
UNIVERSITÀ DI PISA

DIPARTIMENTO DI INFORMATICA

TECHNICAL REPORT

A Lagrangian approach to Chance
Constrained Routing with Local Broadcast

Matteo Cacciola
Dipartimento di Informatica, Università di Pisa
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Abstract

Mobile cellular networks play a pivotal role in emerging Internet of Things (IoT) applications, such as vehic-
ular collision alerts, malfunctioning alerts in Industry-4.0 manufacturing plants, periodic distribution of coordina-
tion information for swarming robots or platooning vehicles, etc. All these applications are characterized by the
need of routing messages within a given local area (geographic proximity) with constraints about both timeliness
and reliability (i.e., probability of reception). This paper presents a Non-Convex Mixed-Integer Nonlinear Pro-
gramming model for a routing problem with probabilistic constraints on a wireless network. We propose an exact
approach consisting of a branch-and-bound framework based on a novel Lagrangian decomposition to derive
lower bounds. Preliminary experimental results indicate that the proposed algorithm is competitive with state-of-
the-art general-purpose solvers, and can provide better solutions than existing highly tailored ad-hoc heuristics to
this problem.

Keywords: Internet of Things, Routing, Broadcast, Chance-Constrained Optimizations, Mixed-Integer Nonlinear
Programs, Lagrangian relaxation, bundle methods, Branch-and-Bound

1 Introduction

Long Term Evolution Advanced (LTE-A) technology for cellular networks is the new forefront in the context
of transmission networks for location-based broadcast services, such as advertising, smart-city applications, and
Internet-of-Things (IoT) deployments. Yet, some new IoT services, such as vehicular collision alerts and augmented-
reality live games, require low latency and high reliability, as well as the possibility to target an area defined by the
application itself rather than the cell coverage. While traditional LTE-A tools can support these services, they do so
at a rather large cost in terms of energy. In fact, on one hand, LTE’s built-in Multicast/Broadcast mechanism was
originally devised for broadcasting multimedia, and therefore unsuitable to this task because it is static: the mes-
sage transmission format, the target area and the period of broadcast transmissions must all be selected statically.
On the other hand, having the base station (antenna), called eNodeB (eNB) in the LTE terminology, relay messages
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Figure 1: System model

to all the User Equipment (UEs) in a target area using unicast downlink (DL) transmissions (one per targeted UE)
would require too many DL resources, hence too much energy. For this reason, recently, a new communication
framework as been proposed. We consider a network of mobiles (UEs) which are under the control of a single
eNB, as shown in Figure 1.

The eNB can send them information using DL (i.e., vertical) transmissions. Information can also travel through
D2D links (i.e. horizontal broadcast transmissions originated at UEs). Vertical links are reliable but costly, and
should be avoided if possible. By contrast, horizontal transmissions are free (from the eNB viewpoint), but not
reliable: there is no ARQ mechanism involved, and it is impractical to try and ascertain which UEs, in the neigh-
bourhood of the transmitter, have successfully decoded a message. However, UEs can act as multi-hop relays:
horizontal transmissions are scheduled by the eNB, which issues grants to the UEs that may transmit. This allows
to model with a reasonable accuracy the probability that a certain horizontal transmission is successful, given the
position of the UEs, the transmission power of the transmitter, and the modulation and coding scheme adopted
for transmission. This yields a new Chance-Constrained Unicast-Multicast Routing Problem (CCUMRP): select
which vertical and horizontal multi-hop transmissions to choose in order to guarantee that all UEs receive the
information with a certain level of reliability within a certain time limit, at minimum energy cost. We propose
a Non-Convex Mixed-Integer Nonlinear Programming (MINLP) model for CCUMRP, together with an ad-hoc
Lagrangian decomposition approach to compute lower bounds that separates the variable of the problem in a
somewhat unusual fashion. We use the latter as the basis of a Branch-and-Bound (B&B) approach that we com-
putationally compare both with state-of-the-art, general-purpose exact solvers and with highly tailored ad-hoc
heuristics for the problem.

2 System Model

We model the system as a graph G = (N,A), where N = {0}∪N′ (0 being the eNB and N′ representing the UEs)
with n = |N′|, while the arc set A = A′∪A′′ consists of two types of arcs:

• vertical arcs A′ of the form (0, i) for all i ∈ N′, representing a DL transmission between the eNB the UE i
having probability 1 to be decoded successfully at i but high energy cost;

• horizontal arcs A′′ of the form (i, j) for i 6= j ∈ N′, representing a D2D transmission from i to j having
probability 0 < Pi j < 1 to be decoded successfully at j, but low (energy) cost.

In the initial stage of the process the eNB transmits the message to a subset of UEs via DL (i.e., vertical trans-
mission), while in the following stages only horizontal transmissions are allowed. A node i ∈ N′ can only issue
an horizontal transmission at a given stage if granted permission from the eNB. At most M grants can be assigned
in each stage, to ensure that the ensuing transmissions are not mutually interfering. The problem is therefore to
transmit the message to the entire floorplan with the following constraints:

1. To ensure timeliness of reception of the message to all UEs, the broadcast process must be over in k stages,
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with k known a priori. Because the first round is clearly “special” (vertical transmissions from eNB to UEs),
it is useful to define the set K′ = {2 , . . . , k} of “normal” stages (horizontal transimissions between UEs).

2. To ensure reliability of reception, at the end of the broadcast process, each UE must possess the message
with at least a given probability α .

The main objective is to reduce the number of vertical transmissions. However, besides them, we also need to
decide which UEs should transmit when (i.e., in which stage), so we must define the schedule of the grants that the
eNB has to issue in order to compose the broadcast schedule. A secondary objective is to issue the least possible
numbers of grants. In our model it is actually easy to generalize this by considering node-and-stage weighted
grants costs β h

i (i ∈ N′, h ∈ K′), e.g., depending on the type of node i and/or its remaining battery power.

3 Mathematical Model

We define the following set of variables:

• binary xi for i ∈ N′ indicating whether node i is selected in the initial set of UEs that are reached by the
vertical transmission from eNB at stage 1;

• continuous ph
i ∈ [0 , 1 ] for i ∈ N′ and h ∈ K indicating the total probability that node i has been reached at

all stages up to h;

• binary gh
i for i ∈ N′ and h ∈ K′ indicating whether node i is selected to receive a grant for broadcasting at

stage h.

The MINLP model of CCUMRP is as follows:

min ∑i∈N′ xi +∑h∈K′∑i∈N′ β
h
i gh

i (1)

p1
i = xi i ∈ N′ (2)

pk
i ≥ α i ∈ N′ (3)

1− ph
i ≥ (1− ph−1

i )∏( j,i)∈A′′(1−gh
j ph−1

j Pji ) i ∈ N′ , h ∈ K′ (4)

∑i∈N′ gh
i ≤M h ∈ K′ (5)

xi ∈ {0 , 1} i ∈ N′ (6)

0≤ ph
i ≤ 1 i ∈ N′ , h ∈ K (7)

gh
i ∈ {0 , 1} i ∈ N′ , h ∈ K′ (8)

The objective function (1) minimizes the number of initial vertical transmissions used in the first stage (h = 1) and
the cost of grants issued during the subsequent stages (h ∈ K′); it is therefore intended that β h

i � 1. Constraints
(2) ensure that all initially targeted nodes are certainly reached. Constraints (3) impose that each UE node i ∈ N′

is ultimately (at stage k) reached with probability at least α; clearly, it would be trivial to generalize the model
by allowing node-specific thresholds αi. Constraints (5) bound the total number of grants available at each stage
(again, it would be trivial to let M depend on h). Finally, the constrains characterizing the model are the nonlinear
nonconvex (4) ones, expressing the probability that node i at stage h has not yet received the message.

Clearly, the problem would be almost trivial were it not for (4); therefore, it is those we will concentrate upon.
Taking logarithms and noting that gh

j = 0 =⇒ log(1−gh
j ph−1

j Pji ) = 0 they can be reduced to

log(1− ph
i )≥ log(1− ph−1

i )+∑( j,i)∈A′′ gh
j log(1− ph−1

j Pji ) (9)

which is at least linear with respect to variables gh
j . However, the logarithm is ill-defined when ph

i = 1, which
certainly happens at least whenever xi = 1. We therefore consider a restriction of the problem by selecting a
constant p̄ < 1 “arbitrarily close to 1”, replacing (2) and (7), respectively, with

p1
i = xi p̄ i ∈ N′ (10)

0≤ ph
i ≤ p̄ i ∈ N′ , h ∈ K′ (11)
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Clearly, each feasible solution of the new model is feasible for the original one as well, and by choosing p̄ ap-
propriately the practical difference between the two is poised to be minimal. Finally, let us mention for future
reference that for the second stage (i.e., h = 2) constraints (9) can be written in the form

log(1− p2
i )≥ log(1− p̄)xi +∑( j,i)∈A′′ g2

j log(1−Pji )x j i ∈ N′ , (12)

whose useful property is that the right-hand side does not contain any continuous variable (the p1
i having been

substituted with the xi). Therefore, (4) can be repalced by (9) for h ∈ K′ \{2} and by (12) for h = 2. Nor that this,
by itself, makes the constraints significantly easier to deal with. However, it allows us to propose a decomposition
approaches to compute globally valid lower bounds.

4 Lagrangian Decomposition

We now discuss a Lagrangian decomposition of the MINLP formulation

min ∑i∈N′ xi +∑h∈K′∑i∈N′ β
h
i gh

i

(10) , (3) , (12) , (9) , (5) , (6) , (11) , (8)

The idea is to relax constraints (12) and (9) with Lagrangian multipliers λ h
i ≥ 0 for i ∈ N′ and h ∈ K′. In so doing,

the problem is decomposed into k separate sub-problem; this is clearly due to the fact that (12)/(9) are the only
constraints that link the variables of one stage to these of the following one. One may expect that each sub-problem
has the variables corresponding to one specific level h ∈ K, but in fact the decomposition is somewhat different,
and perhaps somewhat unusual. Indeed, each sub-problem actually has variables “of one kind” for one stage h and
variables “of another kind” for the subsequent stage h+1 (if any). This is due to the terms gh

j log(1− ph−1
j Pji ) in

(9) (and, similarly, g2
j log(1−Pji )x j in (12)) that link together variables gh

j with variables ph−1
j (x j). We will now

describe the sub-problems. Due to the special nature of the first stage, the corresponding sub-problem clearly has
a particular structure. Not having a subsequent stage, the sub-problem corresponding to the last stage also has a
peculiar form. All the sub-problems corresponding to intermediate stages rather share the same structure.

4.1 Sub-problem h = 1

The first sub-problem contains the xi variables (that substitute for the probability variables p1
i ) of the first stage and

the grant variables g2
i of the second stage, reading

min ∑i∈N′
[

xi +β 2
i g2

i +λ 2
i
(

log(1− p̄)xi +∑( j,i)∈A′′ g2
j log(1−Pji )x j

)]
(13)

∑i∈N′ g2
i ≤M

xi , g2
i ∈ {0 , 1} i ∈ N′

Collecting like terms of (13), and observing that there is no point in setting g2
i = 1 if xi = 0, yields:

min ∑i∈N′
[
(1+λ 2

i log(1− p̄))xi +
(

β 2
i +∑(i, j)∈A′′ λ

2
j log(1−Pi j )

)
g2

i
]

∑i∈N′ g2
i ≤M

g2
i ≤ xi i ∈ N′

xi , g2
i ∈ {0 , 1} i ∈ N′

Since all nonlinear operations are applied to constants, the problem is linear. Furthermore, the special structure of
the constraints ensures that, despite the variables being integer-valued, it can easily be solved in O(n logn).
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4.2 Sub-problems 2 < h < k

Each of these sub-problems contains grant variables gh+1
i of stage h+ 1 and probability variables ph

i of stage h,
reading

min ∑i∈N′
[
(λ h+1

i −λ h
i ) log(1− ph

i )+(
β

h+1
i +∑(i, j)∈A′′ λ

h+1
j log(1− ph

i Pi j)
)
gh+1

i

]
(14)

0≤ ph
i ≤ p̄ i ∈ N′

∑i∈N′ g
h+1
i ≤M (15)

gh+1
i ∈ {0 , 1} i ∈ N′ (16)

Clearly, in this problem each variable ph
i only interacts with the others via the single term in which it is multiplied

by the corresponding gh+1
i . The term is highly nonlinear, but still one can consider the corresponding function

f h
i ( p , g) = (λ

h+1
i −λ h

i ) log(1− p)+
(

β
h+1
i +∑(i, j)∈A′′ λ

h+1
j log(1− pPi j )

)
g .

By computing the two costants ph,g
i = argmin{ f h

i ( p , g) : 0 ≤ p ≤ p̄} for g ∈ {0 , 1}, the sub-problem can be
rewritten as

min
{

∑i∈N′ f h
i ( ph,1

i , 1)gh+1
i + f h

i ( ph,0
i , 0)(1−gh+1

i ) : (15) , (16)
}

and, therefore, again easily solved in O(n logn). The crux of the subproblem therefore lies in the computation
of ph,1

i and ph,0
i . Computing the latter is trivial, as it reduces to minimizing on p ∈ [0 , p̄ ] the monotone function

(λ h+1
i −λ h

i ) log(1− p); the optimum necessarily lies in one of the two extremes. Finding ph,1
i , instead, requires to

tackle a more complex one-dimensional minimization problem of the form

min
{

f (p) = c log(1− p)+∑i∈N′ ai log(1− pbi ) : 0≤ p≤ p̄
}

(17)

whose solution will be discussed in §5.1.

4.3 Sub-problem k

Finally, the remaining Lagrangian term for k is

min
{

∑i∈N′−λ k
i log(1− pk

i ) : α ≤ pk
i ≤ p̄

}
that is separable over i; being the objective convex (λ k

i ≥ 0), the optimum is in the left endpoint pk
i = α .

5 Algorithmic approaches

We now discuss all the relevant detail of the B&B approach to CCUMRP that we developed using the proposed
model and decomposition approach.

5.1 Mono-dimensional problem

The crucial step is clearly the ability to efficiently solve the one-dimensional problem (17). Note that ai = λ
h+1
i ≥ 0,

0 ≤ Pji = bi < 1, while the coefficient c = λ
h+1
i − λ h

i is unrestricted in sign. Yet, if c ≥ 0 then the problem
is trivial: f (p) is a decreasing function with limp→1− f (p) = −∞, so the minimum is attained at p̄. We will
therefore concentrate on the case where c < 0 instead, for which we will prove that there is at most one critical
point p0 ∈ [0 , p̄ ]; moreover, the minimum is either attained at 0 or p0. Indeed, f (p) is the sum of the increasing
function c log(1− p) (c < 0) with vertical asymptote at p = 1, and n decreasing functions ai log(1− pbi ) (ai ≥ 0)
with vertical asymptotes at p = 1/bi > 1 (since bi < 1). Hence, clearly as p→ 1 the increasing function has to
dominate: limp→1− f (p) = +∞, and f (p) has to be strictly increasing “close to” p̄. As p approaches 0, instead,
the behaviour depends on the ai values. In particular, we prove the following two cases: either the function is
decreasing in 0 and becomes increasing “closer to” p̄, which implies that the minimum is attained in the interior,
or the function is increasing in 0 and remains so in the whole interval, which implies that the minimum is attained
at 0.

Lemma 1 If c < 0, 0 ≤ bi ≤ 1 and ai ≥ 0 then there exists at most one critical point p0 ∈ [0 , 1) such that
f ′(p0) = 0, and f (p) is strictly increasing in p0 < p≤ 1.

5



Proof. Consider f ′(p) =− c
1−p −∑i∈N′

aibi
1−pbi

, we have

f ′(p)≥ 0 ⇐⇒ − ∑
i∈N′

(1− p)aibi

(1− pbi)c
= h(p)≤ 1 .

It is now immediate to see that

h′(p) =− ∑
i∈N′

aibi

c
bi−1

(1− pbi)2 ≤ 0

for all p ∈ [0 , 1 ]. This means that there can be at most one point p0 ∈ [0 , 1) such that f ′(p0) = 0, and therefore
f (p) is strictly increasing in ( p0 , 1).

We now analyse convexity of f , showing that if the function is non-convex then there is exactly one point p̂ in
which the second derivative changes its sign, and that the function is convex in [ p̂ , 1 ].

Lemma 2 If c < 0, 0≤ bi ≤ 1 and ai ≥ 0, then there exists at most one point p̂ ∈ [0 , 1) with f ′′(p̂) = 0, and f (p)
is convex in p̂≤ p≤ 1.

Proof. Along the same lines, for f ′′(p) =− c
(1−p)2 −∑i∈N′

aib2
i

(1−pbi)2 we have

f ′′(p)≥ 0 ⇐⇒ − ∑
i∈N′

(1− p)2aib2
i

(1− pbi)2c
= h(p)≤ 1

which similarly yields

h′(p) =− ∑
i∈N′

aib2
i

c
2(1− p)(1− pbi)

bi−1
(1− pbi)4 < 0

for all p ∈ [0 , 1 ]. Again, this implies that if f ′′(p̂) = 0 for some p̂ ∈ [0 , 1), then f ′′(p)≥ 0 (i.e., f is convex) for
all p̂≤ p≤ 1.

To recap, the following three cases can happen:

1. f (p) is increasing in [0 , p̄ ], hence the minimum is 0;

2. f (p) is decreasing in 0 but convex in [0 , p̄ ], hence the minimum is in the interior of the interval;

3. f (p) is decreasing in 0 and convex in [ p̂ , p̄ ] for some p̂ > 0, hence the minimum lies in the interval [ p̂ , p̄ ];

that are represented in Figures 2, 3, 4, respectively.

Figure 2: Increasing Figure 3: Convex Figure 4: Concave, then convex

From an algorithmic viewpoint, such a function can be efficiently globally minimized using a simple global-
ization of Newton’s method. We keep an interval [ p− , p+ ] such that f ′(p−) < 0 and f ′(p+) > 0 (initialized as
[0 , p̄ ], unless if f ′(0) ≥ 0 in which case we immediately terminate). If f ′′(p−) < 0 ( f is non convex at p−) we
use a simple bisection rule to find a point p− < p′ < p+, we compute f ′(p′) and shrink the interval accordingly.
Otherwise ( f is convex at p−) we compute Newton’s step, and we accept it if it belongs to the interval and it shrinks
it enough; otherwise we revert to the simple bisection rule. This is clearly convergent, and typically quadratically
so in the tail. Note that in our function the minimum is often close to 1, so instead of using a standard bisection we
use the point p′ = p−+3/4(p+− p−), as this typically leads to faster initial convergence.
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5.2 Lagrangian dual problem

It is well-known that for each choice of λ ∈R2n
+ , the solution of the corresponding Lagrangian relaxation provides

a valid global lower bound on the optimal value of the original problem. To find the best possible Lagrangian relax-
ation, one then has to solve the Lagrangian Dual problem, i.e., maximize over all λ ≥ 0 the Lagrangian function
consisting of the k terms described in §4.1, 4.2 and 4.3. Even with the best possible choice λ ∗ of the Lagrangian
multipliers, there is no guarantee that the penalty terms in the objective function will lead to a feasible integer solu-
tion, i.e., one that satisfies the relaxed constraints (9) and (12); however, it is well-known that the Lagrangian Dual
is equivalent to the convexified relaxation of the original problem [4]. The efficiency of the solution process obvi-
ously depend on the specific algorithm used to solve the Lagrangian Dual; in our case we use the freely available
implementation of the (generailized) [3] proximal Bundle method already used with success in other applications
(e.g., [7, 6]) provided by the NDOSolver/FiOracle suite of C++ solvers for NonDifferentiable Optimization
problems developed by the Department of Computer Science of the University of Pisa [10].

While we refer to [3] and [10] for details on Bundle methods, we briefly point out two features that are partic-
ularly relevant in our application:

• These methods sample the objective function in a sequence of points and store (a subset of) the first-order
information (subgradients) obtained at each. In the Lagrangian setting, a subgradient corresponds to an
optimal (integer) solution of the Lagrangian subproblem(s). These can be stored alongside the subgradients
(the NDOSolver/FiOracle framework providing appropriate support). At the end (but, actually, at
each iteration) they can therefore be used as starting points for heuristic approaches (cf. §5.3); even more
significantly, they can be used to obtain the optimal solution of the convexified relaxation corresponding to
the Lagrangian dual [4], which can again be useful for heuristic purposes (cf. again §5.3) and is crucial for
branching decisions (cf. §5.4).

• These methods can also work in a disaggregate version exploiting any existing sum-structure of the objective
function, as in our application. This typically results in a much improved convergence speed (e.g., [2, 6]), at
the cost of a more expensive master problem. Thus, whether or not the disaggregate version performs better
than the aggregate one depends on the fine details of the application. In our case, the disaggregate version
was most often faster, reducing by up to 6 times the number of iterations w.r.t. the aggregate one.

5.3 Heuristics

A fundamental component of any partial enumeration approach is the ability of producing good feasible solutions
that can be used to prune nodes of the decision tree (and that ultimately provide the returned best solution). We
can do this, potentially at each iteration, using both the integer, but (typically) not feasible, solution that we obtain
by computing the Lagrangian function, and the continuous, but (quickly) “almost feasible”, convexified solution
that can be obtained as a by-product of solving the master problem in the Bundle method [4]. Actually, exploiting
both synergistically has been shown to be useful in some applications [2, 5].

We will start discussing the use of the integer solution obtained from the computation of the Lagrangian func-
tion. We can clearly ignore the continuous variables ph

j , since we can compute them from the xi and gh
i ones so

that constraints (4) are satisfied. Moreover, the constraints (5) are naturally satisfied since they are a part of the
Lagrangian subproblems. The only constraints that can be not satisfied are (obviously) the relaxed (3) ones; this
means that there are not enough transmission to ensure that all users receive the message with probability at least
α . An obvious idea (reminiscent of that of [2, 5] in a completely different setting) is then to use the unfeasible
solution as starting point and fix more variables to 1 to make it feasible. Given an integer solution, we define the
score of integer variables as follows:

S(xi) =∑ j : pk
j<α

P2
i, j(α− pk

j)
3δi

S(gh
i ) =∑ j : pk

j<α
P2

i, j(α− pk
j)

3 ph−1
i

Intuitively, the higher is the connection (Pi, j) of a user with the other ones that did not receive the message, the
higher is the score of the integer variables related to it. On the other hand, being connected with a users that have
almost received the signals is less important that being connected with another one that is way far from receiving
it, which is the rationale behind the addition of the term (α − pk

j), i.e., the gap between the actual value of pk
j

and the minimum that it have to take to be feasible. Since the xi variables have much larger cost than the gh
i ones

(β h
i � 1), we reflect this by a proper scaling factor δi < 1 (if the costs β h

i are constant with the step we can use
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δi = βi). For the gh
i variables, another important factor is the probability that the user i received the signal at step

h−1, as it is transmitting from a user that has received the signal with low probability is unlikely to be efficient;
this is the rationale behind the extra term ph−1

j . The exponents of these factors could be changed to give them more
or less impact in the final score. Having computed the score, the heuristic is a simple greedy one: until we reach a
feasible solution, we activate the inactive variable with the best score that does not violate (5). This algorithm can
be used starting from every integer solution that satisfies (5), such as the solution of the Lagrangian relaxation and
the null solution.

Another tool that we can use to find an heuristic solution is the convexified solution obtained when we solve
the Lagrangian dual. This is a fractional solution, that can be rounded in order to find an integer one. The rounding
strategy we tried is basically to set to 1 the m0 xi variables having higher (fractional) value in the convexified
solution, and, likewise, setting to 1 the mh gh

i variables having higher value for each step h ∈ K′. The choice of the
parameters mh leads the heuristic solution in different directions: m0 influence how many vertical communications
there will be at step 1, hence a too small value can easily lead to an infeasible solution, but on the other hand a too
large one will typically result in inefficient ones. Unevenly choosing mh can lead either to solutions that prefer to
transmit the signal in the initial steps to make the future transmission more effective, or to solutions that wait the
advanced steps, when the signal is more spread, to make a large number of transmissions.

Unfortunately, all the simple rounding strategies had issues to find feasible solutions. We were still able to
construct feasible solutions by using the thusly constructed integer solution as the initial one in the previously
discussed greedy heuristic. We tested several combination of the parameters in these heuristics, and found that
those that are based on the convexified solution are typically not competitive with these that directly start from
an integer solution. This (somewhat disappointing, in view of much better success obtained in [2, 5]) result is
probably due to the fact that the “quality” of the convexified solution is not very high: the solution is highly
fractional, corresponding to the fact that the bound is not very tight, as discussed in §6.

5.4 Branch-and-bound

Since both upper and lower bounds obtained with the methods previously discussed are not very tight, we imple-
mented an implicit enumeration (Branch-and-Bound) algorithm in order to obtain better gaps.

Most of the implementation choices in the B&B are fairly straightforward. At each node we solve the La-
grangian Dual with a time limit of 1 second, as experience has shown that the dual solution obtained after that time
was typically, if not optimal, good enough as to no warrant further effort. Note that since all values β h

i are fixed to
0.2 in our instances, we can round up the lower bound to the nearest multiple of 0.2. At the end of this process we
run the heuristics based on all the integer solutions that are in the bundle.

The branching rule we used is the standard one of choosing a variable and fix it to 1 in one son and to 0 in the
other. To decide the variable that will be fixed we look at the convexified solution and we choose the fractional
x variable that has the closest value to 0.5; if all the x variables are already fixed, or take integer values in the
convexified solution, we choose a g variable with a similar rule. Branching first on the x variables makes sense
since they are those that are likely to have the most impact on the solution of the problem.

The visit strategy of the decision tree is the standard “best first”: we pick the node that have the lowest lower
bound. The use of best first was dictated by to the relatively poor quality of the lower bound, as this is the strategy
that is known to usually improve it the most.

6 Computational Results

We tested the model on the realistic scenarios constructed with the help of the SimuLTE simulator developed at
the Department of Information Engineering of the University of Pisa [11]. The tool allows to create many instances
of the problem tuning the main parameters of interests; in our experiments we mainly concentrated on the number
of UEs, on the radius (in meters) of the geographical region of interest, and on the required coverage probability
α .

We compared our Lagrangian-based B&B with the state-of-the-art, general-purpose MINLP solver BARON
[1] 18.11.12, as well as with a highly-tailored combinatorial heuristic available in SimuLTE and described in
[8, 9]. For BARON, we scaled the objective function by a factor of 5 so that all the coefficients are integer,
allowing it to also exploit integrality to round up the lower bound. All codes have been compiled with g++ 7.4.0
and ran single-threaded on a machine sporting a 16-core Intel Xeon5120 CPU@2.20GHz and 64Gb RAM, running
Ubuntu 18.04. The results are reported in the following Tables, with two different time limits: 300 seconds and
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3000 seconds. The instances are characterized by the number of UEs (“#”), the radius (“r”) and the covering
probability (“α”). For both exact methods we report the total running time (“time”) if they terminated before the
time limit, and “–” otherwise, plus the total number of B&B nodes (“nodes”). We also report the inherent gap
(“gap”), i.e., (UB−LB)/max{1,LB} (in percentage), where UB and LB are the best upper and lower bound on the
optimal value produced by the corresponding algorithm at termination. To better represent the relative quality of
the upper and lower bounds, we also separately report the primal gap (“pgap”) (UB−UB)/max{1,UB} and the
dual gap (“dgap”) (LB−LB)/max{1,LB} (in percentage), where UB and LB are, respectively, the best (lowest)
known upper bound and best (highest) known lower bound on the optimal value of the instance. Note that since the
largest and hardest instances were not solved within 3000 seconds, a 0 primal or dual gap does necessarily means
that the corresponding UB/LB are the optimal value, but only that they are the best ever found in our experiments.

The results in Table 1 clearly show how challenging CCUMRP is. Only 10-UEs instances can be all solved to
optimality by our approach within the 5-minutes time limit; it is generally more efficient than BARON (which fails
to solve two) except for very large r, where BARON closes at root node. Interestingly, the combinatorial heuristic—
which is the state-of-the-art for the problem up until this work—provides solutions that can be in excess of 50% off
the optimum, although of course does so in orders-of-magnitude less time. When the size of the instances grows,
BARON is basically unable to solve the problem except in a handful of cases, providing both lower and especially
upper bounds that are of no practical value. Our approach cannot be exactly deemed to be very successful, with
final gaps up to 40% with 25 users and even in excess of 200% with 50 users; however, it still produces the best
solutions and lower bounds.

Moving to the time limit of 3000 seconds, depicted in Table 2, confirms that our approach at least scales much
better than BARON; the much faster bound computation allows to enumerate more B&B nodes, which ultimately
results in much better upper and lower bounds. In particular, we are able to solve about half of the instances
with 25 users to optimality, with the other half ending with “reasonable” gaps (at least, if compared with these of
BARON, both lower and upper, and with the upper bounds provided by the combinatorial heuristic). All in all,
our approach is only partly successful. In particular, the lower bound is not particularly tight, which limits the size
of the instances that can be practically solved. However, it at least provides a way to assess the performances of
the heuristics approaches which, due to the extremely tight time limits (a handful of milliseconds) imposed by the
application, are probably the only practical way of approaching the problem. Hopefully, the information provided
by our approach will allow to better identify the limits of the current heuristics, and develop better ones.
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Instances BARON B&B CH
# r α time nodes gap pgap dgap time nodes gap pgap dgap pgap

10 100 0.92 4.86 1 0.00 0.00 0.00 0.59 20 0.00 0.00 0.00 0.00
10 100 0.95 3.07 1 0.00 0.00 0.00 0.58 20 0.00 0.00 0.00 0.00
10 100 0.96 3.43 1 0.00 0.00 0.00 0.67 20 0.00 0.00 0.00 0.00
10 250 0.92 4.92 1 0.00 0.00 0.00 0.44 20 0.00 0.00 0.00 0.00
10 250 0.95 75.39 1 0.00 0.00 0.00 0.73 20 0.00 0.00 0.00 0.00
10 250 0.96 31.32 1 0.00 0.00 0.00 0.46 20 0.00 0.00 0.00 71.4
10 500 0.92 80.67 84 0.00 0.00 0.00 193.8 12323 0.00 0.00 0.00 71.4
10 500 0.95 44.45 52 0.00 0.00 0.00 44.00 2717 0.00 0.00 0.00 40.0
10 500 0.96 383.4 1597 0.00 0.00 0.00 229.1 5130 0.00 0.00 0.00 46.7
10 750 0.92 269.2 1778 0.00 0.00 0.00 153.42 2402 0.00 0.00 0.00 29.4
10 750 0.95 – 715 4.00 0.00 4.00 208.5 6880 0.00 0.00 0.00 38.5
10 750 0.96 – 717 13.0 0.00 13.0 29.87 1026 0.00 0.00 0.00 50.0
10 1000 0.92 1.78 1 0.00 0.00 0.00 79.81 2913 0.00 0.00 0.00 26.9
10 1000 0.95 1.42 1 0.00 0.00 0.00 210.0 13754 0.00 0.00 0.00 36.4
10 1000 0.96 0.82 1 0.00 0.00 0.00 1.91 120 0.00 0.00 0.00 63.6
25 100 0.92 – 1 3780 3050 120 121.6 164 0.00 0.00 0.00 0.00
25 100 0.95 – 17 100 0.00 100 98.45 130 0.00 0.00 0.00 0.00
25 100 0.96 – 18 80.0 0.00 80 57.56 84 0.00 0.00 0.00 0.00
25 250 0.92 – 1 3780 3050 120 12.83 58 0.00 0.00 0.00 0.00
25 250 0.95 – 1 3780 2600 140 11.30 58 0.00 0.00 0.00 0.00
25 250 0.96 – 1 3780 2600 140 10.04 56 0.00 0.00 0.00 0.00
25 500 0.92 – 1 3780 1354 260 – 1995 40.0 7.69 30.0 30.8
25 500 0.95 – 1 3780 1354 260 – 1983 23.1 23.1 0.00 69.2
25 500 0.96 – 1 3780 1250 260 – 1569 23.1 14.3 0.00 42.9
25 750 0.92 – 2 1160 456 80 – 642 40.0 2.94 8.00 32.4
25 750 0.95 – 5 1081 425 88 – 1263 23.3 2.78 0.00 22.2
25 750 0.96 – 4 1081 425 88 – 1004 23.3 2.78 0.00 22.2
25 1000 0.92 – 12 330 210 25 – 1332 14.6 3.28 0.00 36.2
25 1000 0.95 – 10 311 205 26 – 1185 12.5 1.61 3.57 29.0
25 1000 0.96 – 12 294 200 25 – 951 12.3 1.59 5.26 47.6
50 100 0.92 – 1 6280 5133 40 – 283 100 0.00 20.0 0.00
50 100 0.95 – 1 6280 5133 40 – 283 100 0.00 20.0 0.00
50 100 0.96 – 1 6280 5133 40 – 283 100 0.00 20.0 0.00
50 250 0.92 – 1 780 550 80 – 283 60.0 0.00 20.0 0.00
50 250 0.95 – 1 6280 4386 80 – 283 80.0 0.00 20.0 0.00
50 250 0.96 – 1 6280 4386 80 – 284 80.0 0.00 20.0 0.00
50 500 0.92 – 1 6280 2143 140 – 283 180 0.00 40.0 21.4
50 500 0.95 – 1 6280 1993 160 – 284 114 0.00 14.3 20.0
50 500 0.96 – 1 6280 1993 160 – 283 87.5 0.00 0.00 20.0
50 750 0.92 – 1 6280 913 200 – 292 230 6.45 0.00 3.20
50 750 0.95 – 1 6280 772 260 – 291 192 5.56 0.00 22.2
50 750 0.96 – 1 6280 749 260 – 290 185 0.00 0.00 18.9
50 1000 0.92 – 1 6280 398 560 – 283 220 1.59 40.0 11.1
50 1000 0.95 – 1 6280 376 600 – 280 156 4.55 11.1 28.8
50 1000 0.96 – 1 6280 355 700 – 280 154 2.90 25.0 31.9

Table 1: Computational results, time limit 300 seconds
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Instances BARON B&B CH
# r α time nodes gap pgap dgap time nodes gap pgap dgap pgap

10 100 0.92 5.13 1 0.00 0.00 0.00 0.59 20 0.00 0.00 0.00 0.00
10 100 0.95 3.12 1 0.00 0.00 0.00 0.58 20 0.00 0.00 0.00 0.00
10 100 0.96 3.48 1 0.00 0.00 0.00 0.67 20 0.00 0.00 0.00 0.00
10 250 0.92 4.69 1 0.00 0.00 0.00 0.44 20 0.00 0.00 0.00 0.00
10 250 0.95 75.22 1 0.00 0.00 0.00 0.73 20 0.00 0.00 0.00 0.00
10 250 0.96 31.12 1 0.00 0.00 0.00 0.46 20 0.00 0.00 0.00 71.4
10 500 0.92 82.39 84 0.00 0.00 0.00 193.7 12323 0.00 0.00 0.00 71.4
10 500 0.95 46.08 52 0.00 0.00 0.00 44.0 2717 0.00 0.00 0.00 40.0
10 500 0.96 383.4 1597 0.00 0.00 0.00 229.1 5130 0.00 0.00 0.00 46.7
10 750 0.92 269.2 1778 0.00 0.00 0.00 153.42 2402 0.00 0.00 0.00 29.4
10 750 0.95 439.0 911 0.00 0.00 0.00 208.5 6880 0.00 0.00 0.00 38.5
10 750 0.96 1456 2605 0.00 0.00 0.00 29.9 1026 0.00 0.00 0.00 50.0
10 1000 0.92 1.78 1 0.00 0.00 0.00 79.81 2913 0.00 0.00 0.00 26.9
10 1000 0.95 1.66 1 0.00 0.00 0.00 210.0 13754 0.00 0.00 0.00 36.4
10 1000 0.96 0.90 1 0.00 0.00 0.00 1.91 120 0.00 0.00 0.00 63.6
25 100 0.92 – 71 100 0.00 100 121.6 164 0.00 0.00 0.00 0.00
25 100 0.95 – 94 80.0 0.00 80.0 98.5 130 0.00 0.00 0.00 0.00
25 100 0.96 – 109 80.0 0.00 80.0 57.6 84 0.00 0.00 0.00 0.00
25 250 0.92 – 107 80.0 0.00 80.0 12.8 58 0.00 0.00 0.00 0.00
25 250 0.95 – 21 100 0.00 100 11.3 58 0.00 0.00 0.00 0.00
25 250 0.96 – 18 100 0.00 100 10.0 56 0.00 0.00 0.00 0.00
25 500 0.92 – 29 3680 1354 160 – 5300 27.3 7.69 18.2 30.8
25 500 0.95 – 28 3050 1354 117 – 7552 7.69 7.69 0.00 69.2
25 500 0.96 – 39 3050 1250 117 – 6404 23.1 14.3 0.00 42.9
25 750 0.92 – 35 950 456 50.0 – 4295 34.6 2.94 3.85 32.4
25 750 0.95 – 52 845 425 50.0 – 8314 23.3 2.78 0.00 22.2
25 750 0.96 – 49 845 425 50.0 – 4485 26.7 5.56 0.00 22.2
25 1000 0.92 – 82 294 210 14.6 – 12406 12.7 1.64 0.00 36.1
25 1000 0.95 – 83 286 205 18.4 – 11378 10.5 1.61 1.75 29.0
25 1000 0.96 – 104 49.0 20.6 17.7 – 10330 6.67 1.59 0.00 47.6
50 100 0.92 – 11 100 0.00 20 – 2805 80.0 0.00 0.00 0.00
50 100 0.95 – 1 6280 5133 40 – 2804 80.0 0.00 0.00 0.00
50 100 0.96 – 1 6280 5133 40 – 2803 80.0 0.00 0.00 0.00
50 250 0.92 – 1 80.0 0.00 40 – 2795 40.0 0.00 0.00 0.00
50 250 0.95 – 1 100 0.00 40 – 2796 60.0 0.00 0.00 0.00
50 250 0.96 – 1 100 0.00 40 – 2794 60.0 0.00 0.00 0.00
50 500 0.92 – 1 6280 2143 140 – 2773 100 0.00 0.00 21.4
50 500 0.95 – 1 6280 1993 160 – 2779 87.5 0.00 0.00 20.0
50 500 0.96 – 1 6280 1993 160 – 2763 87.5 0.00 0.00 20.0
50 750 0.92 – 8 3040 913 0.00 – 2947 230 6.45 0.00 3.20
50 750 0.95 – 10 3040 773 30.0 – 2942 177 0.00 0.00 22.2
50 750 0.96 – 8 3040 749 30.0 – 2955 185 0.00 0.00 18.9
50 1000 0.92 – 20 1470 398 40.0 – 2825 125 0.00 0.00 11.1
50 1000 0.95 – 13 1395 376 42.9 – 2880 127 3.03 0.00 28.8
50 1000 0.96 – 14 1327 355 59.1 – 2784 97.1 0.00 0.00 31.9

Table 2: Computational results, time limit 3000 seconds
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