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The key value proposition of supply chain segmentation is to differentiate supply chains through a reasonable number of
segments in order to gain a level of standardisation and avoid managerial complexity incurred in fully customised supply
chains. The decision on how products are grouped into segments is at the core of a successful implementation. A funda-
mental trade-off in this decision-making process is between higher differentiation by having small group sizes and higher
standardisation from a smaller number of groups. In this manuscript, we implement segmentation on supply chain configu-
rations and investigate the trade-off by analysing several network scenarios. We use optimisation models for each scenario
to align decisions of segment formation and supply chain configurations. We show that divergences in demand character-
istics, geographic difference, and cost synergy such as pooling effect have impacts on the balance of standardisation and
differentiation.

Keywords: supply chain segmentation; supply chain configuration; classification; network optimisation; guaranteed service
approach; inventory pooling

1. Introduction

Growing network complexity, global competition, and increasing product diversity, while customer expectation remains as
high as ever (Dawe, Pittman, and von Koeller 2015) has sensed companies in the direction of supply chain segmentation.
Although supply chain segmentation has become a hot topic in the industry for the past decade, it is not a new idea. In fact,
segmentation is one of the most fundamental concepts in marketing. The idea is to divide markets into groups of customers
showing similar buying behaviour so the targeted market strategies and product differentiation can be implemented on the
group basis (Berry et al. 1991). In supply chain and operations management (SC&OM), this idea has long been discussed in
a variety of contexts, captured by terms such as grouping, classifying, differentiating and aligning. Particularly, practitioners
and researchers found it highly relevant to firms dealing with a wide range of product mix or stock-keeping-units (SKUs).
These firms often struggle with control of their operations system due to diverse requirements in planning and policy setting
of these SKUs. It is therefore seen as advantageous to make decisions based on a smaller number of SKU/product groups
(van Kampen, Akkerman, and van Donk 2012) rather than on individual SKUs.

The fundamental question arises as to how the groups/segments should be formed to base the decisions upon. In this
regard, SC&OM literature has proposed a large number of approaches for different managerial purposes. In production
and inventory management, ABC analysis on demand volume or value and its variants (e.g. Bhattacharya, Sarkar, and
Mukherjee 2007; Babai, Ladhari, and Lajili 2015) are often used to assist decisions such as inventory policies, safety stock,
or production quantities. Going beyond operation functions, Fisher (1997) recognises the importance of segmentation in
supply chains and suggests a series of classification criteria. Many studies (e.g. Childerhouse, Aitken, and Towill 2002;
Christopher et al. 2009) have since been inspired to look at the segmentation problem in the context of supply chain design
and configuration. Bridging theoretic work with the industry, Protopappa-Sieke and Thonemann (2017) report several indus-
trial cases from firms such as Philips, Gardena and Siemens on implementation of segmentation on supply chain network
design.

Regardless of the aspects of focus, the main aim of any segmentation scheme in SC&OM is to use the similarity of
products/SKUs and group them in the way that the resulting methods, policies, or designs are sufficiently close to those
that would have been assigned if they had been treated individually (Ernst and Cohen 1990; van Kampen, Akkerman,
and van Donk 2012). A segmentation scheme is then expected to tackle a fundamental trade-off. A smaller number of
groups would be preferred in order to reduce the managerial complexity and benefits from potential cost synergy. On the
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other hand, this causes the penalty of making suboptimal decisions on the individual level because of losing differentiation
(Langenberg, Seifert, and Tancrez 2012). In most of the cases, the prior consideration leads to a small number of groups
(higher standardisation) whereas the latter would yield smaller group sizes (higher differentiation). To obtain the maximal
benefits from segmentation, the cost of having a smaller number of groups must balance against the gain obtained from the
smaller group sizes (Ernst and Cohen 1990).

Firms that intend to segment supply chains face such trade-offs in grouping the products for the configuration decisions:
whether to centralise the process of a product in one facility to obtain pooling benefits, or to decentralise them to become
more adaptive (Li et al. 2019). These configuration decisions include deciding on facility location, stocking location, pro-
duction policy, capacity, assignment of distribution resources and transportation modes, as well as imposing standards on
operational units (Truong and Azadivar 2005). Despite supply chain configuration throughout a network being seen as an
effective means to deal with product differentiation and customisation (Goldsby, Griffis, and Roath 2006; Kehoe et al. 2007;
Zhang et al. 2009; Fichtinger, Chan, and Yates 2019), segmenting supply chains through network design is a difficult task
because the evaluation of the relevant decisions typically involves the consideration of complex interactions among different
parts of processes and options (Olivares Aguila and ElMaraghy 2018). Our objective in this study then, is to quantitatively
evaluate the relevant decisions for segmenting supply chain configurations.

We contribute to the existing literature by a joint network and inventory model with inventory pooling for segmenta-
tion in supply chain configuration. This way, we inform the literature about the implication of segmentation in divergent
networks. The inclusion of inventory pooling in the model also benefits wider industrial application, particularly for most
FMCG companies in which products are sold to more than one market or region.

Our study sheds light on the fundamental trade-off of standardisation and differentiation particularly on the network
level. We consider a manufacturing system of multiple products. Each product is sold to a number of markets, yielding a
number of different SKUs. The question arises as to how to aggregate these SKUs of a product into groups for the con-
figuration decisions so that the trade-off between cost synergy from pooling and gain from differentiation can be balanced.
How do the characteristics of SKUs with respect to different properties affect this balance? To address these questions, we
develop four scenarios, each based on a planning approach which imposes certain restrictions on how the SKUs can be
grouped. For each scenario, an optimisation model is developed to decide the optimal grouping and configurations. In this
way, we optimally align the SKUs with the corresponding configurations. We then compare the results of these scenarios,
analyse the effect of different factors, and perform a sensitivity analysis.

The remainder of this paper is organised as follows: Section 2 reviews relevant SC&OM literature on segmentation and
the studies related to the methodology we use, followed by the presentation of the modelling framework, the assumptions,
and formulations in Section 3. Section 4 details our data and presents the results of numerical analyses. Section 5 concludes
the study and provides direction for future research.

2. Literature

Segmentation, by definition, is to divide a population into groups and sub-groups for group-targeted actions. Market seg-
ments classify the products and customers with respect to the marketing needs, and exploit customer heterogeneity for
that purpose (Guajardo and Cohen 2018). Segmentation in SC&OM, on the other hand, emanates from heterogeneity in
operational, tactical, and strategic requirements for serving heterogeneous products and customers.

A great deal of research interest in SC&OM has been given to the development of segmentation schemes to support
inventory planning and policy decisions. The main challenge for the schemes is to be easy to use while capable of accounting
for a wide range of factors that are critical for such decisions. Flores and Whybark (1986) propose a multiple criteria
approach that reconciles the measures that are of operational importance but in conflict with cost-volume measures used in
ABC analysis. Ernst and Cohen (1990) suggest a methodology that utilises a full range of operationally significant SKU
attributes. Bhattacharya, Sarkar, and Mukherjee (2007) develop distance-based framework to handle multiple and conflicting
criteria.

The implication of customer and product heterogeneity on tactical and strategic aspects of SC&OM has also urged
scholars to look at segmentation on design and configuration levels. The focused factories (Skinner 1969, 1974) promoted
in the manufacturing sector was the early idea to cope with the heterogeneity by designing a facility that concentrates
efforts towards a narrower range of products or segments of entire markets. Berry, Hill, and Klompmaker (1999) later on
present a framework for guiding the development of functional strategies in both manufacturing and marketing. Hallgren
and Olhager (2006) look at the problem by taking the entire manufacturing system into account. Fisher (1997) embraces an
even broader view, proposing a classification scheme for selection of supply chain strategies that defines the manufacturing
focus, positioning of inventory and selection of suppliers. His work inspires many of the later studies such as Mason-Jones,
Naylor, and Towill (2000), Christopher and Towill (2001), Martinez-Olvera and Shunk (2006), and Godsell et al. (2011) to
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improve guidances for selection and development of supply chain strategy. An insight from these studies is that segmenting
SKUs to support decisions on design and configuration levels normally requires an understanding of business structure to
decide the variants of suitable resources and mechanisms. This is because there exist various ways in using resources and
mechanisms for supply chain configurations, e.g. the use of inventory placement to vary the degree of centralisation (Lovell,
Saw, and Stimson 2005), distinguishing delivery lead time by differentiating planning processes (Olbert, Protopappa-Sieke,
and Thonemann 2016), or applying separate capacity strategies for different market segments (Jayaswal and Jewkes 2016).

Various techniques such as Analytic Hierarchy Process, Pareto analysis, clustering analysis (von Falkenhausen 2017),
and profiling analysis (Godsell et al. 2011) are adopted in segmentation schemes. Most of the segmentation schemes,
regardless of the techniques used, break down the problem into two stages: first defining SKU groups and then finding
an appropriate strategy/policy for each group. The two-stage process is commonly used because it allows a large number
of influencing factors to be considered without further complicating the segmentation schemes. Sheikhzadeh and Ros-
setti (2015), however, point out that this approach causes researchers to focus on decomposed sub-problems independently
and to forget the original problem, and thus this approach may yield suboptimal solutions for the original problem. Li
and O’Brien (2001) is one of the first few studies which integrates the two stages by aligning product grouping and pro-
cess/policy assignment using an optimisation method. Their model matches the design of production process under different
manufacturing strategies with products that differ in the nature of demand uncertainty and value-adding capacity. Similarly,
Langenberg, Seifert, and Tancrez (2012) seek to optimally align the decisions in product grouping and assignment of supply
chains. In particular, they address the trade-off between standardisation and differentiation by including a complexity cost as
a function of the number of supply chains in use. As more recent studies, Macchion, Fornasiero, and Vinelli (2017) propose
a discrete-event simulation model to evaluate the performance of different production configurations. Their model could
be used to support supply chain configuration decisions, such as by changing number of suppliers and choosing different
reorder policies. Abedi and Zhu (2017) present an MILP model to improve the trout farm from purchase, production and
distribution planning. They incorporate a customer classification in distribution planning. Fichtinger, Chan, and Yates (2019)
apply the concept of segmentation on the network level through a three-stage network and inventory optimisation model.
Their model jointly optimises the structural (the allocation of SKUs to facilities and facility design) and segmentation deci-
sions (the resources, i.e. modes used in designing production facilities and transport). Yet, as their model is based on an
industry case which has a serial system, the influence of stochastic dependencies of product demands from different market
regions is not considered.

Such dependencies are, however, an important topic for the industry. Many product lines in the chemical industry, phar-
maceutical industry, or FMCG industry are sold to more than one market and exhibit potential divergent nature in their
network. For instance products such as tobacco, beverages, and medicines may differ from their packages/labels or a few
ingredients for different sales regions, but the commonality could be exploited through postponement. These cases raise
the discussion of pooling demand in production process, for inventory placement, and for the purpose of segmentation. For
such networks, demand pooling in production and inventory is a critical decision and has direct influence on the balance
of standardisation and differentiation. Guajardo and Cohen (2018) state that pooling demand for a common product across
multiple markets usually implies a trade-off between pooling efficiencies and the demand of product differentiation across
markets. The impact of inventory pooling and how they should be pooled, though not explicitly addressed in the context
of segmentation, is incorporated in many network studies that model the decisions regarding particular strategies. Herer,
Tzur, and Yücesan (2002) model transshipments in different stocking points, claiming that pooling stock in a coordinated
way among locations reduces the inventory required in both agile and lean strategies. Liao, Hsieh, and Lai (2011) consider
inventory pooling in their multi-objective model under vendor-managed inventory to achieve efficiency without compro-
mising on responsiveness. Lim, Mak, and Shen (2017) integrate the idea of proximity and agility into the network design
model through the inventory sharing arrangement of physical pooling and dynamic fulfilment. Their analysis provides an
insight on how agility can be achieved by optimally balancing the level of inventory pooling and utilisation of dynamic
fulfilment from nearby locations. Mohammaddust et al. (2017) develop two mixed-integer non-linear models with lean and
responsiveness as respective objectives and compare different network structures which also include inventory pooling in
distribution centres. Kellar, Polak, and Zhang (2016) formulate an optimisation model to support the decisions whether
to synchronise inbound and outbound flows for cross-docking, or to decouple these flows by maintaining inventory. Li
et al. (2019) use a simulation model to compare the performance of centralised/decentralised configurations of spare parts
supply chain.

Inspired by the aforementioned discussion, this research aims to address the trade-off quantitatively with mathematical
models which integrate supply chain segmentation and configuration problems. We utilise the concept of network-inventory
model to formulate the problems and develop several network scenarios with different production and inventory arrange-
ments. We consider safety stock placement and inventory pooling as part of the decisions, and incorporate them using the
guaranteed service approach. In strategic safety stock placement, two major approaches are identified: guaranteed service
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approach (GSA) and stochastic service approach (SSA) (Graves and Willems 2003). The two methods differ in the way they
treat demand when it exceeds the available amount of safety stock. In SSA, exceeded demand remains unfulfilled until next
replenishment and thus the customers suffer from stochastic delay, whereas in GSA, excessive demand is fulfilled within
service time using external resources (e.g. additional capacity or expedited shipments) to ensure no delay occurs. In this
study, we use GSA for several reasons. First, GSA is closer to managerial experience when treating excessive demand and
the applicability in the real-world problems has been proved (see e.g. Billington et al. 2004; Farasyn et al. 2011). Although
the assumption of bounded demand does not cover some more realistic factors in the operational level (e.g. stochastic
lead times and impact of using external resource), the deterministic feature of service time in GSA can simplify the safety
stock placement problem and this is sufficient for strategic and tactical decisions. To our best knowledge, You and Gross-
mann (2010), Puga, Minner, and Tancrez (2019), Fichtinger, Chan, and Yates (2019) are the only studies that integrate
location and inventory placement decisions using GSA. Our work extends Fichtinger, Chan, and Yates (2019)’s serial sys-
tem into different divergent systems using Atamtürk, Berenguer, and Shen (2012)’s approach to build the formulation. Our
models differ from these studies in the number of stages involved and/or inventory pooling opportunities in multiple stages.
The relevant literature concerning the modelling technique is discussed further in the following sections.

3. Model development

In this section, we present the framework which defines the problems, assumptions, and the formulation of the models.
Section 3.1 describes the characterisation of SKUs and supply chain configurations as well as the development of the four
different scenarios. Section 3 elaborates the formulation of these scenarios.

3.1. The framework

We assume a firm manufacturing a variety of products. Each product (type of) is delivered to a number of markets. We
refer to the market-specific product as a SKU. In this case, a product sold to five different markets results in five different
SKUs. The demand is featured by volume and variability as well as desired service level. We assume demands of SKUs
are independent of each other. The cost and lead times involved to produce and deliver these products/SKUs capture their
supply chain characteristics.

The demand is fulfilled through a three-stage distribution network consisting of factories, consolidation centres, and
warehouses located in the local markets. Direct shipment and dual sourcing are not permitted. We assume batch production
in the factories. The inventory is replenished from factories to consolidation centres and from consolidation centres to the
warehouses periodically. On what basis the supply chain is configured determines the resulting network topologies: a serial
network if the entire supply chain is configured for individual SKU, and divergent networks otherwise (see Figure 1 for the
illustration).

Figure 1. Example of the divergent and the serial networks.
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The locations and the amount of safety stock are determined using GSA. Following its concept, each of the potential
stocking location i guarantees to fulfil the order placed from its downstream node in exactly Si periods. The service times
of each location are then the decision variables to optimise, which imply the optimal inventory level in each node. Simp-
son (1958) proves that the optimal solution has an all-or-nothing property in a serial system; i.e. for a given stage i, the
optimum occurs either when Si = 0, or when Si = Si−1 + Ti, where Ti stands for the lead time of the node i, and Si−1 is the
service time guaranteed by the direct predecessor. Inderfurth (1991) shows that this property is also valid for a divergent
system. We notify the readers that we do not pursue modelling the inventory as rigorous as in a pure inventory control
problem, but consider the impact of inventory in strategic decisions by exploiting the solution property of GSA. Assuming
end market demand is immediately delivered, for a three-stage supply chain network, the all-or-nothing property leads to
the four different policies of safety stock placement in Figure 2.

In addition, we consider two complementary modes: a responsive mode and an economic mode in production and trans-
port, which differentiate the supply chain configurations. Table 1 shows the relation of these two modes in terms of cost and
lead time parameters. The design of modes are based on the empirical information from Fichtinger, Chan, and Yates (2019)
and they capture the relationship of prevalent supply chain strategies (Fisher 1997; Naylor, Naim, and Berry 1999). In
supply chain segmentation, using production design/transport mode/inventory policy to differentiate the supply chains for
different segments is commonly seen in the industry. For example, the case company in Fichtinger, Chan, and Yates (2019)
segments the supply chains into lean/agile segments; each has a distinct production and transport mode. Philips restructures
their distribution network, places safety stock point in different stages, adopting separate production strategies for differ-
ent segments (Roy, Alicke, and Forsting 2017). The case company in Arampantzi, Minis, and Dikas (2019) considers also
different production choices, transport modes and routes in their supply chain network transformation.

Furthermore, we restrict each factory to be designed in either mode. The supply chain of a SKU or a product is configured
either using an economic resource, i.e. economic mode of production and transport, or using a responsive resource. From
the resource perspective, the network is primarily segmented into two groups: the group where economic mode is used,

Figure 2. Four candidate optimal safety stock policies.

Table 1. Comparison of cost and lead time parameters of
responsive and economic segment.

Process Economic segment Responsive segment

Production Longer lead time Shorter lead time
Higher fixed cost Lower fixed cost

Lower variable cost Higher variable cost
Distribution Longer lead time Shorter lead time

Lower variable cost Higher variable cost
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and the group where the responsive mode is used. Along with the inventory policy, there exist eight sub-groups. If location
difference is also taken into consideration, there will be numerous groups which have distinct supply chain configurations.
The studies which incorporate this idea include Langenberg, Seifert, and Tancrez (2012) who consider several supply chains
from different combinations of production and transport resources, and Ernst and Cohen (1990) who aim to choose optimal
inventory policies for a wide range of SKUs.

It follows that the number of options in terms of resource, inventory positioning, locations as well as any restriction on
grouping affects the number of groups/segments that can be derived and the degree of differentiation of the overall supply
chains. As a simple illustration, we consider the configuration decisions all made on SKU level versus all made on product
level. The former would imply a serial network because the market/customer-specific decisions are made in the early stage
and there is no chance to exploit the commonality of SKUs within a product from pooling, but in this case a higher level
of differentiation is allowed. If all the decisions are made on product level, the commonality of SKUs within a product
can be used in production and inventory, leading to a divergent network. In this case, all SKUs within a product share the
same production/transport process and adopt the same inventory policy, thus the supply chain configurations are then more
standardised. Following this thought, we develop four scenarios, which differ in terms of underlying assumptions in how
the SKUs are grouped in the planning process. The four scenarios result in four different network types. We elaborate the
details in Table 2.

In each of the planning approaches, supply chains are optimally configured by minimising the total operating cost of
serving these SKUs, which consists of the manufacturing, transport, and associated inventory costs. Each scenario implies a
level of differentiation and standardisation in the resulting supply chain configurations. In Scenario I, the resource segment,
inventory policy as well as allocation to facilities are decided on SKU basis. Examples of such an arrangement occurs in
cases where each end market has specific requirements, e.g. ingredients, or packaging and labelling, and postponement of
differentiation is not used. In this case, SKUs of a product can have different configurations. In Scenario II, the SKUs of a
product are aggregated for planning. They share the same facilities and delivery route as well as a stock pool. The supply
chains are configured differently among different products but are standardised for all SKUs of a product. Products that are
managed under central production and distribution strategy end up in Scenario II. In Scenario III, the restriction of sharing
a stock pool is released, but they still use the same inventory policy. This means that they either share a stock pool or all are
kept only in the markets. Much of three-stage location-inventory literature that does not consider multi-echelon inventory

Table 2. Four scenarios: assumptions of the planning approaches and resulting network types.

Scenario I • Production location and mode are SKU specific. Each production batch is assigned to a particular market.
Pooling in production is not possible

• Replenishment is SKU specific. Inventory of SKUs can be kept in any of the three stages depending on which
policy is chosen by the model. Inventory pooling is not possible

• Transport is SKU specific.
• The resulting network is a serial network, referred as Network I.

Scenario II • Production location and mode are product specific. Each production batch is for aggregated demand of SKUs of
a product.

• Replenishment is product specific. Inventory of products have to be kept in upstream stages. Keeping inventory
only in the market is not a choice. This means that the fourth inventory policy is not in consideration and SKUs
of a product are forced to be pooled in upstream.

• Transport is product specific.
• The resulting network is a divergent network, referred as Network II.

Scenario III • Production location and mode are product specific. Each production batch is for aggregated demand of SKUs of
a product.

• Replenishment is product specific. Inventory of products can be kept in any of the three stages. If an inventory
policy is chosen for a product, all SKUs of the product follow the same policy.

• Transport is product specific.
• The resulting network is a divergent network, referred as Network III.

Scenario IV • Production location and mode are product specific. Each production batch is for aggregated demand of SKUs of
a product.

• Replenishment is group (pool) specific. The optimisation model decides the inventory placement of SKUs in
consideration of pooling benefits in upstream stages. The SKUs of a product which are placed in the same
location are seen as a group. A possible solution for a product sold to five markets can be divided into two
groups with three SKUs in one group and two SKUs in the other. The optimisation model can also decide to
put all SKUs in a product in the same stock pool, ending up with only one group. SKUs in a group follow the
same inventory policies.

• Transport is group specific.
• The resulting network is a divergent network, referred as Network IV.
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Figure 3. Differentiation and standardisation levels of the four networks.

placement naturally assumes that the middle stage is the stocking point. However, it is possible that the middle stage is not
the optimal stage to place the safety stock. In this scenario, the assumption of upstream stages as stocking points is removed
and the safety stock placement is decided by the optimisation model. In Scenario IV, the production facility and mode are
selected on the product basis. The optimisation model then decides the transport route and where to place the safety stock
of a SKU in consideration of the pooling benefits in the upstream stages. Scenario IV resembles the industrial cases where
products are produced centrally but distributed worldwide via distribution centres or hubs (e.g. beverages). Figure 3 depicts
the relative level of differentiation and standardisation of the resulting four networks.

3.2. Notations

We use the notation below to model the four networks.

Indices/Sets
i index of factories, i ∈N
j index of consolidation centres (CCs), j ∈R
w index of warehouses in the markets, w ∈M
s index of modes available; where s = 1 . . . economic, s = 2 . . . responsive
p index of products, p ∈P
e index of inventory policies, e ∈E
Parameters
λwp service factor for product p in market w, i.e. service factor of a specific SKU
μwp mean of demand of product p in market w, i.e. mean of demand of a specific SKU
σwp standard deviation of demand of product p in market w, i.e. standard deviation of a specific SKU
fis fixed cost per lot at factory i in production mode s
cfac

is variable cost per unit at factory i in production mode s
Kis capacity of factory i in production mode s
Qiswp production lot size of product p in market w in factory i operated in mode s
Qisp production lot size of product p in factory i operated in mode s
cup

ijs transport cost per unit from factory i to CC j in transport mode s

cdn
jsw transport cost per unit from CC j to market w in transport mode s

h stock holding cost rate in %
rj throughput cost per unit at CC j
tfac
is production lead time at factory i in production mode s

tup
ijs transport lead time from factory i to CC j in transport mode s

tdn
jws transport time from CC j to market w in transport mode s

Sfac
isp guaranteed service time at factory i in production mode s for product p

Scc
jsp guaranteed service time at CC j in transport mode s for product p

Sfac
iswp guaranteed service time at factory i in production mode s for product p sold in market w

Scc
jswp guaranteed service time at CC j in transport mode s for product p sold in market w

SSCfac
isp safety stock cost at factory i in production mode s, for product p

SSCcc
jp safety stock cost at CC j for product p

SSCwh
wp safety stock cost at market w for product p

Decision variables
Xijswp 1 if product p at market w is from factory i via CC j in segment s, and 0 otherwise
Xsijsewp 1 if product p at market w is from factory i via CC j in segment s, using inventory policy e, and 0 otherwise
Xdijsep 1 if product p is from factory i via CC j in segment s, using inventory policy e, and 0 otherwise
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Zis 1 if production mode s is chosen for factory i, and 0 otherwise
Yisp 1 if factory i and segment s are chosen for product p, and 0 otherwise

3.3. Modeling network I

In this network, all the planning activities are performed on the SKU basis. The supply chain of a SKU is independent from
another SKU. All the cost terms can therefore be calculated on the SKU basis. The concept of modelling the serial network
has been presented in Fichtinger, Chan, and Yates (2019), but they consider only safety stock in the inventory associated
cost. For completeness of our work, we restate the formulation of this network with introduction of our notations.

At first, the binary variable Xijswp is used in this case to represent the decision concerning the allocation of factories,
consolidation centres, and mode to use for a SKU.

The production cost for each of SKU is the mean demand μwp times variable production cost per unit cfac
is , plus average

number of batches per period μwp/Qiswp times the setup cost per batch fis on a given mode. We apply EOQ to compute batch

quantity Qiswp prior to the optimisation model, which gives us Qiswp =
√

2fisμwp/hcfac
is . The production cost for product p

sold in market w (SKU wp) produced in factory i operated in mode s is then μwp/Qiswp + μwpcfac
is .

The next cost terms in the model are the cost of using consolidation centre and transport cost, which consists of upstream
and downstream delivery cost. These costs for SKU wp produced in factory i delivered to markets via consolidation centre
j operated on mode s can be written as μwprj + μwpcup

ijs + μwpcdn
jws.

The associated inventory costs include cycle stock cost, pipeline stock cost, and safety stock cost. To compute those
inventory costs, we evaluate the cost value of the products in each stage based on the stages they have been through and
apply a holding cost rate h to the cost value. The cost value per unit of a product after the first stage, i.e. after being
processed in the factory is c̄iswp = fis/Qiswp + cfac

is . The cycle stock cost for a SKU wp produced in factory i operated in
mode s is computed with average production cost per unit times the holding cost rate multiplied by half of the batch size:
(Qiswp/2)(c̄iswph). Analogously, for SKU wp stocking in the stages of consolidation centres and warehouses in the local
markets, the cost value per unit would be c̄ijswp = c̄iswp + cup

ijs + rj, and c̄ijswp + cdn
jws, respectively.

The total pipeline stock cost for SKU wp produced in factory i delivered via consolidation centre j operated on mode
s are (μwptup

ijs)(c̄iswph) + (μwptdn
jws)(c̄ijswph). The service times of SKU wp, Sfac

iswp and Scc
jswp determine safety stock placement.

The safety stock holding costs at the stage of factory, consolidation centre, and warehouse in the market area:

SSCfac
iswp

(
Sfac

iswp

)
= h · c̄iswpλwpσwp

√
tfac
is − Sfac

iswp. (1)

SSCcc
ijswp

(
Sfac

iswp, Scc
jswp

)
= h ·

(
c̄iswp + cup

ijs + rj

)
λwpσwp

√
Sfac

iswp + tup
ijs − Scc

jswp. (2)

SSCwh
ijswp

(
Scc

jswp

)
= h ·

(
c̄iswp + cup

ijs + cdn
jswp + rj

)
λwpσwp

√
Scc

jswp + tdn
jswp. (3)

Given the above formulation, the optimal total safety stock cost for SKU wp of a given configuration (i, j, s), SSC∗
ijswp, can

be pre-calculated by evaluating all the corner values of Sfac
iswp and Scc

jswp. Putting all the cost components together, the model
for Network I can be formulated as the following mixed-integer linear program:

min
Xijswp

∑
p∈P

∑
w∈M

∑
s∈S

∑
i∈N

∑
j∈R

Xijswp

(
SSC∗

ijswp + μwp

Qwp
fis + μpcfac

is + μwpcup
ijs + μpcdn

jsp + μprj

+ Qiswp

2

(
c̄iswph

) + μwptup
ijs c̄iswph + μwptdn

jwsc̄ijswph

)
(4)

Subject to:

∑
i∈N

∑
j∈R

∑
s∈S

Xijswp = 1 ∀ w, p, (5)

Xijswp ≤ Zis ∀ i, j, s, w, p, (6)



International Journal of Production Research 9∑
s∈S

Zis = 1 ∀ i. (7)

∑
j∈R

∑
w∈P

∑
p∈P

Xijswpμwp ≤ Kis ∀ i, s, (8)

Xijswp, Zis ∈ {0, 1} ∀ i, j, s, w, p. (9)

Constraint (5) establishes the allocation of every SKU wp, to exactly one supply chain configuration, i.e. one factory, one
consolidation centre, and one resource segment. Constraint (6) ensures that a SKU can be allocated to a factory, if and only
if the factory is operated in the same mode as the resource segment allocated to the SKU. Constraint (7) ensures that each
factory operates in only one segment s, and constraint (8) imposes the capacity limit on each factory operated in a certain
mode.

3.4. Modeling network II and III

The main difference between Network II & III and Network I is the base on which the planning activities are performed.
In these two networks, all of the planning are performed on the aggregated demand of a product. Product p is therefore
the basis of calculation of each cost term. In this case, we use the binary variable Xdijsep to represent the decisions of the
allocation of factories, consolidation centres, mode to use, and inventory placement applied for a product.

Applying the same logic as Network I, the costs of production, transport, and pipeline stock for a configuration (i, j, s)
are μp/Qisp + μpcfac

is , μprj + μpcup
ijs + ∑

w∈M μwpcdn
jws, and (μptup

ijs)(c̄isph) + (
∑

w∈M μwptdn
jws)(c̄ijsph).

The decision of safety stock placement is influenced by both market and product demand, and pooling effect exists
at upstream stages. We employ the subindex e in decision variable Xdijsep to represent each possible inventory policy. The
safety stock costs, as determined by the service times Sfac

isp and Scc
jsp, are formulated as following mixed-integer linear program:

SSCfac
isp = h ·

∑
j∈R

(Xdijs1p + Xdijs2p) · c̄isp ·
√∑

w∈M

σ 2
wp · λ2

wp

√
tfac
isp (10)

SSCcc
jp = h ·

⎛
⎝Xdijs1p

√∑
s∈S

∑
i∈N

∑
w∈M

c̄2
ijsp · σ 2

wp · λ2
wp · tup

ijs

+Xdijs3p

√∑
s∈S

∑
i∈N

∑
w∈M

c̄2
ijsp · σ 2

wp · λ2
wp · (tfac

isp + tup
ijs)

⎞
⎠ (11)

SSCwh
wp = h ·

∑
s∈S

∑
i∈N

∑
j∈R

(c̄ijsp + cdn
jws) · σwp · λwp ·

(
Xdijs1p

√
tdn
jws

+ Xdijs2p

√
tup
ijs + tdn

jws + Xdijs3p

√
tdn
jws + Xdijs4p

√
tfac
isp + tup

ijs + tdn
jws

)
(12)

Equation (10) sums up the safety stock cost in the factories, which incurs when inventory policy 1 or 2 is chosen. Whereas
inventory policy 1 or 3 results in holding inventory in the consolidation centres; the cost is shown in Equation (11).
Equation (12) presents the safety stock cost in the markets, resulting from the four inventory policies. The model for
Network II is then:

min
∑
i∈N

∑
j∈R

∑
s∈S

∑
e∈E

∑
p∈P

Xdijsep

(
μp

Qisp
fis + μpcfac

is + μpcup
ijs + μpcdn

jws + μprj +Qisp

2
c̄isph + μptup

ijs c̄isph + μptdn
jwsc̄ijsph

)

+
∑
i∈N

∑
s∈S

∑
p∈PSSCfac

isp +
∑
j∈R

∑
p∈PSSCcc

jp +
∑
w∈M

∑
p∈PSSCwh

wp ,
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Subject to: ∑
i∈N

∑
j∈R

∑
s∈S

∑
e∈E

Xdijsep = 1 ∀ p, (13)

Xdijsep ≤ Zis ∀ i, j, s, e, p, (14)∑
s∈S

Zis = 1 ∀ i, (15)

∑
j∈R

∑
e∈E

∑
p∈P

Xdijsepμp ≤ Kis ∀ i, s, (16)

Xdijs4p = 0 ∀ i, j, s, p, (17)

Xdijsep, Zis ∈ {0, 1} ∀ i, j, s, p, e. (18)

Constraints (13) – (16) resemble constraints (5) – (8). Constraint (17) forbids the use of the inventory policy where the safety
stock is only placed in the local markets. This constraint is specific for the type II network to restrict the market demands
fulfilled from a pooled stock. For Network III, we employ the same objective function and constraints (13) – (16) remain
the same. Constraint (17) is removed since inventory policy 4 can also be chosen under this network type.

3.5. Modeling network IV

In this network, decisions are made in two levels. Yisp represents the decision of allocating products to a factory and a
segment. Xsijsewp is associated with the adoption of the inventory policy and the allocation of the consolidation centre for a
certain SKU. The calculation of production cost, transport cost and warehousing cost remains the same as Network II and
III. The safety stock placements (10) – (12) are reformulated using the alternative decision variable Xsijsewp. Given the fact
that Xsijs1wp + Xsijs2wp = Xs2

ijs1wp + Xs2
ijs2wp, we obtain:

SSCfac
isp = h · c̄isp ·

√∑
j∈R

∑
w∈M

(Xs2
ijs1wp + Xs2

ijs2wp) · σ 2
wp · λ2

wp

√
tfac
isp (19)

SSCcc
jp = h ·

⎛
⎝√∑

s∈S

∑
i∈N

∑
w∈M

Xs2
ijs1wp · c̄2

ijswp · σ 2
wp · λ2

wp · tup
ijs

+
√∑

s∈S

∑
i∈N

∑
w∈M

Xs2
ijs3wp · c̄2

ijswp · σ 2
wp · λ2

wp · (tfac
isp + tup

ijs)

⎞
⎠ (20)

SSCwh
wp = h

∑
s∈S

∑
i∈N

∑
j∈R

(c̄ijswp + cdn
jws) · σwp · λwp ·

(
Xsijs1wp

√
tdn
jws

+ Xsijs2wp

√
tup
ijs + tdn

jws + Xsijs3wp

√
tdn
jws + Xsijs4wp

√
tfac
isp + tup

ijs + tdn
jws

)
(21)

The configuration decision Xsijsewp for Network IV appears inside the square root terms, which results in non-linearity
in the objective function. We use the approach proposed by Atamtürk, Berenguer, and Shen (2012), introducing three
auxiliary variables Oisp, Ujp and Vjp to replace the square root terms in Equations (19) and (20), turning the optimisation

model into conic quadratic mixed-integer program (CQMIP). Equations (19) and (20) become SSCfac
isp = hc̄isp

√
tfac
isp · Oisp

and SSCcc
jp = h · (Ujp + Vjp). Along with the transformation, the optimisation model for Network IV is:

min
∑
i∈N

∑
j∈R

∑
s∈S

∑
e∈E

∑
p∈P

∑
w∈M

Xsijsewp

×
(

μp

Qisp
fis + μpcfac

is + μwpcup
ijs + μwpcdn

jws + μwprj + Qisp

2
c̄isph + μwptup

ijs c̄isph + μptdn
jwsc̄ijswph

)

+
∑
i∈N

∑
s∈S

∑
p∈P

hc̄isp

√
tfac
isp · Oisp +

∑
j∈R

∑
p∈P

h · (Ujp + Vjp) +
∑
w∈M

∑
p∈PSSCwh

wp ,
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Subject to:

∑
i∈N

∑
j∈R

∑
s∈S

∑
e∈E

Xsijsewp = 1 ∀ w, p, (22)

Yisp ≤ Zis ∀ i, s, p, (23)∑
s∈S

Zis = 1 ∀ i, (24)

∑
j∈R

∑
e∈E

∑
p∈P

∑
w∈M

Xsijsewpμwp ≤ Kis ∀ i, s (25)

Xsijsewp ≤ Yisp ∀ i, j, s, e, w, p (26)∑
i∈N

∑
s∈S

Yisp = 1 ∀ p, (27)

∑
j∈R

∑
w∈M

(Xs2
ijs1wp + Xs2

ijs2wp) · σ 2
wp · λ2

wp ≤ O2
isp ∀ i, s, p (28)

∑
s∈S

∑
i∈N

∑
w∈M

Xs2
ijs1wp · c̄2

ijswp · σ 2
wp · λ2

wp · tup
ijs ≤ U2

jp ∀ j, p (29)

∑
s∈S

∑
i∈N

∑
w∈M

Xs2
ijs3wp · c̄2

ijswp · σ 2
wp · λ2

wp · (tfac
isp + tup

ijs) ≤ V 2
jp ∀ j, p (30)

Xsijsewp, Yisp, Zis ∈ {0, 1} ∀ i, j, s, p (31)

Oisp, Ujp, Vjp ≥ 0 ∀ i, j, s, p (32)

The constraints (22) – (25) are analogous to the constraints (13) – (16) in type II and III networks. The constraints which
are specific for Network IV are constraints (26) and (27) which force a product to be produced in one factory and operated
through one mode regardless the markets it is delivered to, and the quadratic constraints (28) – (30) which define auxiliary
variables.

According to Atamtürk, Berenguer, and Shen (2012), the main advantage of CQMIP formulation is that it is flexible
from the modelling perspective and can be solved directly using standard optimisation software package such as CPLEX
and Mosek. The computational efficiency of CQMIP can be strengthened with polymatroid inequalities, which are added
as cutting planes to facilitate the computational process. For the technique details, we refer readers to Edmonds (1970) and
Atamtürk, Berenguer, and Shen (2012).

4. Numerical study

The numerical study presented in this paper is based on two types of data: demand profile, and configuration-related cost and
lead time parameters. We employ the dataset from the case company used in Fichtinger, Chan, and Yates (2019) but adapt
it to serve the purpose of our analyses. The adaption includes decreasing the network scale and extend it for a distribution
network. Specifically, we arbitrarily select three factories out of six, 21 markets out of 43, 224 SKU out of the original
6013. We then arbitrarily assign them to the 21 different markets, yielding 50 different products which are sold to a different
number of markets. The assignment is conducted based on the premise that regardless which planning approaches are
adopted, the performance can be improved by segmentation and network optimisation. This is the logical consideration for
firms when developing their network and exploring the segmentation benefits. On the other hand, we use only a subset of
the original network as the original scale is far too complex for extension to a distribution network and adds negligible value
to our study. Such an approach is often seen in the network-related studies (e.g. Çelebi 2015; Peres et al. 2017; Ghavamifar,
Makui, and Taleizadeh 2018 for recent applications).

The resulting dataset is referred as adapted real data. We then create another dataset by setting up equal cost and lead
time parameters for arcs and nodes of the same type. We create these parameters using the weighted-average (weighted by
factory capacities) values from the adapted real data. In the real world, the value of such operational parameters in each node
and arc in the network usually varies due to different market regions and the geographic distribution of the sites (Fichtinger,
Chan, and Yates 2019). Factors such as technologies and regulations in different regions can contribute to the variance. We
construct this dataset to isolate the effect of this variance from the impact of demand characteristics. We refer to this dataset
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Table 3. Values in the datasets.

Notation Adapted real values / value range Synthetic values

Set
N 3 locations –
R 3 locations –
M 21 locations –
S 2 modes –
P 50 products –
I 4 policies –

Demand parameters
μp [11, 28 k]k units –
σp [1, 21 k]k units –
cv [0.01, 3] –

Cost
fi1 [60, 750]e/lot 500e/lot
fi2 [12, 149]e/lot 100e/lot
Ki1 132, 000 k units –
Ki2 170, 000 k units –
cfac

i1 [4.8, 11.8]e/10 k units 9e/10 k units
cfac

i2 [7.1, 18.7]e/10 k units 13.4e/10 k units
cup

ij1 [0.09, 0.46]e/10 k units 0.25e/10 k units

cup
ij2 [0.19, 1.65]e/10 k units 0.57e/10 k units

cdn
j1wp [0.04, 3.95]e/10 k units 0.70e/10 k

cdn
j2wp [0.07, 12.24]e/10 k units 2.2e/10 k

rj 0.1e/10 k units –

Lead time
tfac
i1 1 month –

tfac
i2 0.2 month –

tup
ij1 [0.10, 1.50] months 0.6 month

tup
ij2 [0.02, 0.50] months 0.15 month

tdn
j1p [0.04, 0.36] months 0.21 month

tdn
j2p [0.04, 0.18] months 0.08 month

Other parameters
h – 0.25
λp – 3

as synthetic data, consisting of an adapted real demand profile, and synthetic network-related operational parameters. Our
analysis is mainly based on the adapted real data and the synthetic data is used only in some of the analysis for comparison
purpose. For the remaining parameters that are not included in these datasets, h and λwp, we apply commonly used values,
0.25 and 3. Table 3 summarises the values of the different parameters for the arcs and nodes in the datasets, where a dash
‘–’ means that we use the adapted real value for that item .

To examine the robustness of our statements and conclusion, we also test the main part of our analysis on a few different
datasets. These include two randomly generated data based on the methods in Park, Lee, and Sung (2010) and Shahabi
et al. (2014). We demonstrate the results of these two datasets in the appendix to show the general consistency of our
findings and observations.

We write the setting of our models in python code and solve the optimisation models in Gurobi on a 2.60 GHz laptop
with 8 GB RAM. With the data used in numerical study, Network I, II, III can be solved within 5 minutes. In comparison,
the global optimum for CQMIP is harder to obtain within a reasonable amount of time. Therefore, we use the solution with
0.1% gap or solution with time limited to 30,000 seconds. In general, we are able to get the solution with 0.1% gap within
10,000 seconds.

Table 4 presents the results of optimal supply chain configurations under the four different planning scenarios using the
adapted real data. We can see that Scenario I has a greater number of SKUs allocated to the responsive segment compared
with the other three. This is because in the absence of pooling, using the economic mode which increases safety stock
required could be expensive for SKUs with higher demand variability. We also observe that there are nearly no SKUs
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Table 4. The operating cost and the number of SKUs allocated to inventory and resource segments.

Resource segment Inventory segment

Scenario Operating cost Economic Responsive 1 2 3 4

I 471, 941 17 207 0 0 2 222
II 481, 733 56 168 0 6 218 0
III 466, 520 56 168 0 0 111 113
IV 463, 139 54 170 0 9 126 89

assigned to inventory policy 1 and 2, indicating stocking in the factories is unfavourable. This result is in line with the
findings of Hua and Willems (2016) which point out that in a serial system unless cost at the upstream stage is relatively low
or its lead time is relatively long, it is not worthwhile to decouple the total supply chain lead time and hold safety stock at
the upstream stage. This explains why inventory policy 4 is assigned for all SKUs in Scenario I where inventory pooling is
absent. We numerically verify this finding for divergent systems. As the allocations of inventory policies in the other three
scenarios show, the benefits of pooling can make stocking in the upstream stages a more attractive option. Nevertheless, the
comparison of SKU allocation to inventory segments in Scenario II and III shows that pooling inventory in the upstream
stages is the only favourable solution for some SKUs not all SKUs. Forcing all SKUs of a product to share the same
stock pool can lead to increase in safety stock cost. In Scenario III, nearly half of SKUs in the product portfolio choose to
keep inventory in the markets, while in Scenario IV where the SKUs are segmented for inventory decisions, benefits from
inventory pooling can be better exploited and thus more SKUs are assigned to place inventory in the upstream stages. The
difference between Scenario III and IV captures the extent to which segmenting SKUs of a product for different inventory
policies is beneficial.

4.1. Comparison of total cost

The cost difference between Scenario I and II explains whether loss of differentiation or loss of pooling benefits in all levels
are dominant. The cost difference between Scenario I and IV shows if loss of aggregated production and transport benefits
outweighs loss of differentiation on these two levels. If the latter effect is strong, Scenario I costs less than Scenario IV.
Otherwise we expect Scenario IV has the least cost since, in terms of how SKUs can be grouped in inventory placement,
it is less restrictive and either Scenario I or II might have the most. As shown in Table 5, the lower cost in production and
cycle stock of Scenario II does not offset the higher cost in transport and safety stock compared with Scenario I. In this
case, loss of differentiation dominates loss of pooling benefits, and safety stock placement drives the cost difference among
Scenario II, III, and IV. The influence of other cost elements resulting from different allocations of sites are dependent on
the cost structure. In this dataset, the effect of other factors is trivial.

Figure 4 shows that by comparing the operating costs of these four scenarios, the trade-off between standardisation and
differentiation can be visualised as a U-shape curve. We infer that the lowest point in this U-shape curve, which is not
included in this study, is where the SKUs are optimally grouped for production batch and inventory pooling. At this point,
the full potential of segmentation can be realised. This point is between the cost of Scenario I and the cost of Scenario
IV. We notify the readers that we approximate the lowest point with Scenario IV because optimal grouping of SKUs for
all configuration decisions requires joint optimisation of production batch and inventory pooling, which greatly increases
complexity of the model and does not guarantee to be solvable. The grouping of Scenario I, II, and III are then suboptimal.
With the current parameters, Scenario I is less suboptimal than Scenario II and the curve leans towards the right side
because higher differentiation is preferred. We expect the shape of this curve changes with different parameters applied. For
example, we find that with certain parameters the total cost of Scenario I is less than Scenario III, implying that the loss of
differentiation outweighs loss of aggregation and pooling benefits and the lowest point in the U-shape is closer to Scenario
I than Scenario IV. In the following, we examine the impact of cost synergy, different network parameters, and resource
options on the shape of this curve.

Table 5. The cost breakdown.

Scenario Production Transport Throughput Cycle stock Pipeline stock Safety stock

I 245, 912 34, 301 3, 268 15, 370 24, 439 148, 651
II 243, 020 37, 374 3, 268 11, 905 25, 006 161, 160
III 243, 020 37, 374 3, 268 11, 905 25, 006 145, 946
IV 243, 029 34, 489 3, 268 11, 900 25, 150 145, 302
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Figure 4. % increase in cost compared with Scenario IV.

We first look at the perspective of cost synergy. In our study, two parameters, holding cost rate and fixed cost of produc-
tion have direct influence on the strength of cost synergy. The benefit from optimally pooling the products increases with
higher holding cost rates, and the fixed production cost influences the benefits of pooled production.

Figure 5(a) shows when holding cost rate 0.01%, the curve is rather flat because cost increase by suboptimal grouping
decisions are marginal. As the holding cost rate increases, the curve bends (or tilt) more. This shows that inventory decisions
become more relevant with the increase of the holding cost rates, and hence the cost differences among the suboptimal
grouping decisions in Network I, II and III are more apparent.

The change of curvature as the fixed cost increases is less apparent (see Figure 5(b)) on the left-hand side since Scenario
II, III and IV have the same production setting. On the other hand, the impact of an increase in fixed cost on total production
cost is different under Scenario I and IV since they use different production settings with respect to how the production
batches are formed.

The network parameters give information on operational characteristics of each node and arc, and have implications on
the degree of centralisation a network should have. For products sold to adjoining markets, managing SKUs through the
same facilities to enjoy benefits from pooling in production could render good cost performance. If the demand points are far
away from each other, it may be better to produce them separately and holding the stock in the nearby facilities. In the case
of a supply chain design configured on the basis of product level, it is not possible to separate them in different processes. We
demonstrate the impact purely from the demand aspect and from both demand and supply chains in Figure 5(c) by comparing
the cost differences of these four scenarios using both datasets. The results from the synthetic data capture the impact of
varying demand characteristics on the cost performance. Under this dataset, the benefits of pooling outweigh the benefits
of differentiation; therefore Scenario I without any pooling possibility can be relatively costly. In addition, as the difference
of SKUs in this dataset only exhibits in demand characteristics, the benefit of segmenting SKUs of a product according to
different inventory policies is reduced compared to the benefits under the adapted real dataset. However, pooling all SKUs in
the upstream stages (scenario II) still incurs a noticeable cost increase. This shows that even after eliminating the difference
in operational characteristics, pooling the inventory in the upstream stages does not necessarily give benefits for some SKUs
where demand characteristics are too different. We will elaborate this point further in Section 4.3.

The resource also affects the balance of differentiation and standardisation. Figure 5(d) compares the % cost increase
of a segmented network under different scenarios with that of networks designed in a single mode, either economic or
responsive. It shows the more responsive the production and transport, the less advantageous it is to group and manage
SKUs through the same process, and thus the % cost increase of Scenario I is the least when only the responsive mode is
used. This is because economies of scale reduce in a more responsive mode, and supply chains are less prone to longer lead
times. When only the economic mode is used, the cost increase from both total pool solution (Scenario II) or total non-pool
solutions (Scenario I) are similarly suboptimal. In this case, segmenting SKUs of a product for different configurations
becomes more important.

4.2. Impact of resource segmentation

In this section, we analyse the value of resource segmentation under the four scenarios. The analysis is performed on both
datasets but here we focus on the results from the adapted real dataset. We assume an unsegmented network is the network
where either a economic mode or a responsive mode is used. Table 6 summarises the comparison of the cost performance
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Figure 5. % increase in cost for Network I, II and III compared with cost for Network IV. (a) % increase in cost with respect to the
% change of holding cost rate. (b) % increase in cost with respect to the % change of fixed cost in both modes. (c) % increase in cost
compared with Scenario IV based on the both datasets and (d) % increase in cost compared with Scenario IV with segmented resources
and single resource.

and allocation of inventory policies of a segmented network and a unsegmented network for all four scenarios. The cost
improvement of segmenting networks through the use of resources ranges from 1.74% to 6.6%. We note to the readers that
the significance of segmentation benefits naturally depends on the parameters in the problem setting.

The difference among Network II, III, and IV in terms of allocation of resources and inventory segments is minor
because they have same production setting which dominates selection of resource segments. In contrast, we see a substantial
difference when comparing the results of these three divergent networks with that of Network I. The number of SKUs
allocated to the economic segment is more than triple the number in network I. This shows that the opportunity of pooling
in production and inventory allows firms to gain more cost benefits if they operate purely in the economic mode whereas
the need to cope with demand variability and the resulting benefits of segmentation under the responsive mode is reduced.
Pooling demand in the process, on the other hand, implies that the demand characteristics faced in the supply chain becomes
more homogenous. We therefore expect the divergent networks to be more sensitive (in terms of cost performance) to the
selection of resources if a single type is used. We observe this trend only in the results when the synthetic dataset is used.
The results from real adapted data where the complication of geographic difference is involved do not exhibit an apparent
preference towards either segment.

4.3. Impact of demand characteristics

In this section, we investigate the impact of divergence within a product portfolio on the cost performance under different
planning approaches. Specifically, we use a series of synthesized demand profiles, each exhibiting a certain level of diver-
gence. We compare the cost performance of Scenario I, II, and III on those portfolios. To synthesize the demand profiles,
we use our demand profile from the databases as a benchmark profile in which demands of the SKUs of a product are
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Table 6. Operating cost of a single resource segment in use compared with optimally segmented SC and allocations of resource
(economic on the left and responsive on the right) and inventory segments for optimally segmented SC.

Inventory segment

Network Resource (allocation) Operating cost % Cost increase 1 2 3 4

I segmented (17|207) 471, 941 – 0 0 2 222
economic 503, 363 6.66% 0 0 0 224
responsive 480, 153 1.74% 0 0 3 221

II segmented (56|168) 481, 734 – 0 6 218 0
economic 502, 132 4.23% 0 0 224 0
responsive 492, 092 2.15% 0 4 220 0

III segmented (56|168) 466, 519 – 0 0 111 113
economic 484, 508 3.86% 0 0 115 109
responsive 478, 174 2.50% 0 0 101 123

IV segmented (54|170) 463, 139 – 0 0 126 89
economic 481, 642 4.00% 0 0 148 76
responsive 473, 283 2.19% 0 0 123 92

dissimilar. We then average the mean SKUs demand and variance of first, second, and third products sequentially to create
the first, second, and third synthesized demand profile. In total, 50 demand profiles are synthesized. The benchmark profile
has the most heterogeneous product portfolio and the 50th demand profile is the most homogenous one because all the SKU
demands of the products are identical. The aggregated volume and variability in these 51 demand profiles are the same.

Figure 6 shows the change of cost for these 51 product portfolios under Scenario I, II, and III. With both datasets, we
observe that the total costs of Network II and III gradually converge when there are more products with identical SKU
demands in the product portfolio. This indicates that the benefits of pooling inventory is higher when the pooled demands
are more homogenous. At the same time, we also see there is a greater marginal cost increase in Network I than in the other
two networks. This is because when the SKUs in a product have relatively similar demand characteristics, cost synergy from
operating them through a standardised process outweighs the benefits of differentiating them through individually tailored
processes. When the demand characteristics of SKUs in a product are divergent enough, the benefits of managing them
through Network I start to be more apparent.

Figure 6. Total cost of product portfolios differing in number of products with identical SKU demands.
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4.4. Being responsive: expediting processes with responsive resource vs. inventory pooling

The benefit of segmentation lies in grouping similar items together and aligning them with the correct operations strategy. A
way of dealing with the increasing cost from high-demand variability is assigning each of them individually to a responsive
process. In this way, the decline in cost associated with the buffer (i.e. safety stock) required for variability is in exchange of
higher variable cost in production and transport. Another way is to handle these items as a pool which can reduce the impact
of variability without the need to switch from an economic process to a responsive process. Pooling and optimal resource
alignment are hence the major measures for firms to deal with demand variability. It is however not totally obvious how the
benefit of one measure affects that of the other measure. We therefore examine the degree of pooling effects with respect
to the demand variability where there is the possibility of optimal resource allocation. The previous analyses indicate that
the heterogeneity of demand characteristics and the difference in operational attributes affect pooling benefits. To isolate
these factors, we assume a hypothetical product sold to five markets with identical market demands and analyse the impact
of optimally aligned supply chains on the benefits of inventory pooling using costs and lead times of the synthetic dataset.
In this case, three divergent networks, II, III and IV, result in same total cost. We examine product demand with a mean
ranging from 10 k to 10 m with different cv. Table 7 shows the results for the product with a mean demand = 1 m and cv
ranging from 0.01 to 3.

It can be observed how the degree of demand uncertainty affects the optimal segment used. In the presence of an
inventory pooling opportunity, the impact of demand uncertainty is reduced and supply chains are sustained with longer
lead times of the economic segment. Extra cost for using the responsive process is only necessary when cv is higher than
2.3. The red bars along each row show the trend of pooling benefits with respect to demand variability. We further interpret
this trend with the graphic expression in Figure 7 .

Table 7. % Cost saving from inventory pooling for mean product demand 1 m when supply
chain is operated with optimal mode.

Optimal mode

product cv Serial (non-pool) Divergent (pool) % cost diff.

0.01 Economic Economic 23.77%
0.1 Economic Economic 25.15%
0.2 Economic Economic 26.55%
0.3 Economic Economic 27.80%
0.4 Economic Economic 28.94%
0.5 Economic Economic 29.98%
0.6 Responsive Economic 29.75%
0.7 Responsive Economic 28.73%
0.8 Responsive Economic 27.80%
0.9 Responsive Economic 26.93%
1.0 Responsive Economic 26.13%
1.1 Responsive Economic 25.38%
1.2 Responsive Economic 24.69%
1.3 Responsive Economic 24.04%
1.4 Responsive Economic 23.43%
1.5 Responsive Economic 22.86%
1.6 Responsive Economic 22.32%
1.7 Responsive Economic 21.82%
1.8 Responsive Economic 21.34%
1.9 Responsive Economic 20.89%
2.0 Responsive Economic 20.46%
2.1 Responsive Economic 20.06%
2.2 Responsive Economic 19.67%
2.3 Responsive Responsive 19.69%
2.4 Responsive Responsive 19.95%
2.5 Responsive Responsive 20.20%
2.6 Responsive Responsive 20.44%
2.7 Responsive Responsive 20.68%
2.8 Responsive Responsive 20.90%
2.9 Responsive Responsive 21.12%
3.0 Responsive Responsive 21.33%
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Figure 7. Graphic expression of pooling benefit in relation to optimal modes and demand variability.

In the area where demand variability is relatively low, the economic mode is the optimal mode for both network typolo-
gies. As demand variability rises to a certain level, the increase of inventory costs in the serial system calls for the use of
the responsive mode, while the economic mode remains as the optimal mode for the divergent network because the impact
of variability has been reduced through pooling. In this region, although both the cost of required inventory incurred under
economic mode for the divergent network and that under responsive mode for the serial network increase as demand vari-
ability increases, the rate of the increase under economic mode is greater than that under the responsive mode. Hence a
decreasing trend can be observed when comparing the total cost of these two networks. When demand variability reaches
to a even higher level, it becomes optimal to pool the demands and use the responsive mode for the divergent network to
mitigate the impact of variability. Because in this area both networks have the same optimal mode, an increasing trend of
pooling benefits is observed when variability keeps rising.

5. Conclusion

This study makes several contributions to the existing literature in SC&OM with respect to supply chain segmentation. Fore-
most, we identify the commonality of segmentation in different areas and make the bridge among these previously separate
research streams. We demonstrate through different scenarios that supply chain segmentation faces the common trade-off
as segmentation in other areas. More importantly, we show quantitatively how the factors such as demand heterogeneity,
network characteristics, and pooling affect the balance of this trade-off.

As another contribution, we develop mathematical models which integrate segmentation and configuration decisions
for divergent networks, which are more commonly adopted in the real world (Dominguez, Framinan, and Cannella 2014).
Unlike the two-step approach applied in many SC segmentation studies, our models optimally align the process segments
and SKU segments. Our process segments, differing from other quantitative literature in segmentation, cover a wider
perspective in supply chain configuration. For the divergent network where inventory pooling decision is optimised, we for-
mulate it as a conic quadratic mixed-integer program and strengthen the conic constraints with the polymatroid inequalities.
This model also contributes to existing location-inventory literature by considering the possibility of inventory placement
and pooling at different stages.

Several observations and managerial implications are derived through the numerical analyses with four different focuses:
(1) the impact of operational difference, resource, cost parameters on the balance of the trade-off; (2) the impact of resource
segmentation; (3) the impact of demand heterogeneity; (4) the impact of demand variability. The first part aims at under-
standing the trade-off of standardisation and differentiation in a system by comparing the different grouping assumptions
and conducting sensitivity analysis. The results imply that there may exist a most effective configuration (the lower point
of U-curve) where SKUs are optimally grouped for the different stages of supply chains. The analysis also shows how
the magnitude of the other suboptimal configurations are influenced by the cost parameters. The second part analyses the
benefits of segmenting the network into responsive and economic supply chains in consideration of demand pooling. The
analysis reveals that the benefits of segmenting supply chains compared with using single resource are dependent not only
on the pooling opportunity but also on operational characteristics of each site within a network. The third part looks into the
impact of demand heterogeneity on grouping/pooling SKUs. We find that the more homogenous the product portfolio a firm
has, the higher benefits can be obtained by grouping them in the same stock pool. Finally, we show that in the presence of
responsive resource and pooling opportunity, there is interdependency of these two as the measures in coping with demand
variability.

The managerial implications are especially relevant for firms which deliver one (type of) product to multiple markets
since they have to decide on how and where to group these products in order to exploit the commonality. Such supply
chain features are commonly seen in pharmaceutical and consumer-oriented industries. In addition, we provide managers
an insight into the implications of planning approaches in the resulting physical networks. For managers who face the
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complex problems in classifying supply chain configurations, our study renders a quantitative benchmark to support rational
decision-making by enabling the evaluation of numerous grouping scenarios and sensitivity analysis.

An immediate extension of this study is to integrate the pooling decisions for both inventory and production. This
integration will guarantee the optimal grouping of SKUs for different configurations. The complication of such a model
may require a heuristics approach to obtain the solutions. The other possibility for extension is to model production in
more detail, e.g. using a queueing model. In our study, we evaluate the segmentation on the network level and model the
production, transport, and inventory on the strategic level since the inclusion of some operational decisions would heavily
burden the optimisation processes and would result in unsolvable models. Additionally, in this study we consider only two
resource segments: a segment with economic mode, and a segment with responsive mode, in order to develop the detailed
insights from our results. It would be meaningful to consider more modes when the complexity cost of adding more modes
and the consolidation effect by using the same mode are factored in the model.
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Appendix. Computational results of the tested datasets
Additional datasets are used to test the robustness of our findings and exam the general consistency of our observations. We select the
computational results of two datasets which are randomly generated based on the strategy used in Park, Lee, and Sung (2010) and Shahabi
et al. (2014). Table A1 summarises the parameters used to generate the data. We define V0 as the total volume of demands per period. The
potential locations of the factories, consolidation centres, and warehouses in the markets are randomly generated according to a uniform
distribution over the square of (0, 10]. In addition, the transport costs between each pair of factory and consolidation centre, Dij, and
consolidation centre and warehouse, Djw are assumed to be based on kilometre and proportional the Euclidean distances between the
generated locations. Per unit distance per unit demand transportation costs, α, are set to be 1.0. A dash ‘–’ means that the parameter
setting is the same as that in the left column.

Computation results of the tested datasets A and B corresponding to Section 4.1 are presented in the following tables.

Table A1. Data generation.

Tested dataset A Tested dataset B

network (N ,R,M,P) (5, 5, 10, 15) (6, 3, 8, 10)

mean demand per period μwp = U[50, 5000] –
coefficient of variation of demand vwp = U[0.1, 2] –
service factor λwp = U[1, 3] –
factory capacity Kis = V0/3 –
setup cost per batch (economic) at factory i fi1 = U[500, 1000] –
setup cost per batch (express) at factory i fi2 = fi1U[0.1, 0.2]
production cost per unit (economic) at factory i ci1 = U[20, 40]
production cost per unit (express) at factory i ci2 = ci1(1 + U[0.2, 0.5]) ci2 = 1.5ci1(1 + U[0.2, 0.5])
production lead time (economic) at factory i ti1 = U[2, 5] –
production lead time (express) at factory i ti2 = ti1U[0.1, 0.3] –
transport cost (economic) per unit from factory i to DC j cij1 = 0.5αDij –
transport cost (express) per unit from factory i to DC j cij2 = cij1(1 + U[0.2, 0.5]) cij2 = 1.2cij1(1 + U[0.2, 0.5])
transport cost (economic) per unit from DC j to factory i cjw1 = αDjw cjw1 = 0.2αDjw

transport cost (express) per unit from DC j to warehouse w cjw2 = cjw1(1 + U[0.2, 0.5]) –
order lead time (economic) from factory i to DC j tij1 = U[0.5, 2] –
order lead time (express) from factory i to DC j tij2 = tij1U[0.1, 0.3] –
order lead time (economics) from DC j to warehouse w tjw1 = U[0.1, 0.5] tjw1 = U[1, 5]
order lead time (express) from DC j to warehouse w tjw2 = tjw1U[0.1, 0.3] –
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Table A2. The operating cost and the number of SKUs allocated to inventory and resource segments
for dataset A.

Resource segment Inventory segment

Scenario Operating cost Economic Responsive 1 2 3 4

I 24, 546, 986 49 101 0 0 0 150
II 22, 241, 047 80 70 0 0 150 0
III 22, 241, 047 80 70 0 0 150 0
IV 22, 237, 883 80 70 0 0 147 3

Table A3. The cost breakdown for dataset A.

Scenario Production Transport Throughput Cycle stock Pipeline stock Safety stock

I 13, 305, 763 2, 030, 344 34, 700 223, 197 1, 341, 449 7, 611, 533
II 12, 287, 773 2, 420, 175 34, 700 86, 019 1, 868, 727 5, 543, 654
III 12, 287, 773 2, 420, 175 34, 700 86, 019 1, 868, 727 5, 543, 654
IV 12, 287, 773 2, 411, 978 34, 700 86, 019 1, 870, 302 5, 547, 112

Table A4. The operating cost and the number of SKUs allocated to inventory and resource
segments for dataset B.

Resource segment Inventory segment

Scenario operating cost Economic Responsive 1 2 3 4

I 17, 054, 204 49 31 0 0 0 80
II 17, 523, 098 56 24 0 0 80 0
III 17, 478, 972 56 24 0 0 64 16
IV 17, 219, 645 56 24 0 16 41 23

Table A5. The cost breakdown for dataset B.

Scenario Production Transport Throughput Cycle stock Pipeline stock Safety stock

I 5, 852, 918 799, 254 21, 602 143, 293 3, 358, 848 6, 878, 289
II 5, 734, 004 570, 647 21, 602 51, 594 4, 342, 603 6, 802, 648
III 5, 734, 004 570, 647 21, 602 51, 594 4, 342, 603 6, 758, 522
IV 5, 752, 925 712, 095 21, 602 53, 268 3, 801, 789 6, 877, 964
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