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Abstract Weconsider a two-class growthmodel with
optimal saving and switch in behavior. The dynamics
of this model is described by a two-dimensional (2D)
discontinuous map. We obtain stability conditions of
the border and interior fixed points (known as Solow
and Pasinetti equilibria, respectively) and investigate
bifurcation structures observed in the parameter space
of this map, associated with its attracting cycles and
chaotic attractors. In particular, we show that on the
x-axis, which is invariant, the map is reduced to a 1D
piecewise increasing discontinuous map, and prove the
existence of a corresponding period adding bifurcation
structure issuing from a codimension-two border col-
lision bifurcation point. Then, we describe how this
structure evolves when the related attracting cycles on
the x-axis lose their transverse stability via a transcrit-
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ical bifurcation and the corresponding interior cycles
appear. In particular, we show that the observed bifur-
cation structure, being associated with the 2D discon-
tinuous map, is characterized by multistability, that is
impossible in the case of a standard period adding bifur-
cation structure.

Keywords Two-class growth model · Piecewise
smooth discontinuous map · Border collision
bifurcation · Period adding bifurcation structure

1 Introduction

The nature of long-run economic development is one
of the core questions in economics. Do economies con-
verge to a smooth growth path? Do they follow a diver-
gent path? Are they subject to cyclical fluctuations?
To irregular cycles? To sudden regime switches? Eco-
nomic models addressing these questions usually view
economic growth as the result of the interplay between
properties of the technology and savings behavior of
economic agents. While the former refers to whether
productive factors are substitutes for each other and
to what extent they can be substituted for each other,
the latter opens the door for considering heterogeneous
behavior and heterogeneous agents.

It has a long tradition differentiating between the
behavior of social classes, in particular between work-
ers and capitalists (with the latter having a higher sav-
ings propensity); in the literature on economic growth,
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this sharp distinction is often softened, as workers may
also own capital (and receive a corresponding profit
income). Workers’ saving behavior typically differs
between the different sources of income, with the sav-
ings rate out of profit income often considered to be
higher than the one out of wage income (but not as
high as capitalists’ saving propensity). Thus, workers
savings behavior can be seen as being influenced by
capitalists’ savings behavior in as far as profit income
is concerned. In the following paper,we further develop
this idea and assume that workers choose to mimic
capitalists’ savings behavior, once workers’ capital has
surpassed a threshold value. From an analytic point
of view, this switching introduces a discontinuity into
the model, which is otherwise two-dimensional (2D)
smooth and in discrete time.

Before developing the model, we give a brief lit-
erature review, where we put emphasis on technology
and savings behavior. We also cover the analytic struc-
tures of the models as well as the dynamic properties.
For that, we focus on the fixed point, which is usually
expressed in terms of capital per worker.

As starting point, we choose the famous Harrod–
Domar dilemma (see [20,28]) according to which
the equilibrium growth path (which corresponds to
a stationary value of capital per worker) is locally
unstable. This model does not differentiate between
social classes; it assumes a constant and unique saving
propensity; and a technology with fixed coefficients.

During the late fifties and early sixties, two types of
one-sector exogenous growth models have been pro-
posed in the literature in order to solve the Harrod–
Domar dilemma.1 The Solow model [44] introduces
a standard neoclassical concave production function
with flexible coefficients (productive factors are sub-
stitutable with each other); this assumption leads to
local and global stability of the equilibrium growth
path (of the stationary value of capital per worker).
Instead,Kaldor [30] introduced an early formof hetero-
geneous behavior by differentiating two saving propen-
sities, attached to wages and profits, respectively. As
for the previous models, the resulting dynamics is one-
dimensional (1D)—with the overall capital represent-
ing the only state variable—where stability is obtained

1 We should mention a third category of one-sector growth mod-
els not directly spurred by the Harrod–Domar dilemma, which
are the optimal growth models inspired by Ramsey [41] where
the saving choices of economic agents follow an intertemporal
utility maximization plan (see, for example, [2,19]).

by allowing variations in income distribution between
different income sources adjusting saving to invest-
ment.

Pasinetti [39] reformulates Kaldor’s model by intro-
ducing heterogeneous agents. In particular, he intro-
duced two different types of agents belonging to dif-
ferent social classes, workers and capitalists, with dif-
ferentiated saving propensities. In the Pasinetti model,
the dynamics is 2D, where workers’ and capital-
ists’ capitals represent the two state variables. An
important result following from his analysis is that in
a two-class stationary equilibrium—dubbed Pasinetti
equilibrium—the income distribution between wages
and profits—and, thus, the steady growth solution for
the overall capital—is independent ofworkers’ propen-
sity to save;2 workers saving behavior only affects the
capital distribution between classes. In a later con-
tribution, Samuelson and Modigliani [43] integrated
the Solow and the Pasinetti model. Moreover, they
showed that a two-class model with a flexible produc-
tion technology admits another solution, other than the
Pasinetti equilibrium, in which capitalists’ capital is
zero. In this equilibrium that replicates the properties
of a Solow equilibrium, distinct groups of agents can-
not be distinguished and the long-run stationary equi-
librium of capital—coinciding with workers’ capital—
is not affected by the capitalists’ propensity to save.3

These analyses were mainly concerned with the stabil-
ity properties of stationary equilibria.

Quite recently, other contributions show that one-
sector growth models, which combine differentiated
saving propensities and a technology characterized by
weak factor substitutability and which are framed in
discrete time, are able to generate complex dynam-
ics, from cycles of any period to chaos. Böhm and
Kass [6] introduce two saving propensities for wage
and profit income respectively, as in the Kaldor model,
and assume a concave production functionwith generic
properties (it satisfies the weak Inada conditions).

2 Another striking result is that the rate of return on capital does
not depend on the propensity to save of workers and on the
shape of the production function. Thus, Pasinetti contribution
[39] represents a critique to the marginalists approach, accord-
ing to which this rate follows directly from the properties of the
production function.
3 It is determined by the exogenous rate of growth of popula-
tion and by workers’ propensity to save. In a “Solow” or “dual”
equilibrium the rate of return on capital is determined by the
technology, that is, it depends on the properties of the production
function.
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These authors show that, when the two propensities
to save are sufficiently different (with the propensity
to save out of profits larger than the one out of wages)
and factor elasticity of substitution is low, discrete-time
dynamics may involve cycles of any period and chaos.
The works [7–12] and [25,26] extended the Böhm and
Kass model to the case of endogenous labor supply and
concave or nonconcave production functions confirm-
ing the role of low factor substitutability in generating
complex dynamics. Their models are 2D. However,
they are confined to the study of income distribution
between wage and profit income.

Commendatore [14], instead, studies a discrete-time
version of the Pasinetti–Solow model put forward by
Samuelson and Modigliani [43] that assumes a pro-
duction function with constant elasticity of substitution
(CES) and that involves two different types of agents,
workers and capitalist: the ensuing model entails dis-
tributive processes also between social classes and
a large variety of dynamic behaviors emerge from
this formulation. In this contribution, it is shown that
the distinction between a Pasinetti growth regime—
where both classes own capital—and a Solow growth
regime—where only workers own capital—holds also
for long-run attractors that are not stationary states. As
in Solow, the propensities to save assumed by these
models are fixed parameters and are not the outcome
of optimizing consumer behavior.

Later contributions interested in chaotic or, more
generally, complex behavior in discrete-time models
assume that workers and capitalists save on the basis
of rational choices. Particularly, Commendatore and
Palmisani [15], in an overlapping generations setup,
describe these choices on the basis of a classical
approach (see [5,22] and [34]) according to which
saving behavior of individuals is highly influenced by
the social group (or class) to which they belong. In
this framework, capitalists behave like an infinitely
lived “dynasty” saving on the basis of an altruistic
motive, whereas workers live only two periods and
their saving pattern is driven by a life-cyclemotive. The
resulting model is 2D; Commendatore and Palmisani
[15] present a detailed local stability analysis reveal-
ing bifurcation scenarios, which are a precondition of
chaotic behavior. In [1] it is also considered an over-
lapping generations structurewith twogroups, however
without the heterogeneity introduced in [15]: the two
groups behave similarly, they both live two periods,
and each old generation altruistically leaves a bequest

to the young one. The resulting model is 2D and in
[1] the authors explore both local and global stability
properties, showing different local bifurcations and a
variety of global dynamic features including multista-
bility, complex behavior and chaos.

The present paper, which follows the previously
reviewed studies in assuming a flexible production
technology allowing for factor substitution, extends
the previous contributions in the heterogeneous behav-
ior dimension. Following [15], we consider two social
classes, workers and capitalists that behave differently;
following [1], altruismand the bequestmotivemayplay
a role not only for capitalists’, but also for workers’
savings decision. Several contributions in the literature
suggest that there is a link between wealth accumula-
tion and the bequest motive (see [17] and [16]). In our
framework, for capitalists this link is always present:
capitalists behave altruistically and leave bequests, thus
providing for their “dynasty.” Instead, workers have
two behavioral patterns: when their wealth is low, their
saving pattern is driven by the usual life-cycle motive;
instead, when their wealth crosses a certain threshold,
workers saving behavior switches to the more altruis-
tic, bequest leaving behavior imitating the capitalists’
social class behavior.

Our analysis not only confirms the main results of
the literature—according to which 2Dmodels with dif-
ferential saving propensities (and thus distribution pro-
cesses between income types and social classes) and
weak factor substitutability may lead to chaotic behav-
ior. With the introduction of a switch in workers saving
choices, the resultingmodel is discontinuous and is also
able to show a larger set of complex dynamics features.

In fact, modeling a switch in the behavior of workers
leads to a discontinuous dynamical system, namely to
a 2D piecewise smooth (PWS) map F , correspond-
ing to the full system describing the dynamic evo-
lution of workers’ and capitalists’ capital, with one
discontinuity line, called switching manifold. Maps
of this class appear also in other applications (see,
e.g., [13,24,27,42,46]) and belong to a relatively new
research field which is not yet well developed. In par-
ticular, in the bifurcation theory of PWSmaps there are
open problems related to border collision bifurcations4

(BCBs) and to the corresponding bifurcation structures

4 A border collision bifurcation occurs when an invariant set of
a PWS map collides with its switching manifold under variation
of some parameter, and such a collision leads to a qualitative
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observed in the parameter space of such maps. In this
respect, continuous PWSmaps have the advantage that,
to classify possible outcomes of a BCB, one can use
border collision normal forms, represented by continu-
ous piecewise linear (PWL)maps, which are quite well
studied (see, e.g., [18,37,38,45]). Some results related
to dynamics of discontinuous PWL maps can be found
in [21,35,40].

Among discontinuous PWS maps the most stud-
ied are 1D piecewise monotone maps with one dis-
continuity point, associated with Lorenz like flows (to
cite a few, see [3,29,31–33], etc.). It is known that
investigation of bifurcation structures observed in the
parameter space of such maps often leads to specific
parameter points associated with intersection of differ-
ent BCB curves (see, e.g., [23] and references therein).
For example, in case of a 1D discontinuous piecewise
increasing map, an intersection point of two curves
related to BCBs of two different fixed points or cycles
can be the origin of a period adding bifurcation struc-
ture, associated with attracting cycles, or of a band-
count adding bifurcation structure, related to chaotic
attractors. If a 1D discontinuous map with increas-
ing and decreasing branches is considered, the related
intersection point can give rise to period/bandcount
incrementing bifurcation structures. In [4] these struc-
tures are described in detail in case of a 1D discontin-
uous PWL map; and examples of 1D PWS maps with
similar and mixed bifurcation structures are also pre-
sented.

It is interesting to investigate how the mentioned
above structures evolve when a 2D discontinuous map
is considered. In fact, in the parameter space of map F ,
weobserve a setwhich is an intersectionofBCBbound-
aries of the stability regions of different fixed points,
and from this set a bifurcation structure issues which
has some similarities with a period adding structure.
We show that on the x-axis (which is invariant) map
F is reduced to a 1D piecewise increasing map g—
which describes the dynamic evolution of the system
when only workers own capital—for which we prove
the existence of a period adding bifurcation structure
associated with attracting cycles belonging to the x-
axis. Then,we investigate how this structure ismodified
when the related attracting cycles lose their transverse

Footnote 4 continued
change in the dynamics. This notion is introduced in [37] where
2D continuous PWS maps are considered.

stability via transcritical bifurcation and correspond-
ing interior cycles appear. The main peculiarity of the
observed structure is related to multistability, which
is impossible in the case of a standard period adding
structure. For example, in the standard period adding
structure, between 2- and 3-periodicity regions there is
a 5-periodicity region,5 and all these regions are dis-
joint, while in the observed structure such regions can
overlap, leading to coexistence of 2-, 3- and 5-cycles.

The paper is organized as follows. In Sect. 2, we
put forward the general economic setup, describing the
saving behavior of the two groups and deriving the
accumulation law for capitalists’ and workers’ capi-
tal. In Sect. 3, we analyze the dynamics of map F
depending on its parameters, namely, in Sect. 3.1, we
obtain stability conditions of the interior fixed points;
in Sect. 3.2, we present several examples of the bifur-
cation structures observed in the parameter space of
map F and associated with its attracting cycles and
chaotic attractors; in Sect. 3.3, we analyze the dynam-
ics of the 1D map g and, in particular, we obtain the
stability conditions of the border fixed points and prove
the existence of a period adding structure issuing from
a codimension-two BCB point, associated with the
border fixed points; in Sect. 3.4, we show how this
structure evolves when attracting cycles, related to this
period adding structure, lose their transverse stability.
In Sect. 4, we propose some conclusions.

2 General setup of the model

The analysis is framed in discrete time and we denote
by t the time unit (or period). We consider a one-good
economy, where production only involves two factors,
capital Kt and labor Lt . A constant fraction 0 ≤ δ ≤ 1
of capital depreciates in each period. The production
technology is of the constant elasticity of substitution
(CES) type and takes the following functional form:

f (kt ) =
{

(1 − α + αkρ
t )1/ρ if ρ ≤ 1, ρ �= 0

kα
t if ρ = 0

(1)

where kt = Kt/Lt is the capital/labor ratio, 0 < α < 1
is the distribution coefficient, −∞ < ρ < 1 (ρ �= 0)
the substitution coefficient and (1 − ρ)−1 the elasticity

5 Recall that a period adding structure is formed by the period-
icity regions related to attracting cycles, and these regions are
ordered according to the Farey summation rule applied to the
rotation numbers of the related cycles (see, e.g., [4] for details).
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of substitution. Notice that when the coefficient related
to the elasticity of factor substitution tends to zero, i.e.,
if ρ → 0, we have the case of a Cobb–Douglas produc-
tion function—i.e., intermediate factor substitutability
and flexible production factor coefficients; instead, we
have the case of a Leontief technology—i.e., no substi-
tutability and fixed production factor coefficients—if
ρ → −∞; and the case of perfect substitutability if
ρ = 1.

Capital is the only asset in the economy, and wages
and profits are the only sources of income. We define a
short-run equilibrium as a situation in which perfectly
competitive capital and labor markets ensure equality
between the profit rate rt and the marginal product of
capital f ′(kt ), and between the wage rate wt and the
marginal product of labor f (kt )− f ′(kt )k. For the case
of a CES technology, this implies:

rt = f ′(kt )

=
{

α[(1 − α)k−ρ
t + α]1/ρ−1 if ρ ≤ 1, ρ �= 0

αkα−1
t if ρ = 0

wt = f (kt ) − f ′(kt )k

=
{

(1 − α)[(1 − α)k−ρ
t + α]1/ρ−1k1−ρ

t if ρ ≤ 1, ρ �= 0
(1 − α)kα−1

t if ρ = 0

(2)

The economy is inhabited by two types of agents
grouped into social classes, workers (denoted by the
subscript w) and capitalists (denoted by the subscript
c). Both classes live two periods according to an over-
lappinggenerations structure, have the samepopulation
size, Lt , and grow at the same rate, n ≥ 0. Moreover,
both workers and capitalists are endowed with loga-
rithmic preferences. Capitalists earn only income out of
capital, we denote Kc,t the capital of this type of agents.
They consume only a fraction of their wealth when old
and leave what is left to the current young generation
(their offspring). A young capitalist only decides how
much to consume out of her wealth in her first period
of life and saves what is left for the next period. Each
worker supplies inelastically one unit of labor when
young and does not work when old. If workers’ capital
is small, they consume all their wealth when old and do

not leave any bequest to the young generation. If work-
ers’ capital is sufficiently high, they behave like cap-
italists. They consume only a fraction of their wealth
and leave what is left to the current young generation.
We denote Kw,t the capital of this type of agents.

In order to determine capitalists and workers sav-
ings and accumulation choices, we proceed as follows.
Starting from the old generation of period t , each old
capitalist consumes only a fraction (1 − dc) of her
wealth, and pays to her descendants the fraction dc.
A young capitalist faces an intertemporal utility max-
imization problem, following the assumption of loga-
rithmic preferences, the solution involves saving a fixed
proportion of her wealth sc,t = βcdc(1 − δ + rt )kc,t ,
where sc,t is the saving of a young capitalist and βc is
capitalists’ consumption time discount factor. Consid-
eringworkers, again we start from the old generation of
period t : if her capital is smaller than a certain thresh-
old, kw,t < k, an old worker consumes all her wealth
(income plus depreciated capital), where kw,t denotes
workers’ capital expressed in terms of labor units.
She doesn’t leave anything to the young generation of
period t . When kw,t < k, in period t , young workers
do not receive any transfer from the old generation.
The solution of the intertemporal utility maximization
problemgives a saving corresponding to sw,t = βw1wt ,
where sw,t is the saving of a young worker in period
t and βw1 is workers’ consumption time discount fac-
tor when their capital is low. Instead, if her capital is
larger than that threshold, kw,t > k, an old worker con-
sumes only a fraction (1− dw) of her wealth and pays
to her descendants the fraction dw. When kw,t > k, in
period t , the solution of a worker intertemporal utility
maximization problem gives a saving corresponding to
sw,t = βw2[wt + dw(1 − δ + rt )kw,t ], where βw2 is
workers’ consumption time discount factor when their
capital is high.

In such a way, the main dynamic equations govern-
ing capitalists andworkers accumulation differ depend-
ing on the size ofworkers’ capital, namely, capital accu-
mulation is determined by the following system of dif-
ference equations, or, in other words, by a family of 2D
piecewise smooth discontinuous maps:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

kc,t+1= 1
1+n sc,t = 1

1+nβcdc(1 − δ + rt )kc,t

kw,t+1 = 1
1+n sw,t =

⎧⎨
⎩

1
1+nβw1wt if kw,t <k

1
1+nβw2[wt + dw(1 − δ + rt )kw,t ] if kw,t >k

(3)
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where the following inequalities are satisfied: 0 <

βw1, βw2, βc < 1, k > 0, and kt = kc,t + kw,t .

3 Bifurcation structure of the parameter space

In this section,we explore the dynamic properties of the
system (3). What is useful to notice from an economic
point of view is that this system is able to generate two
different growth regimes: a Pasinetti regime, in which
both capitalists and workers own capital, and a Solow
regime, in which only workers own a positive amount
of capital. The dynamics corresponding to each regime
may undergo a strong qualitative change depending on
the saving behavior of workers. This behavior is mod-
ified when the threshold k is crossed.

For the dynamic analysis, we impose the following
values for the parameters: n = 0 and dc = dw = 1. The
last assumption corresponds to the case in which old
generations do not consume. Moreover, we set δ = 0.
This will simplify the mathematical analysis reducing
the number of parameters. Let us also introduce the
following notations for the variables and parameters:

kw = x, kc = y, βc = c, βw1 = w1, βw2 = w2, k = x

Putting everything together, taking into account the
short-run equilibrium conditions and dropping the time
subscript, the family of 2D discontinuous piecewise
smooth maps defined in (3) can be written as follows:

F : (x, y) →
{
FL(x, y) if (x, y) ∈ DL

FR(x, y) if (x, y) ∈ DR
(4)

where

FL :
(
x
y

)
→

(
w1( f (x + y) − (x + y) f ′(x + y))
cy(1 + f ′(x + y))

)

(5)

FR :
(
x
y

)
→

(
w2(x + f (x + y) − y f ′(x + y))
cy(1 + f ′(x + y))

)

(6)

and

DL = {(x, y) : x < x}, DR = {(x, y) : x > x}
The discontinuity line which separates the (x, y)-phase
plane into the halfplanes DL and DR , is denoted DL :
DL = {(x, y) : x = x}

One can notice immediately that the x-axis is an F-
invariant line, on which map F is reduced to a 1D PWS
discontinuous map

g : x → g(x)

=
{
gL(x) = w1( f (x) − x f ′(x)) if x < x
gR(x) = w2(x + f (x)) if x > x

Considering the CES production function f (k)
given in (1), and assuming that ρ < 1, ρ �= 0, twomaps
defining map F can be written in the following form:

FL :
(
x
y

)
→

(
w1(1 − α)(1 − α + α(x + y)ρ)1/ρ−1

cy(1 + α(α + (1 − α)(x + y)−ρ)1/ρ−1)

)
(7)

FR :
(
x
y

)
→

(
w2(x + (1 − α + α(x + y)ρ)1/ρ−1(1 − α + αx(x + y)ρ−1))

cy(1 + α(α + (1 − α)(x + y)−ρ)1/ρ−1)

)
(8)

A 1D map g, to which F is reduced on the x-axis, is
defined as

g : x → g(x)

=
{
gL (x) = w1(1 − α)(1 − α + αxρ)1/ρ−1 if x < x
gR(x) = w2(x + (1 − α + αxρ)1/ρ) if x > x

(9)

The dynamics of map g is described in Sect. 3.3. Note
that it does not depend on the parameter c, representing
capitalists’ propensity to save.

Let us collect all the parameter conditions to be sat-
isfied:

0 < c, w1, w2, α < 1, ρ < 1, ρ �= 0, x > 0 (10)

3.1 Interior fixed points and their bifurcations

The long-run stationary equilibria of the economic
model correspond to the fixed points of map F . In this
section, where we focus especially on interior equilib-
ria, and in Sect. 3.3, we identify these fixed points and
explore their local stability properties.Also for thefixed
points we are able to distinguish between long-term
positions where a Pasinetti regime prevails—these are
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called Pasinetti equilibria and correspond to the inte-
rior fixed points of map F—and where a Solow regime
prevails—these are called Solow equilibria and corre-
spond to border equilibria of map F . There are two
types of Pasinetti and Solow equilibria, depending on
their location with respect to the threshold x = x .

To get a fixed point ofmap F , first note that the func-
tion defining the dynamics of the y-variable is the same
for bothmaps, FL and FR .From y = cy(1+ f ′(x+y)),
it follows that at any fixed point of F , say, (x, y) =
(x∗, y∗), with y∗ �= 0 (Pasinetti equilibrium), the fol-
lowing equality holds:

f ′(x∗ + y∗) = 1 − c

c
(11)

and from (2), we have that

x∗ + y∗ =
(
1 − α

b − α

)1/ρ

(12)

where

b :=
(
1 − c

cα

)ρ/(1−ρ)

(13)

Notice also that

f ′′(x∗ + y∗) = − (1 − ρ)(1 − c)(b − α)1+1/ρ

bc(1 − α)1/ρ
(14)

One of the feasibility conditions for the fixed point
is x∗ + y∗ > 0, and a sufficient condition for this is

b − α > 0 (15)

Substituting b from (13) into the above inequality, one
can see that it is equivalent to

α <

(
1 − c

c

)ρ

(16)

Let the related boundary in the parameter space be
denoted as

B : α =
(
1 − c

c

)ρ

(17)

Note that the inequality (16) can also be written as

c <
1

α1/ρ + 1
, 0 < ρ < 1 (18)

and

c >
1

α1/ρ + 1
, ρ < 0 (19)

In the parameter space of map F , a region satisfying
(10) and (16) is called a feasible domain:

Φ = {c, w1, w2, α, ρ, x : 0 < c, w1, w2, α < 1, ρ < 1,

ρ �= 0, x > 0, α < (1/c − 1)ρ} (20)

and from now on we suppose that the parameter values
belong to Φ.

Considermap FL . Let L(xL , yL)denote afixedpoint
of FL where yL �= 0, i.e., L(xL , yL) is a Pasinetti equi-
librium, which is a stationary equilibrium involving
positive workers’ and capitalists’ capital. Substituting
(12) into

x = w1(1 − α)(1 − α + α(x + y)ρ)1/ρ−1

we get that fixed point L is defined by⎧⎪⎨
⎪⎩
xL = w1

(1−c)(b−α)
αc

(
1−α
b−α

)1/ρ
yL =

(
1−α
b−α

)1/ρ (
1 − w1(1−c)(b−α)

αc

) (21)

For the parameter values belonging to the parameter
domain Φ, it follows that xL > 0, while yL > 0 if

w1 <
αc

(b − α)(1 − c)
(22)

The fixed point L is an actual fixed point6 of F , if
xL < x , that holds for

w1 <
xαc (b − α)1/ρ−1

(1 − c) (1 − α)1/ρ
(23)

and a BCB of L occurs if xL = x , that is, if the param-
eter values satisfy the following equality:

BCL : w1 = xαc (b − α)1/ρ−1

(1 − c) (1 − α)1/ρ
(24)

Map FL can also have fixed point(s) belonging to
the x-axis, corresponding to Solow equilibria, involv-
ing zero capitalists’ capital. First note that, for ρ < 0
the origin is a fixed point of F , denoted O(0, 0), but
not for ρ > 0. Let L∗(x∗

L , 0) denote a fixed point with
x∗
L �= 0, where x = x∗

L is a fixed point of map gL given
in (9), that is, it satisfies the equality

x = w1(1 − α)(1 − α + αxρ)1/ρ−1 (25)

Thefixedpoint L∗(x∗
L , 0) is an actual fixedpoint ofmap

F if x∗
L < x , and a BCB of L∗ occurs if x∗

L = x , i.e., if

BCL∗ : w1 = x

(1 − α)(1 − α + αxρ)1/ρ−1 (26)

In fact, depending on the parameter values, gL can have
zero, one or two nontrivial fixed points. The second

6 Recall that an actual fixed point belongs to the region, where
the corresponding map, in this case FL , is defined.
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fixed point, if it exists, is denoted L∗∗(x∗∗
L , 0), where

x∗∗
L also satisfies (25), x∗∗

L < x∗
L (see Sect. 3.3 for

details).
Later we show that the condition yL = 0, leading to

TL : w1 = αc

(b − α) (1 − c)
(27)

(see (22)), is associated with a transcritical bifurcation
of the fixed points L and L∗ (or L∗∗) at which these
fixed points merge, and then the border fixed point
changes its transverse stability (i.e., the stability in the
direction which is transverse to the x-axis).

Now, we derive the fixed points of map FR . Assum-
ing y �= 0 and substituting (12) into

x = w2(x + (1 − α + α(x + y)ρ)1/ρ−1

(1 − α + αx(x + y)ρ−1))

(see (8)), we get that one fixed point of FR , denoted
R(xR, yR), is given by⎧⎪⎨
⎪⎩
xR = w2(1−c)(b−α)

α(c−w2)

(
1−α
b−α

)1/ρ
yR =

(
1−α
b−α

)1/ρ (
1 − w2(1−c)(b−α)

α(c−w2)

) (28)

Taking into account the parameter conditions defining
the feasible domain Φ (see (20)), it can be seen that
both inequalities xR > 0 and yR > 0 are satisfied if

w2 <
αc

b(1 − c) + αc
(29)

given that this condition together with the condition
(15) implies that c − w2 > 0. The fixed point R is an
actual fixed point of F if xR > x , that is, if

w2 >
xαc

(1 − c)(1 − α)1/ρ (b − α)1−1/ρ + xα

and a BCB of R occurs if

BCR : w2 = xαc

(1 − c)(1 − α)1/ρ (b − α)1−1/ρ + xα
(30)

Map FR can also have a nontrivial fixed point
belonging to the x-axis (see Sect. 3.3 for details).7 Let
R∗(x∗

R, 0)be such afixedpoint,where x = x∗
R , x

∗
R > 0,

is a fixed point of map gR given in (9), obtained from
x = w2(x + (1 − α + αxρ)1/ρ) :

x∗
R =

⎛
⎜⎝ 1 − α(

1
w2

− 1
)ρ − α

⎞
⎟⎠

1/ρ

(31)

7 For ρ < 0 the origin is a fixed point of map FR ; however, for
x > 0 it is never a fixed point of map F .

The fixed point R∗(x∗
R, 0) is an actual fixed point of F

if x∗
R > x , and a BCB of R∗ occurs if

x = w2(x + (1 − α + αxρ)1/ρ)

that is, if

BCR∗ : w2 = x

x + (1 − α + αxρ)1/ρ
(32)

Below we show that the equality yR = 0, which is
satisfied if

TR : w2 = αc

b(1 − c) + αc
(33)

(see (29)), corresponds to a transcritical bifurcation of
the fixed points R and R∗, at which these fixed points
merge, and then R∗ changes its transverse stability.

Now we obtain the conditions for the other bifurca-
tions of the fixed points. The Jacobian matrix of FL is
defined as

DFL =
(−w1k f ′′(k) −w1k f ′′(k)
cy f ′′(k) cy f ′′(k) + c(1 + f ′(k))

)

(34)

First, note that for ρ < 0, the origin (which in such a
case is a fixed point of FL ) is always a saddle in the fea-
sible domain, with eigenvalue λ1 = 0 in the horizontal
direction and λ2 = c(1 + f ′(0)) > 1 in the transver-
sal direction. The latter inequality simplifies to (19),
so that crossing the boundary B (see (17)) related to
λ2 = 1, a transcritical bifurcation occurs leading to the
appearance/disappearance of the interior fixed point L
in the positive quadrant of the phase plane.

From (11) it follows that c(1+ f ′(kL)) = 1, where
kL = xL + yL , with xL �= 0, yL �= 0, thus,

DFL |(xL ,yL ) =
(−w1kL f ′′(kL) −w1kL f ′′(kL)

cyL f ′′(kL) cyL f ′′(kL) + 1

)

The stability of L is defined by the following system
of inequalities:

⎧⎨
⎩
1 − (cyL f ′′(kL ) + 1 − w1kL f ′′(kL )) − w1kL f ′′(kL ) > 0
1 + (cyL f ′′(kL ) + 1 − w1kL f ′′(kL )) − w1kL f ′′(kL ) > 0
−w1kL f ′′(kL ) < 1

(35)

Thefirst condition in (35) is reduced to cyL f ′′(kL) <

0. This condition is satisfied if yL > 0, given that
f ′′(kL) < 0 (see (14)). If the condition (27), associated
with yL = 0, holds, then a transcritical bifurcation of
L occurs (of course, L has to be an actual fixed point
of F , that is, the condition (23) must also hold).
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The second condition in (35) can be written as

w1 >
cyL f ′′(kL) + 2

2 f ′′(kL)kL

It is satisfied if

w1 >
cα((1 − ρ)(b − α)(1 − c) − 2b)

(1 − ρ)(b − α)(1 − c)((1 − c) (b − α) + 2α)

and aflip bifurcation of the actual fixedpoint L occurs if

FlL : w1

= cα((1 − ρ)(b − α)(1 − c) − 2b)

(1 − ρ)(b − α)(1 − c)((1 − c) (b − α) + 2α)

(36)

The third condition in (35) holds if

cb − w1(1 − ρ)(b − α)(1 − c) > 0 (37)

Taking into account the condition (15), the above
inequality can be written as

w1 <
cb

(1 − ρ)(1 − c)(b − α)

and if

NSL : w1 = cb

(1 − ρ)(1 − c)(b − α)
(38)

a Neimark–Sacker bifurcation of L occurs.
The Jacobian matrix of FR evaluated at the fixed

point R is defined as

DFR |(xR ,yR)

=
(

w2(1 + f ′(kR) − yR f ′′(kR)) −w2yR f ′′(kR)

cyR f ′′(kR) cyR f ′′(kR) + 1

)

=
(

w2(1 − cyR f ′′(kR))/c −w2yR f ′′(kR)

cyR f ′′(kR) cyR f ′′(kR) + 1

)

where kR = xR + yR . The stability conditions of R are
given by

⎧⎪⎨
⎪⎩
1 − (w2(1 − cyR f ′′(kR))/c + cyR f ′′(kR) + 1) + w2/c > 0

1 + w2(1 − cyR f ′′(kR))/c + cyR f ′′(kR) + 1 + w2/c > 0

w2/c < 1

(39)

The first condition in (39) is reduced to

yR f ′′(kR)(w2 − c) > 0 (40)

Recall that f ′′(kR) < 0, while yR > 0 if the condition
given in (29) is satisfied. If the condition (33), associ-
ated with yR = 0, holds, then a transcritical bifurcation
of R occurs.Moreover, for b−α > 0 the condition (29)

implies that w2 < c, that is, the third condition in (39)
is satisfied as well. This also means that the fixed point
R cannot undergo a Neimark–Sacker bifurcation, asso-
ciated with the third condition.

The second condition in (39) is reduced to

c − w2 <
4c

2 − cyR f ′′(kR)

Substituting the expressions for f ′′(kR) and yR (see
(14) and (28), respectively) into the above inequality,
we get that the second condition in (39) is satisfied if

w2 >
cα((1 − ρ)(1 − c)(b − α) − 2b)

(1 − ρ)(1 − c)(b − α)(b(1 − c) + cα) + 2αb

and a flip bifurcation of an actual fixed point R occurs if

FlR : w2

= cα((1 − ρ)(1 − c)(b − α) − 2b)

(1 − ρ)(1 − c)(b − α)(b(1 − c) + cα) + 2αb
(41)

To summarize, we can state the following

Proposition 1 Consider map F given in (4) defined by
maps FL and FR, given in (7) and (8), respectively, with
parameter values belonging to the feasible domain Φ

defined in (20). Then, map F has an actual attract-
ing fixed point L with coordinates given in (21), if the
following inequalities are simultaneously satisfied:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

w1 <
xαc(b−α)1/ρ−1

(1−c)(1−α)1/ρ

w1 < αc
(b−α)(1−c)

w1 >
cα(1−ρ)(b−α)(1−c)−2bαc

(1−ρ)(b−α)(1−c)((1−c)(b−α)+2α)

w1 < cb
(1−ρ)(1−c)(b−α)

and map F has an actual attracting fixed point R with
coordinates given in (28), if the following inequalities
are simultaneously satisfied:

⎧⎪⎪⎨
⎪⎪⎩

w2 > xαc
(1−c)(1−α)1/ρ(b−α)1−1/ρ+xα

w2 >
cα((1−ρ)(1−c)(b−a)−2b)

(1−ρ)(1−c)(b−a)(b(1−c)+cα)+2αb

w2 < αc
b(1−c)+αc

Proposition 1 summarizes all possible locally stable
stationary equilibria that can exist in a Pasinetti regime.
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Fig. 1 Bifurcation curves confining the existence and stability
regions of the fixed points of map F in the (c, w1)-parameter
plane for w2 = 0.2 in (a), and in the (c, w2)-parameter plane for

w1 = 0.6 in (b). Other parameters are fixed as ρ = 0.5, α = 0.5,
x = 0.15

These are differentiated depending on their position
with respect to the threshold x .

As mentioned in the Introduction, one of our pur-
poses is to describe the bifurcation structures associ-
ated with an intersection of the BCB boundaries of the
interior attracting fixed points of map F . Let P denote
such a parameter set:

P = BCL ∩ BCR =
⎧⎨
⎩

w1 = xαc(b−α)1/ρ−1

(1−c)(1−α)1/ρ

w2 = xαc
(1−c)(1−α)1/ρ (b−α)1−1/ρ+xα

(42)

Given that at P it holds that xL = xR = x , leading to

w1 = cw2

c − w2
this equality can also be used to define P , instead of
one of those given in (42). It follows also that the set
P satisfies

c > w2

As we discuss in Sect. 3.4, the set P can serve as an
organizing center from which many other bifurcation
boundaries issue.

3.2 Examples of the bifurcation
structures in the parameter space of map F

In this section, we present a few examples of the stabil-
ity regions of the actual fixed points ofmap F for differ-
ent parameter settings, as well as the related bifurcation

structures, emphasizing some interesting features asso-
ciated with the discontinuity of the map. We will show
how these bifurcation structures change depending on
parameter values. We will also stress some aspects
which are relevant from an economic point of view.

In the feasible parameter domain Φ given in (20), a
region denoted PL and associated with an actual inte-
rior attracting fixed point L , can be confined by the
boundaries BCL , TL , FlL , NSL , defined in (24), (27),
(36), (38), respectively, while a region denoted PR and
related to an actual interior attracting fixed point R, can
be confined by the boundaries BCR , TR , FlR , defined
in (30), (33), (41), respectively.

Let first the parameter values be fixed as ρ = 0.5,
α = 0.5, x = 0.15. In Fig. 1a, for w2 = 0.2, we
show the bifurcation curves in the (c, w1)-parameter
plane, and in Fig. 1b, for w1 = 0.6, in the (c, w2)-
parameter planes. The regions PL and PR are shown
in light gray and their overlapping parts, related to the
coexisting fixed points L and R, are shown in dark gray;
the regions PL∗ and PR∗ , associatedwith attracting bor-
der fixed point L∗ and R∗, respectively, are shown in
light yellow. In the considered case, the region PL∗ is
confined by the curves TL and BCL∗ (see (27) and (26),
respectively), and the region PR∗ is bounded by the
curves TR and BCR∗ (see (33) and (32), respectively).
Note that for ρ = 0.5, the condition (16), which can be
written as in (18), is satisfied for c < 0.8, that is, the
boundary B (see 17) corresponds to c = 0.8.Note also
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Fig. 2 2D bifurcation diagram of map F in the (c, w1)-parameter plane for w2 = 0.2 in (a), and in the (c, w2)-parameter plane for
w1 = 0.6 in (b). Other parameters are fixed as α = 0.5, ρ = 0.5, x = 0.15

that if a parameter point tends to the boundary B, then
the fixed point R tends to infinity. In Fig. 1a the hori-
zontal line defined by w1 = 0.6 and related to Fig. 1b
is marked, and in Fig. 1b it is marked the horizontal
line withw2 = 0.2, associated with Fig. 1a, so that one
can compare the intersection points of these horizontal
lines with the bifurcation curves. One can also see how
the overlapping parts of the stability regions change if
w2 varies as in Fig. 1a, or if w1 varies as in Fig. 1b.
For example, from Fig. 1b it is easy to see that starting
fromw2 = 0.2, decreasingw2, the region PR decreases
and, thus, in Fig. 1a an overlapping part of PL and PR

decreases as well. If w2 is increasing, the region PR at
first increases, but then, when w2 becomes larger than
the value defining the boundary BCR∗ , it decreases.
At the same time, in Fig. 1a the region PR∗ appears,
overlapping with both stability regions, PL and PL∗ .
It is interesting to notice here that when ρ > 0 there
is coexistence of different types of long-run stationary
equilibria, in particular, R may coexist with L , and R∗
with L and L∗, whereas there is no evidence that L∗
can coexist with R.

Figure 2a presents the complete bifurcation struc-
ture of the (c, w1)-parameter plane, superimposed on
the related bifurcation curves shown in Fig. 1a. Here,
different colors are associated with attracting cycles of
different periods n ≤ 30 (the correspondence between
colors and periods is indicated in the middle panel).
One can immediately see that from point P , defined
by (c, w1) ≈ (0.67838, 0.28362) (see (42)), differ-
ent periodicity regions are issuing. Figure 2b shows an

enlarged part of the bifurcation structure of the (c, w2)-
parameter plane together with the bifurcation curves
presented in Fig. 1b, and it can be seen that in this
plane the periodicity regions originate from the point
Q defined by (c, w2) = (0.8, 0), which is a tangency
point of the curves B and BCR . In Fig. 3a, we present
a bifurcation structure of the (w1, w2)-parameter plane
for c = 0.6, where, in particular, one can notice that
some periodicity regions issuing from point P , defined
by (w1, w2) ≈ (0.375, 0.23077), are overlapping with
the region PR . As an example in the phase plane, see
Fig. 3b where an attracting fixed point R and an attract-
ing 7-cycle are shown together with their basins for
w1 = 0.55, w2 = 0.231. Note that the basins are sep-
arated by a segment of the discontinuity line DL and
its preimages.

It is convenient to represent an n-cycle {(xi , yi )}n−1
i=0 ,

n ≥ 2, of map F by its symbolic sequence σ =
σ0...σn−1, where σi ∈ {L , R} and
σi =

{
L if xi < x
R if xi > x

For example, the 7-cycle shown in Fig. 3b has the sym-
bolic sequence LR6. For short, we denote a cycle by
its symbolic sequence.

The periodicity regions with horizontal boundaries,
which can be seen in Fig. 2, form a period adding
bifurcation structure (as we prove in Sect. 3.3), being
associated with the dynamics restricted to the x-axis,
namely, with attracting n-cycles, n ≥ 2, of map g given
in (9). By increasing c each of such n-cycle loses its
transverse stability via a transcritical bifurcation lead-
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Fig. 3 a 2D bifurcation diagram of map F in the (w1, w2)-
parameter plane for c = 0.6; b coexisting attracting fixed
point R and an attracting 7-cycle together with their basins for

w1 = 0.55, w2 = 0.231 [the related parameter point is marked
by red circle in (a)]. Other parameters are fixed as α = 0.5,
ρ = 0.5, x = 0.15. (Color figure online)

ing to the appearance of an attracting interior n-cycle
in the positive quadrant of the phase plane (such as,
for example, the 7-cycle shown in Fig. 3b). This trans-
formation occurs in a similar way as the one, which
happens to the fixed point L∗ (or R∗) losing its trans-
verse stability when the curve TL (or TR , respectively)
is crossed and an interior attracting fixed point L (or
R, respectively) appears in the positive quadrant. So,
the observed bifurcation structure can be seen as an
extension of the period adding structure of the 1D dis-
continuous map g to a specific bifurcation structure of
the 2D discontinuous map F .

One more example is presented in Fig. 4, where
ρ = −1, α = 0.2, x = 0.5 : we show in Fig. 4a the
bifurcation structure of the (c, w1)-parameter plane for
w2 = 0.35, and in Fig. 4b the bifurcation structure of
the (c, w2)-parameter planes for w1 = 0.75. For the
considered parameter values the region PL is confined
by the curves NSL , TL , BCL and B (where B is defined
by c = 1/6, see (17)); the region PL∗ is bounded by the
curves TL , BCL∗ and FoL∗ (the later curve corresponds
to a fold bifurcation leading to the appearance of attract-
ing and repelling fixed points, L∗ and L∗∗, as explained
in Sect. 3.3, see (44)); the region PR is bounded by the
curves TR and BCR ; region PR∗ is confined by the
curves TR and BCR∗ . Similar to the previous example,
the point P is an issue point of other bifurcation curves;
and, as we prove in Sect. 3.3, the periodicity regions

with horizontal boundaries, observed in Fig. 4a, also
form a period adding structure. An overall bifurcation
structure, associated with this example, is discussed in
more detail in Sect. 3.4. Note that in the considered
case the fixed point L can undergo a Neimark–Sacker
bifurcation, namely, when a parameter point crosses
the boundary NSL of region PL , leading to the appear-
ance of an attracting closed invariant curveC . (In Fig. 4
the white regions are related to such curves.) It is also
worth to note that curve C can coexist with the fixed
point L∗, or with the fixed point R∗, or with an attract-
ing cycle belonging to the x-axis and associated with
the period adding structure mentioned above. See, for
example, Fig. 5 where we present the curve C coexist-
ing with a border 3-cycle together with their basins.8

By increasing c, the curve C disappears after a contact

8 Recall that the only positive quadrant of the phase plane is
feasible; however, in Fig. 5 we present the complete basin of C
in order to show that its boundary is formed by the stable invariant
sets of the saddle fixed points O and L∗∗. (In Fig. 5 L∗∗−1 denotes
a preimage of L∗∗.) Such a structure of the basin is possible due
to the noninvertibility of map FL : in Fig. 5 a we show also the
straight line LC−1 = {(x, y) : x = −y} associated with the
vanishing determinant of DFL (recall that det DFL = −w1(x +
y) f ′′(x + y)); its image FL (LC−1) = LC = {(x, y) : x = 0}
is called critical line. For the theory of critical lines see [36]. It
would be interesting to study the bifurcation phenomena related
to the interaction of the images/preimages of the discontinuity
line DL and line LC−1 for different parameter values. However,
this problem is out of the scope of the present paper.
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Fig. 4 2D bifurcation diagram of map F in the (c, w1)-
parameter plane for w2 = 0.35 in (a), and in the (c, w2)-
parameter plane for w1 = 0.75 in (b). Other parameters are

fixed as α = 0.2, ρ = −1, x = 0.5. Windows I and II, indicated
in (a), are shown enlarged in Figs. 13 and 15a, respectively

Fig. 5 Coexisting closed invariant attracting curveC and an attracting border 3-cycle, together with their basins. Here ρ = −1, α = 0.2,
x = 0.5, w1 = 0.925, w2 = 0.35 and c = 0.22 in (a), c = 0.224 in (b)

with its basin boundary (a homoclinic bifurcation of
the fixed point O occurs): see Fig. 5b where the curve
C is near to contact its basin boundary.

By lower values of ρ—i.e., for weaker factor
substitutability—the dynamics of map F becomemore
complicated. Without going into details, we show
in Fig. 6a the bifurcation structure of the (c, w1)-
parameter plane for ρ = −7, α = 0.5, x = 0.15,w2 =
0.2. It can be seen that the point P is still an organizing
center from which other bifurcation curves issue. One

can notice also that periodicity regions related to cycles
of different periods are overlapping with each other.
Figure 6b illustrates the phase plane in case of coexis-
tence of three interior attracting cycles, RL5, RL6 and
RL5RL6, and an attracting closed invariant curve C .
Note that, in this case, the basin of C is bounded by a
segment of the discontinuity line DL and its preimages.

By further decreasing ρ, the flip bifurcation curves
FlL and FlR , given in (36) and (41), respectively, also
’enter’ the feasible parameter domainΦ: see, for exam-
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Fig. 6 a 2D bifurcation diagram of map F in the (c, w1)-
parameter plane for w2 = 0.2 α = 0.5, ρ = −7, x = 0.15; b
an attracting closed invariant curve C coexisting with attracting

6-, 7- and 13-cycles, together with their basins, for w1 = 0.895,
c = 0.523 [the related parameter point is marked by white circle
in (a)]

Fig. 7 Bifurcation structure in the (w1, c)-parameter plane forw2 = 0.2 (a) and in the (w2, c)-parameter plane forw1 = 0.6 (b). Other
parameters are fixed as ρ = −30, α = 0.5, x = 0.15

ple, the bifurcation structures for ρ = −30 in Fig. 7.
Namely, inFig. 7a the (c, w1)-parameter plane is shown
for w2 = 0.2, and in Fig. 7b the (c, w2)-parameter
plane is shown for w1 = 0.6. Note that for the parame-
ter setting related to Fig. 7a, the region PL is split into
twoparts: one part is confinedby the curves B, NSL and
FlL , while the other part (overlapped with the region
PR) is confined by the curves NSL , BCL and FlL .

To illustrate somenonsmoothbifurcations,wepresent
in Fig. 8a 1D bifurcation diagrams c versus x related
to a cross section of Fig. 7a for w1 = 0.19. We know

that in such a case, by increasing c, the fixed point L
undergoes a Neimark–Sacker bifurcation leading to an
attracting closed invariant curve; it can be seen that by
further increasing c, a fold bifurcation opens a window
associated with an attracting 3-cycle, which follows
a standard sequence of bifurcations leading to chaos,
and then a nonsmooth expansion bifurcation of a 6-
piece chaotic attractor occurs caused by its contact with
the discontinuity line DL (see the arrow marked (1) in
Fig. 8a). One can also notice that by decreasing c, a
4-cycle born via a flip bifurcation of a 2-cycle, under-
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Fig. 8 a 1D bifurcation diagram c versus x of map F for w1 = 0.19, w2 = 0.2, ρ = −30, α = 0.5, x = 0.15; b an enlargement of the
window indicated in (a)

goes a BCB leading directly to chaos, as well as a BCB
of a 2-cycle born after a flip bifurcation of the fixed
point R (see the arrow marked (2) in Fig. 8a and (3)
in Fig. 8b, respectively). In an enlargement of Fig. 8a
shown in Fig. 8b, a bifurcation structure can be seen
which has some similarities with a period adding struc-
ture; however, an additional study is needed to describe
this structure in detail.

In the above examples, the parameter ρ, measur-
ing the degree of factor substitutability, plays a cru-
cial role, adding to the complexity of the dynamics,
especially when it is negative and it is progressively
reduced. However, as it is shown above, due to the dis-
continuity of the map F , complex phenomena, such as,
e.g., period adding bifurcation structures with coexis-
tence, emerge also when ρ is negative but not too large
in modulus, or even when ρ is positive, i.e., when the
degree of factor substitution is quite high.

3.3 Period adding bifurcation
structure in the parameter space of map g

In this section, we describe briefly the period adding
structure which can be observed in the feasible param-
eter domain Φ of map F. As already mentioned, such
a structure is associated with transversely attracting
cycles belonging to the invariant x-axis, on which map
F is reduced to a 1D discontinuous map g given in (9).

Recall that a period adding bifurcation structure is
formed by infinitely many disjoint periodicity regions,
which are ordered according to the Farey summation
rule applied to the rotation numbers9 of the related
cycles.10 For example, between the regions related to
the cycles with rotation numbers 1

n and 1
n+1 , n ≥ 2,

there exists a region related to the cycles with rota-
tion number 1

n ⊕ 1
n+1 = 2

2n+1 . The construction of
a period adding structure starts from the periodicity
regions ofbasic cycles forming two families of the com-
plexity level one: {LRn, n ≥ 1} and {RLn, n ≥ 1}.
Then, in the gaps between two consecutive periodic-
ity regions of the complexity level one, the periodicity
regions are constructed, associated with four families
of the complexity level two: {LRn(RLRn)m, m ≥
1, n ≥ 1}, {(LRn)m RLRn, m ≥ 1, n ≥ 1},
{RLn(LRLn)m, m ≥ 1, n ≥ 1} and {(RLn)mLRLn,

m ≥ 1, n ≥ 1}.The related periodicity regions are also
disjoint, and in gaps between two consecutive periodic-
ity regions of the complexity level two, the periodicity
regions are constructed, related to eight families of the
complexity level three. Such a process continues ad

9 Rotation number of an n-cycle of map g with symbolic
sequence σ can be defined as ω(σ) = NL (σ )

n , where NL (σ )

is the number of symbols L in σ .
10 More precisely, the Farey summation rule is applied to the
rotation numbers m1

n1
and m2

n2
satisfying |m1n2 − m2n1| = 1

(such rotation numbers are called Farey neighbors), leading to
m1
n1

⊕ m2
n2

= m1+m2
n1+n2

.
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Fig. 9 Map g for a ρ = 0.1, w1 = 0.5; b ρ = −1 and w1 = w
f
1 − 0.05 in (1), w1 = w

f
1 in (2), w1 = w

f
1 + 0.05 in (3), where

w
f
1 = 0.8. The other parameters are fixed as α = 0.2, w2 = 0.4, x = 0.5

infinitum, leading to the complete period adding struc-
ture (see [4] for details).

It is known that for a 1D discontinuous map the
existence of a period adding structure in the parameter
space is associatedwith increasingbranches of themap,
or with increasing branches of the proper first return
map (see, e.g., [23,29,31–33]). In fact, both functions,
gL and gR , defining map g, are increasing, given that
for the considered parameter values and for any x > 0,

g′
L(x) = w1(1 − α)(1 − ρ)αxρ−1

(1 − α + αxρ)1/ρ−2 > 0

g′
R(x) = w2(1 + αxρ−1

(1 − α + αxρ)1/ρ−1) > 0

It is also known that for the considered class of maps,
an intersection point of two BCB curves related to
different attracting fixed points or cycles, can be an
issue point of a period adding structure (see, e.g., [23]).
The BCB boundaries of the fixed points of map g are
given in (26) and (32), respectively, so that the point
P∗ = BCL∗ ∩ BCR∗ can be defined as

P∗ =
{

w1 = x
(1−α)(1−α+αxρ)1/ρ−1

w2 = x
x+(1−α+αxρ)1/ρ

(43)

Before the investigation of this codimension-two bifur-
cation point, let us discuss the fixed points of map g in
more details.

Consider first map gL . It is easy to see that for ρ < 0
the origin is a fixed point of gL (and this fixed point is
superstable: g′

L(x) can be written as g′
L(x) = w1(1 −

α)(1−ρ)αx−ρ((1−α)x−ρ +α)1/ρ−2, so, g′
L(0) = 0),

but the origin is not a fixed point for 0 < ρ < 1 (in
fact, in such a case, gL(0) = w1(1−α)1/ρ > 0). From

g′′
L(x) = w1(1 − α)(1 − ρ)αxρ−2(1 − α + αxρ)1/ρ−3

((ρ − 1)(1 − α) − αxρρ)

it follows that if 0 < ρ < 1 then g′′
L(x) < 0 for any

x > 0, that is, gL is concave. Thus, gL can have only
one fixed point, denoted x∗

L , which is attracting: using
(25), g′

L(x∗
L) = (1 − ρ)αx∗ρ

L (1 − α + αx∗ρ
L )−1, and

the inequality g′
L(x∗

L) < 1, simplifying to −ραx∗ρ
L <

1−α, is obviously satisfied (see Fig. 9a,whereρ = 0.1,
α = 0.2). In the meantime, if ρ < 0, then at

x =
(

(ρ − 1)(1 − α)

αρ

)1/ρ

=: x̃

the function gL changes its curvature from convex
(g′′

L(x) > 0 for 0 < x < x̃) to concave (g′′
L(x) < 0

for x > x̃), that is, gL has an ’S’-shape graph. Clearly,
such a graph can have no intersectionswith the diagonal
(except for the origin); it can be tangent to the diagonal
at one point (associated with a fold bifurcation), or it
can have two intersections with the diagonal (related to
two nontrivial fixed points of gL ). From g′

L(x∗
L) = 1,

we get that at the moment of a fold bifurcation

x∗
L =

(
α − 1

ρα

)1/ρ

=: x∗ f
L

and this bifurcation occurs if

FoL∗ : w1 = − (1 − ρ)1−1/ρ

ρα1/ρ =: w
f
1 (44)
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(note that it is feasible if ρ < 0 and w
f
1 < 1). So, for

ρ < 0 and w1 < w
f
1 , the origin is a unique (super-

stable) fixed point of map gL , while for w1 > w
f
1 it

has two nontrivial fixed points: we keep the notation x∗
L

for an attracting fixed point and denote a repelling fixed
point as x∗∗

L . Obviously, x∗
L > x∗∗

L , and x∗∗
L separates

the basin of the fixed point at the origin from the basin
of the fixed point x∗

L .
To give an example, let ρ = −1. Then, map g is

defined as

g : x → g(x) =
{
gL(x) = w1(1−α)x2

((1−α)x+α)2
if x < x

gR(x) = w2x((1−α)x+α+1)
(1−α)x+α

if x > x

A fold bifurcation occurs at w1 = w
f
1 = 4α, and for

w1 > 4α map gL has attracting and repelling fixed
points,

x∗
L =

w1 − 2α +
√

w2
1 − 4αw1

2(1 − α)
,

x∗∗
L =

w1 − 2α −
√

w2
1 − 4αw1

2(1 − α)
(45)

respectively. Clearly, both these fixed points are actual
for map g only if x∗

L < x . We show in Fig. 9b map

g at ρ = −1, α = 0.2 and (1) w1 = w
f
1 − 0.05,

that is, before the fold bifurcation; (2) w1 = w
f
1 ,

at the moment of the fold bifurcation, with one non-
trivial nonhyperbolic fixed point x∗ f

L = 0.25; (3)

w1 = w
f
1 + 0.05, after the fold bifurcation, when two

fixed points, x∗
L ,and x∗∗

L , are born. Here, w f
1 = 0.8.

Coming back to the map g given in (9), it is easy to
see that the function gR is always concave, given that

g′′
R(x) = w2α(ρ − 1)(1 − α)xρ−2

(1 − α + αxρ)1/ρ−2 < 0

For ρ < 0 the origin is a fixed point of map gR (how-
ever, given that x > 0, the origin is never a fixed point
of map g); for w2 < wtr

2 , where

w2 = 1

1 + α1/ρ =: wtr
2 (46)

the origin is attracting and there are no positive fixed
points; at w2 = wtr

2 a transcritical bifurcation occurs,
so that for w2 > wtr

2 the origin is a repelling fixed
point of gR and there is also a fixed point x∗

R > 0
given in (31). For 0 < ρ < 1, the origin is not a fixed
point of map gR (in fact, gR(0) = w2(1− α)1/ρ > 0);
its unique fixed point x∗

R (see (31)) satisfies x∗
R > 0

if w2 < wtr
2 , and x∗

R → ∞ as w2 → wtr
2 . In both

cases, for ρ < 0 or 0 < ρ < 1, fixed point x∗
R > 0,

when it exists, is attracting: using (31), g′
R(x∗

R) =
w2+αx∗ρ

R (1−w2)(1−α+αx∗ρ
R )−1, and g′

R(x∗
R) < 1

if w2 < 1 (see, e.g., the fixed point x∗
R in Fig. 9).

To summarize, we can state the following

Proposition 2 Map g given in (9) with parameter val-
ues satisfying 0 < α,w1, w2 < 1, ρ < 1, ρ �= 0,
x > 0, has

– an attracting fixed point x∗
R =

(
1−α(

1
w2

−1
)ρ−α

)1/ρ

if

α <
(

1
w2

− 1
)ρ

and x∗
R > x;

– an attracting fixed point at the origin, if ρ < 0;
– attracting and repelling fixed points, x∗

L and x∗∗
L ,

respectively, defined implicitly from xρ((1−α)x−ρ+
α)1−1/ρ = w1(1−α), if ρ < 0,w1 > − (1−ρ)1−1/ρ

ρα1/ρ ,

x∗
L < x;

– a repelling fixed point x∗∗
L , if ρ < 0, w1 >

− (1−ρ)1−1/ρ

ρα1/ρ , x∗
L > x, x∗∗

L < x;
– an attracting fixed point x∗

L (defined implicitly from
x = w1(1−α)(1−α +αxρ)1/ρ−1), if 0 < ρ < 1,
x∗
L < x.

Proposition 2 systematizes all the possible station-
ary equilibria that can exist in a Solow regime. Depend-
ing on parameter values, different interesting long-term
outcomes may emerge. For example, Fig. 9 shows sit-
uations analogous to poverty traps (single or multiple),
and Fig. 11 situations similar to boom and bust cycles.

Nowwe turn to the problemof a period adding struc-
ture issuing from point P∗ (see (43)). To state its exis-
tence, we can apply the theorem proved in [23], accord-
ing towhich formap g the inequalities 0 < g′

L(x∗
L) < 1

and 0 < g′
R(x∗

R) < 1 have to be satisfied for the param-
eter values corresponding to P∗.11 Recall that at P∗ it
holds that x∗

L = x∗
R = x (i.e., map g is continuous), so,

we have to check if

g′
L(x)

∣∣
P∗ = (1 − ρ)αxρ

(1 − α + αxρ)
< 1

g′
R(x)

∣∣
P∗ = x(1 + αxρ−1(1 − α + αxρ)1/ρ−1)

x + (1 − α + αxρ)1/ρ
< 1

11 It can be checked that other conditions of this theorem are also
satisfied, namely, a neighborhood of P∗ exists, which is divided
by the BCB curves BCL∗ and BCR∗ into four subregions: in one
of them two attracting fixed points coexist, in another one there
are no fixed points (and a period adding structure exists), and in
each of two remaining subregions there is just one fixed point.
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Fig. 10 Period adding bifurcation structure in the (w1, w2)-
parameter plane of map g for a α = 0.5, ρ = 0.5, x = 0.15; b
α = 0.2, ρ = −1, x = 0.5. In b the origin is a unique attracting

fixed point of g for the region shown in light yellow (below HL∗∗
and to the right of BCL∗ ), while in the other part of the parameter
plane it coexists with other attractors. (Color figure online)

The second condition, which simplifies to 1−α > 0, is
always satisfied; the first condition, which simplifies to
1−α > −ραxρ , is satisfied for ρ > 0, while for ρ < 0
this condition can be written as α < 1/(1 − ρxρ).

In particular, for α = 0.5, ρ = 0.5, x = 0.15,
it holds that g′

L(x)
∣∣
P∗ ≈ 0.14 < 1, g′

R(x)
∣∣
P∗ ≈

0.45 < 1, so, point P∗ defined by (w1, w2) ≈
(0.4325, 0.2377), is indeed an issue point of a period
adding structure (see Fig. 10a, as well as Fig. 2 which is
related to this example). It can also be checked that for
α = 0.2, ρ = −1, x = 0.5, we have g′

L(x)
∣∣
P∗ = 2

3 <

1, g′
R(x)

∣∣
P∗ ≈ 0.583 < 1; thus, point P∗, defined by

(w1, w2) ≈ (0.9, 0.375), also gives origin of a period
adding structure (see Figs. 10b and 4a).

In Fig. 10b, the boundary HL∗∗ is shown which is
related to a homoclinic bifurcation of the repellingfixed
point x∗∗

L . This bifurcation destroys an absorbing inter-
val J = [gR(x), gL(x)], and it occurs if x∗∗

L = gR(x).
The fixed point x∗∗

L remains homoclinic as long as
gR(gL(x)) > x∗∗

L . For ρ = −1, using (45), it holds that

HL∗∗ : w2 =
(w1 − 2α −

√
w2
1 − 4αw1)((1 − α)x + α)

2(1 − α)x((1 − α)x + α + 1)
For the parameter values related to Fig. 10b, the above
curve is defined by

HL∗∗ : w2 =
3(w1 − 0.4 −

√
w2
1 − 0.8w1)

6.4
In Fig. 10b, it is also shown the boundary H ′

L∗∗ , corre-
sponding to the condition gR(gL(x)) = x∗∗

L , so that in

the narrow region between the curves H ′
L∗∗ and HL∗∗

the fixed point x∗∗
L is homoclinic.12 In Fig. 10b one

more boundary is presented, denoted N and defined by
gR ◦ gL(x) = gL ◦ gR(x). It is related to a change
of invertibility of map g in the absorbing interval J ,
namely, for the parameter values above N map g is
invertible in J , being called a gap map, while below
N (but above HL∗∗ ) map g is noninvertible in J , being
called an overlapping map. It is known that, differently
from a gap map, an overlapping map can have chaotic
attractors, as well as coexisting attractors (see [4] for an
overview of the properties of 1D discontinuous piece-
wise increasing maps).

Figure 11a illustrates the period adding structure,
shown in Fig. 10b, by a 1D bifurcation diagram w2

versus x for fixed w1 = 0.925, where the borders
of the absorbing interval J = [gR(x), gL(x)] and the
repelling fixed point x = x∗∗

L , are also presented. Fig-
ure 11b showsmap g and its attracting 15-cycle coexist-
ing with the superstable fixed point at the origin (where
x∗∗
L separates their basins) for w2 = 0.1; it holds that

x∗∗
L < gR(x), but by decreasingw2 a homoclinic bifur-

cation of x∗∗
L occurs at w2 = wH

2 ≈ 0.0867 (when
the curve HL∗∗ is crossed, see Fig. 10b), after which
a generic trajectory converges to the origin (recall that
for map F in the feasible parameter domainΦ the fixed
point O(0, 0) is a saddle).

12 This means, in particular, that infinitely many repelling cycles
exist, as well as aperiodic trajectories, and map g is chaotic.
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Fig. 11 a 1D bifurcation diagram w2 versus x of map g for α = 0.2, ρ = −1, x = 0.5, w1 = 0.925; an inset shows the indicated
window enlarged; b an attracting 15-cycle of map g for w2 = 0.1, coexisting with the attracting fixed point at the origin

Fig. 12 a An enlarged part of the 1D bifurcation diagram w2 versus x of map g for α = 0.2, ρ = −1, x = 0.5, w1 = 0.925 (see
Fig. 11a); b a 20-band chaotic attractor of map g for w2 = 0.09, coexisting with the attracting fixed point at the origin

Figure 12a presents an enlarged part of Fig. 11a,
where, in particular, a cross section of the curve N is
illustrated, and elements of a bandcount adding bifur-
cation structure, associated with chaotic attractors, can
be recognized. Namely, for wH

2 < w2 < wN
2 , where

wN
2 ≈ 0.0906, map g is noninvertible on the absorbing

interval J , and it has chaotic attractors belonging to J ,
as, e.g., a 20-band chaotic attractor shown in Fig. 12b.
For detailed description of the bandcount adding bifur-
cation structure we refer to [4].

As a conclusion about the existence of a period
adding structure related to map g, we can state the fol-
lowing

Proposition 3 Consider map g given in (9). Let 0 <

α < 1, ρ < 1, ρ �= 0, x > 0, be fixed. In the (w1, w2)-
parameter plane, the point P∗ = BCL∗∩BCR∗ defined
in (43) belongs to the feasible domain if

x

(1 − α)(1 − α + αxρ)1/ρ−1 < 1

and it is an issue point of a period adding bifurcation
structure if

α <
1

1 − ρxρ

3.4 Extension of the period adding structure:
a discussion on the set P

In this section, we discuss how the period adding struc-
ture associated with map g evolves in the parameter
space of map F . We are interested in the parameter set-
ting such that set P given in (42) belongs to the feasible
domainΦ defined in (20), and such that set P is related
to the BCBs of attracting fixed points.
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Fig. 13 Bifurcation structure of the (c, w1)-parameter plane (see window I indicated in Fig. 4a), obtained for different initial points:
x0 = 0.5, y0 = 0.0001 in (a) and x0 = 0.51, y0 = 0.5 in (b). Other parameters are fixed as α = 0.2, ρ = −1, x = 0.5, w2 = 0.35

As a basic example, let us consider the (c, w1, w2)-
parameter space of map F for ρ = −1, α = 0.2,
x = 0.5. We discuss first the bifurcation structure of
the enlarged window I in the (c, w1)-parameter plane,
indicated in Fig. 4a. This structure is associated with
attracting cycles belonging to the x-axis (whose period-
icity regions form a period adding structure described
in the previous section), which by increasing c lose
their transverse stability that leads to the appearance of
corresponding interior attracting cycles.

Let Pσ denote a periodicity region related to an
attracting interior cycle with symbolic sequence σ . In
the present section, to distinguish an interior fromabor-
der cycle with the same symbolic sequence, we denote
a border cycle as ∗σ , for example, L2R denotes an inte-
rior 3-cycle, while ∗L2R denotes a border 3-cycle.

Figure 13 shows the bifurcation structure of the win-
dow I indicated in Fig. 4a, produced for two different
initial conditions, namely, Fig. 13a is related to an ini-
tial condition taken close to the x-axis, and Fig. 13b
is produced for an initial condition taken relatively far
from the x-axis. In Fig. 13, we show also boundaries
related to the transverse stability of the border cycles
(see the white curves): crossing such a boundary; for
example, increasing c, the border cycle ∗σ becomes
transversely repelling while an interior attracting cycle
with the same symbolic sequence σ appears in the pos-
itive quadrant of the phase plane. Comparing Fig. 13a,
b, we can observe overlapping parts of some period-
icity regions. In particular, in Fig. 13a, we show by
a green line the lower boundary of the region PLR

(compare it with the region PLR in Fig. 13b), so that
it can be seen that the region PLR overlaps not only
with PL2R , but also with infinitely many other period-
icity regions. These regions are associated with bor-
der and interior cycles whose symbolic sequences are
located in the Farey tree between LR and L2R, and the
overlapping mentioned above means that the related
cycles coexist. As an example, we show in Fig. 14a
coexisting attracting cycles LR, L2R of the first com-
plexity level, as well as cycles L2RLR, (L2R)2LR of
the second complexity level. (The related parameter
point is marked by a red circle in Fig. 13a.) One more
example is presented in Fig. 14b, where cycles L2R,
∗L3R of the first complexity level and cycles L2RL3R,
(L2R)2L3R, L2R(L3R)2 of the second complexity
level coexist. (The related parameter point ismarked by
a yellow circle in Fig. 13a.) Clearly, to get the symbolic
sequences of an interior cycle of the second complex-
ity level, the same concatenation rule can be applied
as the one associated with the standard period adding
bifurcation structure. Note that in both examples pre-
sented in Fig. 14, the basins of coexisting attractors are
separated by proper segments of the discontinuity line
DL and preimages of these segments.

Recall that periodicity regionswith horizontal bound-
aries are related to a period adding structure associated
with map g; and that crossing an upper (or lower) hor-
izontal boundary of a periodicity region P∗σ leads to a
BCBof the attracting border cycle ∗σ atwhich its point,
closest to the discontinuity point x = x from the left
(respectively, right) side, collides with this discontinu-
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Fig. 14 Coexisting attracting cycles and their basins for c = 0.64, w1 = 0.928 in (a) and c = 0.636534, w1 = 0.914091 in (b). Other
parameters: α = 0.2, ρ = −1, x = 0.5, w2 = 0.35

ity point. After that, the cycle disappears. It occurs, for
example, crossing the boundaries BCL

∗L2R
and BCR

∗L2R
of the region P∗L2R indicated in Fig. 13, which are
defined by the following conditions:

BCL
∗L2R : x = gL ◦ gR ◦ gL(x)

BCR
∗L2R : x = g2L ◦ gR(x)

The boundaries of Pσ associated with an interior
attracting cycle σ are no longer horizontal; however,
they correspond to similar bifurcations: crossing an
upper (or lower) boundary of such a region leads to
a BCB of the interior cycle σ at which its point, clos-
est to the discontinuity line DL from the left (respec-
tively, right) side, collides with this discontinuity line
and then the interior cycle σ disappears. For example,
if the BCB boundary BCL

L2R
or BCR

L2R
, indicated in

Fig. 13, is crossed moving from inside to outside the
region PL2R , the cycle L2R disappears. These bound-
aries are defined by the following conditions:

BCL
L2R : (x, y1) = FL ◦ FR ◦ FL(x, y1)

BCR
L2R : (x, y2) = F2

L ◦ FR(x, y2)

where {(xi , yi )}2i=0 are points of the cycle L2R with
x0 < x1 < x < x2. Clearly, the BCB boundaries BCL

σ

and BCR
σ of any other periodicity region Pσ can be

defined in a similar way, taking into account the sym-
bolic sequence σ and proper composite functions.

To discuss how the periodicity regions develop in
the (c, w1)-parameter plane, we show in Fig. 15a the
bifurcation structure of the enlarged window II marked

in Fig. 4a. It is clear that point P satisfies the equations
of the BCB boundaries BCL

σ and BCR
σ of any peri-

odicity region Pσ , given that at point P maps FL and
FR have the same fixed point (x, y) = (x, y), where
y = b−α

1−α
−x . This means that the boundaries BCL

σ and
BCR

σ intersect at point P . However, one cannot state
that in a neighborhood of P these boundaries are related
to actual cycles, and that there are no other intersection
points of these boundaries, that is, we cannot state that
the region Pσ really issues from P . In Fig. 15a one can
clearly see that P is an issue point for the regions PRk L
for k = 1, 7, and region PL2R of the basic cycles, as
well as region PRLR2L related to the cycle of the second
complexity level. These regions have overlapping parts
as illustrated in Fig. 15b that presents the phase plane
with coexisting cycles RL , R2L and RLR2L for the
parameter values indicated in Fig. 15a by awhite circle.

To illustrate the 3D bifurcation structure associated
with set P , we show in Fig. 16 a few cross sections
of the periodicity regions in the (c, w1, w2)-parameter
space for α = 0.2, ρ = −1, x = 0.5. In this
space, set P is a curve issuing from the point P∗
at which the boundaries BCL , BCR , BCL∗ , BCR∗ ,
TL and TR intersect. As obtained before, an intersec-
tion of the boundaries BCL∗ and BCR∗ is defined by
(w1, w2) = (0.9, 0.375) (see Fig. 10b). Using the
equation of any other boundary, we get that for the con-
sidered parameter values the point P∗ is determined by
(c, w1, w2) = (0.64286, 0.9, 0.375).

123



I. Sushko et al.

Fig. 15 a Bifurcation structure of the (c, w1)-parameter plane
(an enlargement of window II indicated in Fig. 4a); b coexist-
ing cycles RL , R2L and RLR2L together with their basins for

c = 0.8516,w1 = 0.6199 [the related parameter point is marked
by white circle in (a)]. Other parameters: α = 0.2, ρ = −1,
x = 0.5, w2 = 0.35

Fig. 16 Curve P and periodicity regions issuing from this curve
in the (c, w1, w2)-parameter space of map F , illustrated by a
few (c, w1)-cross sections in (a) and (c, w2)-cross sections in

(b). Here, the stability regions of the fixed points are not shown.
Other parameter values are fixed as α = 0.2, ρ = −1, x = 0.5

To conclude, we can compare the standard period
adding structure associated with the 1D discontinuous
map g and issuing from point P∗, and a bifurcation
structure related to the 2D discontinuous map F and
observed in a neighborhood of set P :

· Both structures are formed by the periodicity
regions related to attracting cycles;

· Both structures are associated with an intersection
of the BCB boundaries of the stability regions of two
different fixed points;

· At point P∗ it holds that gL(x) = gR(x) = x ,
that is, map g is continuous, while at set P map F

is not continuous: it holds only that the fixed points of
bothmaps, FL and FR , undergo aBCB simultaneously:
FL(x, y) = FR(x, y) = (x, y);

·All the regions P∗σ of the period adding structure in
the parameter space of map g are disjoint, thus, attract-
ing cycles cannot coexist, differently from the regions
Pσ , which can overlap with each other, as well as with
stability regions of the fixed points (see, e.g., Fig. 15a
where regions PR5L , PR6L , PR7L overlap with region
PR).
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4 Conclusions

We considered a two-class economic growth model of
the Pasinetti–Solow type. Two heterogeneous groups
of agents differentiated according to “social classes,”
workers and capitalists inhabit the economy. Both may
own capital, the only form of wealth in the economy;
their saving behavior is socially determined and framed
into an overlapping generations structure. Capitalists’
utility function always involves an altruistic motive
leading to bequests, thus providing for their “dynasty.”
Workers may switch between two different patterns of
saving behavior: when their capital is below a given
threshold, they base their saving decision on life-cycle
considerations (involving no bequests)—in that case,
the old generation of workers consume all their wealth.
Instead, when it is above, they start to imitate capital-
ists and bequest a fraction of their wealth to the young
generation. Typically, the dynamic evolution of a two-
class growth model involves two different regimes cor-
responding to different growth paths. In the Pasinetti
regime, both workers and capitalists own a positive
amount of capital and the ensuing dynamics is two-
dimensional; in a Solow regime, onlyworkers own cap-
ital and the dynamics is one-dimensional, trapped on
the horizontal axis. It is possible to identify the struc-
ture of long-term attractors (fixed points, periodic or
chaotic) for the two different regimes. However, the
switching of workers saving behavior introduces a dis-
continuity in the corresponding dynamical system and
has crucial effects on the properties of the two-class
growth model dynamics. Because of the discontinu-
ity, the dynamical system is described by a family
of two-dimensional discontinuous piecewise smooth
maps. Maps of this class belong to a field in the study
of discrete-time dynamical systems which is relatively
new and has not been fully explored. Indeed, our model
is a source of dynamical phenomena interesting both
from a theoretical and applied point of view. For exam-
ple, we found that the one-dimensional dynamics of the
Solow regime,which is able to generate a period adding
bifurcation structure, evolves into a peculiar bifurcation
structure associated with interior cycles belonging to
the Pasinetti regime, when the related attracting cycles
lose their transverse stability via transcritical bifur-
cations. The interesting feature of the observed two-
dimensional structure is related to multistability, which
is impossible in the case of a standard one-dimensional
period adding structure. This result is also of interest

from an economic point of view revealing the perva-
sivity of coexistence of different attractors that could
belong to one or to both growth regimes and that is
present even allowing for strong factor substitutability.

Finally, we confined our study only to some aspects
of the dynamics and to some parameter ranges, leaving
a more detailed study for future work. Possible exten-
sions from an economic point of view would be: ver-
ifying the impact on dynamics of different production
technologies; examining more in detail the effects on
capital accumulation and wealth distribution of differ-
ent workers’ capital thresholds; and, more generally,
exploring how the introduction of behavioral aspects,
related to changes in social class behavior, may affect
the long-run relationship between economic growth
and wealth distribution.
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