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Abstract: We studied the applicability of point clouds derived from tri-stereo satellite imagery for
semantic segmentation for generalized sparse convolutional neural networks by the example of
an Austrian study area. We examined, in particular, if the distorted geometric information, in addition
to color, influences the performance of segmenting clutter, roads, buildings, trees, and vehicles. In this
regard, we trained a fully convolutional neural network that uses generalized sparse convolution
one time solely on 3D geometric information (i.e., 3D point cloud derived by dense image matching),
and twice on 3D geometric as well as color information. In the first experiment, we did not use
class weights, whereas in the second we did. We compared the results with a fully convolutional
neural network that was trained on a 2D orthophoto, and a decision tree that was once trained on
hand-crafted 3D geometric features, and once trained on hand-crafted 3D geometric as well as color
features. The decision tree using hand-crafted features has been successfully applied to aerial laser
scanning data in the literature. Hence, we compared our main interest of study, a representation
learning technique, with another representation learning technique, and a non-representation learning
technique. Our study area is located in Waldviertel, a region in Lower Austria. The territory is
a hilly region covered mainly by forests, agriculture, and grasslands. Our classes of interest are heavily
unbalanced. However, we did not use any data augmentation techniques to counter overfitting. For our
study area, we reported that geometric and color information only improves the performance of the
Generalized Sparse Convolutional Neural Network (GSCNN) on the dominant class, which leads to a
higher overall performance in our case. We also found that training the network with median class
weighting partially reverts the effects of adding color. The network also started to learn the classes
with lower occurrences. The fully convolutional neural network that was trained on the 2D orthophoto
generally outperforms the other two with a kappa score of over 90% and an average per class accuracy
of 61%. However, the decision tree trained on colors and hand-crafted geometric features has a 2%
higher accuracy for roads.

Remote Sens. 2020, 12, 1289; doi:10.3390/rs12081289 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0001-7785-2090
https://orcid.org/0000-0001-8995-289X
https://orcid.org/0000-0003-4203-8376
https://orcid.org/0000-0002-2348-7929
https://orcid.org/0000-0003-2908-5813
https://orcid.org/0000-0003-4198-9911
https://orcid.org/0000-0002-7120-8939
http://dx.doi.org/10.3390/rs12081289
http://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/2072-4292/12/8/1289?type=check_update&version=2


Remote Sens. 2020, 12, 1289 2 of 36

Keywords: 3D segmentation; deep learning; derived point clouds; tri-stereo; Very High Resolution (VHR)
Satellite Imagery; 2.5D segmentation; image segmentation; semantic segmentation; machine learning

1. Introduction

Deep Learning (DL) has drastically improved the state-of-the-art across a variety of applications
in Natural Language Processing (NLP) and Computer Vision (CV) [1–4] due to its ability to learn
representations in an unsupervised manner [5–7]. In NLP, for example, Tshitoyan et al. showed that
unsupervised deep learning is capable of learning word embeddings that capture complex materials
science concepts without the insertion of chemical knowledge, and can even recommend materials
years before their discovery [8]. There are also recent improvements in language understanding
with Bidirectional Encoder Representations from Transformers (BERT) [9] and A Robustly Optimized
BERT Pretraining Approach (RoBERTa) [10], and, adding to that, the recent breakthrough in task
agnostic transfer learning by Howard et al. [11]. In CV, DL has advanced, inter alia, the tasks of
image classification [12,13], object-detection [14–16], object-tracking [17], pose estimation [18–21],
superresolution [22], and semantic segmentation [23–28]. These advancements give rise to new
applications in, e.g., solid-state materials science and chemical sciences [29,30], meteorology [31],
medicine [32–39], seismology [40–42], biology [43], life sciences in general [44], chemistry [45],
and physics [46–53], as well as the fashion industry [54–56].

Due to this success, DL also gained popularity in the fields of photogrammetry and remote
sensing [57–59], as it plays a key role in a variety of applications. Such applications include, inter alia,
classification and segmentation [60–62], urban construction and planning [63–66], agriculture [67–70],
the intersection of archaeology and remote sensing [71], predicting poverty [72–74], natural disaster
and crisis management, and infrastructure management [75,76]. However, little research has thus far
explored the utility of point clouds derived from tri-stereo satellite imagery for DL. One reason for this
may be the fact that cross-correlation, the way the convolution operation is implemented in DL libraries,
is not directly applicable to the three-dimensional space. In addition, adding geometric information
from tri-stereo satellite imagery is a challenging machine learning problem, because the 3D geometry
quality is low The poor geometric precision is caused by noise and low radiometric resolution of satellite
imagery, as well as smoothing effects of adopted dense image matching algorithms. Nevertheless,
this extra geometric information can be a valuable source of features for machine learning algorithms.

Scene understanding based on point clouds derived from tri-stereo satellite imagery is potentially a
valuable information source for businesses, as it can enable business processes which were not possible
before, or bring efficiency and effectiveness gains to existing ones. For example, businesses can conduct
measurement tasks for a construction site where aerial laser scans are not possible, e.g., due to restrictions
in flight permission or time constraints. Moreover, businesses can use it for surveillance tasks, e.g., nearby
oil pipelines. The military can use this information to protect embassies in the case of an emergency or
in the case of a natural disaster. Consequently, point clouds derived form tri-stereo satellite imagery
can bring value for companies and public institutions alike, which can incorporate it in the life cycles
of their business processes [77], in, e.g., process monitoring [78,79], process compliance [80], process
conformance checking [81,82], process mining [83–86], and performance mining [87–89].

In this paper, we study the applicability of point clouds derived from tri-stereo satellite imagery
for GSCNNs. To the best of our knowledge, this is the first work that applies DL to derived point
clouds from tri-stereo satellite imagery. We learn directly on geometric information without the need
to transform it into a format that is suitable for the standard convolution operation. In particular,
we train a Fully Convolutional Neural Network (FCNN) [90] that uses generalized sparse convolution
as introduced by Choy et al. [91] to distinguish the classes C road, building, vegetation, vehicle,
and clutter, i.e., C = {clutter, road, building, tree, vehicle}, where clutter refers to points that do not
belong to any of the other four categories. The network architecture follows the U-Net structure from
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Ronneberger et al. with an encoder followed by a decoder that is connected via skip connections [92].
In addition, the model incorporates residual learning [93], Rectifier Linear Units (ReLUs) [94,95],
and batch normalization [96,97]. We compare the performance of this model to FCN-8s [90] that is
trained on an orthophoto and to a decision tree that uses hand-crafted geometric features [98] and color.
Hence, we compare the model to a representation learning technique, and once to a non-representation
learning technique. In doing so, we report the average precision [99], average recall [99], average F1
score [99,100], average accuracy, overall accuracy [101], kappa score [102], Matthew’s Correlation
Coefficient (MCC) [103,104], and confusion matrices. We use the Minkowski Engine [91], which is
built on top of PyTorch [105], for training the GSCNN. For FCN-8s, we use Caffe [106]. We use R
to train the decision tree [107], and the software package OPALS (https://opals.geo.tuwien.ac.at)
for computing the hand-crafted geometric features [108]. All trained GSCNNs are made public
on PyTorch Hub after each epoch to facilitate research and ease reproducibility on PyTorch Hub.
We do the same for the decision trees. For further information, please visit the GitHub project
(https://github.com/MacOS/ReKlaSat-3D/) for this paper. A general overview of the workflow
is depicted in Figure 1.

Satellite Imagery
from Pléiades Derive Point Clouds

Semantic
Segmentation with

CNN (2D)

Semantic
Segmentation with

GSCNN (3D)

Semantic
Segmentation with
Decision Tree (3D)

Compute Hand-
Crafted Features

based on Geometry

Compare Results

Color

Geometry and Color

Digital Surface
Model and
Orthophoto
Generation

Geometry and Color

Figure 1. Overview of the general workflow. We use tri-stereo Pléiades images of the study area,
Waldviertel. The images are then processed to derive the 3D point cloud and the corresponding
orthophoto. Whereas the Convolutional Neural Network (CNN) approach utilizes the orthophoto,
the GSCNN semantic segmentation uses the 3D point cloud as input. For the decision tree, we compute
hand-crafted geometric features while we leave the color features as they are. Finally, we compare the
GSCNN results with the CNN approach and the decision tree, i.e., a strong baseline (Section 4.2).

The remainder of this paper is structured as follows. In Section 2, we present the background and
related work. This includes 3D reconstruction, DL on satellite imagery, the difficulty for DL of learning
directly on point clouds, and a discussion about reproducibility and choosing baselines in machine
learning. In Section 3, we describe the study site and our dataset, the photogrammetric workflow,
our DL architecture and training procedure for the point clouds, and our steps towards a more scientific
approach in machine learning. We present our results in Section 4. In Section 5, we discuss our
results in the light of generalizing the convolution operation from the two-dimensional grid world to
higher dimensions, and we end this section with future research directions. Finally, we conclude and
summarize this paper in Section 6.

2. Background and Related Work

Section 2.1 describes the photogrammetric workflow of point cloud reconstruction from tri-stereo
satellite images. Section 2.2 gives an overview of how deep learning is currently used and studied in
remote sensing. Section 2.3 focuses on DL on point clouds. Finally, Section 2.4 discusses reproducibility
in science, especially in machine learning, and the importance of choosing baselines.

https://opals.geo.tuwien.ac.at
https://github.com/MacOS/ReKlaSat-3D/
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2.1. 3D Reconstruction from Satellite Images

The photogrammetric workflow including the 3D reconstruction was performed using the
Match-AT and Match-T Digital Surface Model (DSM) modules of the Trimble Inpho software [109].
The software is designed to perform precise image block triangulation, point cloud reconstruction,
and orthophoto generation. Overall, the image processing chain consists of the following main
steps: (1) import of the images, Rational Polynomial Coefficients (RPCs), and Ground Control Points
(GCPs), followed by image pyramids generation; (2) identification of GCPs locations within the
images; (3) RPCs refinement based on the GCPs and automatically extracted tie points; (4) dense image
matching for 3D reconstruction; and (5) point cloud interpolation for DSM derivation. Finally, the DSM
is used for orthorectification of a Nadir image, which is further considered as input data in the FCN-8s
approach. The software is highly automated, and hence the user is limited to a few adjusting steps,
e.g., the manual identification of GCPs in images and correction of points with high residuals. For dense
image matching two strategies were employed [110]: Feature Based Matching (FBM) and Cost Based
Matching (CBM). The output of dense image matching are 3D point clouds, which are further used as
input for DSM derivation.

2.2. Deep Learning on Satellite Images

DL has been extensively applied on remote-sensing imagery in recent years [57]. Hu et al.
investigated the generalization properties of CNN extracted features from ImageNet to high-resolution
remote sensing images for scene classification [111]. In that regard, the authors proposed two scenarios
for extracting features: one for extracting features from fully-connected layers, and one for extracting
features from convolutional layers. The extracted features are then used as an input for a linear Support
Vector Machine (SVM). This linear classifier is evaluated on the UC Merced Land Use Dataset and
the WHU-RS dataset. According to the paper, the linear SVM outperforms current state-of-the art
hand-crafted feature approaches by a large margin, indicating that the features learned by the CNN
have better generalization properties, even when the features are learned from a different domain,
in this case from ImageNet natural images to the high-resolution remote sensing images from UC
Merced Land Use and WHU-RS datasets. Sun et al. explored the use of encoder-decoder architectures
for semantic image segmentation [112]. Bischke et al. applied DL to aerial imagery and addressed the
problem of sharp object boundaries by proposing a cascaded multi-task loss [113]. Similarly, Yi et al.
used a U-Net architecture with Res-Net blocks for urban building segmentation in VHR remote sensing
imagery [114]. Guo et al. also segmented buildings but incorporate superresolution in their approach,
which shows promising results as the authors report an improvement of roughly 19% for the Jaccard
index as well as the kappa score [115]. Eerapu et al. proposed a dense refinement residual network
(DRR Net) for road extraction in aerial imagery [116]. In addition, the authors trained their network
on a composite loss function surface to place emphasis on small objects. Marmanis et al. studied the
use of an ensemble of CNN for semantic segmentation [117].

Li et al. used three-dimensional convolutions for Hyperspectral Image (HSI) semantic segmentation [118].
CNN architectures that use three-dimensional convolutions are called 3D-CNN. They are different
from 2D-CNN, as 3D-CNN convolve the spatial and the spectral dimension simultaneously with
three-dimensional kernels, while 2D-CNN use two-dimensional kernels. Sellami et al. also trained a
3D-CNN on semantic segmentation and proposed a dimensionality reduction technique for adaptively
selecting spectral bands before training the 3D-CNN [119].
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2.3. Deep Learning on Point Clouds

Applying DL on point clouds is not straightforward since point clouds do not have two-
dimensional grid structures, which is assumed by standard convolutional neural networks. In addition,
images have a uniform density distribution, but point clouds do not. Therefore, it is not a surprise that
previous research in remote sensing used other machine learning techniques, such as decision trees [98]
and random forests [120]. Some researchers focus on developing features (i.e., feature engineering) to
boost the performance of these machine learning techniques [121]. However, in CV, many researchers
propose techniques that map the original point cloud to a two-dimensional grid structure as an
alternative. Zhou et al. proposed dividing the space into three-dimensional voxels, and, for each of
these voxels, a feature representation is learned by a voxel feature encoding layer [122]. This leads to a
grid structure of features and hence allows the use of standard convolutional layers. Qi et al. proposed
a network that learns on unordered point sets by applying symmetric functions [60]. Since the ordering
in a set is of no importance, their solution does not assume that neighbors in the input tensor are
actually neighbors in the point cloud. However, recent work focuses on the convolution operation
itself by altering it such that it can directly be applied on the point cloud. Hua et al. proposed a
pointwise convolution which queries the neighborhood of a point on the fly, bins the neighbors into
kernel cells, and then applies the convolution operation [123]. While this operation is promising, it is
currently difficult to apply on large scale as the current implementation is not optimized.

Vo et al. presented the results of the 2015 Institute of Electrical and Electronics Engineers (IEEE)
data fusion contest where participants used Light Detection And Ranging (LiDAR) and RGB data
simultaneously [124]. For road detection, Vo et al. applied decision trees on hand crafted features,
aerial laser scanning and imagery is the basis for the hand created features [125]. This is similar to
our work from the data perspective, because we also investigate the combination of geometric and
color information for machine learning in remote sensing. However, our contribution is significantly
different for three reasons. First, our geometric information is substantially inferior to that of airborne
or terrestrial LiDAR, since it is derived from stereo matching applied to tri-stereo satellite imagery at
0.7 m Ground Sample Distance (GSD). Second, we use DL. Third, we apply DL directly on the point
cloud without any preprocessing step, e.g., using voxels.

2.4. Reproducibility and Baseline (Scientific Approach in ML)

Machine Learning (see Maxwell et al. [126] for a practical review of machine learning in remote
sensing), and especially DL, has made substantial progress over the past decade. Adding to the
examples in the Introduction, Silfer et al. used reinforcement learning, an approach to learning
that uses the reward and punishment paradigm [127], to master the game of Go [128]. DL was
a crucial part of the work of Nadell et al., as they used it to discover metamaterial designs for energy
harvesting [129]. The authors reported an average mean squared error of 1.16× 10−3. In addition,
the neural network is over five orders of magnitude faster than conventional electromagnetic simulation
software. In medicine, the recent work of Stroke et al. shows that DL can discover antibiotics
which are structurally divergent (in this case, e.g., halicin) from conventional antibiotics [130].
The researchers tested halicins bacterial activity and found it to work against tuberculosis and
strains considered untreatable. However, scholars working in the field have recently pointed out
worrying trends [131–133]. Dacrema et al. analyzed the progress of recent neural recommendation
approaches [134]. They reported that only 7 out of 18 examined neural recommendation approaches
can be reproduced with reasonable effort. In addition, six of these seven can be outperformed with
simple heuristic methods such as nearest-neighbor. Fu et al. argued similarly, as they claimed that
combining SVM with differential evolution (a method for tuning hyper parameters) achieves similar or
sometimes better results than DL while having a significantly lower training time (10 min vs. 14 h) [135].
While the observation of a lack of reproducibility in machine learning, and deep learning specifically,
is worrying, it is not unique to this field. Other research fields suffer from the same issue. For example,
a reproducibility test conducted in Psychology revealed that over 50% of studies in the field are not
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reproducible, and two thirds of them should be distrusted [136]. Moreover, a survey in 2016 revealed
that 70% of researchers fail to reproduce another scientists experiments and more than 50% fail to
reproduce even their own experiments [137]. Gannot et al. gave an equally worrying overview of
reproducibility and transparency in biomedical sciences [138]. This controversy invoked a discussion
about the question “What does research reproducibility mean?” [139] and a discussion about how
scientists can avoid fooling themselves [140]. Menke et al. used SciScore (https://www.sciscore.com/),
a software tool that automatically scores a research paper on a ten point scale, to analyze 1.6 million
PubMed Central papers [141,142]. They also used a Rigor and Transparency Index, which is the
average score of analyzed papers in a particular journal. They found that fewer than half of the
analyzed research papers address rigor and reproducibility criteria. Furthermore, perhaps surprisingly,
their Rigor and Transparency Index did not correlate with the impact factors of journals. In summary,
reproducing DL related research takes a sizeable amount of resources, if it is possible at all based on the
information given in that research article, and the way baselines are chosen is questionable. We present
our approach to address and resolve these issues in the next section, specifically in Section 3.2.

3. Materials and Methods

In this section, we describe how we derive the point clouds and the orthophoto from tri-stereo
satellite images, the study site and the dataset, our approach for semantic segmentation in two
dimensions, and our approach for semantic segmentation in three dimensions. In Section 3.1,
we describe the study site and the dataset, followed by Section 3.2 where we approach to ensure
reproducibility and describe our approach for choosing baselines. Finally, in Section 3.3, we present
the generalization of the convolution operation and the used U-Net based architecture.

3.1. Study Site and Pléiades Dataset

Pléiades is a European VHR satellite system comprising two identical satellites, Pléiades 1A and
Pléiades 1B, which were developed by Airbus Defence and Space for both civil and military uses.
With a daily revisit capacity and a swath width of 20 km, the sensor can reach a ground resolution of
0.7 m (in panchromatic mode) from an orbit height of 674 km. Due to its fast rotation, the sensor is able
to record three images within the same orbit in less than 1 min. The images provided for this work
were acquired in the tri-stereo mode, from different along-track positions of the Pléiades-1B sensor:
forward (FW)-, close to nadir (N)-, and backward (BW)-view.

The study area is located in Waldviertel, a region in Lower Austria, which is the northeastern state
of the country (48◦30’30” N; 15◦08’34” E; WGS84) (Figure 2). With elevations ranging from a minimum
of 572 m above see level (a.s.l.) to a maximum of 749 m a.s.l., the territory is a hilly region covered
mainly by forests, agriculture and grasslands. Rural, urban, and water surfaces are also present,
but with a lower frequency of occurrence. For this study site, Pléiades images were acquired in the late
morning of June 13th 2017. in the north–south direction, within less than 1 min. Therefore, they have
the same illumination conditions, and shadow changes are not significant. Images were delivered as
pan-sharpened with four bands (Red, Green, Blue, and Near-infrared) and spatial resolutions varying
between 0.70 and 0.71 m, depending on the different viewing angles. The images were distributed as
a primary product at sensor processing level, i.e., they contain corrections for sensor geometry and
radiometric distortion, viewing angles, attitude, and ephemeris data. Detailed information about the
acquisition properties of the tri-stereo pair are summarized in Table 1.

For each image, auxiliary data including the RPCs were provided by the supplier. To obtain
sub-meter geolocation accuracy, the RPCs were refined by measuring 60 GCPs, i.e., points with
known 3D coordinates, within the images. A Digital Terrain Model (DTM) generated from a LiDAR
acquisition (December 2015) with 1 m spatial resolution was used for vertical quality assessment and
for improving the absolute geolocation of the photogrammetrically derived DSM. We used a digital
orthophoto from 2017 at 0.20 m spatial resolution for manually defining the planar locations of Check
Points (CPs), whose corresponding heights were extracted from the LiDAR DTM. For this study,

https://www.sciscore.com/


Remote Sens. 2020, 12, 1289 7 of 36

we selected a smaller test area (44.5 km2) on which we trained and evaluated the generalized sparse
convolutional neural network (Figure 2).

Table 1. Acquisition properties for the satellite images over the study site.

View Acquisition Time GSD [m] Incidence Angles [◦] Sun Angles [◦] Area [km2]
Across Along Azimuth Altitude

FW 10:09:51.5 0.71 −2.2 −6.7 154.1
62.8

158.7
N 10:10:03.7 0.70 −3.31 −1.1 154.5 158.4

BW 10:10:14.0 0.71 −5.0 4.9 154.5 158.8

Figure 2. Waldviertel, Lower Austria: (a) Overview map of Austria with marked location of study
area; and (b) Pléiades orthophoto of Waldviertel; the selected area used for semantic segmentation is
marked with yellow.

The characteristics for the point cloud dataset are as follows. The whole dataset consists of
196,495,815 points. We followed the established rule of thumb in machine learning, where one splits
the dataset into two parts: one part is roughly 80% of the total dataset and the other is roughly 20%.
The former is our training dataset, and the latter our test dataset. Based on two polygon regions,
the total number of points in the training set is 163,013,266 (82.96%), while the number of points in
the test is 33,482,549 (17.03%). The same polygon regions were used to split the orthophoto as well.
As shown in Figures 2 and 3, the class distribution is approximately the same for the training set as
well as the test set. For the class weights experiment, we used median class weighting. This weighting
approach weights each classes frequency f reqc in relation to the median of the class frequencies
median( f reqc), in our case to 2,769,222, the occurrence of roads (Table 2). Mathematically, this is
written as

cweight =
median( f reqc)

f reqc
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These class weights hence downgrade the importance of classes with a high occurrence,
and upgrades the importance of classes with a low occurrence. For example, for clutter, this equation is
equal to 2769222

98718944 = 0.02, and, for vehicles, to 329.90. The level of gemetric distortion is clearly displayed
in Figure 4, and Figure 5 shows the distribution for each feature.

Figure 3. Relative occurrence of the classes in the training (red) and test (green) set: the magnitude of
class imbalance is here highlighted as the vehicle bars are not visible (left); and by changing the scaling,
they are visible (right).

Table 2. Quantitative comparison of the training data set with the test set. The right column shows the
class weights based on the training set.

Class Training Data Set Test Data Set Total Class Weight

Clutter 98,718,944 21,512,925 120,231,869 0.02
Roads 2,769,222 907,680 3,676,902 1.00

Buildings 818,172 135,590 953,762 3.38
Trees 60,698,534 10,924,660 71,623,194 0.04

Vehicles 8394 1694 10,088 329.90

Total 163,013,266 33,482,549 196,495,815

Figure 4. Examples of point clouds derived from tri-stereo satellite imagery for each class: (a) clutter;
(b) roads; (c) buildings; (d) trees; and (e) vehicles.
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Figure 5. Training set feature distribution.

3.2. Our Approach for Reproducibility and Choosing Baselines

In line with the reproducibility discussion and to address the problem of reproducibility,
we clearly state that our study falls into the results reproducibility category because our data are
private, as of this writing. Results reproducibility means, in the context of this paper, that one
gets approximately the same results when using approximately the same data and the same training
procedure. That said, we acknowledge the fact that acquiring approximately the same dataset requires
sizeable amount of resources. However, we are actively working on open sourcing our data in the
near future.

To ensure reproducibility and comparability of our GSCNN experiments, we took two actions.
The first action is to set seeds for random number generators. This means that, in our case,
we set seeds for the Python libraries numpy, as well as for PyTorch with numpy.seed(0) and
torch.manual_seed(0), respectively. The second action was to set cuDNN in the deterministic
mode with torch.backends.cudnn.deterministic = True and torch.backends.cudnn.benchmark = False.
This ensures that cuDNN only uses deterministic functionality and, further, that cuDNN does not
automatically choose the best algorithm.
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To further address the issues and facilitate research and ease reproducibility, we made all
3D models after each epoch public on PyTorch Hub. Specifically, we open-sourced all obtained
network parameters after each epoch for all cases, which totals 500 sets of network parameters
(50 from the coordinates experiment, 50 from the coordinates and color experiment, and 400 from
the coordinates and color and class weights experiment). This decreases the amount of resources
researchers, or others, need to allocate if they want to use or validate our research. For example,
if other researchers also work on three-dimensional semantic segmentation with their own dataset
and they would like to compare their approach with our method, they only need to download the
weights instead of going through the training process themselves. Additionally, we see this as a
first step towards transfer learning [7] in the domain of semantic segmentation on derived point
clouds from satellite imagery with convolutional neural networks. For further information on system
requirements, installation process, and how the weights can be downloaded, please visit the GitHub
project (https://github.com/MacOS/ReKlaSat-3D/) for this paper.

As pointed out in Section 2.4, establishing a simple and strong baseline is important. For this
reason, we established a strong baseline for the test set in general and for each class. For the overall
accuracy, we set 60.56% as the first naive mark for the training set, because we can always achieve that
by predicting clutter. We achieve an even better overall accuracy for the test set with that approach
(64.25%) (Table 3). This is marked as baseline A. While this prediction method is not useful in practice,
it is certainly a good reference point and highlights shortcomings of the respective performance
metrics. Additionally, we compared the results with a decision tree approach, a supervised-feature
learning algorithm [143]. In particular, we used the approach described by Waldhauser et al. [98].
The list of hand-crafted geometric features include, inter alia, the normal vector including its standard
deviation (NormalX, NormalY, NormalZ, and NormalSigma), a local penetration rate (EchoRatio),
statistical measures of the local vertical point distribution (ZRank and ZRange), and features derived
from the structure tensor T (linearity, planarity, and omnivariance) [144]. For the training phase, we
used 20% of the training data for training and the rest for cross validation. For the computation of the
hand-crafted geometric features, Opals (Orientation and Processing of Airborne Laser Scanning Data)
software is used [108]. We trained the decision tree with the following hyperparameters: (i) 0.00001
complexity factor; (ii) to attempt a split, a minimum of 20 observations has to exist in a node; (iii) each
leaf node has at least seven observations; (iv) a maximum depth of 30 for the tree; (v) five competitor
splits; and (vi) five surrogate splits. Our hardware set up for this is an Intel Core i7-4770K CPU @
3.50 GHz, 32.0 GB RAM. Computing the features with this configuration takes 20 h 10 min, while the
training time is 7 h 25 min for the geometric features and 9 h 22 min for the geometric and color
features. The validation process takes 21 and 23 min for geometric and geometric and color features,
respectively. More information on this approach is described in Appendix C.

We used FCN-8s, a FCNN with the standard convolution operation for semantic segmentation
of the orthophoto, as proposed by Long et al. [90]. This network architecture combines features from
three different levels of granularity for the prediction step. The first level of granularity is from the last
layer, hence these features have the lowest level of granularity. These features have to be upsampled
with a stride of 32. The second level of granularity are the features of the fourth out of five pool layers,
and require to be upsampled with a stride of 16. Finally, the layer with the highest level of granularity
to be used for prediction are the features from the third pool layer. These features are upsampled with
a stride of 8, where the name FCN-8s originates from. Combining features with different levels of
granularity improves the quality of segmentation, e.g., with sharper object boundaries. We used this
network to assign a label to each pixel in the image I. If N and M denote the height and width of
an Image in pixels I, and C the number of color channels for each pixel, then I can be interpreted as a
tensor I with dimensions N, M, C, i.e., INxMxC. The networks input features are red, green, and blue for
each pixel. Consequently, we searched for φ : INxMx3 → [clutter, road, building, vegetation, vehicle]NxM.
We trained the network with a fixed learning rate of 0.0001 for 50 epochs with Caffe [106]. Appendix D
and Figure A3 present a more detailed description of this network.

https://github.com/MacOS/ReKlaSat-3D/
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3.3. Generalized Sparse Convolutional Neural Networks for Derived Point Clouds

In this work, we are interested in the feature extraction capabilities of the generalized sparse
convolution operation, as proposed by Choy et al. [91]. Generalized sparse convolution generalizes
convolution for generic input and output coordinates, i.e., this operation does not have the implicit
grid assumption of the standard convolution operation. In addition, it allows defining arbitrary kernel
shapes. The conventional dense convolution in D-Dimensions is defined as:

xout
u = ∑

i∈VD(K)
Wixin

u+i for u ∈ ZD

where VD(K) is the list of offsets in a D-dimensional hypercube. Choy et al. relaxed this equation
by allowing arbitrary kernel shapes using predefined input and output coordinates, C in and Cout.
This leads to:

xout
u = ∑

i∈N D(u,C in)

Wixin
u+i for u ∈ Cout

N D is a set that defines the offsets of a kernel at kernel center u, i.e., arbitrary kernel shapes
can be defined. This set is restricted to N D(u, C in) = {i|u + i ∈ C in, i ∈ N D} in the equation,
i.e., the current coordinate center plus the offset has to be a coordinate in the input coordinates.
Trivially, the offset needs to be defined. We use this formulation as a drop in replacement for the
conventional dense convolution.

The network architecture we use in this paper is U-Net based [92] (Figure 6). A variant of this
architecture is, at the time of this writing, state-of-the-art on the ScanNet dataset [145]. This network
architecture only uses hypercubes as its kernel shape. The circled plus represents element wise
tensor addition, and concatenate takes two tensors as an input and appends the two tensors along
the channel dimension. For example, the first concatenate from the top receives two tensors as an
input: the output tensor of the first sparse convolution down-sampling layer with 32 feature channels
via the skip connection and the output tensor of the last sparse transpose convolutional layer with
96 feature channels. Hence, the output of concatenate is a tensor with 32 + 96 = 128 feature channels.
Numbers outside of rectangles indicate the number of feature channels that go in and out. For example,
the first layer expects C input channels and outputs 32 channels. All sparse convolutional layers are
followed by batch normalization, and, in addition, all have a dilation of 1. A sparse convolution
layer has a stride of 1, if not stated otherwise. For a better understanding, we merge layers into
the four buildings blocks: SparseConv ResNet Block (green), SparseConv ResNet Block 2 (blue),
SpraseConv Downsampling (yellow), and SpraseConv Transpose (red). A SparseConv ResNet Block
applies a sparse convolution, with kernel size 3, two times on the input tensor. The resulting tensor is
then combined with the input tensor with element wise tensor addition before the ReLU operation.
SparseConv ResNet Block 2 deviates from this in one way: it doubles the number of feature channels it
receives in the first sparse convolutional layer. We therefore need an extra sparse convolutional layer,
with kernel size 1, in the side stream before we can perform element wise tensor addition. SparseConv
Downsampling is a sparse convolutional layer with kernel size 2, and, additionally, a stride of 2,
which halves the feature maps, i.e., if the input is N points, it outputs N/2. This operation is reversed
by SparseConv Transpose with the same hyper parameters. We describe the encoder (also down path)
and the decoder (also up path) in the next two paragraphs, respectively.
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Figure 6. The network architecture used for semantic segmentation of the derived point cloud from
tri-stereo satellite images. From its basic structure, it is a U-Net with its encoder and decoder paths,
and the skip connections between the two. Further, it incorporates residual learning from Res-Nets in
the sparse convolutional blocks and batch normalization.
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The encoder, generally, takes the input tensor and down-samples it, while it doubles the feature
maps. First, the network performs a sparse convolutional operation on the provided features
of the input point cloud with kernel size 5 with 32 kernels, expanding the number of feature
channels from C to 32. The kernel size of 5 allows the network to capture patterns in a larger
neighborhood. Next, SparseConv Downsampling halves the size of the feature maps. This pattern,
i.e., first downsampling the feature maps and then doubling the number of feature maps is repeated
four times in total, with a growing number of ResNet Blocks between them: specifically, first by
2, then by 3, and then by 4. The last doubling of feature maps takes place in the first layer of the
bottleneck (last blue rectangle in the encoder) which consumes 128 and outputs 256. This is followed
by five SparseConv ResNet Blocks. Hence, the bottleneck consists of six ResNet blocks.

The decoder, generally, takes a tensor and upsamples it, while it halves the number of feature
maps. The decoder’s first layer is the first SparseConv Transpose layer from the bottom, it doubles
the size of the tensor it receives while keeping the number of feature maps at 256. The resulting
tensor is then concatenated with the output tensor of the encoder’s last SparseConv Downsampling
layer, which gives us a total of 384 = 256 + 128. Following that, the first SparseConv ResNet Block
2 in the decoder reduces this to 256. Next, a SparseConv ResNet Block operates on this tensor,
and subsequently a SparseConv Transpose layer halves the number of feature maps down to 128.
This sequence, concatenate, SparseConv ResNet Block 2, SparseConv ResNet Block, and SparseConv
Transpose, is then repeated until the prediction layer. Note that the last SparseConv Transpose layer
does not halve the number of feature channels.

We assign a label to each point in a point cloud, i.e., we search for φ : FN →
[clutter, road, building, vegetation, vehicles]N , where F is the points feature tensor and N is the number
of points in the point cloud. Note that we differentiate between a point and how a point is represented,
i.e., their features f . Consequently, we also need a tensor that keeps track of the coordinates,
which allows us to monitor the positions in a three-dimensional space. In the first experiment, a point
was represented by its geometric features fi = [xi, yi, zi] and in the second experiment also by its color
fi = [xi, yi, zi, rei, gri, bli]. Mathematically, we can write these two tensors as two matrices: one matrix
C for the coordinates and one matrix F for the features. When we use geometry and color as features,
these matrices are as follows:

C =



x1 y1 z1 b1

x2 y2 z2 b1
...

xi yi zi bj
xi+1 yi+1 zi+1 bj

...
xN yN zN bM


F =



x1 y1 z1 re1 gr1 bl1
x2 y2 z2 re1 gr1 bl1
...

xi yi zi rei gri bli
xi+1 yi+1 zi+1 rei+1 gri+1 bli+1

...
xN yN zN reN grN blN


The bi denote the batch index a point belongs to. All features were normalized, i.e., min-max

scaled, or more formally ∀ f ∈ F, f ∈ [0, 1]. We trained the network for 50 epochs with batch size 3.
We optimized the parameters with RMSprop [146] and a learning rate of 0.001. Our hardware set up is
16 GB DIMM DDR 1333 MHz RAM, Intel Core i5-2400 with 3.1 GHz CPU, NVIDIA GTX 1080 Ti with
12 GB GPU, and as a motherboard Dell 0HY9JP version A00. With this configuration, one training loop
takes approximately 3 h 45 min, and one evaluation loop approximately 45 min.

4. Results

We present our results in the following two subsections. Section 4.1 describes the results for
dense image matching and 3D reconstruction. We then present (and compare) in Section 4.2 the
segmentation results for the U-Net based GSCNNs, the decision tree, and for the FCN-8s (in this order).
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We also describe the results for the GSCNN model that we trained for 400 epochs with class weights.
Finally, we evaluate the overall performance of the models, as well as the class level performance.

4.1. Dense Image Matching and 3D Reconstruction Results

Image orientation and dense matching were performed for all three images covering the study
area. The automatic tie point extraction identified approximately 552 points, with standard deviations
between 0.38 and 0.52 pixels, while the total standard deviation of the bundle adjustment resulted
in a value of 0.54 pixels. The dense image matching process was performed at full image resolution.
Hence, for each (matched) pixel, a 3D object point was generated, whose coordinates were calculated
by spatial forward intersections, finally resulting in a large photogrammetric point cloud with a
high density of 4 points/m2 (Appendix A Figure A1). Compared with stereo, the use of tri-stereo
images results in a higher quality 3D reconstruction, since three-acquisition-direction reduces the
risk of occlusions. Nevertheless, difficulties are encountered in regions with poor or repetitive texture,
such as water surface or shaded areas, where the final 3D point cloud contains higher noise and
outliers. The resulting point cloud describes the terrain surface in the open, free areas (agriculture
and grasslands) and the top surface of the objects on it (buildings and trees). The described surface is
smooth, with bevelled building edges and missing height information for small individual objects.
For example, points corresponding to small vehicles (family cars with lengths smaller than 5 m and
heights smaller than 1.5 m) are not elevated compared to their surroundings. Hence, a classification
using solely geometry information cannot reliably detect such objects.

For the quality assessment, the point cloud was interpolated into a regular elevation
model with 0.5 m resolution, i.e., DSM, by using a robust moving planes interpolation method.
Therefore, the vertical Root Mean Square Errors (RMSEs) between the DSM and 50 homogeneously
distributed CPs as well as the reference LiDAR DTM was computed (the comparison with the LiDAR
DTM was only done in open, free areas, where the DSM can be considered the same with the DTM).
Additionally, the distribution of the height difference errors was analyzed by computing statistic
measures such as mean, standard deviation (σ), median, and a robust standard deviation based on
the median of absolute differences (σMAD). The height differences between the computed DSM and
the LiDAR DTM in open areas show a systematic positive difference (~1 m) in the southern part of
the scene (Appendix A Figure A2). Such systematic error can be removed by applying Least Square
Matching (LSM) [147] as demonstrated in Loghin et al. [148], where height differences are reduced to a
median close to zero and the total Root Mean Square Error (RMSE) decreases from 0.96 m to 0.61 m
(Appendix A Table A1). For the 50 CPs, the RMSE dropped from 0.31 to 0.25 m after LSM, which is
very close to one-third of the pixel size (0.35 pixel).

For completeness, it should be mentioned that GCPs are not mandatory for processing satellite
imagery. Based on the original RPCs and automatically measured tie points, a DSM can be derived as
well. However, the geolocation accuracy of such model is poor, as in our case we observed a positive
offset of approximately 18 m. Applying a LSM transformation as described before, similar accuracies
can be achieved, as with the usage of GCPs.
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4.2. Semantic Segmentation Results

In this section, we describe and compare the performance of the trained models. We start with
the GSCNN models using class weights based on 50 epochs. Then, we proceed with the decision trees,
and follow up with FCN-8s. Finally, we describe the GSCNN model that uses class weights over the
400 epochs. Before that, we give a brief rationale on the chosen performance metrics.

We compare the performance of the machine learning models with metrics that do not take the
number of classes into account, and with metrics that do. We do this for many reasons, among them
are the following three. The first is to get a more detailed picture on how a particular model actually
performs. This is especially important when one or two classes dominate. Second, and tied to the first,
performance metrics that do not take the number of classes into account put, a mostly unjustifiable,
high importance on the dominant classes. In this paper, for example, adding color as features to the
coordinates does improve the performance of the GSCNN model judged by the kappa score and the
overall accuracy. However, it decreases the performance judged by metrics that take the number of
classes into account, e.g., the average class accuracy. Third, in some cases, we are interested in the
prediction performance of a particular class. An organization that is in the oil pipeline surveillance
business is generally more interested in vehicles than in buildings. For these reasons, we compare
the performance with four metrics that take the number of classes into account by averaging and
with two metrics that do not. We also break the performance down to the class level for accuracy,
precision, recall, and F1.

Adding color information to geometry does increase the kappa score and the overall accuracy of
our U-Net based GSCNN (Table 3). In addition, the color information has increased the class metrics
for clutter on accuracy, recall, and F1, while it has decreased the precision (Table 4). In fact, the increase
in kappa score and overall accuracy is solely due to the increased performance on predicting clutter.
However, this increase has a negative effect on all other metrics. In general, we see lower values for
average precision, average recall, average F1, and average accuracy. The same is true for the per class
metrics, with the exception of the aforementioned clutter class. The two dominant classes clutter and
trees are overwhelmingly present in false positives and false negatives (Tables A3 and A5). Interestingly,
adding color features does not have a homogeneous reducing effect on this. For clutter, the number of
times tree is predicted increases from 3.6 million to 10.2 million. For trees, we observe the opposite
effect as the number of times clutter is predicted, decreasing from 9.3 million to 1.4 million. Adding
class weights to the color and coordinates model generally reverses the described effects, albeit not
completely, with the roads class being the exception as it increases the performance. This means that,
if a value decreases with the additional color features, it increases with the class weights, and vice a
versa. In Table 3, for example, the weighted loss increases average precision, average recall, average F1,
and average accuracy while it decreases the kappa score and overall accuracy. This effect is also present
in Table 4, and when we compare Tables A5 and A7. These decreases can be attributed to the effects of
the weighted loss, as the weights decrease the impact of classes with a high occurrence and increase
the impact of classes with a low occurrence on the network’s loss. Adding color to the coordinates
leads to a higher stability over the training process (compare Figures 7 and 8), while median class
weights seem to introduce instability again (compare Figures 9 and 10).
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Table 3. Overall quantitative comparison of the GSCNN, FCN-8s, and the decision tree. We report
(from left to right) average precision, average recall, average F1 score, average accuracy, kappa score,
overall accuracy, and MCC. Values in bold format are the highest numbers for the corresponding
metrics, with the exception for baseline A. See Table 4 for per class results, and Appendix B for the
confusion matrices. Note that we abbreviate weighted loss with (W.L).

Models Avg. Precision Avg. Recall Avg. F1 Avg. A Kappa OA MCC
% % % % % % [−1,+1]

baseline A 12.85 20.00 15.64 20.00 47.33 64.25 0.00

U-Net based GSCNN (3D)
Coordinates 23.69 24.33 23.20 24.32 38.90 56.01 0.18
Coordinates, Colors 19.31 19.98 17.38 19.97 45.07 62.14 0.00
Coordinates, Colors, W.L 21.92 22.24 21.36 22.22 34.30 51.07 0.09

FCN-8s (2D)
Colors 62.43 61.15 59.12 61.15 90.76 96.11 0.91

Decision Tree (3D)
Coordinates 43.89 38.73 39.54 38.73 82.00 89.10 0.76
Coordinates, Colors 61.03 58.72 58.96 58.71 86.60 93.18 0.85

The additional color information boosts the decision tree’s performance on all classes, but one,
among all metrics (Table 4). Adding color information has no effect on the vehicle class. The per
class accuracy improved from 93% to 95% for clutter, from 88% to 93% for trees , from 11% to 79% for
buildings, and from 0% to 24% for roads. This 24% for roads is the best performance among the three
approaches. While two of these improvements are dramatic, they only lead to a modest improvement
for the kappa score and the overall accuracy, due to the class imbalance. However, the average per
class accuracy improves by 20% from 38% to 58%, which is only 3% lower than the average per class
accuracy of FCN-8s. The additional color information also leads to the best precision and F1 score for
buildings and the best recall for roads. Hence, the decision tree outperforms FCN-8s on these cases,
when simultaneously trained on both hand-crafted geometric and color features. When only trained
on the hand-crafted geometric features, the decision tree suffers from the dominance in false positives
and false negatives of the two classes clutter and trees as the GSCNN, although not as strongly as the
GSCNN (Table A13). However, the additional color information partially mitigates this (Table A5).
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Figure 7. Overall accuracy for the GSCNN models after each epoch.
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FCN-8s performs the best among the three approaches in our study area, with an average precision
of 62%, an average recall of 61%, an average F1 score of 59%, a kappa score of 90%, an overall accuracy
of 96%, and an average per class accuracy of 61% (Table 3). However, the performance of the decision
tree when color is included is only 1–3% lower for these metrics. FCN-8s confusion matrix shows
that it does not suffer as strongly as the other two from the class imbalance (Table A8). For example,
for clutter, the second biggest group of false positives is roads and not trees. FCN-8s also leads in
most of the per class metrics (Table 4); it is outperformed by the decision tree when it is trained on
hand-crafted geometric features and color on four occasions. First, the decision tree has a higher
accuracy for predicting roads. Second, the decision tree has a higher precision for predicting buildings.
Third, the decision tree has a higher recall for predicting roads. Fourth, the decision tree has a higher
F1 score for buildings.
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Figure 9. Overall accuracy for the GSCNN model that is trained on coordinates and colors, and uses
a weighted loss, after each epoch.

Table 4. Per class metrics for the GSCNN, the FCN-8s, and the decision tree. Values in bold format are
the highest numbers for corresponding metric, with the exception for baseline A. See Appendix B for
the confusion matrices.

Model Clutter Roads Buildings Trees Vehicles
% % % % %

Per Class Accuracy

baseline A 100.00 0.00 0.00 0.00 0.00

U-Net based GSCNN (3D)
Coordinates 53.87 2.36 00.00 65.40 00.00
Coordinates, Color 93.43 00.00 00.00 6.45 00.00
Coordinates, Colors, W.L 50.22 3.61 00.00 57.34 00.00

FCN-8s (2D)
Color 98.19 22.89 86.44 98.22 00.00

Decision Tree (3D)
Coordinates 93.90 00.00 11.71 88.02 00.00
Coordinates, Colors 95.80 24.75 79.13 93.88 00.00

Per Class Precision

baseline A 64.25 0.00 0.00 0.00 0.00
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Table 4. Cont.

Model Clutter Roads Buildings Trees Vehicles
% % % % %

U-Net based GSCNN (3D)
Coordinates 73.58 2.59 00.00 42.26 00.00
Coordinates, Color 64.21 00.00 00.00 32.36 00.00
Coordinates, Colors, W.L 69.03 3.15 00.00 37.41 00.00

FCN-8s (2D)
Color 96.09 63.85 54.25 97.95 00.00

Decision Tree (3D)
Coordinates 90.68 00.00 42.67 86.10 00.00
Coordinates, Colors 93.87 49.56 67.76 93.89 00.00

Per Class Recall

baseline A 100.00 0.00 0.00 0.00 0.00

U-Net based GSCNN (3D)
Coordinates 53.87 2.36 00.00 65.40 00.00
Coordinates, Color 93.44 00.00 00.00 6.46 00.00

Coordinates, Colors, W.L 50.22 3.62 00.00 57.35 00.00

FCN-8s (2D)
Color 98.02 22.89 86.45 98.22 00.00

Decision Tree (3D)
Coordinates 93.91 00.00 11.72 88.02 00.00
Coordinates, Colors 95.81 24.76 79.13 93.89 00.00

Per Class F1

baseline A 78.24 0.00 0.00 0.00 0.00

U-Net based GSCNN (3D)
Coordinates 62.20 2.47 00.00 51.34 00.00
Coordinates, Color 76.12 00.00 00.00 10.77 00.00
Coordinates, Colors, W.L 58.14 3.37 00.00 45.29 00.00

FCN-8s (2D)
Color 97.13 33.70 66.66 98.02 00.00

Decision Tree (3D)
Coordinates 92.27 00.00 18.39 87.76 00.00
Coordinates, Colors 94.83 33.02 73.01 93.93 00.00

Training the GSCNN on color and geometry, with a weighted loss, mitigates the class imbalance
problem (Figure 10 and Table 4). The network commonly has accuracies different from 0 for buildings
and vehicles between 100 and 250 epochs. However, after the 250th epoch, they become less and less
frequent and smaller. The volatility of the overall accuracy, measured by the standard deviation σ,
is five times higher than the coordinates model. In particular, σ = 10.22%, which is similar to the
coordinates model σ = 9.99%, while, for the model that uses coordinates and color, we have σ = 2.02%.
MCC almost completely recovered after 400 training epochs to 0.17, which is almost twice as high than
without colors. In other words, it almost completely recovered.
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Figure 10. Per class accuracies for the GSCNN model that is trained on coordinates and colors, and uses
a weighted loss, after each epoch.

5. Discussion

In this section, we analyze the 3D reconstruction result in the first paragraph, and interpret the
semantic segmentation outcome in the context of CV in the second paragraph. Finally, we outline
future research directions.

As described in Section 4.1, the accuracy of the computed DSM was analyzed based on
50 homogeneously distributed CPs. We observed a vertical RMSE of 0.25 m. Our result is therefore
better than the accuracies of 0.49 m reported by Bernard et al. [149] and of 0.5 m obtained by
Hu et al. [150] for 6001 ground LiDAR check points. We picked CPs on flat, smooth, and non-vegetated
areas, whereas, at larger scale, the surface land cover type [151] will influence accuracy assessments.
Hence, we compared the Pléiades DSM with the reference LiDAR DTM in the open, stable areas,
only. However, we did not explicitly exclude low vegetation and agriculture fields, making the larger
global RMSE of 0.61 m (0.9 GSD) plausible. Nevertheless, the result corresponds to reported vertical
accuracies of 0.44 and 2 GSD for photogrammetrically derived elevation models captured from aerial
platforms [151–153].
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DL advanced a variety of tasks in NLP and CV, especially in cases where the problem
can be formulated as a set of features that can be arranged in a grid structure, e.g., images.
Recently, this assumption of a two-dimensional grid is challenged by the machine learning community,
as more effort is put into generalizing the convolution operation, e.g., with the previously mentioned
pointwise convolutional operation [123], and the generalized sparse convolution operation we use
in this paper [91]. While the GSCNN is outperformed by both models, we argue that our results
indicate that the generalized sparse convolution operation is a promising candidate as an approach,
especially when we acknowledge the fact that learning geometric patterns in a three-dimensional space
seems to be a harder learning problem, as indicated by our experiments, which is particularly true for
derived point clouds from tri-stereo imagery as the geometric information quality of objects is lower.
That leads to difficult decision boundaries, as these boundaries are diffused. Additionally, we have to
acknowledge that learning in a higher-dimensional space, 3 versus 6, is per se more difficult due to the
curse of dimensionality [154]. Our experiments also indicate that median class weighting improves the
performance on rare classes, even with a factor of 1:10.000. However, it requires 2–3 times more epochs
(and hence a longer training time) for these performance improvements to be visible in out setting.
We want to highlight that data augmentation might drastically improve the performance of the tested
model as this is a widely observed behavior in DL. Class imbalance strategies are also likely to greatly
boost the performance of DL in our case, e.g., the approach presented by Messay-Kebede et al. greatly
boosts the accuracy from 40.5% to 81.0% on class Simda, where only 42 samples are present [155].

Future research directions include the use of DL for 3D reconstruction. For example, Saito et al.
presented a technique that takes one or more images as an input, and outputs a 3D reconstruction of
an object [156]. The findings of this research direction might give valuable input for improvement
of the currently used hand crafted mathematical models that we use in this paper. The applicability
of superresolution on the derived point clouds is also worthy of future investigation, similar to
what was done in the two-dimensional grid world with images by, e.g., Kim et al. [157]. Not only
might this highlight areas for improvement of the mathematical models, but it might also lead to
less distorted point clouds, which in turn can significantly improve not only the segmentation results
but also other tasks, e.g., object detection. Another research direction is to conduct a comparison
study, e.g., comparing our approach with pointwise convolutional networks [123] and pointnet based
networks [60]. Investigating the uncertainty of the model is also an interesting and important avenue
for further research [158]. Findings from this research help understand in which scenarios the model
is likely to be wrong, which, in turn, would lead to strategies that limit and mitigate these scenarios.
Information about uncertainty is important for deploying and incorporating machine learning models
into business processes (see above). An ablation study on the network’s components is also a direction.
For example, systematically decreasing the number of filters gives insight to the question of model
complexity. Finally, a study on different class imbalance strategies will contribute to answering the
question which strategies will improve the performance in settings such as ours.

6. Conclusions

We studied the utility of point clouds that are derived from tri-stereo satellite imagery for semantic
segmentation with a U-Net based architecture that uses generalized sparse convolutions. We used
an Austrian study area. For this study area, we reported that, ceteris paribus, color and geometry
(from derived point clouds) do not lead to an increase in general performance for the GSCNN. In our
experiments, we found that, inter alia, adding color to geometry leads to a higher performance only
on the dominant class. We also found that median class weighting partially reverts the effects of
adding color. For example, MCC drops from 0.18 to 0.00 when color is added, and it raises to 0.09
with median class weighting in our experiments. The network also started to learn the classes with
lower occurrences. In addition, FCN-8s and the decision tree outperform the GSCNN. Providing the
GSCNN with the additional color information does increase the overall accuracy from 56% to 62%,
and the kappa score from 39% to 45%, but this is at the expense of a significantly lower per class
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accuracy for the decision tree. The accuracy performance for roads drops from a modest 2.25% to
0.00%. This leads to a fall of the average per class accuracy from 24% to 19%. For the decision tree,
adding color information to the geometry leads to a significantly higher performance. The kappa score
increases from 82% to 86%, the overall accuracy from 89% to 93%, and the average per class accuracy
from 38% to 58%. Adding color has a particularly strong effect on the class accuracy performance
for roads and buildings. The highest performance on this study area has FCN-8s with a kappa score
of 90%, an overall accuracy of 96%, and an average per call accuracy of 61%. This network is only
outperformed by the decision tree as the latter has a 2% higher accuracy for roads prediction. While the
GSCNN is outperformed by and large by the decision tree, it has major shortcomings. One is the
longer prediction phase. With their respective hardware settings, the GSCNN takes 45 min for the test
dataset, while computing the features for the decision tree takes approximately 4 h with our hardware
set up. Additionally, one has to set up the infrastructure for this. We contribute in multiple ways with
our research. Firstly, we open up a new possibility for data fusion in remote sensing, specifically in
the case of applying machine learning [159]. To the best of our knowledge, this is the first work that
studies point clouds derived from tri-stereo imagery for DL approaches. Second, similarly, our work
extends the semantic segmentation literature to satellite derived point clouds. Third, we contribute to
transfer learning, by making our class weights for the GSCNN networks open source on PyTorch Hub
via https://github.com/MacOS/ReKlaSat-3D. Additionally, it makes our research more accessible
to other researchers by drastically decreasing the amount of resources necessary to use our results.
We also make the learned decision trees publicly available through this GitHub repository.
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Abbreviations

The following abbreviations are used in this manuscript:

DL Deep Learning
NLP Natural Language Processing
CV Computer Vision
GSCNN Generalized Sparse Convolutional Neural Network
CNN Convolutional Neural Network
FCNN Fully Convolutional Neural Network
RNN Recurrent Neural Network
DRR Net Dense Refinement Residual Network
BERT Bidirectional Encoder Representations from Transformers
RoBERTa A Robustly Optimized BERT Pretraining Approach
SVM Support Vector Machine
VHR Very High Resolution
NIR Near-Infrared
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LiDAR Light Detection And Ranging
DTM Digital Terrain Model
DSM Digital Surface Model
RPCs Rational Polynomial Coefficients
GCPs Ground Control Points
CPs Check Points
GSD Ground Sample Distance
LSM Least Squares Matching
FBM Feature Based Matching
CBM Cost Based Matching
OPALS Orientation and Processing of Airborne Laser Scanning
RMSE Root Mean Square Errors

Appendix A

Figure A1 illustrates the results of image matching, with an overview of the reconstructed point
cloud together with color and shaded DSM visualizations for the study area. Figure A2 shows the
color-coded elevation differences between the photogrammetric-derived DSM and the reference LiDAR
DTM with their frequency distribution histogram before and after applying LSM transformation.

Table A1. Vertical accuracy assessment of Pléiades DSM w.r.t. CPs and the entire scene in open areas
(values are in meters).

Before LSM After LSM
Mean Std σMAD RMSE Mean Std σMAD RMSE

CPs 0.25 0.30 0.29 0.31 0.12 0.23 0.21 0.25
DSM

(open areas) 0.80 0.53 0.51 0.96 0.15 0.60 0.50 0.61

Figure A1. Image matching and 3D reconstruction results for the study area selected for the semantic
segmentation: (a) 3D point cloud; (b) color coded view of the DSM; and (c) shaded view of the
reconstructed DSM.
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Figure A2. Pléiades nDSM statistics for open areas (masked areas are shown in grey): (a) spatial
distribution of color-coded height differences before LSM; (b) spatial distribution of color-coded height
differences after LSM; and (c) the frequency distribution histogram of Pléiades nDSM heights.

Appendix B

In this appendix section we depict the confusion matrices for all machine learning methods and
each set of input features. Tables A3 and A5 show the confusion matrices for the GSCNN for the
input features coordinates, and the input features coordinates and colors, respectively. Table A8 shows
the confusion matrix for the two-dimensional CNN approach. Finally, the confusion matrices for the
decision tree trained on coordinates, and trained on coordinates and colors are shown in Tables A12
and A13, respectively. Please note that the numbers in Tables A3 and A5 do not add up the numbers
presented in Table 2, because the current implementation of the Minkowski Engine cannot process
point clouds with duplicate points. For example, it does not allow that f1 = [2, 2, 2] and f2 = [2, 2, 2]
are in the same point cloud pl, i.e., if f1 ∈ pl =⇒ f2 /∈ pl and if f2 ∈ pl =⇒ f1 /∈ pl. We had
to delete 859 points for this reason. The numbers in Table A8 do not add up to Table 2, since the
numbers reflect pixels and not points. The normalized confusion matrices are normalized along the
rows, i.e., along the actual (also true) classes.

Table A2. Confusion matrix for the GSCNN model that is trained on coordinates, after 50 epochs.

Predicted

Actual

Clutter Roads Buildings Trees Vehicles

Clutter 11,588,872 614,421 0 9,309,164 0
Roads 463,755 21,421 0 422,481 0
Buildings 106,155 279 0 29,155 0
Trees 3,589,286 190,509 0 7,144,498 0
Vehicles 1060 52 0 582 0

Table A3. Normalized confusion matrix for the GSCNN model that is trained on coordinates, after 50 epochs.

Predicted

Actual

Clutter Roads Buildings Trees Vehicles

Clutter 53.87 2.86 0 43.27 0
Roads 51.09 2.36 0 46.55 0
Buildings 78.29 0.21 0 21.50 0
Trees 32.86 1.74 0 65.40 0
Vehicles 62.57 3.07 0 34.36 0
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Table A4. Confusion matrix for the GSCNN model that is trained on coordinates and colors,
after 50 epochs.

Predicted

Actual

Clutter Roads Buildings Trees Vehicles

Clutter 20,100,179 0 0 1,412,278 0
Roads 855,821 0 0 51,836 0
Buildings 125,225 0 0 10,364 0
Trees 10,218,858 0 0 705,435 0
Vehicles 1623 0 0 71 0

Table A5. Normalized confusion matrix for the GSCNN model that is trained on coordinates and
colors, after 50 epochs.

Predicted

Actual

Clutter Roads Buildings Trees Vehicles

Clutter 93.44 0 0 6.56 0
Roads 94.29 0 0 5.71 0
Buildings 92.36 0 0 7.64 0
Trees 93.54 0 0 6.46 0
Vehicles 95.81 0 0 4.19 0

Table A6. Confusion matrix for the GSCNN model that is trained on coordinates and colors, and uses
class weights, after 50 epochs.

Predicted

Actual

Clutter Roads Buildings Trees Vehicles

Clutter 10,804,589 417,105 61,491 4,367,882 869
Roads 727,020 32,852 10,115 271,748 48
Buildings 22,370 1203 0 19,664 0
Trees 9,958,478 456,497 63,983 6,264,999 777
Vehicles 0 0 0 0 0

Table A7. Normalized confusion matrix for the GSCNN model that is trained on coordinates and
colors, and uses class weights, after 50 epochs.

Predicted

Actual

Clutter Roads Buildings Trees Vehicles

Clutter 50.22 3.38 0.10 46.29 0.00
Roads 45.95 3.62 0.13 50.29 0.00
Buildings 45.35 7.46 0.00 47.19 0.00
Trees 39.98 2.49 0.18 57.35 0.00
Vehicles 51.30 2.83 0.00 45.87 0.00

Table A8. Confusion matrix for the CNN model that is trained on colors, after 50 epochs.

Predicted

Actual

Clutter Roads Buildings Trees Vehicles

Clutter 21,326,657 110,375 80,506 200,719 0
Roads 665,108 209,678 16,834 24,317 0
Buildings 15,848 712 118,464 2012 0
Trees 186,250 7460 2288 10,824,717 0
Vehicles 1243 160 278 13 0
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Table A9. Normalized confusion matrix for the CNN model that is trained on color.

Predicted

Actual

Clutter Roads Buildings Trees Vehicles

Clutter 98.20 0.51 0.37 0.92 0
Roads 72.62 22.89 1.84 2.65 0
Buildings 11.56 0.52 86.45 1.47 0
Trees 1.69 0.07 0.02 98.22 0
Vehicles 73.38 9.45 16.41 0.77 0

Table A10. Confusion matrix for the decision tree model that is trained on hand-crafted coordinates
features.

Predicted

Actual

Clutter Roads Buildings Trees Vehicles

Clutter 20,201,720 0 4883 1,306,322 0
Roads 775,555 0 587 131,538 0
Buildings 6049 0 15,887 113,654 0
Trees 1,292,805 0 15,870 9,615,985 0
Vehicles 1181 0 2 511 0

Table A11. Normalized confusion matrix for the decision tree model that is trained on hand-crafted
coordinates features.

Predicted

Actual

Clutter Roads Buildings Trees Vehicles

Clutter 93.91 0 0.02 6.07 0
Roads 85.44 0 0.06 14.49 0
Buildings 4.46 0 11.72 83.82 0
Trees 11.83 0 0.15 88.02 0
Vehicles 69.72 0 0.12 30.17 0

Table A12. Confusion matrix for the decision tree model that is trained on hand-crafted coordinates
features and color features.

Predicted

Actual

Clutter Roads Buildings Trees Vehicles

Clutter 20,610,793 223,248 38,686 640,198 0
Roads 657,941 224,697 9981 15,061 0
Buildings 25,486 1027 107,293 1784 0
Trees 661,638 3867 2274 10,256,881 0
Vehicles 1049 522 109 14 0

Table A13. Normalized confusion matrix for the decision tree model that is trained on hand-crafted
coordinates features and color.

Predicted

Actual

Clutter Roads Buildings Trees Vehicles

Clutter 95.81 1.04 0.18 2.98 0
Roads 72.49 24.76 1.10 1.66 0
Buildings 18.80 0.76 79.13 1.32 0
Trees 6.06 0.04 0.02 93.89 0
Vehicles 61.92 30.81 6.43 0.83 0



Remote Sens. 2020, 12, 1289 27 of 36

Table A14. Confusion matrix for the GSCNN model that is trained on coordinates and colors, and uses
class weights, after 400 epochs.

Predicted

Actual

Clutter Roads Buildings Trees Vehicles

Clutter 13,627,522 615,499 106,489 4,793,811 1151
Roads 189,498 14,642 2471 23,374 232
Buildings 13,721 572 213 17,642 0
Trees 7,660,978 276,146 26,308 6,045,457 310
Vehicles 20,738 798 108 44,009 1

Table A15. Normalized confusion matrix for the GSCNN model that is trained on coordinates and
colors, and uses class weights, after 400 epochs.

Predicted

Actual

Clutter Roads Buildings Trees Vehicles

Clutter 63.35 0.88 0.06 35.61 0.10
Roads 67.81 1.61 0.06 30.42 0.09
Buildings 78.54 1.82 0.16 19.40 0.08
Trees 43.88 0.21 0.16 55.34 0.40
Vehicles 67.95 13.70 0.00 18.30 0.06

Appendix C

As a pre-processing step, additional geometric features were computed for each 3D point in
the matched cloud. To this point, we considered for the spatial query of a point neighborhood an
infinite cylinder with 7 m radius. These features include, e.g., the normal vector (NormalX, NormalY,
NormalZ, NormalSigma), EchoRatio, ZRank, ZRange, and features derived from the structure tensor T
(linearity, planarity, and omnivariance). All these features describe the point distribution [144] and are
required for the separability of the classes. Surface normals are an important geometric property for
the description of a surface. The local tangent plane is estimated by computing the best fitting plane for
the nearest points and its corresponding normal vectors (termed NormalX, NormalY, and NormalZ)
together with the standard deviation of the fit are used as additional descriptions of the points
(NormalSigma). The distribution of the points in the neighborhood is derived from the structure tensor
T, from which three main features are extracted: linearity, planarity, and omnivariance. The linearity
feature is used to characterize 3D line objects such as power lines, planarity is a feature describing the
smoothness of the surface, and omnivariance gives information about the volumetric point distribution.
EchoRatio is a measure that describes the vertical point distribution, ZRange represents the maximum
height difference between the points in the neighborhood, while ZRank is the rank of the point
corresponding to its height in the neighborhood [160].

Appendix D

We describe FCN-8s as introduced by Long et al. in greater detail in this appendix section
(Figure A3). Neural network layers are depicted in rectangles, the rectangles are colored if we have
collapsed multiple layers into one to increase readability. Numbers outside of rectangles indicate
the number of feature maps that go in and out of a layer. For example, the first layer expects three
input channels and outputs 64 channels. Crop takes two tensors as an input, and crops the larger
one of the two down to the size of the smaller one. The circled plus represents element-wise tensor
addition. The down path is described in the next paragraph, and the up-path in the last paragraph of
this appendix section.

A major point of reference for this architecture are the five max pooling layers with a kernel
size of 2× 2, a stride of 2, and no padding (colored red). These max pooling layers successively
downsample the feature maps. The first two max pool layers are preceded by two convolutional layers
each, while the last three are preceded by three convolutional layers. A convolutional layer consists of
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a convolution with a kernel of size 3× 3, a stride of 1, and a padding of 1, followed by the activation
ReLU function (colored green). The last max pool layer is continued by a convolutional layer with
a kernel of size 7× 7, a stride of 1, a padding of 1, and outputs 4096 feature channels. The output
of this layer is then put through the ReLU activation function, dropout is then applied with a rate of
0.5 [161]. This is followed by a convolutional layer with a kernel of size 1× 1, with a stride of 1, and a
padding of 0, on which ReLU and 0.5 dropout rate is applied (colored blue). The down path ends
with a convolution layer with a kernel of size 1× 1, with a stride of 1 and a padding of 0, that outputs
21 features channels.

The 21 output channels of the last layer are upsampled by a deconvolutional layer with a kernel
of size 4× 4, a stride of 2, and a padding of 0. This is then cropped to fit the output size of the fourth
max pool layer, before element-wise tensor addition is used to merge the two tensors. After that,
a deconvolutional layer with the same hyperparameters as before is used to upsample the tensor
again. The same operations are performed to merge this resulting tensor with the output of the third
max pooling layer. Finally, this tensor is then upsampled by a deconvolutional layer with kernel size
16× 16, stride 8, and padding 0. This final tensor is then cropped to fit the size of the input tensor.
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Figure A3. FCN-8s as introduced by Long et al.
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