine, KYNA kynurenic 

acid, Me-TRP methyl-tryptophan, Me-5HT N-methyl-5-hydroxytryptamine, NA nicotinic acid, NEO neopterin, NFK N-formyl-kynurenine, PA 

picolinic acid, QA quinolinic acid, TRP tryptophan, UVD UV-Vis detector, XA xanthurenic acid 
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Abstract

Background: The neurochemical background of the evolution of headache disorders, still remains partially
undiscovered. Accordingly, our aim was to further explore the neurochemical profile of Complete Freund’s adjuvant
(CFA)-induced orofacial pain, involving finding the shift point regarding small molecule neurotransmitter
concentrations changes vs. that of the previously characterized headache-related neuropeptides. The investigated
neurotransmitters consisted of glutamate, γ-aminobutyric acid, noradrenalin and serotonin. Furthermore, in light of
its influence on glutamatergic neurotransmission, we measured the level of kynurenic acid (KYNA) and its
precursors in the kynurenine (KYN) pathway (KP) of tryptophan metabolism.

Methods: The effect of CFA was evaluated in male Sprague Dawley rats. Animals were injected with CFA (1 mg/ml,
50 μl/animal) into the right whisker pad. We applied high-performance liquid chromatography to determine the
concentrations of the above-mentioned compounds from the trigeminal nucleus caudalis (TNC) and somatosensory
cortex (ssCX) of rats. Furthermore, we measured some of these metabolites from the cerebrospinal fluid and plasma
as well. Afterwards, we carried out permutation t-tests as post hoc analysis for pairwise comparison.

Results: Our results demonstrated that 24 h after CFA treatment, the level of glutamate, KYNA and that of its
precursor, KYN was still elevated in the TNC, all diminishing by 48 h. In the ssCX, significant concentration increases
of KYNA and serotonin were found.

Conclusion: This is the first study assessing neurotransmitter changes in the TNC and ssCX following CFA
treatment, confirming the dominant role of glutamate in early pain processing and a compensatory elevation of
KYNA with anti-glutamatergic properties. Furthermore, the current findings draw attention to the limited time
interval where medications can target the glutamatergic pathways.
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Background
Although the pathomechanism of orofacial pain and
headache disorders, is not fully understood [1], the acti-
vation and sensitization of the trigeminovascular system
(TS) probably takes part in the evolution of symptoms
[2–4]. The pathomechanism of these disorders may be
further investigated by using animal models with the ac-
tivation of nociceptive pathways of the TS [1, 3, 5]. The
administration of inflammation-inducing substances to
the orofacial area can evoke the above-described activa-
tion/sensitization of the primary and secondary trigemi-
nal neurons during pain processing [6, 7]. For the
induction of this peripheral inflammation, the applica-
tion of Complete Freund’s adjuvant (CFA) into the whis-
ker pad or the dural parietal surface is a widely used
method [6, 8, 9] as it is able to enhance local reaction at
the injection site and then to evoke the release of inflam-
matory cytokines, alongside with hyperalgesia/allodynia
on the face via the activation/sensitization of the TS [7].
Regarding the delay of the development of peripheral
and central sensitization, indirect data from studies with
CFA injection to the paw demonstrated that pain
hypersensitivities were observed 24 h after the injection
[9–13], whereas data from studies with orofacial CFA
model, more precisely from the temporomandibular
joint induced inflammation model, suggest that both
thermal and mechanical allodynia peak at 24 h as well
[14]. The orofacial CFA model has been thoroughly
studied regarding gene expression characteristics [6, 15–
20]. Recently, in relation to two migraine-related bio-
markers, the pituitary adenylate cyclase-activating pep-
tide (PACAP) and calcitonin gene-related peptide
(CGRP), their increasing levels were detected starting
even 24 h after the administration of CFA in the trigemi-
nal nucleus caudalis (TNC) [9]. However, there are no
studies which aimed at the investigation of the small
molecule neurotransmitters and neuromodulators and
some of their precursors (glutamate (Glu), γ-
aminobutyric acid (GABA), setotonin (5-hydroxy-trypta-
mine; 5-HT), noradrenaline (NA), tryptophan (TRP),
kynurenine (KYN), kynurenic acid (KYNA)) in this
model with established or presumed role in the develop-
ment of peripheral and central sensitization during
headache. Therefore, there are no data about how the
concentration changes of these substances affect the
evolution of peripheral and central sensitization. Accord-
ingly, finding the transition point where the dominance
of small molecule mediated neurotransmission shifts to
that of the PACAP and CGRP mentioned earlier may
have significant therapeutic consequences in view of the
different targeted approaches.
The primary excitatory neurotransmitter Glu plays

an important role in the primary sensory neurotrans-
mission and trigeminal nociception [15, 21, 22].

Accordingly, the alteration of Glu levels in migraine
has been widely studied and data consistently show
elevated Glu levels in the CSF samples of patients
with chronic migraine [23], or migraine with and
without aura [24], whereas in plasma samples, the re-
sults were not consistent across studies [25–27].
Moreover, similar importance has to be attributed to
the changes of the concentration of GABA, the main
inhibitory neurotransmitter of the central nervous sys-
tem (CNS), which is capable of modulating the exci-
tatory pathways [28]. Recently, mainly in light of its
influence on glutamatergic neurotransmission, special
attention was dedicated to the investigation of the ef-
fect of KYNA, a compound of the KYN pathway (KP)
of the TRP metabolism [29–34]. KYNA can influence
glutamatergic neurotransmission in a complex way
[35], i.e., it acts as a competitive antagonist at the N-
methyl-D-aspartate (NMDA) receptor [36] and has
weak antagonistic effects at the α-amino-3-hydroxy-5-
methyl-4-isoxazolepropionic acid (AMPA) and kainate
receptors as well [37]. 5-HT, another well-known
TRP metabolite, released from serotonergic neurons
of the raphe nuclei, exerts modulating effect on TS
activation [38–40]. Noradrenaline (NA) may be of
interest as well, as noradrenergic neurons project to
TNC and may have a role in cluster headache, an-
other primary headache disorder [41, 42].
Based on the observed gradually increasing levels of

PACAP and CGRP from 24 h following CFA injection in
our previous experiment [9], the aim of the current
study was to find the shift point of concentration
changes of small molecule neurotransmitters and neuro-
modulators and the above-mentioned peptides. This
may yield substantial information for the selection be-
tween different therapeutic paradigms regarding diseases
involving the activation of the TS, such as primary head-
ache disorders, including migraine.

Materials and methods
Animal experiments and sample collection
Twenty-seven young adult (10–12 weeks old, 250–300 g)
male Sprague-Dawley rats (Charles River Laboratories,
Wilmington, MA, USA), were used for the experiments.
The animals were bred and maintained under standard
laboratory conditions with 12 h–12 h light/dark cycle at
24 ± 1 °C and 50% relative humidity, 3 animals per each
home cage in the Laboratory Animal House of the De-
partment of Neurology, University of Szeged. The rats
had free access to standard rat chow and water. The ex-
periment was not pre-registered. All experimental proce-
dures performed in this study complied fully with the
guidelines of Act 1998/XXVIII of the Hungarian Parlia-
ment on Animal Experiments (243/1988) and with the
recommendations of the International Association for
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the Study of Pain and European Communities Council
(86/609/ECC). The studies were in harmony with the
Ethical Codex of Animal Experiments and were ap-
proved by the Ethics Committee of the Faculty of Medi-
cine, University of Szeged, with a permission number of
XI./1102/2018. CFA (killed mycobacteria suspended in
paraffin oil, 1 mg/ml) was obtained from Sigma-Aldrich
(product number: F5881; St. Louis, MO, USA), and 50 μl
was administered per animal. We tried to minimalize
the use of animals by adopting the key aspects of the
3Rs (Replacement, Reduction and Refinement) [43].
Therefore, the experimental groups were added in a se-
quential manner, starting from 24 h following CFA ad-
ministration with 24 h steps till the time point where the
proposed alterations diminish. Therefore, no
randomization was performed to allocate subjects in the
study. By the end of the experiments we had three
groups, one control (CO) and two with CFA treatment
(Fig. 1). Similar to the previous experiment on PACAP
and CGRP in the same model [9], only sham-injected
rats processed 24 h following the injection were used as
CO, as a pilot study conducted on naïve and sham-
injected (processed 24 and 48 h following injection) rats
demonstrated that there is no difference in the level of
the metabolites of interest, in neither TNC, nor ssCX
(n = 3 in each group, data not shown). The rats were
anesthetized with intraperitoneal 4% chloral hydrate so-
lution mainly based on its safe application (CAS ID:
302–17-0, Sigma-Aldrich, St. Louis, MO, USA; 10 ml/kg
body weight dose) in the morning and 50 μl of CFA was
injected into the right whisker pad. No other analgesic
was applied, otherwise the activation/sensitization phe-
nomena during pain processing, an essential characteris-
tic of the CFA model as well, would have been
influenced. Control rats were injected with an equal vol-
ume of saline. Cerebrospinal fluid (CSF) was taken from
the suboccipital cistern, including the control group
(n = 9), 24 (n = 9) and 48 h (n = 9 initially, finally n = 8 as
one animal died during the experiment) after injection
applying the above-described anesthetic procedure, and

following that the animals were perfused transcardially
with 200 ml phosphate-buffered saline (PBS). The spinal
tap procedures were unsuccessful in 5 occasions and 7
of the CSF samples were excluded from analysis due to
contamination with blood. Accordingly, 5–5 samples
remained in the CO and CFA 24 h groups, and 4 in the
CFA 48 h group for analysis. Therefore, this part of the
study focusing at that secondary endpoint was only ex-
ploratory due to the low statistical power. Also as a sec-
ondary endpoint, blood samples were taken from the left
ventricle into ice-cold glass tubes containing disodium
ethylenediaminetetraacetate dihydrate (Na2EDTA; CAS
ID: 194491–31-1 Lach-Ner s.r.o, Neratovice, Czech Re-
public) and the plasma was separated by centrifugation
(1170 g for 10 min at 4 °C). Following decapitation two
different brain structures, the TNC and the somatosen-
sory cortex (ssCX) were dissected for the assessment of
the targeted primary endpoints. In each case both right
and left sided samples were separately removed on ice
and stored at − 80 °C until further use.

Instruments and chromatographic conditions
Validated high performance liquid chromatography
(HPLC) measurements were performed by an Agilent
1100 HPLC system (Santa Clara, CA, USA), coupled
with UV detector (UVD), fluorescence detector (FLD)
and electrochemical detector (ECD). The chromato-
graphic separations were carried out with validated
methods comprehensively described elsewhere [44–46].
Prior to all measurements, during the tissue weighting
or plasma/CSF precipitation process, all samples were
relabeled, and a blind study was conducted, i.e., the ex-
perimenter who did the HPLC measurements was not
aware of which samples were part of CO or 24 h groups.
Moreover, Eppendorf tubes were randomly assigned for
measurements and when the 48 h group was measured,
the same systematic randomization was applied. The
purity of all standards and solutions were analytical
grade or HPLC grade and they were acquired from
Sigma-Aldrich, St. Louis, MO, USA, except the

Fig. 1 Time-line of the experimental procedure applied in this study. CFA Complete Freund’s adjuvant. n number of the animals per group. *One
animal died in cage after CFA injection
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fluorescent internal standard used for the TRP method
which was synthesized at the Department of Pharma-
ceutical Chemistry, University of Szeged, as detailed
elsewhere [44]. Briefly, the brain regions were homoge-
nized in 0.5 M perchloric acid (PCA), at 1:5 w/v
containing internal standards (ISs, 3-nitro-L-tyrosine
and 4-hydroxyquinazoline-2-carboxylic acid, the latter
custom-made material will be shared upon reasonable
request) applied in the measurement of TRP metabolites
[44] utilizing both UVD and FLD. After centrifugation
the supernatant was collected and first used for the TRP
metabolite measurement. The remaining supernatant
was aliquoted in two further parts and were kept at −
80 °C until further analyses. 150 μl from it was applied
for the determination of NA concentration by ECD [45],
with addition of 10 μl solution of the corresponding IS,
2,3-dihydroxybenzoic acid. For the measurement of Glu
and GABA, another 100 μl was diluted to 1:100 v/v with
distilled water and 100 μl of this dilution was derivatized
with 100 μl solution containing o-phthaldialdehyde and
3-mercaptopropionic acid in borate buffer and further
diluted with 50 μl distilled water containing the corre-
sponding IS, homoserine, used for this method applying
FLD [46].
For the measurement of the TRP metabolites from the

CSF, the method described before [44] was applied, with
a slight modification. Briefly, during sample preparation,
we used a dilution of 5:6 v/v, with the final concentration
of PCA at 0.5 M, with the above described ISs, but only
35 μL of the sample was injected. Furthermore, a

linearity study was conducted for rat CSF samples to de-
termine limit of detection (LOD) and limit of quantita-
tion (LOQ) values, because the cited article contains
data only for human CSF. Accordingly, the LOD and
LOQ values for rat CSF were 31.1 and 102 nM for TRP,
107 and 702 nM for KYN and 1.04 and 3.45 nM for
KYNA, respectively, whereas 5-HT was undetectable in
each case. Regarding Glu and GABA, the initial amount
of mobile phase A applied for the brain samples was
95%, but for CSF samples it was changed to 93%, as coe-
lution was observed under the initial circumstances. The
ratios applied for the CSF sample preparation (1:1:0.5 =
sample: derivatization solution: IS) remained the same,
similar to brain supernatants [46]. Due to low sample
amount we omitted the determination of NA levels from
CSF.
With regard to plasma samples we measured the levels

of TRP metabolites as described in [44]. Glu, GABA and
NA concentrations from plasma samples were not
assessed because we were only interested in their role as
a neurotransmitter.
As for the plasma samples, the LOD and LOQ values

were 0.102 μM and 0.308 μM for TRP, 0.027 and
0.083 μM for KYN and 1.23 and 3.72 nM for KYNA, re-
spectively. In each case, the 5-HT levels from plasma
samples were undetectable.

Statistical analyses
All statistical calculations were performed with the use
of the freely available R software 3.5.3 (R Development

Table 1 Concentration levels of the measured metabolites in the analyzed brain regions

Control group (n = 9) CFA 24 h (n = 9) CFA 48 h (n = 8†)

Trigeminal nucleus caudalis (TNC)

Glu (μg/g ww) 684 (644–746) 772*,# (742–859) 731 (687–745)

GABA (μg/g ww) 167 (154–187) 180 (174–235) 167 (164–171)

TRP (nmol/g ww) 20.3 (19.2–22.4) 20.3 (18.2–24.5) 19.4 (17.7–20.8)

KYN (nmol/g ww) 0.656 (0.428–0.671) 0.876*,# (0.830–1.13) 0.532 (0.480–0.597)

KYNA (pmol/g ww) 22.8 (21.2–24.2) 52.6**,# (34.6–72.3) 25.8 (21.9–28.8)

5-HT (pmol/g ww) 2991 (2917–3333) 2841 (2629–3425) 3315 (3088–3438)

NA (μg/g ww) 0.328 (0.320–0.343) 0.352 (0.328–0.388) 0.348 (0.324–0.366)

Somatosensory cortex (ssCX)

Glu (μg/g ww) 1178 (1082–1290) 1269 (1206–1397) 1152 (1052–1287)

GABA (μg/g ww) 215 (207–218) 230 (217–251) 199 (178–211)

TRP (nmol/g ww) 20.6 (17.8–23.5) 22.6 (21.5–23.7) 21.6 (20.9–22.7)

KYN (nmol/g ww) 0.824 (0.743–0.970) 0.974 (0.714–1.15) 0.616 (0.552–0.663)

KYNA (pmol/g ww) 16.2 (9.70–18.8) 27.3*,# (17.3–39.3) 9.73 (7.01–12.8)

5-HT (pmol/g ww) 2547 (1665–2677) 2271# (2166–2527) 2885 (2653–3172)

NA (μg/g ww) 0.840 (0.192–0.853) 0.754 (0.142–0.934) 0.886 (0.556–0.974)

Results are shown as median (1st-3rd quartile). †One animal died in cage after CFA injection. * p < 0.05 vs. CO, ** p < 0.01 vs. CO, # p < 0.05 vs. 48 h, 5-HT
serotonin, CFA Complete Freund’s adjuvant, GABA gamma-aminobutyric acid, Glu glutamate, KYN kynurenine, KYNA kynurenic acid, n number of the animals per
group, NA noradrenaline, TRP tryptophan, ww wet weight
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Fig. 2 (See legend on next page.)
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Core Team). The distribution of our data population
was not determined as the applied statistical tests do not
need assumptions regarding the distribution of under-
lying data. Accordingly, first we performed the Levene
test to assess the homogeneity of variances. As the vari-
ances were equal, we performed a general independence
test for two sets of variables measured on arbitrary
scales, where the reference distribution was approxima-
tive based on the Monte-Carlo method. Afterwards, we
carried out permutation t-tests as post hoc analysis for
pairwise comparison. Permutations were applied via the
Monte-Carlo method (10,000 random permutations) and
Type I errors from multiple comparisons were con-
trolled with false discovery rate. No test for outliers was
conducted. With the key aspects of 3Rs in mind [43] we
tried to keep the sample size as low as we can based on
experiences from previous experiments ([47]: 8 and 12/
group; [48]: 6/group; [49]: 6/group; [50]: 6/group; [51]:
8/group; [52]: 6 and 7/group; [53]: 6/group). For every
statistically significant result, we calculated the corre-
sponding effect size (Cohen’s d in this case) and based
on its value, we decided whether the increase of sample
size is necessary or not. The manuscript contains the
final effect sizes.

Results
Concentration levels of the assessed compounds in the
TNC and ssCX
First of all, both contralateral and ipsilateral CNS regions
were measured separately, but we did not find significant
differences in concentrations of any of the metabolites
between the two sides, so the coherent data were pooled
for further analysis. Therefore, the concentration values
presented in Table 1 demonstrate the mean values of
the two analyzed sides of each CNS regions.
Regarding TNC, pairwise permutation t-tests following

the independence tests revealed a significant elevation in
the concentration of Glu (p = 0.0319, Cohen’s d = 1.49),
KYN (p = 0.0123, Cohen’s d = 1.58) and KYNA (p =
0.0098, Cohen’s d = 1.92) 24 h following CFA injection
compared to the controls and a significant decrease
could be observed in Glu (p = 0.0357, Cohen’s d = 1.29),
KYN (p = 0.0123, Cohen’s d = 1.85) and KYNA (p =
0.0263, Cohen’s d = 1.39) levels by 48 h compared to the
24 h group, whereas there was no difference between the
control and 48 h groups (Table 1, Fig. 2).

Regarding ssCX samples, an elevation in KYNA con-
centration (p = 0.0237, Cohen’s d = 1.36) could be ob-
served 24 h following CFA administration, followed by a
significant decrease by 48 h (p = 0.0173, Cohen’s d =
1.80) and there was no difference between control and
48 h groups. Furthermore, in the ssCX, there was a sig-
nificant increase in 5-HT levels in the 48 h group com-
pared to the controls (p = 0.0479, Cohen’s d = 1.21) and
to the 24 h group (p = 0.0479, Cohen’s d = 1.20; Table 1,
Fig. 3).
We calculated the KYN/TRP and KYNA/KYN ratios

as well. The KYN/TRP ratio was significantly elevated in
the 24 h group compared to the controls (p = 0.0419,
Cohen’s d = 1.19) or to the 48 h group (p = 0.0419,
Cohen’s d = 1.35; Table 1, Fig. 2). With regard to the
KYNA/KYN ratio, there was no difference in any of the
investigated biological matrices (data no shown).

CSF and plasma samples
Regarding CSF samples, TRP metabolites, Glu and
GABA were measured. We found no significant alter-
ations in the CSF, however, the power of the statistical
tests in this case is low due to low case number (n = 5, 5,
4 for control, 24 h and 48 h groups, respectively) and the
concentration values of KYN in the control and CFA
treated 48 h groups were below LOD (0.107 μM), except
one case from each group (for more details, see Add-
itional file 1, Table S1; due to the low amount of 5-HT
in the CSF samples, we could not quantify it, as the
values were below LOD, LOD = 0.0274 μM). In case of
plasma samples, only the TRP metabolites were mea-
sured, and no significant differences were observed (for
more details, see Additional file 2, Table S2).

Discussion
Headache is one of the most common neurological dis-
orders and it is one of the leading causes of health-
related problems worldwide. In 2010, tension type head-
ache and migraine were the second and third most
prevalent conditions in the world, respectively, according
to the Global Burden of Disease (GBD) study [54, 55].
Furthermore, the GBD study in 2015 established that
headache is responsible [56] for more disability adjusted
life years than all other neurological disorders in
combination.
The treatment of primary headache disorders is chal-

lenging, requiring both acute and preventive therapeutic

(See figure on previous page.)
Fig. 2 Concentration changes in glutamate (a), γ-aminobutyric acid (b), tryptophan (c), kynurenine (d), kynurenic acid (e), serotonin (f),
noradrenaline (g) and changes in kynurenine/tryptophan ratio (h) in the TNC. * p < 0.05 vs. CO, ** p < 0.01 vs. CO, # p < 0.05 vs. 48 h. n = 9 in the
control and 24 h groups and n = 8 in the 48 h group. The boxplots are displayed as the intervals between the 1st and 3rd quartiles presenting
the median values as well. 24 and 48 h CFA treated groups, 5-HT serotonin, CO control, GABA γ-aminobutyric acid, KYN kynurenine, KYNA
kynurenic acid, n number of the animals per group, NA noradrenaline, TRP tryptophan, TNC trigeminal nucleus caudalis, ww wet weight
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Fig. 3 (See legend on next page.)
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measures [57, 58]. The preventive treatment aims to re-
duce the frequency, severity and duration of headaches,
and to avoid medication-overuse headache. The efficacy
of the currently applied drugs is not always satisfactory
and the contraindications and side-effects often limit the
options of the physician [59, 60]. Therefore, there is a
constant need to study and develop new molecules.

Glutamate and pain
Peripheral and central sensitization manifest mainly in
forms of hyperalgesia and allodynia. The activation of
the peripheral terminals of the nociceptors is responsible
for Glu release at central sites with the activation of
ionotropic and metabotropic Glu receptors [61]. This
process was demonstrated not only in preclinical studies
[62–64], but in patients with headache as well [23, 24].
Accordingly, the role of glutamatergic pathways in asso-
ciation with different types of pain is well established
[65] and several antagonists of ionotropic glutamate re-
ceptors were investigated and found to be effective to
decrease nociceptive transmission [66]. However, they
had severe side effects, and therefore, the interest in this
direction of research diminished [67, 68]. Nevertheless,
ketamine, an NMDA receptor antagonist, is so far the
only promising option in the treatment of severe or
long-lasting migraine aura [69], and tezampanel, which
acts on the AMPA and kainate subtypes of ionotropic
Glu receptors [70], has also shown promising results in
acute migraine therapy [71].

Tryptophan metabolism and pain
It has been already demonstrated that the level of
KYNA and some other KP metabolites are altered in
migraine and cluster headache patients as well: there
are significant reductions in the serum levels of
KYN, KYNA, 3-hydroxy-kynurenine, 3-hydroxy-
anthranilic acid and quinolinic acid, whereas concen-
trations of TRP and anthranilic acid were
significantly increased [72, 73]. KYNA as an en-
dogenous NMDA receptor antagonist, is a molecule
of interest for CNS drug development in case of sev-
eral neurological conditions [74], but due to its poor
ability to cross the blood-brain barrier (BBB) and its
rapid clearance from the body [75], its application
for most CNS-related alterations is limited, and
therefore several KYNA analogs were synthetized
[76–79]. However, the first order neuron of pain

processing is located outside the BBB [80], so KYNA
itself may have therapeutic potential as well. Accord-
ingly, the antinociceptive properties of KYNA were
proved in animal models of pain [29, 81]. Further-
more, some of the developed analogs also displayed
promising results in different animal models of head-
ache [31, 82–85]. In an earlier study we investigated
two KYNA analogs where both of them proved to be
effective in the formalin model of trigeminal pain
[84]. However, one of them was more effective than
the other and according to our analyses the better
performing compound caused a more pronounced
elevation of KYNA concentration on the periphery,
whereas in the CNS the concentrations of KYNA
were similar. Based on these results we hypothesized
that the peripheral elevation of KYNA may be
enough to exert beneficial effects on pain processing
and targeting this component could provide an op-
tion to pharmaceutical drug design without the obli-
gation of good penetration through the BBB.
Elevated Glu concentration in the TNC of CFA-

treated rats, demonstrated by the current study, is ac-
companied by increased KYN and KYNA levels, which
may serve as a feedback mechanism to the sensitization
process caused by Glu. This hypothesis is supported by
the above-mentioned findings [72, 73] that decreased KP
metabolite levels are associated with those headache dis-
orders, where increased NMDA receptor activation may
play a crucial role. These results may have a great im-
portance especially in light of the finding that the
slightly, but not significantly elevated GABA level may
not be enough to counterbalance the effects of increased
Glu levels. With regard to 5-HT, its cortical elevation by
48 h may serve as a feedback inhibitory response as well
to ameliorate the activation of the trigeminovascular
pathway [86].
The current study draws attention to the limited

time interval for therapies targeting glutamatergic
pathways as well, as based on our previous experi-
ments, a clear shift to dominantly peptide-mediated
pain processing can be seen even from 24 h after
CFA application [9]. This time point corresponds to
the onset of peripheral and central sensitization of
the TS as well in this model [10, 11, 14]. At this
stage, mainly novel antibody-based therapies may
come into account [87–90]. With regard to these
novel therapies, the focus of attention is on

(See figure on previous page.)
Fig. 3 Concentration changes in glutamate (a), γ-aminobutyric acid (b), tryptophan (c), kynurenine (d), kynurenic acid (e), serotonin (f),
noradrenaline (g) and changes in kynurenine/tryptophan ratio (h) in the somatosensory cortex. * p < 0.05 vs. CO, # p < 0.05 vs. 48 h. n = 9 in the
control and 24 h groups and n = 8 in the 48 h group. The boxplots are displayed as the intervals between the 1st and 3rd quartiles presenting
the median values as well. 24 and 48 h CFA treated groups, 5-HT serotonin, CO control, GABA γ-aminobutyric acid, KYN kynurenine, KYNA
kynurenic acid, n number of the animals per group, NA noradrenaline, TRP tryptophan, TNC trigeminal nucleus caudalis, ww wet weight
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monoclonal antibodies targeting the CGRP pathway
for the prophylactic treatment of migraine. Currently,
four of these antibodies are in clinical trials (eptinezu-
mab, galcanezumab, fremanezumab, erenumab) with
promising results. However, the cost of these therap-
ies is considerably higher than that of acute phase
treatments.

Conclusion
This is the first study assessing small molecule neuro-
transmitter changes in the TNC and ssCX following
CFA treatment, confirming a dominant role of glutamate
in early pain processing and a compensatory elevation of
KYNA with anti-glutamatergic properties. The time
interval for the intervention targeting the glutamatergic
system is presumed to be limited to the first 24 h. The
results of our previous therapeutic studies with KYNA
or with its analogs strongly support this theory.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s10194-020-01105-6.

Additional file 1: Table S1. Concentration levels of the measured
metabolites in the cerebrospinal fluid.

Additional file 2: Table S2. Concentration levels of the measured
metabolites in the plasma samples.
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Table S1 Concentration levels of the measured metabolites in the cerebrospinal fluid 

 
Control group 

(n = 5) 

CFA 24 h 

(n = 5) 

CFA 48 h 

(n = 4) 

Cerebrospinal fluid 

Glu 

(µM) 

6.08 

6.04−9.60 

9.87 

4.90−16.5 

8.61 

6.13−9.96 

GABA 

(µM) 

1.38 

1.04−1.49 

1.35 

1.23−2.10 

1.54 

1.40−1.73 

TRP 

(µM) 

1.40 

0.96−1.60 

1.32 

1.24−3.77 

1.55 

1.13−1.95 

KYN 

(µM) 
< LOD 

0.21 

0.13−0.22 
< LOD 

KYNA 

(nM) 

3.57 

1.61−11.0 

3.29 

3.23−4.94 

4.10 

3.14−6.32 

Results are shown as median (1st−3rd quartile). CFA Complete Freund’s adjuvant, GABA 

gamma-aminobutyric acid, Glu glutamate, KYN kynurenine, KYNA kynurenic acid, n number 

of animals per group, TRP tryptophan  
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Table S2 Concentration levels of the measured metabolites in the plasma samples 

 
Control group 

(n = 9) 

CFA 24 h 

(n = 9) 

CFA 48 h 

(n = 8) 

Plasma 

TRP 

(µM) 

63.9 

(52.4‒78.2) 

81.4 

(54.3‒88.1) 

56.4 

(51.6‒76.1) 

KYN 

(µM) 

4.58 

(3.29‒4.98) 

4.72 

(4.45‒5.12) 

3.27 

(2.83‒4.79) 

KYNA 

(nM) 

129 

(120‒184) 

172 

(99.9‒214) 

139 

(95.0‒173) 

Results are shown as median (1st−3rd quartile). CFA Complete Freund’s adjuvant, KYN 

kynurenine, KYNA kynurenic acid, n number of animals per group, TRP tryptophan  

 


