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Abstract

Williams and J. Fraser have recently argued that effective field theory
methods enable scientific realists to make more reliable ontological com-
mitments in Quantum Field Theory (QFT) than those commonly made.
In this paper, I show that the interpretative relevance of these methods
extends beyond the specific context of QFT by identifying common struc-
tural features shared by effective theories across physics. In particular, I
argue that effective theories are best characterized by the fact that they
contain intrinsic empirical limitations, and I extract from their structure
one central interpretative constraint for making more reliable ontological
commitments in different subfields of physics. While this is in principle
good news, this constraint still raises a challenge for scientific realists in
some contexts, and I bring the point home by focusing on Williams’s and
J. Fraser’s defense of selective realism in QFT.

1 Introduction

There is a deeply entrenched strategy in philosophy of physics about how
to interpret our best theories in realist terms. Philosophers usually start by
pretending that the theory at stake is complete, true and final, even if it is
known not to be true in all respects. Then, they eliminate its redundant parts
by implementing sophisticated constraints on its structure. And eventually,
they draw from the resulting theory some putatively complete picture of the
world. The goal, ultimately, is to identify a definite set of unobservable entities
or structures, whether they are fundamental or not, and thereby lay the ground
for explaining the success of the theory in realist terms.1

As it turns out, this strategy somewhat falls apart in the case of our most
fundamental and empirically successful theories. We do not yet know whether
realistic Quantum Field Theories (QFTs) can be consistently defined across
all scales and therefore whether we can even consistently speculate about the
possible worlds in which these theories are exactly true. Wallace (2006, esp.
sec. 3.3; 2011), Williams (2019b), and J. Fraser (2018; 2020) have proposed a
more modest and cautious strategy in response, which is also better suited to
the limited success of current and past theories. They enjoin philosophers to

∗Max Planck Institute for the History of Science, Berlin. Email: srivat@mpiwg-
berlin.mpg.de

1For a critical discussion of this traditional interpretative strategy, including references
in the literature, see Ruetsche (2011, chap. 1) and Williams (2019b).
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identify the ontological commitments necessary to explain the success of our
best QFTs in the limited regimes where they are known to be reliable and not
in the regimes where they are likely to break down.

The crucial part of Wallace, Williams and J. Fraser’s proposal resides in the
set of techniques they employ to implement this new strategy, namely, Effec-
tive Field Theory (EFT) methods (including the Wilsonian Renormalization
Group). Broadly speaking, these methods have been developed in QFT to
treat phenomena at different scales separately, and they became popular in
physics in large part because of their remarkable heuristic, computational and
predictive power. More crucially for interpreters, the QFTs constructed by us-
ing these methods, i.e., EFTs, are intrinsically restricted to some limited range
of distance scales. The physics within this range can even be shown in typical
cases to be largely independent of the specific details of the short-distance
physics. And this has led Williams and J. Fraser, in particular, to argue that
EFTs provide a more perspicuous and reliable interpretative standpoint to
identify unobservable entities or structures in the appropriate regimes, even if
realistic QFTs are ultimately shown to be consistent across all scales.

This paper has two closely related aims. The first is to show that the
interpretative relevance of EFT methods extends beyond the specific context
of QFT. Given that most if not all known physical systems exhibit distinct
scales in most circumstances, it should come as no surprise that the EFT
paradigm has been successfully implemented in most areas of contemporary
physics during the last decades.2 Yet, we might still wonder whether the the-
ories constructed by using EFT methods share distinctive structural features
that might help us make more reliable ontological commitments in different
subfields of physics. I will first argue that effective theories are best charac-
terized in general by the fact that they contain intrinsic empirical limitations,
i.e., their structure incorporates a robust specification of the scales at which
they are likely to be empirically inaccurate before we probe these scales in
experiments. This contrasts with the usual situation where the empirical limi-
tations of a theory are found only by a direct confrontation with experimental
data obtained at the relevant scale. Then, I will briefly present and justify
the realist account of effective theories which follows the most naturally from
this characterization. I will call it the “Standard Effective Account” and show
that the structure of an effective theory forces us to restrict our commitments
to entities or structures which can be specified within the limited range where
the theory is likely to remain empirically reliable.

The second aim is to assess whether Wallace, Williams and J. Fraser’s
strategy enables scientific realists to fulfill their explanatory duties. Starting
with the traditional form of scientific realism (cf. Psillos, 1999, pp. xvii-xix), I
will first give a concrete example of the restrictions we face if we treat our best
current theories as effective theories.3 We may think, for instance, that we

2For references to the extension of EFT methods outside condensed matter and particle
physics, see, e.g., Endlich et al. (2011), Dubovsky et al. (2012), and Gripaios and Sutherland
(2015) for fluid dynamics; Donoghue (1995) and Burgess (2004) for general relativity; Gold-
berger and Rothstein (2006) and Porto (2016) for post-Newtonian gravitation; Baumann and
McAllister (2015, chap. 2) and Burgess (2017) for inflationary cosmology; Polchinski and
Strominger (1991) and Hellerman et al. (2014) for low-energy string theories; Baumann and
Green (2012) and Kaplan (2016, esp. sec. 8.4.3) for advanced topics relevant to quantum
gravity.

3Of course, this requires assuming that we do not yet have some decisive evidence that
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have good reasons to take the descriptions of continuum fields in the effective
versions of the Standard Model of particle physics and General Relativity to be
approximately true and therefore to commit to the existence of those entities,
i.e., of continuous systems with an infinite number of degrees of freedom. I
will argue that on the Standard Effective Account, we cannot reliably make
such ontological commitments. And my point here is not so much to claim
that infinite physical systems are beyond our ken—in a way, we have known
this for a long time—but rather to illustrate how the structure of effective
theories imposes clear-cut restrictions on one’s ontological commitments.

I will then argue that, in some specific theoretical contexts including classi-
cal and quantum field theory, these restrictions still raise a challenge for more
refined forms of scientific realism. To bring the point home, I will focus on
Williams’s (2019b) and J. Fraser’s (2018; 2020) defense of selective realism
in QFT and, expanding on Ruetsche’s (2018; 2020) discussion, show that the
candidates which look at first sight the most appealing for making ontological
commitments in the appropriate regimes—namely, correlations, particles, and
lattice fields—fail in other important respects. The best candidates that do
not suffer from the same issues appear to be continuum fields, with the pro-
viso that they are approximately similar to large distance scale features of the
world. But, again, selective realists cannot take the descriptions of continuum
fields to be approximately true simpliciter, which leaves them with no obvious
candidate for offering a genuine defense of the realist cause. I will conclude
briefly with a more radical suggestion to circumvent this issue: namely, to
modify the standard semantic tenet of scientific realism endorsed by selective
realists (e.g., Psillos, 1999; Chakravartty, 2007) and index (approximate) truth
to physical scales.

The paper is organized as follows. Section 2 presents two distinct exam-
ples of effective theories. Section 3 argues on the basis of these examples that
effective theories are best characterized by the fact that they contain intrinsic
empirical limitations. Section 4 presents the Standard Effective Account. Sec-
tion 5 shows that traditional scientific realists cannot, as a matter of principle,
commit to the existence of the infinite systems specified by a literal interpre-
tation of our best current effective theories. Section 6 extends the discussion
to Williams’s and J. Fraser’s defense of selective realism.

2 Two Examples of Effective Theories

Philosophers have not paid much attention to the diversity of effective theories
across physics (e.g., Cao and Schweber, 1993; Hartmann, 2001; Bain, 2013);
and when they treat the particular case of EFTs in particle and condensed
matter physics as a new paradigm for understanding physical theories, they
often remain too elusive or attribute too much importance to parochial fea-

we have hit a true, final and complete theory in physics or some complete theory providing
an approximately true description of the world in all respects. We also need to assume
that effective theories display sufficiently many theoretical virtues to be even considered
candidates for making approximately true claims about the world (see Wells, 2012, chap. 5,
for a discussion related to this point). We do not need, however, to deny the existence of
a final theory, which is implicit in the traditional scenario of an infinite “tower” of EFTs,
where each theory of an endless series of EFTs describes phenomena within a limited range
of energy scales.
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tures absent in other types of effective theories. For instance, it is common to
characterize effective theories as theories that directly incorporate into their
mathematical structure the imprint of their breakdown at some non-trivial
finite physical scale (e.g., Bain, 2013, p. 1; Williams, 2019a, p. 2; 2019b, pp.
6-7, 9-10, 13). But seldom is it specified whether, in the general case, effective
theories display some mathematical singularity, become physically meaning-
less, make inconsistent predictions, or become merely empirically inaccurate
at that scale.4 In order to give a sufficiently comprehensive and informative
characterization, I will thus first present two different kinds of effective theo-
ries and examine, in particular, the way in which they “break down” at some
scale.5

Example 1: Consider first the mathematically most simple formulation
of the Newtonian gravitational theory for a body of mass m1 interacting with
another body of mass m2:

m1
d2r

dt2
= −m1

m2G

r2
(1)

with r the relative distance between the centers of mass of the two bodies and
G the Gravitational constant.

There are two distinct ways to construct an effective version of this theory.
Since we already know its closest successor, i.e., classical General Relativity, we
can simply follow the “top-down” strategy: namely, we appropriately restrict
the range of parameters of the more comprehensive theory and eliminate its
theoretical constituents which do not contribute significantly to predictions
within this range. For instance, we can derive Eq. 1 with additional cor-
rection terms encoding relativistic effects by implementing weak-gravity and
low-velocity restrictions on the simplest solutions to the equations of classical
General Relativity (see, e.g., Poisson and Will, 2014, for more details).

We can also pretend that we do not yet know the more comprehensive
theory and follow the “bottom-up” strategy. We first identify a limited range
where we think that the theory provides reliable information. For instance, we
may suspect from the infinite value of m1m2G/r

2 in the limit r → 0 that Eq.
1 becomes mathematically inadequate for describing the gravitational interac-
tion between arbitrarily small bodies moving arbitrarily close to one another.
Or we may have already found that the theory makes slightly inaccurate pre-
dictions when the gravitational force m1m2G/r

2 becomes too strong. Then,
we restrict the range of the theory by introducing some arbitrary limiting
scale, namely, a short-distance scale r0 in this case. And finally, we include
all the possible terms depending on r0/r which are allowed by the symme-
tries of the theory, with one arbitrary coefficient for each new term. As we
perform these steps, we do not need to know anything about the value or the
underlying meaning of the limiting scale, namely, that r0 turns out to be the
Schwarzschild radius 2m2G/c

2 of the body of mass m2, with c the speed of

4Other overly broad characterizations include “approximate theories” (e.g., Castellani,
2002, p. 263; Ruetsche, 2020, p. 298), “non-fundamental theories” (e.g., Egg et al., 2017, p.
455), and “phenomenological theories” (e.g., Huggett and Weingard, 1995, p. 189; Butterfield
and Bouatta, 2014, p. 65).

5For simplicity, I will understand ‘theory’ in its specific sense throughout the paper, that
is to say, as given by a specific action, a Lagrangian or a Hamiltonian—or even more simply
by equations of motion.
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light. The value of the additional coefficients and r0 is ultimately determined
by means of experimental inputs, at least for a finite number of them.6

Now, whether we follow the top-down or the bottom-up strategy, the re-
sulting effective theory takes the following form:

m1
d2r

dt2
= −m1

m2G

r2

(
1 + a1

r0

r
+ a2

(r0

r

)2
+ a3

(r0

r

)3
+ ...

)
(2)

with a1, a2, a3, etc. some arbitrary coefficients. The most complete version of
Eq. 2 includes an infinite number of terms which depend on r0/r and leave the
equation invariant under Galilean symmetry transformations (i.e., translations
in space and time, spatial rotations, and velocity boosts). We can also define
an effective theory by means of a finite number of terms and fix the value of
their coefficients by means of experiments.7

How should we interpret the scale r0 if we take the structure of these
effective theories at face value? Suppose for the sake of the argument that
we are interested in predicting the value of the acceleration d2r/dt2 in Eq. 2.
The first thing to note is that the contributions of higher-order terms (r0/r)

n

to predictions are negligible for r � r0 and very large for r � r0. If we
include increasingly many higher-order terms in Eq. 2, the predictions remain
overall the same for r � r0 and become increasingly large around and below
r0. And if we include an infinite number of terms, the resulting expansion∑

i ai(r0/r)
i takes an infinite value for r0/r ≥ 1. Hence, if we simply look

at the mathematical structure of the family of effective theories associated
with Eq. 2, we find that their predictions display a sharp pattern of variation
around the characteristic scale r0, which remains robust as we add or remove
higher-order terms.

At first sight, this predictive pattern does not appear to tell us much
about r0 since the expansions

∑N
i ai(r0/r)

i for finite N are mathematically
well-defined across all distance scales (except for the trivial scale r = 0). Yet,
if we consider these finite expansions in relation to one another, we learn
that we can always add small correction terms of increasing order in r0/r in
any given expansion and adjust their coefficients if we want to improve its
predictive accuracy for r � r0. And if we consider these finite expansions in
relation to the limiting case of the infinite expansion, we also learn that they
ultimately become mathematically ill-defined at r0 when we add increasingly
many such terms. In short, if we try to make any of these finite expansions as
predictively accurate as possible for r � r0, we end up with theories making
infinite predictions at r0 and below, i.e., with theories which, as a matter of
principle, cannot be empirically accurate for 0 < r ≤ r0. And this, in turn,
provides at least preliminary reasons to believe that the pattern of variation
around r0 does not simply reflect some notable qualitative physical change
but rather signals that these finite expansions are likely to become unreliable
around r0.

6In general, we also need to assume that the dimensionless constants of the theory are of
order 1 to get a first estimate of the limiting scale, i.e., we need to endorse the “naturalness”
principle ai = O(1) in Eq. 2 below.

7For more details about the first-order relativistic and quantum corrections to the non-
relativistic gravitational potential, see, e.g., Donoghue (1995), Burgess (2004), and Blanchet
(2014). Note that, in some cases, existing empirical measurements (or some other reason)
may require us to break some of the symmetries of the original equation.
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Now, this interpretation is grounded in the experimental profile of existing
theories displaying the same predictive pattern. If, for simplicity, we use Eq.
2 as an example, the experimental pattern takes the following form. We start
with some effective theory defined by means of a finite expansion and fix its
parameters by means of experiments at large distance scales r. At shorter
distance scales, however, we find small experimental discrepancies and decide
to add new terms to compensate for them. Yet, as we probe even shorter
distance scales, the effective theory with the additional terms becomes all
the more quickly empirically inaccurate and we need, at least in principle, to
introduce new terms if we want to maintain its predictive power and accuracy.
In practice, physicists directly look for a new theory in situations like this.
If we were to keep up with the original theory and probe phenomena closer
and closer to r0, however, we would need to introduce an infinite number of
terms. Since all these terms are equally important at r0, we would not be able
to select a finite number of them in order to make approximate predictions.
And since we cannot in practice make an infinite number of measurements to
fix the value of an infinite number of arbitrary coefficients, the theory would
lose its predictive power. Hence, according to this pattern, r0 corresponds
to the maximal predictive limit of the family of effective theories associated
with Eq. 2. For the infinite expansion, r0 corresponds both to a characteristic
scale where the theory becomes mathematically ill-defined and predictively
powerless. For the finite expansions, the demarcation is not as vivid and sharp;
but, overall, the corresponding effective theories make empirically accurate
predictions for r � r0 and empirically inaccurate ones for r � r0.

Note that the same argument does not apply to the original Newtonian
theory in Eq. 1 despite its divergent behavior at r = 0. If we leave aside the
apparent physical impossibility of the situation characterized by r = 0, we still
face the issue that the limiting scale r = 0 is experimentally trivial from the
perspective of classical Newtonian gravitation. Even if we can, in principle,
probe the system down to arbitrarily short distances in this context, we can
only gain experimental information about finite size effects resulting from the
gravitational interaction between two bodies at some finite distance from one
another. In the case of effective theories, the situation is different because there
is no physical principle or experimental constraint which indicates that the
regime specified by r ≤ r0 is either experimentally inaccessible or trivial. The
infinite expansion becomes deficient at r0. But nothing in the theory suggests
that we cannot use bodies to probe distance scales within 0 < r ≤ r0 compared,
say, to string theory where we cannot use strings in scattering processes to
probe distances shorter than the string scale (see, e.g., Hossenfelder, 2013,
sec. 3.2, for a discussion).8

Example 2: Consider now a standard example of QFT, the φ4-theory.
The theory describes a simple quantum field, i.e., a continuum of smoothly
coupled individual quantum systems over space-time with each system char-
acterized by only one degree of freedom. In a somewhat analogous way as in
Eq. 1, the original dynamical equation is given by:

∂µ∂
µφ(x) +m2φ(x) = −λφ3(x) (3)

8Note, moreover, that we cannot define some non-trivial limiting distance scale r0 by
using only m1, m2, and G in Eq. 1. By dimensional analysis, we would need to introduce a
new arbitrary velocity scale c and therefore modify the structure of the original theory.
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where φ(x) is a real-valued variable describing a possible configuration of the
field over space-time, ∂µ the analog of d/dt in the four-dimensional Minkowski
space-time, m a mass parameter, and λ a self-coupling parameter. This equa-
tion contains no explicit intrinsic limitation, which suggests that there is a
priori no reason to believe that the theory fails to apply at arbitrarily large
and short distances (or, equivalently, at arbitrarily low and high energies).
The trouble comes when we try to compute predictions. Typically, in QFT,
this is done by evaluating the correlations between some initial and final field
configuration states characterizing some scattering process, where these states
describe, roughly speaking, the particles that we prepare and detect in exper-
iments. Calculating these correlations requires, in turn, including the contri-
butions from all the possible transitions between these states and therefore
summing over all the possible intermediary field configuration states. If we
do that, however, the high-energy configurations of the field, i.e., the con-
figurations which vary rapidly over short-distance scales, give rise to infinite
probabilistic predictions, which is inconsistent.

As of today, the only way to solve this issue in realistic QFTs is to modify
the structure of the theory by means of “renormalization” methods.9 In the
case of the φ4-theory, for instance, we can smoothly lower the contributions of
the high-energy field configurations φ̃(k) over some high-energy cut-off Λ by
using a new field variable φΛ(x) with exponentially decreasing contributions
above Λ:

φΛ(x) ∝
∫
d4keikx(e−k/Λφ̃(k)) (4)

Similarly to Example 1, the value of the limiting scale Λ is not fixed at this
stage. Yet, the QFT case is special. If we keep a finite cut-off, we can make
the predictions of the theory Λ-independent by absorbing Λ-dependent terms
into its parameters, at least for a finite range of values of Λ. But this requires
including all the possible interaction terms allowed by the symmetries of the
theory:

∂µ∂
µφΛ(x)+m2(Λ)φΛ(x) = −λ(Λ)φ3

Λ(x)−g5(Λ)φ5
Λ(x)−g7(Λ)φ7

Λ(x)− ... (5)

where the gi’s are new arbitrary coupling parameters depending on Λ. If
we have appropriate experimental inputs, we can define an effective theory
by means of a finite number of interaction terms, fix their parameters, and
estimate the value of Λ (as in Example 1).

The predictive pattern in this example is overall similar to the one dis-
played in the previous example. Once we fix the parameters of the theory, we
can show that the higher-order interaction terms gi(Λ)φiΛ in Eq. 5 contribute
to predictions by increasing powers of (E/Λ), with E the characteristic energy
scale of the scattering process considered. Yet, there is one crucial difference:
the predictions of the theory typically become inconsistent for energies E close
to and above Λ whether we include a finite or an infinite number of interaction
terms in Eq. 5. Hence, if we take the structure of effective QFTs at face value,
Λ is naturally interpreted as the scale at which the theory is likely to make
inconsistent and a fortiori empirically inaccurate predictions.10

9See, e.g., Butterfield and Bouatta (2015), Williams (2019a), and Rivat (2019) for intro-
ductory discussions.

10As it turns out, the φ4-theory is even more special: the perturbatively renormalized

7



3 What is an Effective Theory?

Now that we are equipped with two different examples, let us look at some
options for characterizing what is so distinctive about effective theories. I will
argue that the structure of an effective theory is best characterized by the fact
that it incorporates a robust specification of the scales at which it is likely to
be empirically inaccurate (assuming, in particular, that we have appropriate
experimental inputs at some other scales to fix its free parameters).

Characterization 1: A first option is to characterize an effective theory
as a low-energy limit of a more complete theory—even if this more complete
theory is not fully known, which means that an effective theory is a particular
realization of a given theory over a restricted range of energy scales. This
relational characterization fits well with high-energy physicists’ general de-
scription of EFTs (e.g., Burgess and Moore, 2006, p. xi; p. 456) and with the
top-down Wilsonian procedure for deriving an EFT by eliminating high-energy
field configurations.

To give a concrete example, suppose that the φ4-theory is a low-energy
realization of a more complete theory including a light scalar field φ(x) of
mass m and a heavy scalar field ψ(x) of mass M , with m � M . We can
derive effective theories as follows. First, we eliminate, or “integrate out”,
the heavy field variable ψ(x) in the high-energy theory (or, more precisely,
in its functional path integral Z). This gives rise to exotic terms depending
on the variable φ(x) such as φ(x)(−∂µ∂µ + M2)−1φ(x). Assuming that the
characteristic energy E of the scattering processes of interest is much smaller
than the mass of the heavy field, i.e., E � M , we can expand these exotic
terms into an infinite series of polynomial terms depending only on the variable
φ(x), its derivatives, and some inverse power of M . Schematically,

Z =

∫
D[φ]D[ψ]ei

∫
d4x
[
1
2

(∂µφ)2−m2

2
φ2− λ

4!
φ4+ 1

2
(∂µψ)2−M2

2
ψ2− g

4
φ2ψ2

]
=⇒ Z =

∫
D[φ]ei

∫
d4x
[
1
2

(∂µφ)2−m2

2
φ2− λ

4!
φ4− g6

M2 φ
6− g8

M4 φ
8−...

] (6)

with the appropriate coupling parameters g and gi.
11 The structure of the

effective theory is fully specified by the restrictions imposed on the high-energy
theory with the appropriate low-energy assumption. In particular, since the
contributions of the interaction terms (gi/M

i−4)φi give rise to inconsistent
predictions close to M , the high-energy theory provides a natural high-energy
cut-off for renormalizing the effective theory, namely, the mass of the heavy
field. We can also define effective theories by restricting the series to some
finite order in 1/M and obtain the original φ4-theory by taking the limit
M →∞.

The main issue with Characterization 1 is that it is either too broad or
too narrow depending on how we understand it. If we take it to apply to any
theory which is, in principle, derivable from a more complete theory in its low-
energy limit, even indirectly, we may have reasons to suspect that it applies
to all empirically successful theories built up so far. However, if we do not

coupling λ(Λ) diverges at some finite high-energy scale, i.e., it displays a “Landau pole”
singularity.

11See, e.g., Baumann and McAllister (2015, sec. 2.1.1) and Petrov and Blechman (2016,
sec. 4.1) for more details.
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specify the structure of the high-energy theory or provide the specific details
of the derivation, we will be left with a characterization which is overly vague
and which, in particular, does not help us to circumscribe specific structural
features common to effective theories. And to make the matter even worse,
some standard cases of EFTs do not seem to have any high-energy completion
and therefore to be even derivable, as a matter of principle, from a high-energy
theory (see, e.g., Adams et al., 2006, for a discussion).

Inversely, if we take this characterization to apply only to theories which
are explicitly related to a more comprehensive theory by means of some en-
ergy parameter or mass scale, as in Eq. 6, we will leave out many standard
cases of effective theories, including Example 1. In general, the types of lim-
iting scales and power counting schemes underlying the structure of effective
theories, i.e., the rules for evaluating how the contributions to predictions of
the different parts of an effective theory vary with some parameter, can be
extremely diverse. Examples 1-2 illustrate this variety of scales. Example 1
provides a simple velocity power counting scheme when applied to a system of
two bodies with the same mass m1 and orbital radius r. In the non-relativistic
regime, the virial theorem holds (v2 ∼ Gm1/r ∼ r0/r), which means that the
interaction terms in Eq. 2 contribute to predictions by increasing powers of
the characteristic velocity v of the system. And it is more appropriate in this
case to speak of a low-velocity realization of a more complete theory.

Characterization 2: A more promising strategy might be to look for
some abstract feature internal to the mathematical structure of an effective
theory.12 Suppose for instance that we take an effective theory to be a theory
which, while remaining mathematically well-defined over some limited range
of parameters, becomes ill-defined at some non-trivial finite scale. This char-
acterization fits well with the most complete versions of the effective theories
presented in Examples 1-2 (e.g.,

∑
i ai(r0/r)

i). It also fits well with the atti-
tude sometimes expressed in the philosophical literature according to which
the framework of EFTs provides a general, efficient, and “opportunistic” way
of solving the mathematical issues of QFTs (see, e.g., Butterfield, 2014, sec.
V.2.2; Butterfield and Bouatta, 2015, sec. 3.1.3). Indeed, the very idea of
introducing and keeping a finite cut-off is vindicated by the pathological be-
havior of QFTs at high energies (cf. Example 2). And even if we attempt to
cure QFTs of their mathematical difficulties with renormalization methods,
some paradigmatic cases like the φ4-theory and Quantum Electrodynamics
(QED), the quantum theory of the electromagnetic force, are likely to remain
mathematically ill-defined at some large yet finite energy, i.e., to display a Lan-
dau pole singularity. If we want to define these pathological cases of QFTs
consistently, they leave us with no choice but to restrict their range of param-
eters, and this suggests that EFT methods were meant to be applied to these
sorts of theories.

Once again, however, this characterization excludes simple cases of effective

12Appealing to a particular mathematical structure does not seem to give an adequate
trade-off between generality and informativeness. The closest we can probably get to Exam-
ples 1-2 and standard cases of effective theories is to characterize the structure of effective
theories in terms of Taylor (or Laurent) series in some parameter (or truncations thereof).
But even then, this solution excludes exotic cases of effective theories with non-polynomial
interaction terms in the field variables (see, e.g., Gripaios, 2015, sec. 5, for some models
including such terms).
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theories and therefore appears to be too restrictive. For instance, the effective
theories defined by means of a finite number of terms in Example 1 remain
mathematically well-defined across all distance scales (except at the trivial
scale r = 0) and therefore do not fall under Characterization 2. Agreed,
being mathematically ill-defined at some non-trivial finite scale is presumably
a sufficient condition for a theory to be characterized as effective (provided we
introduce some cut-off); but these simple examples of classical point-particle
effective theories show that this condition is not necessary.

Characterization 3: A third option, the one I favor, is to characterize
effective theories by the fact that they contain intrinsic empirical limitations.
Namely: an effective theory incorporates into its structure a robust specifi-
cation of the ranges of scales where it is likely to be empirically inaccurate.
There are four essential ingredients here:

1. The mathematical structure of the theory contains some non-trivial finite
scale (“intrinsic limiting scale” or “cut-off”);

2. It is possible to include increasingly many terms depending on this lim-
iting scale which are consistent with the core principles governing the
structure of the theory, with one arbitrary coefficient for each new term
introduced;

3. These terms are systematically organized according to the importance
of their contributions to predictions below and above the limiting scale
(“power counting scheme”);

4. As we include increasingly many such terms, the predictions derived
from the theory remain approximately the same, say, below the lim-
iting scale and become increasingly large around and above this scale
(“robustness”).

The predictive pattern is well illustrated by Examples 1-2, although it does not
essentially depend on the particular details of their mathematical formulation,
and, in general, the interpretation in terms of intrinsic empirical limitations is
grounded in the experimental profile of existing theories displaying the same
predictive pattern. Note as well that Characterization 3 does not imply that
the mathematical structure of an effective theory delineates by itself the scales
at which its predictions are likely to break down. We usually need to have
experimental inputs in some accessible regime and assume that the dimen-
sionless constants of the theory are of order one if we want to estimate the
value of the limiting scale. Similarly, adding a list of provisos of the form ‘For
velocities much smaller than the speed of light’ or ‘r � r0’ in the preamble of
the theory is not sufficient: Characterization 3 requires the theory to have the
imprint of its probable predictive failure directly written in its mathematical
structure.

Now, the advantage of this option is twofold. First, Characterization 3 is
neither too restrictive nor too permissive. In particular, it applies to Exam-
ples 1-2 and standard cases of classical and quantum effective theories. It also
excludes standard cases of theories putatively applicable across all scales such
as the Newtonian theory defined in Eq. 1 and the perturbatively renormaliz-
able version of Quantum Chromodynamics (QCD), the quantum theory of the
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strong force.13 As explained in section 2, if we take such theories at face value,
their structure does not explicitly delineate non-trivial experimental regimes
where their predictions are likely to break down. Of course, we may impose
a finite cut-off on the perturbatively renormalizable version of QCD because
we suspect that QCD is likely to be empirically inaccurate at very high ener-
gies, and include higher-order interaction terms into the theory. We may also
exploit the hierarchy of scales exhibited by the different masses of the quarks
in QCD and define a low-energy theory of the light quarks u, d and s with
some cut-off because we suspect that it is easier to compute low-energy predic-
tions if we eliminate irrelevant high-energy degrees of freedom. In both cases,
however, we will be dealing with a different kind of theory, strictly speaking:
namely, an effective theory which falls under Characterization 3.

Second, the characterization is also informative. Most remarkably, it offers
a sharp distinction between two kinds of theories (or models): (i) theories with
intrinsic empirical limitations, i.e., which already contain in their structure
information about where they are likely to make inaccurate predictions before
we probe the relevant scales in experiments; and (ii) theories with extrinsic
empirical limitations, i.e., which are found to make inaccurate predictions only
by a direct confrontation with experimental data obtained at the relevant
scale. As we will see in the next section, the structure of an effective theory
also gives good reasons to believe that it provides reliable ontological guidance
only within a limited part of the world.

4 The Standard Effective Account

So far, I have argued that effective theories are best characterized by the fact
that they contain intrinsic empirical limitations, but I have not said anything
yet about their representational achievements. Suppose then that some effec-
tive theory is found to make accurate predictions within some regime and that
its predictions are likely to break down at some scale beyond this regime. The
most straightforward realist explanation in this case is to take the theory to
accurately represent a limited part of the world and misrepresent, or fail to
represent, other parts. Since this explanation fits well with the set of commit-
ments shared by philosophers who explicitly defend a realist interpretation of
EFTs, I will be relatively brief in this section. I will clarify the idea that the
domain of applicability of effective theories is intrinsically limited by means
of four common claims made about EFTs, briefly justify them by relying on
general features of effective theories, call the resulting account the “Standard
Effective Account”, and extract one central interpretative constraint from it.
This is, of course, not to say that these philosophers agree on everything.
There are indeed substantive interpretative disagreements in the literature on
EFTs. But I will ignore those disagreements and restrict myself to extending
the four common claims beyond the context of QFT.

The first difficulty here is that the term ‘domain of applicability’ is am-
biguous. We could arguably take it to refer to the universe of discourse or
interpretation of the theory, to the set of phenomena accounted for by the
theory, to the range of variables specifying the possible physical states of the

13This supposes that we set aside potential trouble at low energies and assume that the
theory is sufficiently mathematically well-defined at arbitrarily high energies.
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system described by the theory, or perhaps even to the range over which the
theory is mathematically well-defined. If we keep in mind that the target of the
theory is the actual world, the following notions should be sufficiently neutral
and adequate for clarifying the Standard Effective Account. (i) The “domain
of applicability” of a theory is the set of concrete physical objects—entities,
structures, properties, quantities, states, phenomena, dispositions, and so on—
that the theory accurately represents. The domain of applicability of a theory
is not necessarily identical to its putative domain of applicability, i.e., to the
set of putative physical objects specified by a literal interpretation of the the-
ory.14 (ii) The “domain of empirical validity” of a theory is the range of
physical parameters over which its predictions are likely to remain accurate.
If we have good reasons to believe that we have found a final theory, this do-
main ranges over all physically possible scales. Otherwise, if we do not have
any means to estimate the empirical limitations of the theory in advance as
in the case of effective theories or any evidence that the theory will remain
empirically accurate in new regimes, this domain reduces to the range over
which the theory has been found to be empirically accurate.

Then, the Standard Effective Account can be spelled out in terms of the
four following claims:

1. The domain restriction claim: The domain of applicability of an effective
theory is restricted by the limits of its domain of empirical validity (cf.,
e.g., Cao and Schweber, 1993, p. 76; Castellani, 2002, p. 260; Wallace,
2006, sec. 3.2-.3.3; Schweber, 2015, p. 60; J. Fraser 2018, p. 1173;
Williams, 2019b, p. 13).

To take the simplest case of physical object, the domain restriction claim states
that an effective theory accurately represents some concrete entity only if its
core properties can be specified within the limited range where the theory
is likely to remain empirically accurate. By ‘core property’ I mean that the
property is constitutive of the identity of the entity (e.g., an infinite number
of degrees of freedom for a continuum field). Now recall that if we have appro-
priate experimental inputs, say, at large distances, we can estimate the value
of the limiting scale of an effective theory, say, a short-distance cut-off scale.
And even if we have not yet probed phenomena close to this scale in experi-
ments, the structure of the theory already gives us good reasons to believe that
its predictions are inaccurate beyond this scale. As a realist, it is standard
to assume that if a theory accurately represents the entities characterizing a
specific domain, it also makes accurate predictions in this domain. Hence, the
standard realist explanation of the probable predictive failure of an effective
theory beyond its limiting scale is that the theory is likely to misrepresent,
or fail to represent, the entities characterizing the corresponding domain (as-
suming here that there are such entities). And this means that the structure
of an effective theory prevents us from remaining agnostic about its putative
representational success beyond its limiting scale. We also have good reasons
to think that the theory provides unreliable information about physical prop-
erties beyond this scale and therefore fails to give an accurate picture of the
entities which are individuated by such properties.

14By ‘literal’ I mean that the physically meaningful descriptions of the theory are under-
stood in their standard sense and taken to be either true or false.
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In Example 2, for instance, the imposition of the smooth cut-off in Eq. 4
does not eliminate any degree of freedom in the original theory. On the face
of it, then, the effective theory represents a putative continuum field with one
degree of freedom at every point of space-time and therefore attributes core
properties to its target system within any arbitrarily small region of space-
time. At the same time, the pathological predictions of the theory around and
beyond Λ also give very good reasons to believe that the theory misrepresents
the structure of matter at arbitrarily short distances and therefore that it
does not accurately represent a putative continuum field, strictly speaking.
According to the domain restriction claim, however, it is perfectly possible for
the theory to accurately represent, say, a real physical pattern of characteristic
size larger than 1/Λ (see sections 5-6 for a discussion).

2. The new physics claim: The structure of an effective theory strongly
suggests that the theory misrepresents or fails to represent some putative
physical objects (cf., e.g., Robinson, 1992, p. 394; Cao and Schweber,
1993, p. 76; Wallace, 2006, sec. 3.2-.3.3; J. Fraser 2018, p. 1173;
Williams, 2019b).

This claim is best supported by examining the relation between successive ef-
fective theories, or even the relation between an effective theory and some pu-
tatively fundamental theory. If we take effective theories in isolation, however,
we can still give some support to this claim by relying on their structure. Con-
sider Example 2 again. The effective version of the φ4-theory with a smooth
cut-off is mathematically well-defined at any point of space-time (at least ac-
cording to physicists’ standards) and does not contain any physical principle
or constraint implying that the range beyond Λ is physically forbidden. To
take again the simplest case of physical object, the theory thus appears to
allow for the existence of concrete entities at arbitrarily short distances. Yet,
as already emphasized, the theory also makes inconsistent predictions beyond
Λ. Taken together, these two features strongly suggest that the theory is defi-
cient in some way or another rather than that the world contains some physical
limit at the scale Λ. And the best realist explanation, in this case, is that the
theory does not include the appropriate theoretical constituents which would
give rise to consistent predictions at short-distance scales and therefore that
the theory either misrepresents or fails to represent putative entities at these
scales instead of specifying, say, the fundamental graininess of space-time.15

3. The approximate truth claim: Effective theories offer approximately ac-
curate representations in their domain of empirical validity (cf., e.g.,
Castellani, 2002, p. 260; J. Fraser 2018, p. 1173; Williams, 2019b, sec.
3).

The approximate truth claim states that an effective theory provides some
accurate representations of unobservable physical objects specifiable within

15Note that the scale at which the predictions of an effective theory break down does not
need to be exactly the same as the scale at which the new physics kicks in. For a discussion
about the intricate link between violations of perturbative unitarity and the onset of new
physics in the context of QFT, see, e.g., Aydemir et al. (2012) and Calmet and Casadio
(2014).
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the limited range where the theory is likely to remain empirically accurate—
or, at least, that we can construct such representations by modifying the
original structure of the theory.16 Again, the argument is relatively standard
for the realist: (i) the best explanation for the predictive success of the theory
within some regime is that the theory is approximately true; (ii) the probable
predictive failure of the theory beyond its limiting scale gives good reasons
to take only the descriptions below this scale to be approximately true. In
Example 2, for instance, we should expect the descriptions of the dynamical
properties of the field to be approximately true if they are restricted to scales
lower than Λ. We can also impose limits at large distances by introducing a
low-energy cut-off. And one way to construct a model satisfying this restricted
set of descriptions is to replace the standard Minkowski space-time with a
space-time lattice of finite extent (a sharp low-energy cut-off) and non-zero
spacing (a sharp high-energy cut-off) and represent the quantum field in terms
of a lattice field defined by assigning a variable φ(x) to each point of the space-
time lattice. As we will see in section 5, the approximate truth claim does not
mean that, in its standard formulation, an effective theory always accurately
represents the putative objects specified by a literal interpretation of its core
descriptions. And in section 6, we will see that the approximate truth claim
sits in tension with other realist requirements in the context of QFT.

4. The stability claim: The representations of an effective theory specified
within its domain of empirical validity are likely to remain approximately
accurate under theory-change (cf., e.g., Cao and Schweber, 1993, sec.
4.1; sec. 4.3; Wallace, 2006, sec. 3.2-.3.3; J. Fraser 2018, sec. 3-4;
Williams, 2019b, sec. 3).

Here the challenge is that a future higher-level or same-level theory might
undermine the putative representational achievements of our best effective
theories. As we will briefly see in section 6, Williams (2019b) and J. Fraser
(2018; 2020) rely on the machinery of EFTs, including Wilsonian Renormal-
ization Group (RG) methods, to defend the stability claim in the context of
QFT. If we move outside of this context, we can still gain some support for
this claim by focusing on the role of higher-order terms in effective theories.

Consider Example 1 and suppose that the predictions of the effective New-
tonian theory with a few lowest-order terms are accurate at large distances
r � r0. If we discover a radically new and more comprehensive theory that
makes slightly better predictions than the effective theory at large distances,
we can always add higher-order terms to compensate for these empirical dis-
crepancies. This move is, of course, largely ad hoc. But it shows that the
higher-order terms can be used to encode the contributions of new physics at
large distances according to their relevance and thus suggests that these terms
do not simply correspond to arbitrary modifications of the theory, with no
physical significance whatsoever. The ability of higher-order terms to stand
for fine-grained features of new physics is also supported by explicit deriva-
tions of effective theories from more comprehensive ones (see, e.g., Eq. 6

16I will set aside issues related to the nature of scientific representation and use inter-
changeably “approximately accurate representation” and “approximately true description”,
assuming that a description is approximately true relative to the actual world if it is satisfied
by some model that provides an approximately accurate representation of some actual target
system.
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above). And, in general, the structure of an effective theory is such that we
can parametrize the contributions of any type of new physics at large dis-
tances up to an arbitrarily high degree of precision by adding increasingly
many terms depending only on the degrees of freedom of the original theory.
In the Newtonian case, we can even include such terms by preserving all the
core principles of the original theory (e.g., Galilean invariance).

Now, the crucial point is that the contributions of the higher-order terms
become increasingly negligible at large distances r � r0, no matter what the
new physics looks like. And insofar as these higher-order terms are assumed to
stand for fine-grained features of new physics, this shows that the descriptions
of the effective theory which are relevant at large distances are largely insen-
sitive to the particular details of the new physics. This new physics affects
at most the value of the parameters of the lowest-order terms. At the scale
r0, by contrast, the core principles of the effective theory do not even allow
us to give an approximately true description of the dynamical behavior of the
system and we have no choice but to look for a new theory.

Of course, this argument is far from fully ensuring that the theoretical
content of some effective theory will not be found to be radically incompatible
with the theoretical content of some future theory, even within its domain of
empirical validity (see Ruetsche, 2018; J. Fraser 2020, p. 288, for a similar
worry). One might also raise legitimate doubts about the ability of the higher-
order terms to adequately encode the entirety of the new physics relevant at
large distances. Giving a full response to these worries goes beyond the scope
of this paper. If we leave them aside, the previous argument still goes some
way toward giving us confidence in the robustness of the theoretical content
of the effective theory within its domain of empirical validity.

To summarize, the Standard Effective Account takes effective theories to
make approximately true and stable claims about a limited part of the world
beyond which it is reasonable to expect to discover (or beyond which we have
already discovered) new entities or structures. Although more work needs to
be done in order to give a full defense of these features, they suggest nonethe-
less that effective theories provide us with a reliable epistemic standpoint to
identify unobservable entities or structures in the regimes where our best the-
ories are known to be successful. This extends Williams and J. Fraser’s recent
claim beyond the context of QFT and provides a further response to philoso-
phers who deem EFTs unfit for interpretative purposes (e.g., D. Fraser, 2009;
2011; Kuhlmann, 2010). And if we are to interpret effective theories in realist
terms, their structure provides us with one central constraint for making more
reliable ontological commitments than those commonly made across physics:
namely, we should only commit to the existence of concrete physical objects—
entities, structures, properties, quantities, states, phenomena, dispositions,
and so on—specifiable within the domain of empirical validity of the theory.
Beyond this domain, the structure of effective theories gives us good reasons
to believe that they fail to represent, or misrepresent, physical objects.

5 A Challenge for the Traditional Realist

I will now illustrate how effective theories force the traditional scientific realist
to be more selective about her ontological commitments than she might think
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she has good reasons to be.
Suppose for the sake of the argument that our realist feels unmoved by

the traditional constructive empiricist concerns about unobservables and un-
derdetermination (van Fraassen, 1980), the pessimistic meta-induction argu-
ment (Laudan, 1981), and the more recent problem of unconceived alterna-
tives (Stanford, 2006). Yet, impressed by the new dogma of effective theories,
our realist concedes that our best current theories are best understood and
formulated as effective theories and agrees to endorse the account developed
in sections 3-4. She examines the standard formulation of our best effective
theories (e.g., the Standard Model Effective Field Theory), either eliminates
or disregards their artifactual mathematical structures (e.g., gauge redundan-
cies), and, after interpreting the remaining core theoretical descriptions in
their literal sense as she has always done, finds out that our best effective
theories represent putative infinite entities and structures, including contin-
uum quantum fields and their infinitary symmetry structure. She also takes
the remarkable empirical and explanatory success of these theories to be a
good enough reason to commit to those entities and structures. But of course,
knowing that our best effective theories might be superseded one day, perhaps
by some advanced type of effective string theory or maybe even by some final
theory, she is ready to grant that these putative entities and structures are
only approximately similar to more fundamental ones.

I will argue in what follows that, on the Standard Effective Account, our
realist is actually not warranted in taking the representations of these puta-
tive entities and structures to be even approximately accurate and cannot,
therefore, reliably commit to their existence. Three important remarks are
in order. (i) For simplicity, and in line with the traditional form of scientific
realism, I will restrict myself to concrete entities, i.e., continuum fields in this
case. I should emphasize, however, that a similar argument could be made
for their infinitary symmetry structure and more generally for physical objects
whose core features are specified well-beyond the limits of empirical validity of
the effective theory of interest. (ii) I will assume that standard mathematical
means of comparison (e.g., measure, cardinality, isomorphisms, etc.) provide
reliable standards of relative similarity and accuracy as it is usually assumed
in the literature (e.g., da Costa and French, 2003; Weisberg, 2013, chap. 8).
So, for instance, I take two distinct finite sets of degrees of freedom of the
same type to be much more similar to one another than either of them is to
an infinite set of degrees of freedom of the same type. (iii) I will first rely
on a general notion of similarity and then use the model-theoretic account of
similarity to make the argument more concrete.17

17I doubt that the argument actually depends on one’s favored account of similarity if
we assess whether the representation of a continuum field itself (and not some finite repre-
sentation thereof) is similar to the representation of a lattice field of finite extent. In the
contrast-account, for instance, we need to evaluate the amount of properties shared by two
representations and subtract the properties that differ between them, with specific weights
assigned depending on whether the property is deemed more or less relevant (see, e.g., Weis-
berg, 2013, chap. 8, for a recent defense of this account). If we want to compare different
fields themselves (and not simply their configurations), the number and type of their degrees
of freedom appear to be essential, which means that, according to the contrast-account, two
lattice fields of the same type with different spacing are much more similar to one another
than either of them is to the corresponding continuum field (cf. below). I would like to
thank an anonymous referee for pressing me on this point.
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How should we evaluate the representation of a continuum field in a given
effective theory then? Recall from the approximate truth claim that, for each
effective theory, we can at least construct one accurate representation of its tar-
get system specified within its domain of empirical validity. In the φ4-theory
case, for instance, we can represent the target system in terms of a lattice
field defined by assigning one degree of freedom to each point of a space-time
lattice of finite size and non-zero spacing. Of course, in the same way as we
do not need to reduce a massive body to its point-like center of mass, we do
not need to assume that the target system in the φ4-theory literally takes the
form of a “grid”. A representation is approximately accurate if the putative
entities specified by the representation are approximately similar to real ones.
A representation which only ignores, omits, or abstracts away irrelevant fea-
tures of the target system does not necessarily provide false information—the
only thing we can be certain of is that it provides partial information about
the target system.

Now, suppose that for the effective theory of interest, we are also able to
represent the target system in terms of a continuum field. For instance, in
Example 2, we can decrease the lattice spacing, increase the size of the lat-
tice, and attribute a new degree of freedom to every newly added space-time
point in the set specifying the elementary structure of the lattice. However,
according to the domain restriction claim, the more we replace, add, or distort
features of the target system in sufficiently small regions of space-time, i.e.,
the more we take into account descriptions assigning properties to the tar-
get system beyond the limits of empirical validity of the effective theory, the
more the theory provides false information about the target system. In the
limit, the lattice field is replaced by a continuum field with an infinite num-
ber of degrees of freedom, one at every point of space-time, and the resulting
representation provides us with an infinite amount of false information about
the target system in arbitrarily small regions of space-time compared to the
original lattice representation. The Standard Effective Account thus does not
only suggest that the representation of the putative continuum field is strictly
inaccurate—and hence best understood as an infinite idealization. It also gives
us principled reasons to believe that this representation is not even close to
being approximately accurate.

We can make the argument more concrete by relying on a specific notion
of similarity. According to the model-theoretic (or structuralist) account, for
instance, two representations, or mathematical structures in this case, are sim-
ilar to one another if they are isomorphic to one another, i.e., roughly speaking,
if the two mathematical structures have the same number of elements and the
same structural relations between their elements. Obviously, a mathematical
structure with an infinite number of elements—an infinite representation in
short—is not isomorphic to a finite one; but few philosophers actually think
that the traditional notion of isomorphism provides an adequate standard of
accuracy and the problem is to define an adequate notion of “approximate
isomorphism”. da Costa and French (2003) suggest the notion of “partial
isomorphism” (or “partial homomorphism”): briefly put, two mathematical
structures M1 and M2 are partially isomorphic to one another if there is some
mapping from the elements of M1 to the elements of M2 which preserves the
substructures (and absence thereof) holding between the elements in M1 and
which does not say anything specific if we do not know whether some sub-
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structure holds or not between the elements in M1 (see, e.g., da Costa and
French, 2003; Bueno and French, 2011, for more details).

Clearly, it is essential that the two representations have important chunks
of substructures in common for them to be approximately similar to one an-
other. In this case, two finite representations are always much more partially
isomorphic (or homomorphic) to one another than either of them is to the cor-
responding infinite representation. It is non-trivial to give a precise account of
degrees of partial isomorphism (or homomorphism) and I will restrict myself
to giving an intuitive picture. In Fig. 1, for instance, the two lattice fields
at the top have, respectively, 64 and 49 elements and share a large part of
their spatial structure. We could also specify the substructures which are not
preserved (e.g., the substructure associated with the local rotational symme-
try transformations of the elements that leave the lattice invariant) and the
substructures for which we do not know whether they are preserved (e.g., the
substructure associated with some relations not apparent in the pictures). In
contrast, the continuum field depicted in the top right-hand corner has in-
finitely many more elements than the two lattice fields and infinitely many
spatial relations not reflected in the spatial structure of the two lattice fields.
Agreed, the patterns of the continuum field might represent well some pat-
terns of the lattice fields (see Fig. 1, bottom). But this does not affect the
conclusion that the two lattice fields themselves are much more similar to one
another than either of them is to the continuum field.

Figure 1: Schematic representations of a lattice field and a continuum
field, with Λ a sharp cut-off. The two figures in the top left-hand corner
represent, respectively, a finite set of points separated by a characteristic
distance Λ and a finite set of blocks of characteristic size Λ. The figure
in the top right-hand corner represents a continuum of points. The
bottom figures represent, respectively, a lattice field configuration and
its continuum counterpart.

Let me conclude this section with two comments before extending the dis-
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cussion to Williams’s and J. Fraser’s defense of selective realism in QFT. First,
the argument above applies to the standard formulation of our best effective
theories, and therefore offers a concrete challenge to the traditional scientific
realist insofar as he is willing to make ontological commitments by interpreting
the central parts of our most successful theories in their literal sense. Second,
the argument crucially relies on the structure of effective theories. If we have
external reasons to believe that our best theories at a given time are likely to
be empirically inaccurate at some scale, we might still believe that these the-
ories give approximately true descriptions of more fundamental entities and
structures. For instance, we might believe that a low-energy continuum field
theory provides an approximately accurate representation of the continuum
field described by a more fundamental high-energy theory. The structure of
effective theories prevents us from holding such beliefs, no matter what the
new high-energy physics looks like.

6 Effective Field Theories and Selective Realism

We have seen that effective theories force us to adopt a differentiated attitude
towards the entities and structures that we can reliably admit in the realist
inventory. In particular, we cannot admit entities if their core properties are
specified in regimes where the predictions of the effective theory of interest are
likely to break down. Yet, these restrictions leave, in principle, ample space for
making reliable and distinctively realist ontological commitments. In the New-
tonian case, for instance, we can commit to the existence of sufficiently large
massive bodies of center of mass xi(t) orbiting at sufficiently large distances
from each another and moving at sufficiently low velocities, including black
holes which, I take it, qualify as unobservables according to van Fraassen’s
original distinction (e.g., 1980, pp. 13-9). I will now argue that, in some
specific theoretical contexts including classical and quantum field theory, the
restrictions imposed by the structure of effective theories still raise a challenge
for more refined forms of scientific realism. To bring the point home, I will
focus on Williams’s (2019b) and J. Fraser’s (2018; 2020) defense of selective
realism in the context of QFT.18

The strategy of the selective realist is to defend the realist cause by conced-
ing that our best theories do not get everything right and isolating their parts
which both play an essential role in their explanatory and empirical success
and are likely to be preserved under theory-change (see, e.g., Psillos, 1999;
Chakravartty, 2007). Upon entering the realm of QFTs, the selective realist
counts herself doubly fortunate, at least at first sight. First, she can use EFT
methods to formulate and interpret our best current theories in a more epis-
temically reliable way. She has, in particular, efficient tools for evaluating the
contributions of a theory in different regimes and eliminating, or “integrating
out”, its theoretical constituents which are irrelevant in the regimes she is in-
terested in. Second, she can also use the resources of renormalization theory
and, in particular, the Wilsonian RG in order to analyze the scale-dependent
structure of our best EFTs and increase her confidence in the robustness of

18I will leave aside Wallace’s account insofar as he is primarily concerned with defending
the foundational and interpretative relevance of cut-off Lagrangian QFTs in (2006; 2011)
and not scientific realism strictly speaking (or, more precisely, structural realism).
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their low-energy theoretical descriptions. It is beyond the scope of this paper
to give a detailed account of Wilsonian RG methods (for a recent review, see
Williams, 2019a). Here, I will restrict myself to discussing the interpretative
constraints that Williams and J. Fraser extract from EFT and RG methods
and evaluating the success of their selective strategy.19

How, then, should we separate the theoretical descriptions of our best
current EFTs if we want to implement the selective realist strategy? Since
the structure of an EFT gives us good reasons to believe that its predictions
break down at some high-energy scale, we should first restrict our attention
to the parts of the theory which describe its low-energy content:

1. Isolate theoretical descriptions which are specified within the limited
range of scales where the theory is likely to remain reliable (see, e.g.,
Williams, 2019b, p. 13).

As already discussed in section 4, constraint 1 purely follows from the structure
of effective theories.

Some of these low-energy descriptions might still depend significantly on
irrelevant parts of the theory or involve representational artifacts (e.g., the
specific type of cut-off in Eq. 4). We need, therefore, to introduce further
constraints if we want to isolate the parts of the theory which play an essential
role in its explanatory and predictive success and which accomplish genuine
representational work. Williams and J. Fraser remain somewhat ambiguous
here. They highlight various ways in which EFT and Wilsonian RG methods
allow us to gain confidence in the “robustness” of the low-energy content of
EFTs. Yet, they also appear to put emphasis on two different robustness
criteria. Williams seems to be more concerned with the relative insensitivity
of the low-energy physics to the high-energy physics:

[...] it is one of the essential virtues of the RG that it provides a
tool for determining how changes in the structure of the theory at
the scale of the short-distance breakdown affect physics at longer
distances where the theory is empirically reliable. What the RG
shows is that the ‘fundamental’ short-distance structure with which
standard interpreters are so concerned is largely irrelevant to the
physical content of an EFT in the domain where we have any
reason to consider it empirically reliable. (2019b, p. 16)

J. Fraser, by contrast, puts emphasis on a more general type of invariance,
which includes the mathematical invariance of the low-energy descriptions of
the theory under different parametrizations and other representational arti-
facts introduced when renormalizing the theory (e.g., J. Fraser, 2020, pp.
286-7; 2018, p. 1172; see also Ruetsche, 2018, pp. 11-2; 2020, pp. 305-6;
Rosaler and Harlander, 2019, sec. 5.6).

Despite important overlaps, as we will see below, I think that it is cru-
cial to distinguish between two main interpretative constraints to account for
Williams’s and J. Fraser’s slightly different outlooks and for the variety of
ways in which the low-energy content of an EFT amenable to RG methods is
robust:

19See also Ruetsche (2018, 2020), Rosaler and Harlander (2019, sec. 5.6), and Rivat and
Grinbaum (2020).
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2. Isolate theoretical descriptions which are largely independent of high-
energy physics;

3. Isolate theoretical descriptions which are invariant under RG-transformations
and independent of specific choices of renormalization methods.

Constraint 2 is mainly derived from the structure of effective theories, although
RG methods often allow us to refine the analysis. As we saw above, part of
what makes an effective theory distinctive is that its descriptions which are
significant within a specific regime are largely independent of its descriptions
which are significant within a different regime (e.g., lower- vs. higher-order
interaction terms in Examples 1-2; light vs. heavy field dynamics in Eq. 6).
In particular, it is usually possible to modify the high-energy content of an
EFT without affecting much its low-energy content, including its low-energy
predictions (e.g., by adding higher-order interaction terms in Examples 1-2).
We can also usually show that different high-energy theories reduce to the same
low-energy theory, or at least to similar ones (e.g., we can add a third heavy
scalar field in Eq. 6 and obtain a similar low-energy theory after integrating
out the two heavy fields and making appropriate approximations). In all these
cases, the crucial point is that the low-energy content of the theory is robust
under variations of its high-energy content. And, in general, the bulk of the
low-energy content of the effective theory depends only on a finite number of
free parameters (see Examples 1-2).

Constraint 3, by contrast, arises specifically from a RG analysis. In gen-
eral, a theory can be renormalized in many different ways, and the specific
renormalization method chosen usually requires us to introduce some arbi-
trary scale parameter (e.g., the parameter Λ in Example 2) and use some
particular scheme to absorb the terms depending on this parameter (e.g., a
mass-dependent renormalization scheme). Thus, constraint 3 requires us to
isolate theoretical descriptions which are invariant under different renormal-
ization methods and choices of scales (cf., Williams, 2019b, p. 12; J. Fraser,
2018, p. 1172; 2020, pp. 286-7).

We can, in fact, look at this constraint in two distinct ways. (i) If we
consider some fixed high-energy theory, we can derive a series of low-energy
theories by successively integrating out high-energy field configurations in their
path integral formulation. In this case, constraint 3 is best understood as
requiring us to isolate invariant theoretical descriptions in the series of low-
energy theories. (ii) If we consider some low-energy theory with parameters
fixed by means of experimental inputs, we can show that this theory and its
parameters remain unaffected by changes in the high-energy theory from which
it is originally derived, i.e., the so-called “bare” theory (cf. Wallace, 2006, p.
49; 2011, p. 6; Williams, 2019b, p. 12; J. Fraser, 2018, p. 1172; 2020, pp.
286-7). In this case, constraint 3 is best understood as requiring us to isolate
theoretical descriptions which are not affected by changes in the value of the
high-energy cut-off and in the parametrization of the high-energy theory.

Now, in addition to adopting constraints 1-3, the selective realist also needs
to make sure that she is offering a genuine defense of the realist cause. First, in
order to give a sufficiently informative and non-ambiguous explanation of the
success of the theory, she needs to isolate a definite set of unobservable entities
or structures with clear identity conditions—say, in the case of entities, with a
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well-specified set of core properties that distinguish them from other entities,
whether they are fundamental or not. For instance, in the Newtonian case,
we might identify a system by means of its position, its velocity, its mass, and
its dynamical behavior. If we simply give a functional characterization of the
system by means of its mass, for instance, we are likely to pick out very differ-
ent types of entities and leave the target of our commitments indeterminate.
Likewise, in the QFT case, we might identify a system by means of the type
and number of its degrees of freedom, its mass, its self-interacting parameters,
and its dynamical behavior. If we simply specify the system by means of its
dynamical behavior and its mass, for instance, there is still some ambiguity
as to whether we pick out a lattice or a continuum field. Contrary to what
Williams (2019b, p. 15) suggests, to simply “extract reliable ontological infor-
mation” does not suffice (see also J. Fraser, 2020, pp. 286-7). The selective
realist needs to give a sufficiently comprehensive account of a definite set of
entities or structures in order to fulfill her explanatory duties.

Second, the selective realist needs to give a literal interpretation of some
privileged parts of the theory, as it is often assumed in the literature (e.g.,
Psillos, 1999; Chakravartty, 2007). In the Newtonian case, for instance, the
selective realist can take the theory to literally describe a black hole with a
center of mass specified by the position x(t) and which interacts gravitationally
with other bodies. The gravitational force can be interpreted as a concrete
structure, i.e., as a variable relation with a specific strength depending on
the relative position and the masses of the bodies. Although Williams and
J. Fraser do not give much details about their preferred version of selective
realism, they both seem to endorse this semantic constraint, i.e., that the priv-
ileged set of descriptions that we take be trustworthy should be understood in
their standard sense and taken to be approximately true or false simpliciter.20

In the same vein, the selective realist should avoid modifying too much the
original mathematical structure of the theory or engaging into any other form
of post hoc interpretative practice. Otherwise, she will fail to take the original
theory at face value and explain its explanatory and predictive success in its
own terms. This is well illustrated, for instance, by attempts to draw conclu-
sions about the ontological content of our best current QFTs based on their
putative algebraic reformulation, despite the fact that they have not yet been
successfully formulated in algebraic terms.21

The difficulty now is that it is not clear what the selective realist should
commit to if she endorses these constraints in the case of our best current
EFTs, as it has been acknowledged by J. Fraser (2018, p. 1172; 2020, p. 289).
I will expand on Ruetsche’s recent discussion in (2018; 2020) by looking at
the most obvious candidates—correlations, particles, and lattices—and argue
that they do not allow us to meet constraints 1-3 or make distinctively realist
ontological commitments.

20At the very least, this seems to be implicit in the central question underlying Williams’s
and J. Fraser’s interpretative stance—“given that this theory provides an approximately true
description of our world, what is our world approximately like?” (Williams, 2019b, p. 2).
Reference to particular physical scales seems to be included in the properties of the target
system (see, e.g., J. Fraser’s reference to the “bulk properties” of a fluid when he illustrates
the idea of large distance features of the world in 2018, p. 1173).

21See, e.g., D. Fraser (2008) for such an attempt and Williams (2019b) for a criticism,
emphasizing the importance of paying attention to how QFTs are successfully implemented
in practice.
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Correlations: J. Fraser proposes to focus on low-energy correlation func-
tions:

[...] a preliminary strategy is to point to correlation functions
over distances much longer than the cutoff scale as appropriate
targets for realist commitment. These quantities are preserved
by the renormalization group coarse-graining transformation and
encode the long distance structure of a QFT model. They are
also directly connected to its successful predictions—you cannot
vary the long distance correlation functions of a theory without
drastically affecting its low energy scattering cross sections. (2018,
p. 1172)

We face several issues here. First, it is not clear how we should interpret
correlation functions. In the standard QFT framework, they correspond to
vacuum expectation values of time-ordered products of field operators at dif-
ferent space-time points. The simplest textbook interpretation in the simple
case of two field operators φ̂(x) and φ̂(y) is to take the expectation value
〈0|T {φ̂(x)φ̂(y)}|0〉 to measure the probability (once squared) that a particle
is created at some earlier point x, propagates, and is annihilated at some later
point y (assuming x0 < y0). This interpretation is controversial, in large part
because of the difficulties associated with the interpretation of quantum fields
and particles in interacting QFTs. The crucial point here is that however we
interpret these entities (I discuss the two cases below), we need to commit
to something more than correlations if we follow this standard textbook in-
terpretation. Likewise, if we interpret correlation functions more generally as
standing for the degrees of co-variation or coordination between two variables
at two distinct points, we need to commit to something more than degrees of
co-variation (I discuss the case of physical degrees of freedom below).

We might opt for a more minimal interpretation of correlation functions
as encoding structural physical information independently of the physical ob-
jects or variables they relate. In the case of EFTs, we can interpret correlation
functions as encoding the correlations of the target system at sufficiently large
distances, where ‘correlation’ refers to a set of numbers characterizing the de-
gree of correlation between two space-time points or regions. If we take this
route, however, the empiricist might raise doubts about the distinctively real-
ist character of these commitments and, instead of rejecting them altogether
as she usually does, simply re-appropriate them as her own as Ruetsche (2020,
pp. 306-7) rightly notes. It turns out that the framework of QFT even gives
her good reasons to do so. Typically, in high energy physics, we summa-
rize empirical information about the correlations between the initial and final
states of some scattering process in a mathematical object called the S-matrix,
and the S-matrix can be derived by taking the appropriate asymptotic limit
of a sum over all the possible correlations between initial and final states by
means of the LSZ reduction formula (see, e.g., Schwartz, 2013, sec. 6.1). If
we take the effects of a field disturbance to be in principle detectable in any
sufficiently large region of space-time, nothing seems to prevent the empiricist
from understanding the numbers specified by correlation functions as simply
summarizing the empirical information that would be gathered about the cor-
relations between two states of the system if we were to make measurements
in this space-time region.
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Even if the structural realist finds a way of avoiding this empiricist re-
appropriation, she still faces one important issue. Strictly speaking, corre-
lation functions in QFT are not RG-invariant in the general case contrary
to what J. Fraser claims. If we implement a coarse-graining procedure by
integrating out high-energy field configurations, for instance, the different cor-
relation functions obtained at low energies are multiplied by “wave function
normalization” factors. In general, these multiplicative factors depend on
other variables, such as the couplings of the theory. And so it does not appear
that there is an invariant and therefore unambiguous characterization of the
degree of correlation between two distinct space-time points since it depends
on the way we parametrize the low-energy theory. By contrast, S-matrix ele-
ments are invariant under these different parametrizations. Similarly, the path
integral used to generate the set of correlation functions is also invariant under
different coarse-graining procedures. Yet, it seems to be even more difficult
to interpret the S-matrix and the path integral in distinctively realist terms
compared to correlation functions. And, again, the empiricist might simply
re-interpret the S-matrix and the path integral as bookkeeping devices for all
the possible empirical information that we could gather about the correlations
between initial and final states of the system in sufficiently large space-time
regions.

Particles: Another option, perhaps more likely to enable us to make dis-
tinctively realist ontological commitments, is to focus on particles, such as
protons, neutrons, gluons, and photons (see, e.g., Williams, 2019b, p. 20, p.
22). The concept of particle in interacting QFTs which involve an infinite
number of degrees of freedom is controversial (see, e.g., Teller, 1995; Bain,
2000; D. Fraser, 2008; Ruetsche, 2011). In the modern understanding of QFT,
it is common to understand particles in terms of patterns of excitations in
the fields (as it is rightly noted by Wallace, 2006; 2019, sec. 4, for instance).
This understanding is robust whether we deal with the perturbative or exact,
non-interacting or interacting formulation of a QFT with an infinite or finite
number of degrees of freedom (ignoring the mathematical issues inherent in
realistic continuum QFTs). And, to be more precise, we can interpret par-
ticles in terms of sufficiently well-behaved and localized patterns in the field
configurations in regimes where the interactions described by the theory are
sufficiently weak.

Again, the main issue here is that neither field configurations nor energy-
momentum states are RG-invariant. In general, RG-transformations mix both
field operators and the states of different kinds of particles with one another.
The only notion of “particle” that does not suffer from these issues is the one
specified by the asymptotic states in the non-interacting version of the theory.
But insofar as we seek a realist interpretation of interacting QFTs, we cannot
simply restrict our commitments to the free particles that we prepare and
detect in experiments. And even if we were to take this extreme route and
leave aside potential empiricist re-appropriations, we would still not be able
to commit to the existence of particles such as quarks and gluons insofar as
the quark and gluon fields do not have asymptotic elementary particle states.

Lattice fields: A third option is to focus on low-energy degrees of freedom
(e.g., as represented by the field operators associated with the variables φ̃(k)
for k � Λ in Example 2). Agreed, many of the properties associated with
these degrees of freedom do vary under RG-transformations, including cou-
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pling parameters and the specific form of the variables used to specify these
degrees of freedom (which depends, in particular, on how we separate low-
and high-energy degrees of freedom). Yet, whether we integrate out a large
or a small range of high-energy field configurations, the number of degrees
of freedom at sufficiently low energies remains exactly invariant. We could,
therefore, consider them to be an appropriate target for the selective realist, as
Williams sometimes seems to suggest (2019b, p. 13; pp. 14-5). The main issue
here is that this might not be enough for the realist. We can interpret a degree
of freedom as a determinable dynamical property of some system. However,
without a specification of the low-energy system, any appeal to low-energy
degrees of freedom will remain too indeterminate for the realist and therefore
undermine her attempt to provide a sufficiently informative and unambiguous
explanation of the success of the theory. After all, these degrees of freedom
could perfectly stand for the properties of radically different low-energy sys-
tems. They could be, for instance, the degrees of freedom of low-energy lattice
fields with different types of spatial structures.

In order to avoid the issue of underdetermination at low energies, we can
perhaps isolate a privileged set of low-energy lattice fields for our best current
EFTs. If we put a given EFT on a lattice of finite size and spacing, we
can indeed integrate out high-energy degrees of freedom, obtain low-energy
lattices, and eventually derive empirically equivalent low-energy predictions
which do not significantly depend on the details of the short-distance physics
and on the way we eliminate high-energy degrees of freedom (cf. Wallace,
2006, pp. 48-50). In addition, these low-energy lattices are well-specified
within the limited range of energy scales where the EFT of interest is likely to
remain reliable, and they do appear to enable us to make distinctively realist
ontological commitments.

Yet, we still face a severe issue of underdetermination both at low and high
energies. If we formulate an EFT on a lattice and interpret its low-energy de-
scriptions in their literal sense, the RG coarse-graining transformations appear
to force us to commit to the existence of different lattice fields at different low-
energy scales. We might solve this issue by claiming that these lattice fields
are more or less coarse-grained partial instantiations of the same high-energy
lattice field. If we fix any of the low-energy lattice representations, however,
RG methods allow us to change the high-energy lattice representation without
affecting the low-energy lattice one. And this introduces some pernicious form
of underdetermination about what the low-energy lattice representations are
supposed to stand for.

There are two additional points that make the matter even worse. First,
if we start with a given lattice field, we can implement a specific type of
coarse-graining procedure that defines a lattice field with a different number
of degrees of freedom but with the same lattice spacing. We simply need
to rescale the original lattice spacing and adjust the parameters of the the-
ory after having integrated out high-energy degrees of freedom. And the two
lattice field representations are, of course, empirically equivalent (see, e.g.,
Hollowood, 2013, sec. 1.2, for a simple explanation of this specific way of im-
plementing RG-transformations). Second, the specific form of the low-energy
lattices depends on the type of coarse-graining procedure we implement in the
first place. We might separate low- and high-energy degrees of freedom in very
different ways, or define new low-energy degrees of freedom by averaging over
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high-energy ones in a particular way. In each case, the procedure yields a dif-
ferent set of low-energy lattices. And overall, then, it appears that low-energy
lattices do not allow us to satisfy constraint 3.

Now, if we are to make distinctively realist ontological commitments about
entities or structures in the case of our best current EFTs and maintain
Williams’s and J. Fraser’ robustness constraints, continuum quantum fields
appear to be ideal candidates. Assuming that we do not latticize the the-
ory, we may either take a smooth cut-off or a sharp cut-off (in which case we
eliminate high-energy states of the field), and keep higher-order interaction
terms or eliminate them (depending on the desired accuracy). Either way, the
theory describes a RG-invariant continuous system with an infinite number
of degrees of freedom, at least for a finite range of scales. If we keep all the
degrees of freedom in the theory, we do not face the issues encountered with
lattices. And if we do not focus on the specific values of the properties of the
continuum field, such as the value of its mass, the strength of its interactions,
or the value of its field configurations on space-time, we also avoid the issues
encountered with correlation functions and particles.

The main issue here comes from the domain restriction claim.22 On the face
of it, we are committing to entities with core properties specified in regimes
where the predictions of the EFT of interest are likely to break down, and this
should be a good enough reason not to make such commitments (as Williams
and J. Fraser would probably agree). In response, we might insist that we
are committing to the existence of continuum quantum fields insofar as they
are approximately similar to large distance scale features of the world. If we
wish to endorse the literalness constraint, however, we cannot make such a
claim. As we saw in section 5, if we take the descriptions of a continuum
quantum field itself at face value, i.e., as being either (approximately) true or
false, we are forced to attribute degrees of freedom to some putative entity in
arbitrarily small regions of space-time, and the structure of effective theories
gives us reasonable grounds not to commit to the existence of such entities.

We might also try to escape the difficulty by taking the representation of
the putative continuum field to contain a finite part that does the appropriate
representational work at large distances, say, a finite representation of a lattice
field. The issue here is that any specification of such finite representation
involves a particular specification of an arbitrary lattice spacing, or at least of
a finite number of degrees of freedom, and therefore brings us back to the issues
discussed above. The best RG-invariant representations of putative entities in
our best current EFTs appear to be the representations of continuous systems
with an infinite number of degrees of freedom. And we cannot simply embed
these representations in finite ones without losing their representational value
altogether.

7 Conclusion

I will briefly conclude with a more radical suggestion to defend the realist cause
in the case of our best current EFTs. To summarize the main points of the

22Another set of issues that I will not discuss here is related to the existence of empirically
equivalent field representations (for a discussion about Borchers classes, for instance, see
Haag, 1996, sec. II.5.5; Wallace, 2006, sec. 2.2, 3.3).
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paper first, we have seen that the structure of effective theories across physics is
best characterized by the fact that they contain intrinsic empirical limitations.
In a slogan: effective theories “predict” their own predictive failure at some
scale. We have also seen that the most straightforward realist explanation
of this predictive pattern is to take effective theories to accurately represent
limited parts of the world, which provides one central constraint for the sort of
entities and structures that a realist might reliably include in his inventory if
he takes effective theories seriously. I gave one concrete example of the sort of
entities that the traditional scientific realist cannot commit to if he interprets
the core descriptions of effective theories in literal terms: namely, he cannot
commit to the existence of continuum fields since their individuating properties
are specified in regimes where the predictions of the theory are likely to break
down. Yet, the domain of empirical validity of an effective theory leaves, at
least in principle, enough space for the realist to commit to the existence of
unobservable entities or structures (as we have seen in the Newtonian case).
As I have argued in the last section, this is not always straightforward. In
particular, the structure of our best current EFTs is such that it is not clear
what we should commit to if we want to make distinctively realist ontological
commitments and avoid making these commitments depend on irrelevant or
artifactual features.

I suspect that many of us still entertain the hope of a robust form of
scientific realism that does not totally fail to adhere to its original letter and
which is concerned with explaining the success of our best theories in their
own terms. In the case of our best current EFTs, a potential candidate for
making distinctively realist ontological commitments appears to be continuum
quantum fields. And if we want to commit to the existence of such entities at
low energies, one potential solution is to modify the traditional semantic tenet
of scientific realism (but keep its ontological and epistemological tenets as
summarized in, e.g., Psillos, 1999, p. xvii). Instead of taking the descriptions
of a continuum field at face value, that is, as being either (approximately) true
or false, we need to take them to be (approximately) true or false relative to
a specific range of physical scales. That is, when we speak about a continuum
field with properties assigned at every point of space-time, we are not literally
making the claim that the field has properties at arbitrarily short distances
simpliciter. We are making a claim about the structure of matter at large
distances. And the descriptions of an effective theory are approximately true
or false relative to these scales up until we discover that the theory breaks
down at some limiting scale, in which case we need to work with a new theory.
If the new theory is effective, we will be again making claims relative to a
specific range of physical scales. This strategy requires us to modify one of
the central tenets of scientific realism usually endorsed by selective realists.
But it might enable us to explain the success of our best theories in their own
terms.
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