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Aim To analyze axon morphology on rapid Golgi impreg-
nated pyramidal neurons in the dorsolateral prefrontal cor-
tex in schizophrenia.

Methods Postmortem brain tissue from five subjects diag-
nosed with schizophrenia and five control subjects with-
out neuropathological findings was processed with the 
rapid Golgi method. Layer III and layer V pyramidal neu-
rons from Brodmann area 9 were chosen in each brain for 
reconstruction with Neurolucida software. The axons and 
cell bodies of 136 neurons from subjects with schizophre-
nia and of 165 neurons from control subjects were traced. 
The data obtained by quantitative analysis were compared 
between the schizophrenia and control group with the t 
test.

Results Axon impregnation length was consistently great-
er in the schizophrenia group. The axon main trunk length 
was significantly greater in the schizophrenia than in the 
control group (93.7 ± 36.6 μm vs 49.8 ± 9.9 μm, P = 0.032). 
Furthermore, in the schizophrenia group more axons had 
visibly stained collaterals (14.7% vs 5.5%).

Conclusion Axon rapid Golgi impregnation stops at the 
beginning of the myelin sheath. The increased axonal 
staining in the schizophrenia group could, therefore, be 
explained by reduced axon myelination. Such a decrease 
in axon myelination is in line with both the disconnection 
hypothesis and the two-hit model of schizophrenia as a 
neurodevelopmental disease. Our results support that the 
cortical circuitry disorganization in schizophrenia might 
be caused by functional alterations of two major classes 
of principal neurons due to altered oligodendrocyte devel-
opment.
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Schizophrenia is a psychiatric disorder that manifests as vari-
ous symptoms: positive (hallucinations and delusions), neg-
ative (flattened affect and apathy), and cognitive (memory, 
attention, and reasoning deficits) (1). Its etiology and patho-
genesis remain unresolved. Although it is generally accept-
ed that a combination of genetic and environmental factors 
is necessary for the clinical manifestation of schizophrenia, 
the exact mechanisms are still not completely understood. 
Several hypotheses on the origins of schizophrenia have 
been proposed. Most of these are not necessarily mutually 
exclusive. They are based on either altered levels of differ-
ent neurotransmitters (such as dopamine, GABA, and glu-
tamate) or reduced cortical synaptic connectivity (1). The 
dopamine hypothesis suggests that psychotic symptoms in 
schizophrenia are a result of excessive dopamine D2 recep-
tor activation and is supported by the effectiveness of an-
ti-psychotic drugs that block D2 receptors (2-4). The gluta-
mate hypothesis suggests that the etiology of both positive 
and negative symptoms could be explained by the dysfunc-
tion of N-methyl-D-aspartate (NMDA) glutamate receptors, 
particularly in the prefrontal cortex (PFC) – this is supported 
by the fact that ketamine, which blocks NMDA receptors, 
causes schizophrenia-like symptoms and is, therefore, used 
as a pharmacological model for schizophrenia (5,6). The 
GABA hypothesis explains the pathogenesis of schizophre-
nia by alterations in the GABAergic network, such as altered 
GABA synthesis and re-uptake in the dorsolateral prefrontal 
cortex (dlPFC) (7,8).

The disconnection hypothesis is of particular interest and 
is in line with the two-hit model of schizophrenia as a neu-
rodevelopmental disease (1,9,10). It supposes reduced or 
dysfunctional synaptic connectivity between different 
cortical areas, particularly the mesocortical pathway in-
volving the PFC. Functional connectivity might be greatly 
affected by structural alterations of specific neuron classes 
that have a major role in the integration of cortico-corti-
cal and cortico-subcortical networks, such as layer IIIC and 
layer V neurons in the dlPFC. Layer IIIC pyramidal neurons 
have long contralateral and ipsilateral associative (cortico-
cortical) projections. Layer V pyramidal neurons have pro-
jections to the basal nuclei and are the principal cells of 
the associative cortex – basal nuclei circuit (11,12). Post-
mortem studies have shown that schizophrenia patients 
have reduced soma size, spine densities, and smaller den-
dritic arbors on pyramidal cells in the PFC (13-15). A de-
crease in synaptic protein messengers and synaptophysin 
in the dlPFC was also found (1). Interestingly, there are no 
studies focusing on axonal properties and morphology in 
schizophrenia.

Recent studies have revealed that abnormalities in oligo-
dendrocytes lead to altered myelination in schizophrenia 
(16-23). Myelination is a complex process that includes 
proliferation, migration, and differentiation of oligoden-
drocyte precursor cells, membrane outgrowth, axonal 
wrapping and myelin compaction with node formation 
(24). Normally, myelin is dynamically regulated by experi-
ence during development and in adulthood, having a role 
in brain plasticity (24). Defects in the myelination process 
in schizophrenia are likely to affect axon conductivity and 
contribute to the disconnection hypothesis.

It is well-established that the degree of myelination affects 
axon impregnation in Golgi staining (25,26). This means 
that it is possible to indirectly assess myelination by eval-
uating the axon impregnation in Golgi staining. The rap-
id Golgi method homogeneously stains neural cell struc-
tures, including cell bodies, dendrites, and axons, enabling 
clear visualization of morphological details. Rapid Golgi 
stains the cerebral cortex more clearly than other parts of 
the brain and is particularly well suited for evaluating axon 
staining and for observing detailed anatomical morphol-
ogy of neurons (27). The aim of this study is, therefore, to 
analyze axon morphology in schizophrenia in the dlPFC on 
rapid Golgi slides.

MATERIAL AND METHODS

Brain tissue samples

Quantitative Golgi analysis was performed on the brain 
samples of ten human subjects aged from 30 to 86 years 
with a postmortem delay of 6 to 24 hours (Table 1).

Five subjects had no medical history of neurological or 
psychiatric disorders and no neuropathological deviations 
in the brain on autopsy. Another five samples were taken 
from patients with diagnosed schizophrenia during life ac-
cording to DSM III and ICD-9 criteria. Relevant medical his-
tory was obtained from both autopsy reports and medical 
records. All analyzed subjects died without preagonal state, 
and the postmortem delay represents the actual interval of 
neuron death. The brain tissue is a part of the Zagreb Neu-
roembryological Collection (28,29). It was obtained with 
the approval of the Ethics Committee of Zagreb University 
School of Medicine (380-59-10106-14-55/152). The infor-
mation on the subject’s identity and history is stored in 
secure records, and the brain tissue is given a code in-
dicating only the subject’s age. The analysis was per-
formed during 2018.
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The brain tissue was cut into blocks following Talairach co-
ordinates (30). Tissue blocks of the dlPFC from the right 
hemisphere containing the superior frontal gyrus (Brod-
mann area 9) were selected for rapid Golgi staining (31). 
Brodmann area 9 was delineated on neighboring Nissl 
slides according to relevant literature (32). Cortical layers 
were also distinguished using neighboring Nissl slides.

Golgi staining

The tissue was processed with the classical chrome-osmi-
um rapid Golgi staining method (11,33-36). It was placed 
in 4% paraformaldehyde for 12-18 h and afterwards im-
mersed in rapid Golgi solution consisting of 0.3% osmium 
tetroxide and 3% potassium dichromate for seven days. 
The solution was replaced with 1% silver nitrate, in which 
the tissue was immersed for two days. These steps were 
performed in a darkened room. The tissue blocks were 
then dehydrated in an ethanol cascade (70%, 96%, ab-
solute ethanol) and put in alcohol-ether (1:1). The tissue 
segments were rapidly embedded in celloidin and seri-
ally cut on a microtome into coronal slides at a thickness 
of 200 μm. They were briefly dehydrated (50%, 70%, 96%, 
ethanol, butanol-ethanol) and placed into Histoclear and 
mounted with Histomount (National Diagnostics, Atlanta, 
GA, USA).

The success of Golgi impregnation was determined in ac-
cordance with relevant literature (12,34,37,38). No staining 
artifacts due to postmortem delay were detected.

Neurolucida three-dimensional reconstructions

Pyramidal neurons with large and medium-sized cell bod-
ies (average cell body area was 347 μm2) from layers III 

and V of Brodmann area 9 were selected for three-di-
mensional reconstruction with Neurolucida 4 soft-

ware (MBF Bioscience, Williston, Vermont, USA) using a 
60 × air objective of an Olympus BX50 microscope con-
nected to a Hitachi 3CCD color video camera HV-C20M. 
The neurons were selected for reconstruction as follows: 
slides of brain tissue from Brodmann area 9 were num-
bered and randomly chosen for analysis. Subsequently, py-
ramidal neurons from a region of 3 mm pial length that 
encompassed all cortical layers meeting the following cri-
teria were selected: the neurons had to be positioned in 
the middle of the section and the axons should not be cut 
on the slide edge. Another criterion was that the neurons 
had fully impregnated somata as well as four or more bas-
al dendrites with at least third-order dendritic branching, 
in order to ensure adequate impregnation (39). Fusiform-
modified pyramidal neurons, typical for layer VI, were not 
included in the analysis. A total of 165 neurons from con-
trol brains (the number of analyzed neurons per subject: 
30, 38, 30, 32, and 35) and 136 neurons from brains with 
schizophrenia (the number of analyzed neurons per sub-
ject: 31, 23, 19, 30, and 33) were selected for reconstruction 
(Table 1). Of the analyzed neurons, 75%-80% were from 
layer III and 20%-25% were from layer V.

The cell body and axons were traced separately. For the 
axon, the shaft branch order was applied. The main trunk 
of the axon directed to the white matter was designated 
as first order, while the collateral branches were designat-
ed as second order segments. For potential branches of 
second order segments, the centrifugal branch order was 
applied. The three-dimensional reconstructions were an-
alyzed with Neurolucida Explorer 4 (MBF Bioscience). The 
Branched Structure Analysis function was used to obtain rel-
evant data for the cell bodies and axons (36).

For cell bodies, the parameter Area was analyzed. Area re-
fers to the surface within the boundary of the cell body 
in μm2. For axons, the parameters Length, Surface, Volume, 

Table 1. Characteristics of brain tissue samples of controls and subjects with schizophrenia

Sample Sex Age (years) Postmortem delay (h) Cause of death Neuropathology Number of analyzed neurons

CO171 M 86   6 multiple trauma none 30
CO180 M 30 11 multiple trauma none 38
CO211 M 58 14.5 sudden cardiac death none 32
CO215 F 52 24 multiple trauma none 30
CO246 F 62 11 pneumonia none 35
CO193 F 53 18 suicide (hanging) schizophrenia 31
CO195 F 39 22 sudden cardiac death schizophrenia 23
CO249 M 64 10.5 sudden cardiac death schizophrenia 19
CO250 M 60 17 sudden cardiac death schizophrenia 30
CO253 M 55 14.5 sudden cardiac death schizophrenia 33
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Tortuosity, Base Diameter, and Average Diameter were ana-
lyzed. Length refers to the total length of line segments 
used to trace a stained axon segment. Surface and Vol-
ume refer to the total surface area and total volume of a 
stained axon segment, respectively, and are computed by 
modeling the pieces of the segment as truncated circu-
lar cones. Tortuosity is the ratio between the length of a 
stained axon segment and the distance (straight line) be-
tween the endpoints of the segment. A straight axon seg-
ment would have tortuosity of 1, and tortuosity increases 
with the complexity of the path of the axon segment. Base 
Diameter represents the diameter of the axon segment 
at the start of the segment, while Average Diameter is a 
length-weighted mean of the diameter along the stained 
axon segment.

The length of the axon main trunk and of the axon collat-
erals were analyzed separately as “axon main trunk length” 
and “axon collateral length.” “Axon main trunk length” re-
fers to the average stained length of the main trunk of the 
axon, ie, the average length of first order axon segments. 
The parameter “axon collateral length” refers to the aver-
age stained length of the axon collaterals, ie, the average 
length of second order axon segments. Surface, Volume, 
Tortuosity, Base Diameter, and Average Diameter were evalu-
ated only for the axon main trunk, ie, for first order axon 
segments (parameters: “axon main trunk surface,” “axon 
main trunk volume,” “tortuosity of axon main trunk,” “base 
diameter of axon main trunk,” and “average diameter of 
axon main trunk”).

Quantitative data analysis

Quantitative data analysis was performed with GraphPad 
Prism, version 8.3.0 (GraphPad Software, La Jolla, CA, USA) 
and SPSS, version 26 (IBM Corp., Armonk, NY, USA).

To ensure that the schizophrenia and control groups dif-
fer in as few parameters as possible (except in neuropa-
thology), the two groups were compared for age and post-
mortem time using the Mann-Whitney test. P < 0.05 was 
considered statistically significant. Both groups contained 
three male and two female subjects (Table 1), which elimi-
nated possible bias regarding sex.

The analyzed parameters (axon main trunk length, axon 
main trunk surface, axon main trunk volume, tortuosity 
of axon main trunk, base diameter of axon main trunk, av-
erage diameter of axon main trunk, and axon collateral 
length) pertaining to neurons from each brain were shown 

to likely be sampled from a log-normal distribution. The 
distribution of the parameters was evaluated using Graph-
Pad Prism’s in-built software, which runs four normality 
and four log-normality tests. The software fits a normal 
or log-normal distribution using the maximum likelihood 
method and compares the two likelihoods. Since the loga-
rithmic distribution is characterized by the presence of ex-
tremely high values, to which the arithmetic mean is very 
sensitive, a more appropriate measure of central tendency 
to describe such data sets is the geometric mean. There-
fore, the data for individual brains as well as for all pooled 
data are presented as geometric mean ×  ÷ geometric stan-
dard deviation factor (GSDF) (40).

For every analyzed parameter pertaining to the axon main 
trunk, the geometric mean was calculated for each individ-
ual brain. These geometric means were used to calculate 
the means and standard deviations for the schizophrenia 
and control groups. For parameters pertaining to axon col-
laterals, only pooled data are presented.

For comparison between the schizophrenia and control 
groups, t-test was used. P < 0.05 was considered statisti-
cally significant.

Since the data are obtained from a hierarchical model, in 
order to verify the validity of the comparison between the 
groups, we also addressed different levels of variability by 
modeling the data using a generalized linear mixed model 
(GLMM). The advantage of a GLMM is that it can account 
for non-normal distributions as well as for a multilevel (hier-
archical) data structure with both random and fixed effects 
(41-43). In particular, the analysis addressed the variability 
of data within a subject, between subjects, and between 
groups. Neuropathology (presence or absence of schizo-
phrenia) was modeled as a fixed effect, while the subjects 
and neurons within the subjects were modeled as random 
effects. The analyzed parameters defined beforehand were 
modeled as dependent variables (“target” in SPSS). The es-
timated marginal means were computed based on the 
original scale of the target.

Correlation between several possible confounding fac-
tors (cell body Area, age, and postmortem delay) and “axon 
main trunk length” was determined. Spearman’s rank corre-
lation coefficient ρ was used as a measure for the strength 
of the association (44). The t-test was used to determine 
whether the observed correlation coefficient could re-
sult from random sampling, with P < 0.05 being consid-
ered statistically significant.
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RESULTS

A qualitative evaluation of the rapid Golgi slides revealed 
an increase in the length of axon impregnation in the 
schizophrenia group (Figure 1 and Figure 2). This observa-
tion was confirmed by quantitative analysis of the Neuro-
lucida three-dimensional reconstructions. No qualitative 
or quantitative differences were observed between layer III 
and layer V neurons and, therefore, neurons from both lay-
ers were analyzed jointly.

Axon main trunk

The analysis of pooled data for the axon main trunk length 
showed that the axon main trunk length was substantial-
ly greater in the schizophrenia (88.7 μm ×  ÷ 2.4) than in the 
control group (49.0 μm ×  ÷ 2.0) (Figure 3). This was also ob-
served in the analysis of average values per subject – ax-
ons from the schizophrenia group had significantly longer 
stained segments (93.7 ± 36.6 μm) than those from the con-
trol group (49.8 ± 9.9 μm, P = 0.032) (Figure 4 and Figure 5A). 
The axon main trunk surface (287.9 ± 78.6 μm2 vs 163.7 ± 16.7 

μm2, P = 0.009, Figure 5B) and main trunk volume (81.2 ± 23.7 
μm3 vs 47.2 ± 9.4 μm3, P = 0.017, Figure 5C) were also signifi-
cantly greater in the schizophrenia group than in the control 
group. There were no significant differences in tortuosity, 
base diameter, and average diameter of the axon main trunk 
between the schizophrenia and control group (Figure 6).

Axon collaterals

The axon collateral length was greater in the schizophre-
nia group (33.1 μm ×  ÷ 3.0) than in the control group (22.3 
μm ×  ÷ 2.7). Furthermore, the neurons in the schizophrenia 
group had an average number of collaterals per axon of 
0.22, compared with 0.07 in the control group. More axons 
had visibly stained collaterals in the schizophrenia group 
(14.7%) than in the control group (5.5%).

Results of generalized linear mixed model analysis

The GLMM analysis revealed that for all the analyzed pa-
rameters, the random effects were not significant. The 

Figure 1. High-power microphotograph of a rapid Golgi 
impregnated slide from a schizophrenia subject (CO195). The 
figure is a composition of several microphotographs of the 
same slide taken at different section depths. The arrowheads 
indicate the impregnated axon.

Figure 2. Neurolucida three-dimensional reconstruction of 
rapid Golgi impregnated axons and neuron cell bodies. (A) 
CO180 from the control group and (B) CO195 from the schizo-
phrenia group.
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fixed effect (neuropathology) was significant for axon main 
trunk length, axon main trunk surface, and axon main trunk 
volume, while it was not significant for tortuosity, base di-
ameter, and average diameter (Table 2).

Analysis of confounding factors

There was a weak negative correlation between age and 
axon main trunk length (ρ = - 0.176), which was not sig-

nificant (P = 0.632) (Figure 7A) and a medium correlation 
between postmortem delay and axon main trunk length 
(ρ = 0.491), which was also not significant (P = 0.155) (Fig-
ure 7B). The correlation between cell body Area and axon 
main trunk length was weak (ρ = 0.183) but significant 
(P = 0.001) (Figure 7C). There were no significant differenc-
es in the age of the subjects (P > 0.999) and postmortem 
delay (P = 0.476).

Table 2. Results of generalized linear mixed model analysis

Target (analyzed 
parameter, ie, 
dependent variable)

Fixed coefficient  
neuropathology = schizophrenia

Fixed coefficient 
neuropathology = control

Fixed 
effect 

(neuropathology) 
P

1st random 
effect 

(subjects) 
P

2nd random 
effect 

(neurons) 
P

estimated 
mean

standard 
error

95% confidence 
interval

estimated 
mean

standard 
error

95% confidence 
interval

Axon main trunk length 123.277 16.767   [92.560, 156.275]   63.962 14.532   [35.365, 90.280] 0.008 0.240 0.923
Axon main trunk surface 360.382 27.113 [307.025, 413.739] 196.182 18.064 [160.632, 231.732] <0.001 0.601 0.884
Axon main trunk volume 101.416   8.786   [84.126, 118.707]   57.168   7.0184   [43.356, 70.980] <0.001 0.330 0.948
Tortuosity     1.259   0.053     [1.155, 1.362]     1.185   0.052     [1.082, 1.287] 0.316 0.069 0.772
Base diameter     1.793   0.212     [1.376, 2.210]     1.558   0.208     [1.148, 1.968] 0.430 0.074 0.902
Average diameter     1.103   0.082     [0.942, 1.264]     1.084   0.081     [0.924, 1.243] 0.865 0.070 0.346

Figure 3. Pooled data showing the comparison of axon main trunk length between the schizophrenia and control group. The black 
lines and error bars denote the geometric means and geometric standard deviation factors. (A) Individual data points plotted on a 
linear axis. (B) Individual data points plotted on a logarithmic axis.
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DISCUSSION

In this study, the staining of the axon main trunk was on 
average significantly longer than in the control group. This 
was supported by the results of the GLMM analysis, which 
suggest that the differences between the two groups could 
be mainly attributed to the differences in neuropathology.

The rapid Golgi method stains the axon up to the begin-
ning of the myelin sheath (25,26), and, therefore, the length 
of axon impregnation is expected to be negatively corre-

lated with the myelination level. The axon impregnation 
length reflects lifespan changes in the myelination pro-
cess. In infants, when the myelination process is still ongo-
ing (26,45,46), a large part of the axon is visualized on rapid 
Golgi slides. As myelination increases through childhood, 
adolescence, and early adulthood, a smaller portion of the 
axon is visible (47,48). In our study, the beginning of the 
myelin sheath in the schizophrenia group was, on average, 
located more distally than in controls. Our findings suggest 
that in schizophrenia the myelination process is altered, 
which could be explained by a loss of oligodendrocytes, 
impaired function of oligodendrocytes in myelin sheath 
production, or a combination of these factors. Various 
studies have confirmed that in schizophrenia the absolute 
number of oligodendrocytes was significantly decreased 
in Brodmann areas 9 and 24 and in the anterior thalamic 
nucleus (49-51). Other studies have also found reduced ex-
pression of genes associated with oligodendrocytes and 
myelin (52). There are also direct observations of oligoden-
drocyte aberrations, which include alterations in the num-
ber, spacing, and morphology of oligodendrocytes as well 
as abnormalities in myelin formation (53). It is speculated 
that oligodendrocyte abnormalities and consequent my-
elin dysfunction could alter synaptic function and informa-
tion processing, which could be important contributing 
factors for the development of schizophrenia (52).

Based on the neurodevelopmental schizophrenia model, 
structural lesions in the perinatal period can interact with 
the process of synaptic pruning in associative circuitry 
during late adolescence and early adulthood (54-57). It is, 

Figure 4. Comparison of axon main trunk length between 
the schizophrenia and control group. The individual values are 
plotted on a logarithmic axis. The black lines and error bars 
denote the geometric means and geometric standard devia-
tion factors.

Figure 5. Comparison of (A) axon main trunk length, (B) axon main trunk surface, and (C) axon main trunk volume between the 
schizophrenia and control group. The black circles and rhombs denote the arithmetic means of the schizophrenia and control group, 
respectively (derived from the geometric means of individual brains within each group). The error bars denote the standard devia-
tion. Significant differences are marked by asterisks.
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Figure 6. Comparison of (A) tortuosity, (B) base diameter, and (C) average diameter of the axon main trunk between the schizophre-
nia and control group. The black circles and rhombs denote the arithmetic means of the schizophrenia and control group, respec-
tively (derived from the geometric means of individual brains within each group). The error bars denote the standard deviation.

Figure 7. Association between axon main trunk length and possible confounding factors: (A) age, (B) postmortem delay, and (C) 
cell body Area.
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therefore, possible that decreased myelination could be re-
lated to a disrupted development.

Our findings suggest that not all projection neurons are 
affected by demyelination equally. On average, there was 
a clear overall shift toward a greater axon impregnation 
length in schizophrenia subjects, and the average values 
of all schizophrenia subjects were higher than those of 
the control group. In schizophrenia subjects, at least half 
of the neurons had an axon impregnation length of over 
100 μm, whereas in control subjects such length was pres-
ent in only 10%-20% of neurons. In addition, four schizo-
phrenia subjects had several neurons with a substantially 
greater axon impregnation length – this was observed in 
only one control subject. It is worth noting that the vari-
ability in axon staining within a single brain was quite high 
and was particularly pronounced in subjects CO195 and 
CO246. These subjects also had the highest mean values 
in the schizophrenia and control groups, respectively. Our 
data strongly suggest an overall slight decrease in the level 
of axon myelination of pyramidal neurons in schizophre-
nia, which appears to highly affect certain proportion of 
neurons. Neurons with a high level of demyelination may 
have important functional alteration. Due to the central 
integrative role of deep layer III neurons in the cortico-
cortical network and of large layer V neurons in guiding 
cortico-striatal executive actions, even demyelination af-
fecting a small proportion of these neurons could cause 
global changes in cortico-cortical and cortico-subcortical 
processing (11,12). In this study, we observed no discern-
ible differences in axon staining between layer III and lay-
er V pyramidal neurons, which is particularly interesting 
since layers III and V have vastly different connections. This 
suggests that the observed increase in the length of axon 
staining in schizophrenia subjects may be due to a process 
that uniformly affects pyramidal neurons of different layers, 
or at least the pyramidal neurons of layers III and V.

The analysis of potential confounding factors revealed that 
the size of the neuron cell body (cell body Area) was weakly 
associated with the length of axon staining. We also dem-
onstrated that the subjects’ age at death and postmortem 
delay on axon staining were unlikely to contribute to the 
observed differences between the schizophrenia and con-
trol groups. Age-related changes in the PFC have previous-
ly been described regarding the dendritic field, dendritic 
spine density, and synapse density (58), however, changes 
pertaining to the axon are rarely substantially analyzed. 

Different studies showed different conclusions regard-
ing the types of pyramidal neurons that significantly 

regressed with age (58). Our analysis did not suggest any 
substantial differences in axon structure or axon stain-
ing related to age. In addition, no differences in tortuos-
ity, base diameter, or average diameter were observed be-
tween the groups, suggesting that there were no major 
structural abnormalities in the axon main trunk. Further-
more, no changes in axon orientation were observed be-
tween the schizophrenia and control group.

Due to the limitations of the rapid Golgi method (36,39) 
and the fact that present observations provide only indirect 
proof of altered myelination, further research is needed to 
assess the underlying mechanisms of oligodendrocyte pa-
thology in schizophrenia. Notwithstanding the exact un-
derlying mechanisms, decreased myelination of the axon 
could alter axon potential propagation and may increase 
the energy demands of certain neuron types, such as fast-
spiking cells (25). In particular, the loss of proximal axon 
myelination may modify axon potential triggering, which 
could, change the firing rate of affected neurons. Such a 
decrease in axon myelination is in line with both the dis-
connection hypothesis and the two-hit model of schizo-
phrenia as a neurodevelopmental disease (1,9,10).

In conclusion, neurodevelopmental alterations during in-
fancy and early childhood could present an opportunity 
for early detection of subjects at risk for developing schizo-
phrenia (59). Therefore, decreased myelination could be 
used as a biomarker for schizophrenia before the onset of 
the first typical symptoms.
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