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Modeling the Volatility of Cryptocurrencies: An Empirical Application of Stochastic 
Volatility Models
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ABSTRACT

This paper compares a number of stochastic volatility (SV) models for modeling and predicting the volatility of the four 
most capitalized cryptocurrencies (Bitcoin, Ethereum, Ripple, and Litecoin). The standard SV model, models with 
heavy-tails and moving average innovations, models with jumps, leverage effects and volatility in mean were considered. 
The Bayes factor for model fit was largely in favor of the heavy-tailed SV model. The forecasting performance of this 
model was also found superior than the other competing models. Overall, the findings of this study suggest using the 
heavy-tailed stochastic volatility model for modeling and forecasting the volatility of cryptocurrencies. 
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ABSTRAK

Kertas ini membandingkan beberapa model kemeruapan stokastik (SV) untuk pemodelan dan penganggaran kemeruapan 
empat modal mata wang kripto (Bitcoin, Ethereum, Ripple dan Litecoin). Model standard SV, model dengan hujung 
berat dan inovasi purata pergerakan, model dengan lompatan, kesan pengaruh dan kemeruapan dalam min diambil 
kira. Faktor Bayes untuk model penyuaian selalunya menyebelahi model SV hujung berat. Prestasi peramalan model 
ini didapati superior daripada model lain yang dibandingkan. Secara keseluruhan, keputusan kajian ini mencadangkan 
penggunaan model kemeruapan stokastik hujung berat untuk pemodelan penganggaran kemeruapan mata wang kripto. 

Kata kunci: Kemeruapan stokastik; lompatan; mata wang kripto; perbandingan model Bayesi; pengaruh

INTRODUCTION

Cryptocurrencies are found highly volatile and show 
extreme tail events as compared to traditional currencies. 
Accurate forecasts of volatility and hence Value-at-Risk 
is of vital importance for better decision of investors, 
practitioners, and policymakers. It is also important to 
create a model capable of understanding the unique 
characteristics and dynamics of cryptocurrencies by using 
traditional and novel techniques (Peng et al. 2018). Bitcoin 
is one of the most important digital currencies with a 
market capitalization exceeding $140 billion and 
representing more than 60% of the total cryptocurrencies 
capitalization in June 2018 (https://coinmarketcap.com). 
There are more than 2000 cryptocurrencies. Ethereum, 
Ripple, and Litecoin are other important digital currencies 
among top ten cryptocurrencies. These cryptocurrencies 
are characterized by high volatility and some large shocks 
and jumps.    

Bitcoin, introduced by Nakamoto (2009), is the most 
popular and prominent decentralized cryptocurrecy. 
Ethereum is another popular decentralized cryptocurrency. 
The joining of 86 new members to Enterprise Ethereum 
in 2017 made it gained significant momentum through the 
first half of 2017. Litecoin, a leading rival of Bicoin, was 
created in 2011 by Charles Lee. One of the main features 
of Litecoin that make it particularly attractive in time-

critical situations is its significantly faster confirmation 
time for transactions. The transactions in Litecoin can be 
done in minutes rather than hours and hence become a 
popular choice for payment. Ripple, developed in 2012, is 
not a fully decentralized cryptocurrency but enables bank 
to send real-time international payment across networks. 
One feature of Ripple that gives it an endge over Bitcoin 
is its greater control over the system and it is not subject 
to the price volatility of the underlying currencies.

The Generalized Autoregressive Conditional 
Heteroscedastic (GARCH) model of Bollerslev (1986) and 
its variants are famous volatility models for modeling the 
exchange rate of traditional as well as cryptocurrencies. 
Most of the literature on cryptocurrencies focus on 
modeling the volatility through GARCH-type models. A 
major reason for the popularity of GARCH-type models 
for describing the dynamics of cryptocurrencies volatility 
is their deterministic dependence of the conditional 
variance on past observations which enables simple 
estimation of parameters.  

Research on cryptocurrencies other than Bitcoin is 
limited (Gkillas & Katsiampa 2018). Several GARCH 
models with Gaussian errors were employed by Katsiampa 
(2017) to estimate the volatility of Bitcoin and the AR(1)-
CGARCH(1,1) model was found the best. Using GARCH 
models with different error distributions, Chu et al. (2017) 
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concluded that the IGARCH(1,1) model estimates the 
Bitcoin volatility better than the competing models. Liu et 
al. (2017) reported the superior performance of the 
GARCH model with Student- errors than GARCH models 
with Gaussian and reciprocal inverse Gaussian errors. 
Urquhart (2017) concluded that the forecasting capability 
of heterogeneous autoregressive models is superior to 
GARCH models and found no evidence of the leverage 
effect in the Bitcoin market. Univariate and multivariate 
GARCH models and vector autoregressive specifications 
were also used in literature to study the dynamic properties 
of Bitcoin (Stavroyiannis & Babalos 2017). The 
relationship between Bitcoin price returns and volatility 
were investigated through asymmetric GARCH models 
by Bouri et al. (2017). 

 Cheong et al. (2012) aimed to acquire an appropriate 
asymmetric time-varying volatility model for the forecast 
evaluations based on intraday and interday data and found 
that the threshold GARCH model showed the superior 
in-sample whereas the power ARCH model showed the 
superior out-of-sample forecasts. Naimy and Hayek (2018) 
evaluated the forecasting performance of the standard 
GARCH and exponential GARCH (EGARCH) models 
with Gaussian, generalized error and Student- distributions 
and concluded the superior predictive ability of the 
EGARCH model. Catania et al. (2018) compared the 
Gaussian GARCH model with the generalized 
autoregressive score (GAS) models of  Creal et al. (2013) 
and Harvey (2013). The GAS model was found to 
outperform the standard GARCH model. Peng et al. (2018) 
compared both the symmetric (GARCH) and asymmetric 
(EGARCH and GJR-GARCH) models against the Support 
Vector Regression GARCH (SVR-GARCH) model of 
Bezerra and Albuquerque (2017). The symmetric and 
asymmetric Gaussian and Student- errors were assumed 
and the volatility forecasts were compared. The results 
showed that the SVR-GARCH model yields more accurate 
forecasts. Few studies take into account the presence of 
outliers to estimate the volatility of Bitcoin (Catania & 
Grassi 2017; Catania et al. 2018; Charles & Darne 2018). 
Rahim et al. (2018) used variance targeting estimator 
(VTE) for the GJR-GARCH model and found that this 
estimator can be used as an alternative estimator for 
GARCH-type models.

Few studies have employed varieties of GARCH-type 
models for a number of cryptocurrencies with the aim to 
select the best volatility model or a superior set of models 
(Baur & Dimpfl 2018; Caporale & Zekokh 2019; 
Charfeddine & Maouchi 2018; Peng et al. 2018). Charle 
and Darne-Lemna (2019) considered comparing simple 
GARCH-type models without taking into account the 
asymmetric and long-memory effects related properties 
associated with the Bitcoin and concluded that these simple 
models seem not to be appropriate for modeling the Bitcoin 
returns. Borri (2019) modeled the conditional tail-risk in 
four major cryptocurrencies and the results showed that 
these cryptocurrencies are highly exposed to tail-risk 
within the crypto market contexts. Fakhfekh and Jeribi 

(2020) applied various GARCH-type models with different 
error distributions to sixteen of the most popular 
cryptocurrencies and found that TGARCH model with 
double exponential distribution provided the best fit.  

Alternatively, stochastic volatility (SV) models 
introduced by Taylor (1986), where volatility is allowed 
to evolve according to some latent stochastic process, 
can be used for modeling the volatility of financial time 
series. These models provide greater flexibility in 
describing stylized facts of financial time series (see 
Ghysels et al. 1996; Shephard 1996) for review of SV 
models and their applications). Various extensions of the 
basic SV model of Taylor (1986) have been proposed. 
These include the model with leverage effect (Harvey & 
Shephard 1996), model with heavy-tailed distributions 
(Liesenfeld & Jung 2000), volatility in mean model 
(Koopman & Hol Uspensky 2002), model with jumps 
(Eraker et al. 2003), the model with moving average 
innovations (Chan 2013), among others. However, the 
estimation of these models is more complicated than 
GARCH-type models due to the stochastic evolution of 
volatility.

To the best of our knowledge, no previous studies have 
applied a number of SV models for the estimation and 
prediction of conditional volatility of cryptocurrencies. We 
aim to fill this gap by investigating the volatility dynamics 
of four popular cryptocurrencies using a number of 
stochastic volatility models. The basic SV model, SV with 
Student- errors, SV with jumps, SV with leverage, SV with 
moving average innovations and SV with volatility in mean 
models were included in this study. In order to assess the 
evidence in favor of more flexible SV models against the 
standard SV model given the data of cryptocurrencies, a 
formal Bayesian model comparison exercise was carried 
out. One step ahead forecasts of conditional volatility 
generated from each model were also evaluated through 
the Diebold-Mariano test.  

Findings of this study can be briefly summarized as 
follows: The stochastic volatility model with heavy-tailed 
is found to provide a better fit indicating the occurrences 
of extreme returns in all cryptocurrencies followed by the 
basic SV model. This model is also found to provide better 
forecasts than other competing models. Finally, 
incorporating jump, leverage and moving average 
components in stochastic volatility do not show significant 
improvement  in  forecast ing the volat i l i ty  of 
cryptocurrencies. 

The rest of the paper is organized as follows: Next 
section discusses the methods employed and the data used 
in the study. Subsequent section discussed empirical results 
and the last section concludes the paper. 

MATERIALS AND METHODS

STOCHASTIC VOLATILITY MODELS

The first model we consider is the basic stochastic volatility 
(SV) model
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rt = μ + ɛr
t,     ɛ

r
t ~ N(0, eht), (1)

ht = μh + ϕh(ht-1−μh) + ɛh
t,      ɛ

h
t ~ N(0,ω2

h), (2)

where rt is the log-return at time t, ht is the conditional 
log-volatility assumed to follow a stationary autoregressive 
AR(1) process with persistent parameter |ϕ|<1. The 
process is initialized with h1~ N(μh,ω

2
h / (1-ϕ2

h)), where μh 
is the unconditional mean and ɛh

t, ɛ
r
t are independent of 

each other.
The second model assumes heavy-tailed innovations 

for returns. Here we focus on the model with Student-t 
innovations. This model (SV-t) is defined as,

rt = μ + ɛr
t, ɛ

r
t ~ tv(0, eht), 

whereas in the basic SV model, the similar stationary 
AR(1) process as in (2) was assumed for conditional 
log-volatility ht. Since the tails of Student-t are heavier 
than the Gaussian distr ibution,  more extreme 
observations are allowed in this setup compared to the 
basic SV model.

Next, we consider the SV model with jumps (SV-J). 
Large changes in the cryptocurrencies prices may be 
modeled by incorporating the probability of rare jumps in 
the model. The SV-J model is defined as 

rt = μ + ktqt + ɛr
t,   ɛ

r
t ~ N(0, eht), 

where again the same stationary AR(1) process as in (2) 
is considered for the conditional log-volatility ht, qt is a 
binary jump variable with success probability P(qt=1)=κ. 
qt=1, at time t when a jump occurs and the size of the jump 
is determined by kt, where kt ~ N (μk,σ

2
k). μk is the average 

size of the jump.
The fourth stochastic volatility model that allows for 

a leverage effect is the asymmetric stochastic volatility 
model or SV-L model and defined as

rt = μ + ɛr
t, ɛ

r
t ~ N(0, eht), 

ht = μh + ϕh(ht-1−μh) + ɛh
t, ɛ

h
t ~ N(0,ω2

h), 

where the innovations ɛr
t and ɛh

t jointly follows a bivariate 
normal distribution
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With ρ=10 the SV-L model is the basic SV model. If 
a negative shock at rt-1 occurred (ρ<0), the log-volatility 
at time t is likely to be larger.

The next model under consideration incorporates 
conditional volatility in the mean equation. This SV-M 
model is defined as

rt = μ +λeht + ɛr
t, ɛ

r
t ~ N(0, eht).

In this model, the conditional volatility moves in the 
conditional mean equation as a control variable. This 
specification allows for the likelihood that the given data 
series depends on its own conditional volatility. Clearly, 
this model also reduces to the basic SV model when λ=0.  

The last model is the basic stochastic volatility model 
with moving averages (SV-MA) innovations. This model 
is defined as

rt = μ + ɛr
t, 

ɛr
t = μt + ѱμt-1,          μt~N(0, eht), 

with μ0=0 and invertibility condition |ѱ|<1 and the 
conditional log-volatility ht follows the familiar stationary 
AR(1) process. This model may be useful for modeling 
the short-run dynamics of the data as it allows autocorrelation 
in data over time.

The Bayesian approach was used for the estimation 
of all SV models. The log-volatilities are jointly sampled 
as described in Chan (2015). This acceptance-reject 
Metropolis-Hasting algorithm is based on the precision 
sampler that instead of the conventional Kalman filter relies 
on the fast band matrix routines (see Chan & Jeliazkov 
2009 for details of the algorithm). 

MODEL SELECTION AND FORECAST EVALUATION

The Bayes factor was computed as outlined in Chan and 
Grant (2016). More specifically, let M1, M2, …, Mk be the 
competing models each defined by a likelihood function 
p(r|θk, Mk) and a prior density function p(θk, Mk), where θk 
is the parameter vector. The Bayes factor is used as a 
selection criterion for Bayesian model comparison and 
defined as, 

BFij = p(r|Mi) / p(r|Mj)

where p(r|Mk) = ∫ p(r|θk, Mk) p(θn|Mk)dθk is the marginal 
likelihood. This marginal likelihood is calculated using an 
improved version of adaptive importance sampling method 
of Chan and Eisenstat (2015). This method also known as 
the cross-entropy method was originally developed by 
Rubinstein (1997) and further established by Rubinstein 
and Kroese (2004). Under model Mk, k=i, j, the observed 
data is more likely to fit under Mi compared to Mj if BFij>1 
and thus viewed as a piece of evidence in favor of model 
Mi.

To evaluate whether two competing sets of forecasts 
are equally accurate, the Diebold and Mariano (1995) test 
of equal predictive ability is commonly employed. The 
predictive ability of the competing models is compared 
using the popular Diebold-Mariano (DM) test. Let ht, ĥ1t, 
and ĥ2t be the actuals, and the competing forecasts of model 
1 and 2, respectively, and consider a given loss function 
L(.) that depends on the forecast error êij, i = 1,2 Let us 
define the loss differential series dt = L(ê1t) − L(ê2t).
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Typically, the squared loss error L(eit) = e2
it, i = 1,2 are 

used. Diebold and Mariano (1995) showed that the null 
hypothesis of equal predictive accuracy against the 
alternative that one forecast is superior can be tested using 
the DM test statistic

( )
( )   ~ 0,1 ,   

ˆ
=

dDM N
V d

where 
1

1
,−

=
= ∑

T
tt

d T d
and ( )( ) ( )( )0, ,− →

d
tT d E d N V d

( ) ( )1
0 1

,ˆ ˆ2  ,   1, 1ˆ   / 1−
=

 = + = − = − + 
 ∑

q
l l ll

V d T w q l w l qγ γ

( )( )1 8
1

,ˆ ,   1, ,−
−= +

= − − = …∑
T

i t t lt l
T d d d d l qγ

and l is the length of the forecast horizon.
To improve the small sample size behavior of the DM 

test, Harvey et al. (1997) proposed a modified DM (MDM) 
test,
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If the value of MDM statistic is positive (MDM > 0), 
forecasts of Model1 would be considered superior to the 
forecasts of Model2, otherwise, Model2 is superior to that 
of Model1. 

DATA

The data used in this study consist of daily closing prices 
(in USD) of four major cryptocurrencies. The data (till 

June 01, 2018) of four of the top ten cryptocurrencies 
(Bitcoin, Ethereum, Ripple, and Litecoin), ranked by 
market capitalization in June 2018, were obtained from 
https://coinmarketcap.com/. As of June 2018, the market 
capitalizations of Bitcoin, Ethereum, Ripple, and Litecoin 
were approximately 140, 50, 26, and 7 billion U.S. dollars, 
respectively (cryptocoincharts.info). The daily log returns 
are calculated as rt = 100×(log (Pt)− log (Pt-1)), t = 1,2,…T, 
where Pt is the closing price of a cryptocurrency on day t. 

RESULTS AND DISCUSSION

Table 1 presents the basic summary statistics of the log-
returns of four cryptocurrencies. The mean log-returns of 
all cryptocurrencies were found close to zero. The standard 
deviations of Ripple and Ethereum were higher than 
Litecoin and Bitcoin. All return distributions showed high 
Kurtosis (fat-tails). These large Kurtosis may be considered 
as an indication of the presence of extreme returns. Ripple 
and Litecoin returns showed positive Skewness. The 
normality in returns was tested using the Jarque-Bera test 
for normality and high values of this test further confirms 
the non-normality of returns. These observations indicate 
fitting alternative distributions that can describe the data 
better than the normal. The Ljung-Box test for squared 
returns was found highly significant for all cryptocurrencies, 
hence indicating dependence in squared returns and the 
need for fitting volatility models.

Figure 1 shows the daily closing prices and daily log-
returns of four major cryptocurrencies. It can be seen from 
the charts of daily prices that the prices of these 
cryptocurrencies have increased significantly in 2017. The 
prices have reached the maximum at the end of 2017 and 
then dropped afterward. Volatility clustering is clearly 
visible in the daily log-returns of all cryptocurrencies along 
with extreme observations. The improved cross-entropy 
method was used for the calculation of the marginal log-
likelihoods (Chan & Eisenstat 2015; Chan & Grant 2016). 

TABLE 1. Summary statistics of cryptocurrencies log returns

Bitcoin Ethereum Ripple Litecoin
Duration Apr 28, 2013 – 

June 01, 2018
Aug 08, 2015 – 
June 01, 2018

Aug 04, 2013 – 
June 01, 2018

Apr 28, 2013 – 
June 01, 2018

Sample size 1860 1028 1762 1860
Minimum -11.5608 -13.7000 -27.7600 -22.3200
Maximum 15.5239 17.9100 44.6200 36.0000
Mean 0.0867 0.2801 0.1149 0.0774
Median 0.0941 -0.0176 -0.1187 0
SD 1.9461 3.1057 3.4595 2.9924
Skewness -0.1823 0.5215 2.0056 1.7801
Kurtosis 10.8049 7.3898 29.8476 28.1375
JB 4731.30*** 872.01*** 54099*** 49954***
Q2(20) 660.68*** 200.80*** 260.93*** 387.36***

 JB: Jarque-Bera test for normality; Q2(20) is the Ljung-Box test on squared returns; ***represents the significance at the 1% level
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The results of posterior estimates of parameters and 
marginal log-likelihood along with their standard 
deviations of all models are reported in Table 2. Similar 
estimates for the parameters of the conditional variance 
process were observed. The posterior mean of the persistent 
parameter ϕh was between 0.90 and 0.99 across the 
volatility models. Higher values for this parameter is an 
indication of high persistent stochastic volatility. The SV- 
model with ϕh = 0.99 was found to be the highest persistent 
model. The degree of freedom parameter v was between 
8 and 18, indicating the heavy-tails for the t distribution. 
This also implies the presence of outliers in all 
cryptocurrencies. A negative leverage parameter ρ in SV-L 
model is an indication of asymmetry in returns. The 
posterior estimates of this parameter were found small 
indicating that the asymmetric component in the volatility 
model may not be important for these cryptocurrencies. 

The SV-J model is used to measure the jumps in the 
cryptocurrencies. The average jump size and its standard 

deviation are denoted by μk and σk, respectively. The 
average jump size was found positive and small for Ripple 
(0.56) and Litecoin (0.51), negative and small for Bitcoin 
(-0.39) and positive and high for Ethereum (2.72) with 
small standard deviations. These findings showed that the 
jump component in the volatility model may be considered 
important. The parameter λ in SV-M model that captures 
the extent of volatility in the mean equation was found 
small (0.01 - 0.04) for all cryptocurrencies. Remember, 
the SV-M reduces to the basic SV model when λ = 0. 
Besides, the 95% credible intervals (not reported here), for 
this parameter include 0. Hence, these findings showed 
that the basic SV model may be preferred over the SV-M 
model. Similarly, the ѱ parameter estimates were also 
found close to zero, with 0 included in 95% credible 
intervals, indicating this parameter may not be important 
in the SV-MA volatility model.

Next, we report the model comparison results. The 
log marginal likelihood values are reported in Table 2. 

FIGURE 1. Daily prices and log-returns of cryptocurrencies



TABLE 2. Posterior means and standard deviations (in parenthesis) of parameters of stochastic volatility models

μ μh ϕh
ω2

h κ μk
σ2

k λ ѱ v ρ MLL

Bitcoin
SV 0.07 (0.02) 0.43 (0.19) 0.93 (0.02) 0.26 (0.05) – – – – – – – -3332.9 (0.26)
SV-t 0.06 (0.02) 0.30 (0.42) 0.97 (0.01) 0.11 (0.02) – – – – – 11.18 (2.07) – -3303.0 (0.15)
SV-J 0.08 (0.02) 0.27 (0.27) 0.96 (0.01) 0.16 (0.03) 0.09 (0.01) -0.39 (0.25) 7.13 (1.33) – – – – -3355.0 (0.73)
SV- L 0.06 (0.02) 0.40 (0.18) 0.93 (0.01) 0.28 (0.02) – – – – – – 0.01 (0.05) -3335.4 (0.28)
SV-M 0.06 (0.02) 0.43 (0.19) 0.94 (0.01) 0.25 (0.02) – – – 0.01 (0.01) – – – -3339.2 (0.21)
SV-MA 0.07 (0.02) 0.40 (0.17) 0.92 (0.01) 0.29 (0.02) – – – – -0.01 (0.02) – – -3335.7 (0.40)
Ethereum
SV 0.02 (0.06) 1.61 (0.20) 0.92 (0.02) 0.22 (0.06) – – – – – – – -2429.1 (0.12)
SV-t 0.01 (0.06) 1.51 (0.23) 0.93 (0.02) 0.18 (0.04) – – – – – 17.95 (2.84) – -2427.3 (0.05)
SV-J -0.04 (0.06) 1.47 (0.22) 0.93 (0.02) 0.22 (0.05) 0.07 (0.02) 2.72 (0.93) 6.41 (3.95) – – – – -2428.4 (0.26)
SV- L 0.01 (0.06) 1.60 (0.19) 0.90 (0.02) 0.27 (0.06) – – – – – – -0.03 (0.06) -2431.0 (0.20)
SV-M -0.13 (0.08) 1.60 (0.18) 0.91 (0.02) 0.24 (0.05) – – – 0.04 (0.01) – – – -2430.1 (0.10)
SV-MA 0.02 (0.06) 1.61 (0.19) 0.91 (0.02) 0.26 (0.05) – – – – 0.01 (0.03) – – -2432.2 (0.12)
Ripple
SV -0.12 (0.03) 1.11 (0.24) 0.93 (0.03) 0.57 (0.03) – – – – – – – -3810.9 (0.46)
SV-t -0.11 (0.04) 1.41 (0.50) 0.99 (0.02) 0.50 (0.14) – – – – – 8.05 (1.15) - -3804.8 (0.98)
SV-J -0.10 (0.04) 1.10 (0.33) 0.95 (0.02) 0.26 (0.11) 0.03 (0.01) 0.56 (0.61) 20.20 (11.59) – – – – -3909.4 (0.63)
SV- L -0.11 (0.02) 0.96 (0.18) 0.90 (0.02) 0.55 (0.07) – – – – – – 0.04 (0.05) -3812.8 (0.32)
SV-M -0.12 (0.03) 1.01 (0.17) 0.90 (0.01) 0.53 (0.02) – – – 0.03 (0.01) – – – -3811.0 (0.58)
SV-MA -0.11 (0.02) 0.95 (0.18) 0.89 (0.01) 0.62 (0.05) – – – – 0.01 (0.02) – – -3811.6 (0.56)
Litecoin
SV-t -0.03 (0.02) 0.90 (0.18) 0.91 (0.01) 0.45 (0.07) – – – – – – – -3740.5 (0.32)
SV-J -0.02 (0.03) 1.29 (0.51) 0.99 (0.01) 0.04 (0.01) – – – – – 8.56 (1.01) – -3722.3 (0.92)
SV- L -0.03 (0.02) 0.81 (0.33) 0.96 (0.02) 0.19 (0.07) 0.06 (0.01) 0.51 (0.45) 27.78 (8.34) – – – – -3743.8
SV-M -0.02 (0.02) 0.86 (0.16) 0.90 (0.01) 0.52 (0.03) – – – – – – 0.02 (0.02) -3743.4 (0.40)
SV-MA -0.04 (0.02) 0.87 (0.17) 0.90 (0.01) 0.50 (0.05) – – – 0.02 (0.01) – – – -3745.9 (0.28)
SV-t -0.03 (0.02) 0.89 (0.20) 0.90 (0.03) 0.48 (0.15) – – – – -0.09 (0.02) – – -3738.2 (0.34)

MLL: Marginal log likelihood
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These values are used to compute the Bayes factor to 
evaluate the model fit. The results of the Bayes factor are 
shown in Table 3 where each row denotes the Bayes factors 
of the model in a row against the models in columns. For 
example, the first row in Table 3 shows the Bayes factors 
of SV model against other competing models (SV-t, SV-J, 
SV-L, SV-M, and SV-MA). Bayes factor greater than 1 is 
the confirmation in support of the model in row compared 
to the model in column. Overall, the best model is the SV-t 
model for all four cryptocurrencies considered in this study 
followed by the basic SV model. These results are in 
support the findings of parameter estimates where the 
degree of freedom parameter v was found significant for 
all cases, indicating the importance of heavy-tailed 
distribution for returns. Furthermore, these results 
supported the ranking of the marginal likelihood reported 
in Table 2. The Bayes factor of 2.6×1045 in favor of the 
SV-t model against the standard SV model indicate strong 
evidence for the heavy-tailed model. Similar findings were 
observed when the SV-t model was compared to other 
volatility models.  

We further examine the important features of modeling 
the dynamics of cryptocurrencies. The basic SV model 
was found to provide better fit than other Gaussian 
volatility models except for Ethereum where SV-J and 
Litecoin where the SV-MA models slightly showed a better 
fit. For example, the Bayes factor 5.91×109 (Bitcoin) was 
in favor of the basic SV model against the SV-L model 
indicating that the returns may not show any leverage or 
asymmetry. The Bayes factor of the SV-J model against 
each SV-L, SV-M and SV-MA model was greater than 1 
(Ethereum). This supports our estimation results of Table 
2 where the average jump size for Ethereum was found 
the largest. Overall, the results of model fit showed that 
incorporating heavy-tail distribution has improved the 
estimation and that jumps and asymmetric components 
may not be important for the volatility dynamics of these 
cryptocurrencies.

The out of sample forecast of volatility is of vital 
importance for portfolio and risk management and also for 
investors who desire to measure the performance of the 
model. The data set was divided into two parts: the in-

TABLE 3. Model fit evaluation under Bayesian model comparison

Bitcoin
SV-t SV-J SV- L SV-M SV-MA

SV 1.03E–13 3.96E+09 5.91E+09 5.45E+02 1.64E+01
SV-t 1 2.67E+45 1.18E+14 5.27E+15 1.59E+14
SV-J 1 3.07E–09 1.37E–07 4.15E–09
SV- L 1 4.47E+01 1.34E+00
SV-M 1 3.02E–02 

Ethereum
SV-t SV-J SV- L SV-M SV-MA

SV 1.65E–01 4.97E–01 6.69E+00 2.72E+00 2.22E+01
SV-t 1 3.00E+00 4.04E+01 1.64E+01 1.34E+02
SV-J 1 1.35E+01 5.47E+00 4.47E+01
SV- L 1 4.07E–01 3.32E+00
SV-M 1 8.17E+00

Ripple
SV-t SV-J SV- L SV-M SV-MA

SV 2.20E–03 5.99E+42 2.01E+00 1.11E+00 2.01E+00
SV-t 1 2.67E+45 2.98E+03 4.93E+02 8.97E+02
SV-J 1 1.11E–42 1.842E–43 3.36E–43 
SV- L 1 1.65E–01 3.01E–01 
SV-M 1 1.82E+00

Litecoin
SV-t SV-J SV- L SV-M SV-MA

SV 1.25E–08 2.71E+01 18.17E+00 2.21E+02 10.03E–01 
SV-t 1 2.17E+09 1.46E+09 1.78E+10 8.04E+06
SV-J 1 6.70E–01 8.16E+00 3.70E–03 
SV- L 1 12.18E+00 5.52E–03
SV-M 1 4.53E–04 

Note: The values of Bayes factors in cell (ModelA, ModelB) above one indicates the better fit of ModelA compared to ModelB



710

sample period of initial N observations were used for the 
estimation of parameters and remaining K = T − N 
observations for volatility forecasts. The last one-year data 
(July 1, 2017 - June 1, 2018), approximately 336 
observations, were left for forecast evaluation. One step 
ahead forecasts are generated from stochastic volatility 
models using a rolling window scheme. More specifically, 
initial N observations are used for the estimation of the 
model and one step ahead forecast of volatility was 
generated, then the sample is rolled forward one day, 
discarding the first observation, the model is re-estimated 
and one step ahead forecast is generated. In this way, K 
one step ahead forecasts of volatility are generated and 
compared with the daily squared returns (proxy for true 
volatility). Similarly, the weekly and monthly forecasts of 
volatility were also generated.

Table 4 presents the MDM test results for one step 
ahead volatility forecasts of the six stochastic volatility 
models. The value of MDM > 0 indicates the forecasting 
accuracy and superiority of the model in column against 

the model in row. For example, Cell (1, 2) of Table 4 
represents the value of MDM test statistic (7.87) for model 
SV-t against SV. This higher positive number shows that 
the SV-t model has better forecasts of volatility than the 
standard SV model. The best forecast model for each 
cryptocurrency is denoted by (*). The results of Table 4 
show the superior forecast performance of SV- model than 
all other competing volatility models. The basic SV model 
may be considered the second-best based on the values of 
MDM statistic. This shows that incorporating heavy-tails 
in volatility model not only improves the estimates of the 
parameters but produce accurate forecasts of volatility. 
These findings support the results of Table 3 where SV-t 
model was found the best-fitted model for these 
cryptocurrencies followed by the basic SV models. The 
results of one week and one month ahead forecasts (not 
reported here for brevity) largely affirm the superior 
performance of heavy-tailed stochastic volatility model. 

Some broad conclusions can be drawn from this 
research: The SV models may be considered as a better 

TABLE 4. MDM test for one day ahead volatility forecast

Bitcoin
SV-t* SV-J SV- L SV-M SV-MA

SV 7.8699 -3.9775 -3.0871 -0.3913 -0.0446
SV-t -9.2001 -8.0012 -8.9281 -6.8787
SV-J 3.07E–09 0.9912 -0.9710
SV- L 0.0037 0.3329
SV-M 0.0012 

Ethereum
SV-t* SV-J SV- L SV-M SV-MA

SV 2.7811 0.2122 -0.0776 -0.0224 -0.6568
SV-t -3.1887 -1.7121 -0.9667 -1.1317
SV-J -0.3393 0.0229 -0.0112
SV- L 1.0078 0.1712
SV-M -0.5536

Ripple
SV-t* SV-J SV- L SV-M SV-MA

SV 3.7196 -5.9987 -1.2298 -0.3422 -1.5556
SV-t -7.0179 -2.0120 -1.9144 -2.0076
SV-J 1.9178 2.01391 2.1768 
SV- L 1.1317 0.4590 
SV-M 0.2271

Litecoin
SV-t* SV-J SV- L SV-M SV-MA

SV 5.1288 -0.6690 -0.3900 -1.4388 0.4587 
SV-t -5.8113 -4.2881 -4.4240 -2.0111
SV-J 0.9891 0.5581 1.9899 
SV- L 1.1900 1.3871
SV-M 1.5593 

Note: Value of cell (ModelA, ModelB) above zero indicates that ModelA has Better fit than ModelB. `*` represents the model with best predictive accuracy
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alternative to the traditional GARCH-type models. The 
uncertainty in the parameters can be modeled using the 
Bayesian approach. The four major cryptocurrencies show 
almost the same volatility dynamics and that the heavy-
tailed stochastic volatility models provided better in-
sample and out-of-sample results. The leverage effect, an 
important feature in stock prices, was not found important 
in cryptocurrencies.

CONCLUSION

This study models and forecasts the volatility of four major 
cryptocurrencies (Bitcoin, Ethereum, Ripple, and Litecoin) 
using a number of stochastic volatility models. The models 
were estimated using the Bayesian approach and the model 
fit was evaluated using the marginal likelihood and Bayes 
factor. The one-step-ahead forecasts of volatility were 
evaluated using the modified Diebold-Mariano test. The 
heavy-tailed stochastic volatility (SV-t) model was found 
to better fit the data indicating the occurrences of extreme 
returns in all cryptocurrencies followed by the basic SV 
model. The forecasting performance of this model was also 
found superior to the competing models. The jump, 
leverage and moving average components were not found 
significant for most cryptocurrencies studied in this 
research. The findings of this study may be considered 
important for risk and portfolio management where reliable 
estimates are desired. However, this study modeled and 
forecasted the volatility of only four major cryptocurrencies. 
The research may be extended to include other popular 
cryptocurrencies for better understanding the volatility 
dynamics in the crypto-market. 
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