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ABSTRACT

The Shapes of Planet Transits and Planetary Systems

Emily Ruth Sandford

In this Thesis, I explore transiting exoplanets: what we can learn from modeling their

light curves, and what we can learn from their arrangement in planetary systems. I begin in

Chapter 1 by briefly reviewing the history of transit modeling, from the earliest theoretical

models of eclipsing binary stars to the models in current widespread use to model exoplanet

transits. In Chapter 2, I model the transits of a sample of Kepler exoplanets with strong

prior eccentricity constraints in order to derive correspondingly strong constraints on the

density of their host stars, and find that the density constraints I derive are as precise as

density constraints from asteroseismology if the transits are observed at high signal-to-noise.

In Chapter 3, I apply the same methodology in reverse: using prior knowledge of the stellar

density based on Gaia parallax measurements, I model the transits of twelve singly-transiting

planets observed by K2 and derive constraints on their periods. In Chapter 4, I consider

the general problem of deducing the shape of a transiting object from its light curve alone,

which I term “shadow imaging;” I explore the mathematical degeneracies of the problem and

construct shadow images to explain Dips 5 and 8 of Boyajian’s Star.



I next turn to multi-planet systems: in Chapter 5, I investigate the underlying multiplicity

distribution of planetary systems orbiting FGK dwarfs observed by Kepler. I find that we

can explain the multiplicities of these systems with a single Zipfian multiplicity distribution,

without invoking a dichotomous population. In Chapter 6, I consider the arrangement of

planets in those systems, and use neural networks inspired by models used for part-of-speech

tagging in computational linguistics to model the relationship between exoplanets and their

surrounding “context,” i.e. their host star and sibling planets. I find that our trained

regression model is able to predict the period and radius of an exoplanet to a factor of two

better than a naive model which only takes into account basic dynamical stability. I also

find that our trained classification model identifies consistent classes of planets in the period-

radius plane, and that it is rare for multi-planet systems to contain a neighboring pair of

planets from non-contiguous classes.

In Chapter 7, I summarize these results and briefly discuss avenues for future work,

including the application of our methods to planets and planetary systems discovered by

TESS.
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1. Introduction

Work stops at sunset. Darkness falls over the building site. The sky is filled
with stars. “There is the blueprint,” they say.

– Italo Calvino

As astronomical objects go, planets are small (. 30R⊕, or 0.3R�) and dim (absolute

magnitude & 15.5, where the limit is calculated for a perfectly reflective hot Jupiter orbiting

a Sun-like star). Planet seekers thus find themselves in an unusual situation: it is much

easier to detect a planet by an absence of light—an eclipse of the planet’s host star—than a

presence.

The eclipse, or transit, method of exoplanet detection was first suggested in the literature

in 1952 by Otto Struve, who noted at the end of a short monograph on the possibility

of detecting planets with high-precision stellar radial velocity measurements that, “There

would, of course, also be eclipses” (Struve, 1952). This was a natural suggestion, given

that eclipses, or transits, of Venus and Mercury across the Sun were first observed centuries

ago, perhaps as early as the transit of Venus in late 1153 AD: frescoes in the Maya city

of Mayapan, carbon-dated to 1200-1350 AD, depict yellow Sun-circles, occulted by richly

dressed human figures, which may represent priests or gods (Galindo Trejo & Allen, 2005).

Galindo Trejo & Allen note first that the occulting figures are significant, as no other extant

Maya depictions of the Sun have them, and second, that Maya astronomers kept careful

track of the position of Venus, so they would have known to look out for the transit.

The first recorded observation of a planetary transit by telescope was the 1631 transit of

Mercury by Pierre Gassendi, which had been predicted four years prior by Johannes Kepler
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(Gassendi 1632; Kepler 1630; see van Helden 1976 for a historical account). Eight years

later, Jeremiah Horrocks and William Crabtree observed the 1639 transit of Venus, which

Kepler had also predicted (Kepler 1630, see Chapman 1990; Kollerstrom 2005 for historical

accounts).

In 1999, Charbonneau et al. detected the first exoplanet transit, of the radial velocity-

discovered hot Jupiter HD 209458b (observed independently in the same year by Henry

et al.). Since then, despite the intrinsic rarity of transiting alignment, more than 3000 exo-

planets have been discovered in transit, comprising roughly 75% of all confirmed exoplanets.1

Any individual transit observation reveals much about the transiting planet, its orbit, and

its host star. Together, the population of transiting planets reveals—albeit noisily, through

the grimy window of observational bias—deeper truths, about the ubiquity of planets in the

Universe, how they formed in their planetary systems, and how these systems have evolved.

A rich body of theory has evolved alongside transit observations: from transit modeling,

which predicts the shape of transit light curves as a consequence of the underlying physical

properties of planets and stars, to modeling of hypothetical planetary populations to match

the observed occurrence rates of planets, their grouping into systems, and the distributions

of their properties.

This thesis concerns two main questions. First, what are the limits of transit modeling?

What information belongs to the light curve of a transiting planet, and what can we learn

by fitting the shape of that light curve as precisely as possible? Second, what information

belongs to the arrangement of planets in a system, and what can the transiting planets tell

us about their unobserved neighbors?

1.1 A brief history of transit modeling

I begin by briefly outlining the history of transit modeling, or the prediction of the

light curve generated when one astronomical body eclipses another. Transit modeling is
1NASA Exoplanet Archive confirmed planets table, accessed 15 June 2020.
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conceptually simple—how much light is visible given the configuration of the two bodies

from a particular vantage point at a particular time?—but far-reaching in its influence on

exoplanet theory.

1.1.1 Eclipsing binary stars

Because planets are generally so small relative to their host stars, and their eclipses so

shallow (of order 1%, for a Jupiter-sized planet around a Sun-sized star), eclipse modeling

preceded exoplanet transit observations by nearly a century. Transit modeling—or specifi-

cally, modeling of the disk-integrated time series photometry of transits—was instead driven

by observations of eclipsing binary stars, which have much more extreme eclipses, some vis-

ible to the naked eye. Algol, for example, dims by nearly 1.5 magnitudes during eclipse,

or ∼ 70%; the first light curve of this system was published in 1783, by John Goodricke

(Goodricke, 1783). An excellent history of eclipsing binary light curve modeling, from which

I draw here, is given in Wilson (1994).

(That eclipsing binaries were the earliest eclipsing systems to be modeled is somewhat

ironic, because stellar binaries, in which the primary and secondary bodies may (1) glow

in similar wavebands; (2) be of similar sizes; (3) measurably irradiate each other; (4) ex-

hibit limb darkening; and (5) be tidally distorted into non-spherical shapes, are generally

much more complicated to model than planet-star systems, demanding a more sophisticated

treatment of stellar atmospheric physics and tidal theory.)

The first eclipsing binary light curve model was published in 1912, in a series of three

papers by Henry Norris Russell (Russell, 1912a,b,c). In Russell (1912a), Russell addresses

the problem of deducing from an eclipsing binary light curve four quantities—the radius

of the primary, the radius of the secondary, the luminosity of the primary (which can be

subtracted from the total luminosity to immediately yield the luminosity of the secondary),

and the orbital inclination—based on the assumptions that (1) the period is known; (2) the

orbits are circular; (3) both stars are spherical; and (4) both stars are uniformly illuminated,
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i.e. there is no limb darkening. He considers, furthermore, both grazing and non-grazing

configurations.

In Russell (1912b), he relaxes these assumptions, first considering stars on slightly ec-

centric orbits (eccentricity e . 0.1); then stars which have been slightly tidally elongated

into prolate spheroids; stars which are irradiated by their binary companions, such that

the stellar hemispheres facing each other are brighter than those facing away; and linearly

limb-darkened stars.

It is worth noting here, as Russell notes, that all of these complications are imprinted in

the light curve. Let us label the primary eclipse with an orbital phase of 0, such that the

(normalized) orbital phase of the next primary eclipse is 1. Eccentricity shows itself as an

asymmetry, where the secondary eclipse falls somewhere other than a phase of exactly 0.5

(neglecting the light travel time effect and the edge case where periapse is directly aligned

with our line of sight). Ellipticity of the stars causes peaks in brightness halfway between

the primary and secondary eclipses, where the elongated hemisphere of the star faces us;

spherical stars have a flat light curve between eclipses. If the hemisphere of each star which

faces its companion is brighter than the hemisphere which faces away, that imprints a slight

excess in light for each body, peaking at the moment of that body’s eclipse by the other star.

Finally, limb darkening affects the shape of the ingress and egress phases of each eclipse, such

that the decrement in light is no longer strictly proportional to the area of overlap between

the sky-projected shapes of the stars.

In Russell (1912c), Russell applies his models to three real eclipsing binary systems: ω

Delphini, ω Ursae Majoris, and ω Crucis. This is therefore the first study which deduced

certain fundamental physical properties of binary systems directly from their light curves,

nearly 90 years before the same would be done for exoplanet transit light curves.

Russell made several improvements to these analytical models in subsequent decades

(summarized in Russell & Merrill 1952), but the basic ingredients remained the same. As

Russell himself noted in 1948, a major outstanding deficit of his model was its inability to
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capture tidal distortion (beyond the first-order ellipticity of the prolate spheroid approxima-

tion) and the attendant gravity darkening of stars in close binaries (Russell, 1948).

Zdenĕk Kopal made major contributions on this front throughout the 1940s and 1950s,

summarized in Kopal (1959). Kopal studied the shapes of equipotential surfaces in close bi-

naries, which he described in series of spherical harmonics; he studied how fluid bodies with

given internal density profiles occupy those equipotential surfaces; and he calculated the pho-

tometric signatures their distorted, limb-darkened, gravity-darkened, mutually-irradiated

shapes imprint in binary light curves. Beyond these considerable mathematical develop-

ments, he further introduced other physical effects not included at all in the Russell model,

including stellar rotation. It is not, I think, an exaggeration to say that Kopal developed

eclipsing binary theory essentially to its analytic limit, and that further progress required

fast computation.

Lucy (1968) introduced the first numerical technique for calculating an eclipsing binary

light curve, for the special case of a ω Ursae Majoris-like contact binary with a common con-

vective envelope, based on calculating the intensity of the binary across a fine sky-projected

grid, taking into account gravity and limb darkening, and then integrating over this grid

to produce the light curve. Lucy compares a theoretical light curve produced this way to

certain observed light curves of ω UMa systems, and notes the ways in which the model does

not capture all the observed behavior, but does not attempt to fit any observed data with

the model, in part because (he notes) the computation is “grossly inefficient.”

Soon thereafter, numerical techniques improved to the point that direct fits to observa-

tional data could be made. Hill & Hutchings (1970) fit the light curve of the Algol hierarchical

triple system to obtain the effective temperatures and (relative) radii of all three stellar com-

ponents. To do this, they used a computational method first described in Hutchings (1968):

defining the intersection of the line of sight with the surface of the star as a sort of obser-

vational “pole,” they then divide the rest of the visible hemisphere into zones by “latitude”

with respect to this pole. Projected onto the sky, the zones would appear as annuli on the
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Figure 1.1: The light curve of the eclipsing binary MR Cygni, modeled by Wilson & Devinney
(1971), overplotted on observations. Figure reproduced from Figure 3 of Wilson & Devinney
(1971).

stellar surface, thick near the center but thinner and thinner toward the limb. They calculate

the light curve by summing the intensity contributions of the zones. (For tidally distorted

stars, they do the same, but take as their “pole” the substellar point, i.e. the point closest

to the binary companion.)

Wilson & Devinney (1971) improve on this initial technique in several respects, including

a better treatment of the shapes of tidally distorted stars, by writing a much more general

method of summing over the flux emitted by the stellar surface elements that face the

observer. They are also the first to use least-squares fitting to minimize the difference

between their model prediction and the observed light curve data points, and the first to

estimate uncertainties on a subset of their best-fit model parameters, by tweaking them as far

as possible while still maintaining a “subjectively satisfactory fit to the data.” Recognizing

the limitations of this by-eye uncertainty estimation, they also foresee the need for later

model parameter sampling techniques: “Only a rigorous adjustment procedure...is capable

of properly accounting for correlations among various parameters of the model. In contrast,
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the estimating technique [used here] does not reliably account for correlations, and its use

will always result in error estimates which are too small.” I reproduce their fit to the light

curve of MR Cygni in Figure 1.1.

Other eclipsing binary light curve models of this era, each of which improved on some

aspect of binary physics or computational efficiency, include Wood (1971), Nelson & Davis

(1972), Mochnacki & Doughty (1972), and Budding (1977).

1.1.2 Exoplanets

Once eclipsing binary light curve modeling was on firm theoretical and numerical ground,

the extension of the theory—in many ways, simplification of the theory—to modeling exo-

planet light curves was inevitable, even as the observation of an exoplanet transit was still

widely considered wildly unlikely. The barrier was not photometric precision, as a Jupiter-

analog around a Sun-analog would produce an eclipse depth of ∼ 1%, or 0.01 mag, an

observation “considered feasible” long before it was made, to quote Rosenblatt (1971).

Rather, before the discovery of 51 Pegasi b (period 4.22 days; semi-major axis 0.05 AU)

in radial velocity data by Mayor & Queloz (1995), no one anticipated the discovery of close-

in Jupiter-sized exoplanets. As Mayor & Queloz note, “The very small distance between

the companion and 51 Peg is certainly not predicted by current models of giant planet

formation.” Because transit probability scales ∼ R∗/a, Jupiter-sized planet like 51 Peg b, at

0.05 AU, is 100 times more likely to be in transiting alignment than a true Jupiter analog,

at ∼ 5 AU; there is the additional problem that a true Jupiter analog would have a nearly

12-year orbital period, compared to a transit duration of only ∼ 30 hours, so the probability

of catching such a transit is extremely small. Rosenblatt summarized the outlook as of 1971:

“the probability of observing an eclipse of a planet in Jupiter’s orbit, seen from a random

direction and at a random time, is negligibly small, so this method has also been dismissed

as impractical.”

Borucki & Summers (1984) were the first to seriously suggest an observational program
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capable of detecting exoplanet transits, despite their presumed rarity. Assuming an occur-

rence rate of approximately one Jupiter-analog per Sun-like star, they concluded that it

would be necessary to monitor of order 104 stars, continuously, with a photometric precision

of 0.1% (1 part per thousand), and hoped for a “detection rate of one planet per year of

observation.” They noted that photometers were already precise enough in general to detect

Jupiter-sized planets from the ground, but that terrestrial planets would likely be lost in

atmospheric scintillation noise, so a space telescope would be necessary to find them. A

space telescope would also be capable of watching for the entire 30-hour transit duration of

a Jupiter analog, where ground-based observations would not. (This proposal became the

Kepler space telescope, launched 25 years later to monitor ∼ 105 stars at ∼ 10 ppm precision

(Borucki et al., 2010). Kepler is responsible for ∼ 2400 confirmed exoplanet discoveries per

the NEA at the time of writing,1 which averages out to roughly 600 planets per year of its

four-year primary mission lifetime.)

Still, it took the discovery of 51 Peg b in 1995, and the discovery of another two dozen

Jupiter-mass planets in RV over the next four years, to awaken serious interest in modeling

exoplanet transit light curves. Sackett (1999) introduces explicitly the equations to calculate

the light curve of a star of known radius with arbitrary limb darkening, occulted by a dark

planet of known radius. In the following year, Charbonneau et al. (2000) used these equations

to fit the first observed exoplanet transit light curve, that of HD 209458b. I reproduce the

model light curves calculated by Sackett for Earth-, Jupiter-, and 51 Peg b-analogs orbiting

a uniformly bright Sun-analog, showing the characteristic flat-bottomed, near-trapezoidal

shape of a transit across a uniformly bright star, in Figure 1.2. (The light curves are not

true trapezoids, however, because the planet and star are sky-projected circles, and their

area of overlap does not change linearly during ingress and egress.)

Seager & Mallén-Ornelas (2003) further develop the theory of transit modeling in the

idealized case of a small (Mp � M∗), opaque, spherical planet on a circular orbit around

a uniformly bright spherical star. They demonstrate that under these assumptions, there
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Figure 1.2: Left panel: Light curve models of Earth- and Jupiter-analogs orbiting a Sun-
analog with no limb darkening at 1 AU, for inclination i = 90◦ (solid red line) and i = 89.8◦
(dashed black line). Right: A Jupiter-sized planet orbiting a Sun-analog with no limb
darkening at 0.05 AU, analogous to 51 Peg b, at a range of inclinations. Figure reproduced
from Figure 8 of Sackett (1999).

exists a unique, analytic solution for the ratio-of-radii Rp/R∗, the impact parameter b, the

semi-major axis in units of stellar radii a/R∗, and the stellar density ρ∗, directly from four

observables of the transit light curve: the transit depth ∆F , the total transit duration tT ,

the duration of the flat-bottomed part of the transit (during which the planet is completely

in front of the star) tF , and the period P . They further demonstrate that these analytically-

derived parameters can be translated into the physical parameters M∗, R∗, i, a, and Rp if a

mass-radius relationship is assumed for the host star.

Mandel & Agol (2002) derive analytic expressions for the transit light curve in the case

of uniform, quadratic, and four-parameter nonlinear limb darkening. Light curves calculated

by these formulae, with limb darkening, assume a rounded U-shape, rather than the flat-

bottomed shape of a transit without limb darkening, because the amount of light occulted

by the planet now depends on the planet’s position on the stellar disk instead of strictly on

the area of planet-star overlap, so the light curve changes continuously as the planet crosses
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the disk of the limb-darkened star. Their expressions are valid for any exoplanet orbit, as

long as the sky-projected separation of centers of the star and planet over the course of the

transit can be expressed as a function of time. Mandel & Agol also calculate a very useful

small-planet approximation to their equations, in which case the stellar surface brightness

in the annulus spanned by the planet disk is assumed to be constant, for the case when

Rp/R∗ . 0.1. I reproduce their results in Figure 1.3.

Around this time, exoplanet researchers were increasingly interested in how these de-

velopments in transit modeling could be used for automated transit detection, vetting, and

prioritization of candidates for follow-up radial velocity observation. Both of the above

works were explicitly concerned with large-scale transit searches. In addition to fitting of

observed transit candidates, Mandel & Agol (2002) intended their formulae to be used for

injection/recovery simulations of exoplanet light curves. Seager & Mallén-Ornelas (2003)

highlight, in their paper, several immediately useful applications of their analytic work to

transit surveys: first, deriving ρ∗ directly from the light curve meant that low-density gi-

ant stars hosting similarly giant companions could be identified and discarded as interesting

follow-up candidates; second, comparing this transit-derived ρ∗ to a value estimated from

spectroscopy plus isochrone modeling, and identifying discrepancies, could pick out sources

that were likely to be blended with a background star; and third, solving for P using their

formulae plus an independent estimate of ρ∗ to their formulae could constrain the period of

of a planet only seen to transit once, or a “single transiter.”

Giménez (2006) derives another set of analytic expressions for transit light curves, based

on later eclipsing binary star theory developed in Kopal (1979). These equations assume

only that the sky-projected star and planet are both well-approximated as circular disks

(an assumption that will only be violated in the case of extreme tidal distortion or extreme

stellar rotation), and can be used with any limb darkening law, for any choice of exoplanet

orbital elements. The relationship between the physical parameters of the system and the

transit observables in this formulation are transcendental, i.e. not analytically invertible,
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Figure 1.3: Analytically-calculated light curves for a planet with Rp/R∗ = 0.1 by Mandel
& Agol (2002). The y-coordinate F is the ratio of the in-transit flux to the out-of-transit
flux; the x-coordinate z is the normalized on-sky separation of centers of the planet and star,
d/R∗. Various choices of limb darkening are plotted: uniform (solid line); four-parameter
nonlinear with all coefficients equal to 0 except c1 = 1 (dotted line), c2 = 1 (dashed line),
c3 = 1 (dash-dot line), and c4 = 1 (dash-triple dot line). In light gray are the corresponding
light curves under their small-planet approximation, where the stellar surface brightness is
assumed to be constant in the annulus spanned by the planet disk. Figure reproduced from
Figure 2 of Mandel & Agol (2002).
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so the observed transit light curve needs to be fit (as has since become common practice

regardless of the choice of transit model formulation).

Since then, further work has been done on modeling more exotic transit configurations—

Pál (2012), for example, considers the general case of an arbitrary number of transiting

bodies, in which mutual transits (i.e., multiple bodies transiting at the same time) may

occur. Many studies have also modeled second-order effects in light curves, such as moons

(Kipping, 2011), rings (Barnes & Fortney, 2004), nightside emission (Kipping & Tinetti,

2010), planet oblateness (Barnes & Fortney, 2003), atmospheric refraction (Hubbard et al.,

2001), and exomountains (McTier & Kipping, 2018). Significant progress has also been made

on modeling phase curves, which are light curves folded on the period of a known exoplanet

that may reveal subtler photometric signals, such as those due to tides raised on the host

star by the planet, Doppler beaming of the starlight, or reflection or thermal re-emission of

starlight by the planet (see e.g. Faigler & Mazeh 2011 for a circular-orbit model, or Penoyre

& Sandford 2019 for an eccentric-orbit model), and are in many ways a re-introduction of

the ideas explored initially in eclipsing binary star modeling to exoplanet science. For the

rest of this Thesis, however, we will concern ourselves primarily with transits.

1.2 Transiting planets in systems

Many individually interesting planets have been discovered and modeled in transit—

evaporating super-Earths (Charbonneau et al., 2009), circumbinary planets (Doyle et al.,

2011b), hot Jupiters misaligned with the spin of their host stars (Winn et al., 2010). As

a population, the thousands of transiting exoplanets contain much information about the

underlying occurrence rates (see e.g. Dressing & Charbonneau 2013; Foreman-Mackey et al.

2014b; Burke et al. 2015) and distributions of properties of exoplanets (see e.g. Borucki et al.

2011 and Fulton et al. 2017 for investigations of the radius distribution; Wright et al. 2011

for a database of orbital properties; Cowan & Agol 2011 for the distribution of albedos and
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heat redistribution efficiencies, etc.).

Beyond this, the transit method has revealed more than 500 confirmed multi-planet

systems1 (∼ 80% of all known multi-planet systems, as of writing), where two or more planets

transit the same host star. Multi-planet systems, and the comparison of multi-planet systems

to ostensibly single-planet systems, have much to teach us about how planetary systems form

and dynamically evolve (see Winn & Fabrycky 2015 for a review), and about how (un)usual

our Solar System is.

One of the most basic questions to ask of multi-planet systems is: what is the intrinsic

distribution of multiplicities? How common are systems with a single planet, or two, or

three, and do systems of different multiplicity represent separate populations? The question

is interesting because the multiplicity distribution is an important test of theories of plan-

etary formation and evolution. If high-multiplicity systems like Kepler-11 (Lissauer et al.,

2011b) or TRAPPIST-1 (Gillon et al., 2017) are common, it would indicate that many plan-

etary systems lead dynamically quiet lives, where the present-day arrangement of planets

results from secular processes like disk migration, whereas if these systems are intrinsically

rare, it would indicate that disruptive events like close encounters and planet-planet scat-

terings are common. Several authors have interpreted the observed multiplicities of Kepler

systems to indicate that planetary systems fall into two underlying populations (the “Ke-

pler dichotomy”): one population of dynamically cold, near-coplanar multi-planet systems,

and one of single-planet or highly-mutually-inclined, dynamically hot multi-planet systems

(Lissauer et al., 2011a; Ballard & Johnson, 2016).

The architectures of multi-planet systems contain further information about their forma-

tion and history, and the arrangement of planets in multi-planet systems has been studied

from a number of angles. As Gilbert & Fabrycky (2020) note, the most common approach

to understanding system arrangement is to compare pairs of planets within systems: what

do the period or size ratios of adjacent planets in a system tell us, for example? This ap-

proach has revealed several interesting features of the planet population—for example, both
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Lissauer et al. (2011a) and Fabrycky et al. (2014) find evidence of an excess of planets just

outside of low-order mean-motion resonance (compared to a random distribution of period

ratios), for example, which could indicate (among other hypotheses) that resonant trapping

is common in planetary systems, but that the inner planet of a resonant pair often sinks

closer to the star because of tidal dissipation (Terquem & Papaloizou, 2007). Weiss et al.

(2018), meanwhile, find that planets tend to be similar in size to their immediate neighbors

(“peas in a pod”), and that the period ratios of adjacent pairs of planets are correlated with

each other, meaning that planets in high-multiplicity systems are regularly spaced. (Zhu

(2020) calls these findings of intra-system regularity into question, claiming that they result

instead from Kepler ’s detection biases. However, Weiss & Petigura (2020) counter that Zhu’s

analysis begs the question: Zhu simulates a distribution of planet radii by sampling transit

signal-to-noise, then analyzes the effect of detection bias on that population as if the radius

draws were independent, which they are not.)

by generating a distribution of planet radii by sampling transit signal-to-noise and then

studying the effects of detection bias on these radii as if they were independent draws from

the underlying distribution.)

Gilbert & Fabrycky (2020) take a different approach, advocating for a view of exoplanet

science where the planetary system, rather than the individual planet, is the fundamental

unit of study. Instead of comparing pairs of planets within a system, they define a number

of scalar statistics, such as degree of mass partitioning, that each captures some property of

the system overall.

I advocate here for a similar view: that a planetary system is more than the sum of its

constituent planets, and that the arrangement, in and of itself, deserves our attention.
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1.3 Outline of thesis

In what follows, we address several of the questions introduced above. Broadly, chap-

ters 2-4 explore the limits of what we can learn from precise transit modeling, and chap-

ters 5-6 explore the arrangements of Kepler ’s multi-planet systems, and what we can learn

by applying techniques from computational linguistics to these systems.

In Chapter 2 (published as Sandford & Kipping 2017), we measure the stellar density ρ∗

of 66 Kepler host stars directly from the light curves of their transiting planets, using the

method originally set forth in Seager &Mallén-Ornelas (2003) but extended from the circular-

orbit case to the general case of any transiting planet with strongly constrained eccentricity.

We select target planets whose eccentricities are constrained by either secondary eclipse

observations, short tidal circularization timescales, or belonging to compact multi-planet

systems. For 62% of our targets, we measure ρ∗ to a fractional uncertainty ≤ 5%, comparable

to the precision achievable by asteroseismology, and further find that the precision of our ρ∗

constraints depends primarily on the signal-to-noise ratio of the transit light curve.

In Chapter 3 (published as Sandford et al. 2019a), we apply the same logic in reverse, as

first suggested by Yee & Gaudi (2008), to constrain the periods of 12 singly-transiting planets

observed by K2. We combine Gaia parallax measurements with broad-band photometry and

isochrone modeling to constrain the stellar densities of the single transiters’ host stars, then

fit a transit model with this stellar density prior to derive a constraint on period. When we

treat eccentricity as a free parameter, we achieve a fractional period uncertainty of 94+87
−58%,

and when we fix e = 0, we achieve fractional period uncertainty 15+30
−6 %, a roughly threefold

improvement over typical period uncertainties of previous studies of single transiters.

In Chapter 4 (published as Sandford & Kipping 2019), we consider the problem of how

to infer the shape of a general transiting object from the shape of its light curve, without

assuming a physical model for the object. This work was motivated by the discovery of

Boyajian’s Star (Boyajian et al., 2016), which exhibits deep, aperiodic transits that do not
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resemble the light curves of transiting planets. We explore the degeneracies of this problem,

find that we are indeed able to recover informative “shadow images” of arbitrary transiting

objects, and apply our modeling to the triple transit of TRAPPIST-1c,e,f (Gillon et al.,

2017) and to Dips 5 and 8 of Boyajian’s Star.

In Chapter 5 (published as Sandford et al. 2019b), we investigate the underlying multi-

plicity distribution of Kepler’s FGK planetary systems. We simulate catalogs of “observed”

planets according to ten different multiplicity distributions—five single-population, and five

dichotomous—and use approximate Bayesian computation to compare these simulated cat-

alogs with the real Kepler systems. We find that the Kepler multiplicities are best fit by a

single-population Zipfian (power-law) model, in contrast with previous work that invoked a

dichotomous population to explain the high fraction of observed single-planet systems. We

find that according to the best-fit Zipfian model, approximately one in two ostensibly single

Kepler systems is expected to host at least one unseen additional planet.

In Chapter 6, we consider the arrangement of the Kepler multi-planet systems. We train

a neural network model to infer the period and radius of a planet from its surrounding

“context,” that is, the properties of its host star and its sibling planets, and find that the

trained model predicts both period and radius to a factor of two better than a “naive”

model which considers only dynamical stability. We also adapt a model used for part-of-

speech tagging in computational linguistics to classify planets into categories, and find that

(1) the model identifies consistent classes in the period-radius plane, but learns nothing from

the stellar dimensions; and (2) it is rare for neighboring planets in a multi-planet system to

come from non-contiguous classes, which is superficially consistent with a “peas in a pod”

picture, where planets in the same system resemble each other.

In Chapter 7, I conclude and suggest some directions for future work.
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2. Know the planet, know the star:

precise stellar densities from Kepler

transit light curves

2.1 Introduction

Since its launch in 2009, the Kepler mission has discovered over 4500 transiting exoplanet

candidates, nearly 2000 of which have been validated at > 99% confidence (Morton et al.,

2016). Furthermore, Kepler transit light curve modeling (e.g., Batalha et al. 2013) has

yielded precise constraints on the characteristics of these planet candidates and their orbits;

the transit depth, for example, reveals the size of the planet relative to its host star.

Encoded in each transit light curve, however, is not just the character of the transit-

ing planet, but also properties of the host star. In particular, the stellar density (ρ∗)

can be derived analytically from the transit duration using Kepler’s third law (Seager &

Mallén-Ornelas 2003; see section 2.2.1), provided the eccentricity of the planet’s orbit is

well-constrained. Furthermore, the star’s limb darkening behavior influences the shape of

the transit light curve during planetary ingress and egress (see e.g. Knutson et al. 2007b). In

other words, the star’s interior and atmospheric properties manifest themselves in the shape

of the transit light curve.

By fitting transit models to the Kepler light curves, we can measure these stellar prop-

erties very precisely. We have several motivations to measure stellar properties for a large

17



sample of Kepler hosts in this way. First, transit modeling serves as an independent check

on other means of measuring stellar properties. In the case of ρ∗, such methods include

asteroseismology, as well as spectroscopy plus isochrone modeling. These methods rest on

different assumptions and, often, different input data.

Transit modeling also offers an independent test of stellar atmosphere theory, particu-

larly with regard to limb darkening behavior. Such behavior is usually expressed in the

form of an analytic stellar intensity profile weighted by limb-darkening coefficients (LDCs).

Traditionally, LDCs are adopted from the theoretical predictions of stellar atmosphere mod-

eling codes (see e.g. Sing 2010; Claret 2000). This practice is known to introduce biases in

exoplanet parameters subsequently derived from the light curve (Espinoza & Jordán, 2015).

Measuring the LDCs directly from the light curve enables an empirical check of these stellar

atmosphere model predictions.

Furthermore, the commonly used quadratic limb darkening law, which has two LDCs, is

known to be less accurate than laws with three or four LDCs (Kipping, 2016; Sing, 2010).

By adopting a three-parameter nonlinear limb darkening law in transit light curve modeling

and building up an empirical catalog of the fitted LDCs, we may address some of these

inaccuracies.

We may also use transit fitting to derive stellar properties for stars that are not amenable

to traditional analysis. For example, asteroseismology, which yields extremely precise con-

straints on ρ∗ (typical fractional uncertainties . 5%), is only possible for stars which are

bright (Kepler-band magnitude . 12) and massive (& 1M�) (Huber et al., 2013). Most stars

are smaller and dimmer than this.

Finally, measuring stellar properties from transit light curves alone allows us to character-

ize planet-hosting stars without committing telescope time to obtain follow-up observations.

In an era of large-scale surveys of transiting exoplanets, such efficiency will be crucial. The

NASA Transiting Exoplanet Survey Satellite (TESS; Ricker et al. 2014), scheduled to launch

in 2018, is expected to discover thousands of transiting planets orbiting stars observed at
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two-minute cadence, but potentially tens of thousands more around other stars in its field

of view (Sullivan et al., 2015). The Large Synoptic Survey Telescope (LSST; Ivezić et al.

2019), expected to begin full-scale science operations in 2023, will discover thousands more.

In this work, we fit transit models to a large sample of Kepler host stars to build an

empirical catalog of transit-derived stellar densities and limb darkening coefficients and

demonstrate that this method is capable of delivering precise constraints on these stellar

parameters. In Section 2.2, we describe our host star target selection and detail our data

analysis, including data processing, detrending, and Markov chain Monte Carlo (MCMC)

approach to fitting the transit model. In Section 2.3, we present results of this analysis,

including the full posterior distributions of the stellar density and LDCs. We specifically

discuss the types of planet-star systems for which this method succeeds in producing high-

precision constraints on stellar density in Section 2.3.3.1. We conclude and highlight this

approach’s potential to aid in the characterization of singly-transiting planets discovered by

the upcoming NASA TESS mission in Section 2.4.

2.2 Methods

2.2.1 How to measure ρ∗ from a transit light curve

Seager & Mallén-Ornelas (2003) demonstrated that the mean stellar density ρ∗ can be

measured from a transit light curve without any direct measurement of the stellar mass

M∗ or radius R∗ as a result of Kepler’s third law. Figure 2.1 offers some intuition about

this procedure in the case of a circular orbit, and we sketch the analytic derivation of the

circular-orbit case here.

We begin with Kepler’s third law:

P 2

4π2 = a3

G(M∗ +Mp)
' a3

GM∗
, (2.1)
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where the right-hand side assumes that Mp � M∗. Dividing and multiplying the right-

hand side of this equation by the stellar volume, 4
3πR

3
∗, we obtain:

P 2

4π2 = 3(a/R∗)3

4πGρ∗
(2.2)

Rearrangement yields:

ρ∗ = 3π(a/R∗)3

GP 2 (2.3)

Therefore, to measure ρ∗, we need only know the orbital period P and normalized semi-

major axis a/R∗ of a planet orbiting the star. (In particular, neither M∗ nor R∗ is necessary

to obtain ρ∗.) Both P and a/R∗ are directly measurable from the transit light curve: P is

the interval between successive transits, and a/R∗ can be derived from the transit duration.

In the case of a circular orbit, a/R∗ follows trivially from the transit duration and P (see

Figure 2.1):

T = 2R∗
(2πa/P ) (2.4)

Rearrangement of this equation yields the normalized semimajor axis a/R∗:

a

R∗
= P

πT
(2.5)

However, in general, the eccentricity e of the transiting planet’s orbit also influences

the transit duration T . The exact solution for T in the case of an eccentric orbit involves

solving a quartic equation in cos f , where f is the true anomaly (see Kipping 2008, 2010a

for details). However, Kipping (2010a) found the following approximate expression for T

under the simplifying assumption that the planet-star separation does not change during the
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T

T =
2R⇤

(2⇡a/P ){lim e    0

R* a

Figure 2.1: The transit duration T is equal to the stellar diameter divided by the mean
orbital velocity, which is equal to 2πa/P in the case of a circular orbit. Rearrangement of
the equation in the lower panel yields the normalized semimajor axis a/R∗. An analogous
calculation is possible for planets on eccentric orbits (for which orbital velocity varies with
phase), provided the eccentricity is known.

transit:

T ' P

π

%2
c√

1− e2
arcsin


√

1− (a/R∗)2%2
c cos2 i

(a/R∗)%c sin i

 (2.6)

where %c is the separation between the planet and star at mid-transit, in units of stellar

radii.

Since e and ρ∗ both influence the transit duration T , it is necessary to have a precise

constraint on the e in order to derive a precise constraint on ρ∗ (Kipping, 2010a). For

some planets, such as planets with observed secondary eclipses, e is directly measurable

(e.g. Knutson et al. 2007a); for others, such as planets on very short-period orbits which are

expected to tidally circularize quickly or planets in compact multi-planet systems, dynamical

stability constrains e to low values. For each of these categories of planet—secondary-eclipse

planets, tidally circularized planets, and multi-planet systems—we may express the existing

eccentricity constraint as a Bayesian prior on e. In sections 2.2.2.1-2.2.2.3, we describe how

21



we select a sample of Kepler Objects of Interest (KOIs) belonging to each category for transit

modeling.

We note that, in principle, ρ∗ could also be measured from the transits of planets with

radial velocity-measured eccentricities. However, analyzing such planets requires jointly

fitting the radial velocity curves, including accurate treatment of stellar activity effects.

This is beyond the scope of the present study, and we defer analysis of planets with radial

velocity-measured e to later work.

Assuming, then, that we have a strong e prior, all we must do to measure ρ∗ from a

transit is fit a transit model, comprising ten parameters: the transit epoch t0, the orbital

period P , the impact parameter b, the stellar density ρ∗, the ratio-of-radii Rp/R∗, the orbital

eccentricity e, the argument of periastron ω, and three coefficients of a modified nonlinear

limb darkening law (transformed to allow for efficient sampling as described in Kipping 2016),

αr, αh, and αθ. In other words, we must explore this ten-dimensional parameter space and

find a region that matches the Kepler transit data.

We use the transit-modeling code BATMAN (Kreidberg, 2015) to compute the light curve

of a given set of ten transit model parameters, compare this model to the Kepler data, and

evaluate the likelihood of the parameters. We step through the ten-dimensional parameter

space and derive posterior distributions for the model parameters with emcee (Foreman-

Mackey et al., 2013), an affine-invariant ensemble Markov chain Monte Carlo (MCMC)

sampler. Details of this procedure are given in section 2.2.4.

2.2.2 Sample selection

Here, we describe how we select a sample of KOIs with strong eccentricity priors for

transit modeling. We furthermore select the host stars of these KOIs to span a broad range

in Kepler-band magnitude and effective temperature, as shown in Figure 2.2, in order to

investigate the efficacy of this method across a wide range of stellar types.
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Figure 2.2: The distribution of our target stars, compared to all KOI-hosting stars and KOI-
hosting stars with asteroseismic density measurements, in Teff-magnitude space. Opaque
circles represent stars for which we achieve comparable ρ∗ precision to asteroseismology
(fractional uncertainty ≤ 5%); transparent squares represent stars for which we do not.
Four of our targets overlap with the Huber et al. (2013) asteroseismic sample; see Figure 2.7
for details.

2.2.2.1 Secondary eclipse targets

Certain exceptional transiting planets are bright enough relative to their host star that

the flux from the planet-star system drops perceptibly when the planet passes behind the

star. Such planets are thus detected both when they pass in front of their host stars (transit)

and when they pass behind (occultation, or secondary eclipse). Clocking the planet at two

points in its orbit, rather than just at transit, makes it possible to precisely constrain the
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eccentricity and argument of periastron (ω) of the orbit (e.g., Winn 2010); in other words,

it places a strong prior on e, which allows us to measure ρ∗ from the planet’s transit.

More specifically, we may derive constraints on e cosω and e sinω by measuring the time

elapsed between mid-transit and the subsequent mid-occultation (∆t) and the relative dura-

tion of the transit compared to the occultation, Ttransit/Toccultation. Approximate expressions

for these constraints may be found in Winn (2010):

e cosω ' π

4

(
2∆t
P
− 1

)
(2.7)

e sinω ' Ttransit

Toccultation
− 1 (2.8)

We draw KOIs with observed secondary eclipses (hereafter, “occultation targets”) from

catalogs compiled by Coughlin & López-Morales (2012) and Shabram et al. (2016). Shabram

et al. (2016) measured the eccentricities of 50 KOIs with detected secondary eclipses. Of

these, five (KOI-774.01, KOI-805.01, KOI-895.01, KOI-1227.01, and KOI-1391.01) were sub-

sequently identified as false positives in the NASA Exoplanet Archive1 (Akeson 2015, here-

after “NEA”), leaving 45 targets with measured eccentricities. To this list, we add a further

10 KOIs detected in secondary eclipse by Coughlin & López-Morales (2012). Of these, four

(KOIs 1.01, 5.01, 10.01, and 412.01) are not counted as significant SE detections by Coughlin

& López-Morales 2012, so we advise caution in adopting our transit parameter posteriors for

these targets.

We remove one of these targets (KOI-203.01) from the list due to stroboscopic starspot

activity (Désert et al., 2011) and another four (KOI-202.01, KOI-760.01, KOI-883.01, and

KOI-1781.01) due to detected transit timing variations (TTVs; Holczer et al. 2016). Modeling

the transits of a planet with detected TTVs is prohibitively computationally expensive,

because it requires adding a new model parameter to describe every successive interval
1https://exoplanetarchive.ipac.caltech.edu/, accessed 1 August 2017.
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between transits (Teachey et al., 2018), and some of our target planets undergo hundreds of

transits over Kepler ’s 4-year observational baseline.

Finally, we remove 6 occultation targets because their MCMC analysis was prohibitively

slow (see Section 2.2.4) as a result of their unusually high number of data points (∼ 105 −

106, compared to ∼ 103 − 105 for successfully analyzed occultation targets). The resulting

occultation target list, comprising 44 KOIs (the majority of our targets), is presented in

Table 2.1.

2.2.2.2 Tidally circularized targets

Our second target population consists of KOIs with short tidal circularization timescales

τcirc (“tidal targets”). In general, we expect such KOIs to have approximately circular

orbits (e close to 0); more precisely, Wang & Ford (2011) found that the e distribution for

single-planet systems with short τcirc is consistent with an exponential distribution, P (e, λ) =
1
λ

exp −e
λ
, with scale parameter λ = 0.00796. Similarly, Kipping (2013) found strong evidence

that the short-period sample of RV-observe planets reside on less elliptical orbits than their

longer-period counterparts, at a confidence of 11.6σ.
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To identify circularized KOIs, we adopt a theoretical upper limit for τcirc from Haswell

(2010), based on an upper limit for planet mass Mp, max = 25MJ = 0.025M� chosen to

exceed the mass of any confirmed exoplanet in the exoplanets.org database:

τcirc ≤
P

21π

(
KdP

QP

)−1 0.025M�
M∗

(
a

R∗

)5 (RP
R∗

)−5
(2.9)

Here, P is the orbital period of the planet, M∗ is the host star’s mass, R∗ is the stellar

radius, a is the planet’s semi-major axis, and Rp is the planet’s radius. KdP is the planet’s

dynamical Love number, a dimensionless parameter which expresses the ratio of the addi-

tional gravitational potential produced by tidal redistribution of the planet’s mass to the

gravitational potential before redistribution (Poulsen, 2009; Love, 1934). QP is the planet’s

tidal quality factor, another dimensionless parameter which quantifies the efficiency of tidal

dissipation in the planet (Ogilvie & Lin, 2004).

Using Kepler’s third law, we may express a/R∗ in terms of M∗ and R∗, which are more

reliably reported in the Kepler catalog because they do not depend on transit modeling.

This conversion yields

τcirc ≤
P

21π

(
KdP

QP

)−1 0.025M�

M∗

(
RP

R∗

)−5(
P 2GM∗

4π2R3
∗

)5/3

(2.10)

We apply a linear interpolation to Solar System values to obtain the following equation

for KdP
QP

(Teachey et al., 2018):

KdP

QP

= 10−2.90−20.33RP
R∗

R∗
R� (2.11)

To assemble our tidal target list, we select every KOI with τcirc less than 108 years

according to these equations. There are 19 such KOIs; the maximum orbital period of these

is 1.6 days (KOI-809.01). Of these, we remove five from the target list: KOI-203.01, again due

to its stroboscopic starspot activity (Désert et al., 2011); KOI-1546.01, for detected transit

timing variations (Holczer et al., 2016); KOI-3156.01, an identified hierarchical quintuple star
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system (Shibahashi & Kurtz, 2013; Rappaport et al., 2016); KOI-5804.01, a highly active star

where NEA-identified “transits” correspond to alternating minima in the stellar light curve;

and KOI-6534.01, which has no visible transits in its light curve at the NEA-determined

transit epoch and period.

Finally, we remove 1 tidal target because because its MCMC analysis was prohibitively

slow (see Section 2.2.4) as a result of its unusually high number of data points (∼ 105,

compared to ∼ 103 − 104 for successfully analyzed tidal targets). The remaining 13 tidal

targets are listed in Table 2.2.
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2.2.2.3 Compact multi-planet systems

Finally, we consider compact multi-planet systems, which are not expected to be dynam-

ically stable unless their constituent planets are on low-eccentricity orbits. Van Eylen &

Albrecht (2015) quantify this expectation by examining 28 Kepler multi-planet host stars

with asteroseismic ρ∗ measurements. They use the discrepancy between the asteroseismic

and transit-derived ρ∗ measurement to measure the eccentricity of each of the 74 KOIs in

their sample. They find that the resulting eccentricities are well described by a Rayleigh

distribution, P (e, σ) = e
σ2 exp −e2

2σ2 , with σ = 0.049± 0.013.

We cannot properly use this Rayleigh distribution as a prior e distribution to measure ρ∗

of the host stars in the Van Eylen & Albrecht (2015) sample itself, because the ρ∗ information

contained in those KOIs’ transits was used to define the prior in the first place. Rather, we

must identify an independent sample of KOIs which resembles the sample of Van Eylen &

Albrecht (2015).

To assemble this sample, we compare the distribution of period ratios of the Van Eylen

& Albrecht (2015) sample to that of the remaining Kepler multi-planet systems. For each

multi-planet system, we calculate the ratio of the orbital period of each outer planet to

its nearest inner neighbor. The distribution of period ratios in the Van Eylen & Albrecht

(2015) sample serves as a reference distribution; we identify a sample of 1340 KOIs which

is consistent with the Van Eylen & Albrecht (2015) sample by an Anderson-Darling test

(p = 0.4; Anderson & Darling 1952). We further subject the two samples to a Kolmogorov-

Smirnov test and find them consistent at the p = 0.15 level (Kolmogorov, 1933; Smirnov,

1948).

We impose a signal-to-noise cutoff on this KOI sample, discarding planetary systems

where the Kepler-reported transit model SNR < 50 for one or more of the KOIs. After the

cutoff, 27 systems remain; of these 27 systems, 12 exhibit TTVs (Holczer et al., 2016) and are

removed from the target list. We remove a further 2 systems, comprising 5 KOIs, because

because their MCMC analysis was prohibitively slow (see Section 2.2.4) as a result of their
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unusually high number of data points (∼ 105−106, compared to ∼ 103−105 for successfully

analyzed multi-planet targets), and 4 further systems for having very few remaining posterior

samples after we perform some quality checks (see Section 2.3 for details). The remaining 9

systems, comprising 18 KOIs, are listed in Table 2.3.
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2.2.3 Detrending

Here, we describe our procedure for detrending the Kepler light curves of our 75 target

KOIs (orbiting 66 target stars) in preparation for transit modeling. The trends in question

are due to stellar activity or instrumental effects and are superimposed on the planetary

transits in the light curve.

2.2.3.1 Outlier removal

We begin by splitting each target KOI’s full Kepler simple aperture photometry light

curve into individual transits, each bookended by sufficient out-of-transit observation time

to capture out-of-transit trends in the light curve. For targets with available short-cadence

observations (58.86 seconds per exposure), we apply the below procedure to both short- and

long-cadence data; otherwise we use long-cadence data (29.4 minutes per exposure).

To slice the light curve, we use the NEA-reported transit ephemeris t0, orbital period P ,

and transit duration T14 (Akeson, 2015). We divide each light curve into segments centered

at t0 plus successive integer values of P . For each segment, we keep out-of-transit data

spanning an interval t1/2 + tOOT on either side of t0, where we define t1/2 as slightly more

than half a transit duration, and tOOT as an “out-of-transit window:”

t1/2 = 1.1
(
T14

2 + tLC

)
(2.12)

tOOT =
√

10 t1/2, (2.13)

or roughly 3 t1/2. Here, tLC is the integration time of a long-cadence Kepler exposure,

equal to 29.4 minutes. We discard data points where |t− t0| > (t1/2 + tOOT ).

Once each KOI’s light curve is divided into individual transit segments, we remove flux

outliers and discard transit segments with insufficient data. To remove outlying data points
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within each transit segment, we perform a moving median smoothing of the out-of-transit

(i.e. |t − t0| > t1/2) flux data points, with a kernel size of 21 data points. We then reject

any data points more than 3σ away from the moving median-smoothed light curve, where σ

is defined as the Kepler-reported uncertainty of each flux measurement. A small number of

transit segments also exhibit clear outliers within t1/2 of a segment midpoint, identifiable as

data points with anomalously high flux. We remove any data point that lies more than 3σ

above the within-transit light curve.

Finally, after removing individual outlying data points, we reject any full transit segment

where one of the following conditions is met:

1. There are fewer than 3 out-of-transit data points on one side of t0;

2. There are more than 3 out-of-transit data points, but they span a very short time

interval (i.e., less than 2 tLC); or

3. The out-of-transit data points immediately adjacent to the transit are missing. Such

missing data could lead to poor constraints on the transit depth or duration.

After outlier removal, each target KOI’s light curve is reduced to a series of individual

transit segment light curves. Each transit observed at Kepler’s long cadence contains ∼ 30

data points, and each transit observed in short cadence contains ∼ 750 data points.

2.2.3.2 Evaluation of out-of-transit trends

The transit segments isolated by the above procedure are individually afflicted by out-

of-transit trends due to stellar activity and instrumental variation. To fit a precise transit

model to each KOI, we must first account for these trends (e.g. Aigrain et al. 2016; Luger

et al. 2016). One approach to detrending would be to add additional free parameters to our

transit model to describe each transit’s trends individually; fit them all; and then marginal-

ize over them to recover the physically interesting parameters describing the planet-star
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system. However, this would add prohibitive computational cost, all for the sake of nuisance

parameters.

Instead, we elect to detrend each transit segment using linear least squares regression

(see e.g. Kundurthy et al. 2011). We assume that the out-of-transit trend for each transit

segment is well-fit by a low-order polynomial of predetermined order, then divide out the

best-fitting polynomial trend at each MCMC step before calculating the likelihood of the

transit model parameters. Polynomial detrending is a common approach to analyzing Kepler

data (see e.g. O’Leary & Burkart 2014; Fabrycky et al. 2012; Orosz et al. 2012; Lissauer

et al. 2011b).

To choose the appropriate polynomial order for each transit segment, we use the Bayesian

Information Criterion (BIC), a model selection statistic which balances goodness-of-fit against

the number of free parameters in the model, i.e. the polynomial order:

BIC = χ2 + k lnn (2.14)

Here, k is the number of free parameters in the model, n is the number of data points,

and χ2 is the squared error of the model, scaled by the measurement uncertainties.

For each transit segment, with the in-transit data masked, we test polynomials of orders

ranging from 0 to 3 and select the polynomial model with the lowest BIC. At each MCMC

step (see section 2.2.4, below), before evaluating the likelihood of the transit model calculated

from the sampled parameters, we (i) calculate, analytically, the best-fitting polynomial of

this pre-selected order for each transit segment using linear least squares regression and (ii)

impose this best-fitting polynomial trend upon the transit model. We are then evaluating

the likelihood of the transit model given the data, both subject to the same out-of-transit

trends.
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2.2.4 Transit modeling

With this polynomial-fitting procedure in place, we explore the parameter space of our

transit model to identify the region that describes each planet’s transit light curve best. For

the occultation and tidal targets, this space is ten-dimensional. For the multi-planet targets,

it is (4 + 6N)-dimensional, where N is the number of planets in the system; 4 parameters

describe the star and are the same for every KOI in the system (ρ∗ and the three LDCs,

αr, αh, and αθ), and 6 describe each KOI (the transit epoch t0, the period P , the impact

parameter b, the ratio-of-radii Rp/R∗, and the reparametrized eccentricity and argument of

periastron,
√
e cosω and

√
e sinω).

We evaluate the likelihood of any given set of 4 + 6N transit parameters by using the

transit modeling package BATMAN (Kreidberg, 2015) to calculate a light curve directly from

the parameters. To this calculated light curve, we calculate and apply the best-fitting out-

of-transit polynomial trend of pre-determined order (see Section 2.2.3) for each observed

transit of the target KOI to enable a direct comparison of the model to the data. We then

calculate the likelihood of the data given the transit model parameters. We adopt a Gaussian

likelihood function.

We explore the 4 + 6N -dimensional parameter space of the transit model with the affine-

invariant MCMC ensemble sampler package emcee. emcee initializes an ensemble of MCMC

walkers in this parameter space and calculates the posterior probability of the sampled set of

transit parameters at every step in their random walk, given a choice of prior distributions

and our Gaussian likelihood function.

We adopt the following priors for the transit parameters:

1. Intrinsic priors:

(a) t0: A uniform prior from t0, reported−0.5 days to t0, reported+0.5 days , where t0, reported

is the transit epoch reported in the Kepler catalog.
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(b) P : A uniform prior from 0.9Preported to 1.1Preported, where Preported is the orbital

period reported in the Kepler catalog.

(c) b: A uniform prior from 0 to 2, allowing for grazing transits.

(d) ρ∗, reparametrized as log10(ρ∗[kg/m3]): A uniform prior in log10(ρ∗[kg/m3]) from

0 to 6.

(e) Rp/R∗: A uniform prior from 0 to 1.

(f) e and ω: Uniform priors from -1 to 1 in
√
e cosω and

√
e sinω, with additional

uniform priors restricting e to the range (0, 1) and ω to the range (−π, π).

(g) Nonlinear limb-darkening coefficients αr, αh, αθ: Uniform priors from 0 to 1 (Kip-

ping, 2016).

(h) A prior insisting that b be less than (a/R∗), calculated from Kepler’s third law,

in order to prevent unphysical inclinations.

(i) A prior insisting that b be less than (1 + Rp/R∗), in order to prevent unphysical

transit durations.

2. Target selection-motivated e and ω priors:

(a) For the occultation targets, which have secondary eclipse-measured constraints

on e and ω, we adopt Gaussian priors in e cosω and e sinω, where the means are

given by the measured values of e cosω and e sinω from Shabram et al. (2016) or

Coughlin & López-Morales (2012) and the standard deviations by their measure-

ment uncertainties.

(b) For the tidal targets, we adopt an exponential prior on e, with scale parameter

λ = 0.00796, consistent with the findings of Wang & Ford (2011).

(c) For the multi-planet targets, we adopt a Rayleigh prior in e, with scale parameter

σ = 0.049, consistent with the findings of Van Eylen & Albrecht (2015).
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With emcee, we initialize 100 MCMC walkers per KOI and run them for 105 steps each,

generating 107 posterior samples per KOI. We initialize the walkers in the P -dimension

by drawing from a Gaussian distribution centered at the Kepler catalog-reported P , with

standard deviation 0.01. We initialize the walkers in the other 9 dimensions of parameter

space by sampling randomly in a 9-dimensional box spanning the range in each parameter

that is allowed by its intrinsic prior.

We discard the first 20,000 steps per walker chain as “burn-in,” based on a conservative

by-eye judgment of when the walkers “forget” their initial conditions and begin to explore

the parameter space freely. We also discard walker chains which fail to converge to the

same value of P as the majority of the ensemble of walkers. More specifically, we calculate

the median and median absolute deviation (MAD) of P over all the walker chains. We

use σ̂ = 1.4826 × MAD as an estimator for the standard deviation of the P distribution

and discard any chain whose median P differs from the overall median by more than 5σ̂

(Rousseeuw & Croux, 1993).

Finally, for KOIs which are confirmed per their NEA disposition (two-thirds of our tar-

gets, or 50 KOIs), we discard all posterior samples with Rp/R∗ > 0.15 on the grounds that

they represent unphysically large planets. We note that all of our target planets which are

dispositioned as “confirmed” in the NEA are validated by Morton et al. (2016).

2.3 Results

We obtain successful transit fits (i.e., MCMC convergence) for 66 target stars (hosting

75 individual KOIs). For four multi-planet targets (those hosting KOIs 156.01, 156.02, and

156.03; 723.01, 723.02, and 723.03; KOIs 1805.01, 1805.02, and 1805.03; and KOIs 1824.01

and 1824.02), less than a few hundred posterior samples for each system remain after we

discard chains that fail to converge in P and samples with unphysically large Rp/R∗; we

count these as failed fits. The best-fit transit parameters for the 66 successes are listed in
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Tables 2.1-2.3; we present the median of the posterior distribution for each parameter, with

uncertainty bounds describing the 16th and 84th percentiles.

Of order 106 − 107 samples from the posterior distributions of the transit parameters

remain for each KOI after we discard the burn-in phase of the MCMC chain, as well as

chains which fail to converge in P and samples with unphysically large Rp/R∗. The files

containing all of the posterior samples are prohibitively large to be made available for online

download, so we downsample the posteriors by a factor of 102 and publish the resulting

104 − 105 posterior samples for each KOI at https://doi.org/10.5281/zenodo.1028515.

As an example, in Figure 2.3, we present a well-converged transit fit, for occultation

target KOI-929.01 (a confirmed planet, per the NEA). We plot the corresponding posterior

distributions for the 10 fitted transit parameters in Figure 2.4. From each posterior sample,

we calculate nine other parameters describing the system (the transit duration T14, the

flat-bottomed transit duration T23, the normalized semi-major axis a/R∗, the inclination i,

the eccentricity e, the argument of periastron ω, and the three traditional nonlinear limb-

darkening coefficients c2, c3, and c4). We plot the distributions of these derived parameters

in Figure 2.5.

KOI-929.01’s posterior distributions typify our broader results: t0 and P are by far the

most precisely constrained parameters, ρ∗ is constrained to within 5% of its median value,

and
√
e cosω and

√
e sinω are centered at zero, in agreement with the prior constraints on

this planet’s orbit from secondary eclipse observations. When we derive the distributions of

e and ω themselves (see Figure 2.5), we find that e is strongly peaked at e = 0, and ω is

very poorly constrained, which is sensible for a nearly-circular orbit. Also typical are the

constraints on the three limb-darkening coefficients: αθ is constrained to within ∼ 15% of

its median value, and αr and αh only to within ∼ 60%.
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Figure 2.3: An example transit fit, for occultation target KOI-929.01, a confirmed planet per
its NEA disposition. The black points are the 183 transits observed for this KOI, detrended
and stacked; it is not observed in short cadence, so all of these data points are long-cadence
observations. The blue lines are light curve models computed by BATMAN (Kreidberg, 2015)
from 500 random draws from our 10-dimensional transit parameter posterior distributions.
This KOI has an orbital period of 6.491683± 0.000002 days, and it orbits a star of Kepler-
band magnitude 15.649.

2.3.1 Covariances

In this section, we investigate covariances between the transit parameters, which indicate

degeneracies in the transit model. In other words, if independently adjusting two or more

of the parameters can create the same effect in the shape of the model light curve, these

parameters will correlate with each other, or co-vary.

A well-known effect in transit modeling (see e.g. Carter et al. 2008) is the covariance

between stellar density ρ∗, impact parameter b, and ratio-of-radii Rp/R∗, which results from

the mixed influence of these three parameters on the transit duration. For example, a larger

Rp/R∗, a smaller b, and a lower ρ∗ all lead to a longer transit duration. This covariance

manifests itself in the posterior distributions of several of our less-well-constrained targets,

especially those for which no short-cadence observations are available and those which are not

confirmed per the NEA (for which we cannot discard posterior samples with Rp/R∗ > 0.15).

For such targets, our posterior plots show an elongated positive correlation between the b
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and Rp/R∗ distributions, as well as a tail of low b values which are negatively correlated with

log10 ρ∗. Figure 2.4, although it is a confirmed planet per the NEA, exhibits these trends.

The ultimate overall effect of this covariance is a distinct bimodality in each of the b,

log10 ρ∗, and Rp/R∗ posterior distributions. For physical intuition, this bimodality signifies

that two transit models are likely given the observations: one in which a relatively small

planet undergoes a non-grazing transit across a compact star, and one in which a relatively

large planet undergoes a grazing transit across a large, low-density star.

A-priori, the high-b, low-log10 ρ∗, high-Rp/R∗ peak is physically implausible, on the

grounds that we are much more likely to observe a small planet transiting across the mid-

point of its host star than we are to observe an enormous planet transiting across the limb

(Kipping & Sandford, 2016). For independently confirmed KOIs, we exclude all posterior

samples with Rp/R∗ > 0.15 on these physical grounds, because anything larger than this

approximate limit would be an eclipsing binary, not a transiting planet. We cannot, however,

exclude the large Rp/R∗ samples for KOIs which are not formally confirmed per the NEA,

in the case that they turn out to be eclipsing binaries.

A strong intrinsic covariant prior on Rp/R∗ and log10 ρ∗, i.e., a way to formally encode

our skepticism of grazing, large-planet fits, would address this problem of bimodality, as

discussed in Kipping & Sandford 2016. However, the exoplanet population data are not yet

robust enough to define such a prior.

Also evident in the posterior distributions of the transit parameters is a covariance be-

tween the limb darkening coefficients αr and αh. For the vast majority of our target stars,

these parameters are not tightly constrained—the posteriors displayed in Figure 2.4 are typ-

ical. Although the peaks of the distributions of αr and αh are broad, however, there is a

clear negative correlation between the two, with high αr corresponding to low αh and vice

versa. This covariance explains the trends we discuss in Section 2.3.2.1, where we compare

our observed αs to theoretical predictions from stellar atmosphere modeling.

Finally, we note a strong covariance between c2, c3, and c4, evident in the rightmost panels
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of Figure 2.5. This covariance, which motivated the transformation to α-space originally

(Kipping, 2016), exists because only a relatively small region of the three-dimensional c-

space describes physically realistic limb-darkening behavior.
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Figure 2.4: Posterior distributions for the ten fitted transit parameters of occultation tar-
get KOI-929.01, a confirmed planet per the NEA. The red lines mark the median of each
distribution; the black dotted lines mark the 16th and 84th percentiles.
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Figure 2.5: Distributions for nine derived parameters of occultation target KOI-929.01, a
confirmed planet per the NEA. These are parameters which we did not fit for directly but
can compute from the posterior samples plotted in Figure 2.4. Here, c2, c3, and c4 are
the traditional coefficients of a modified nonlinear limb-darkening law, computed from our
reparametrized αs. The purple lines mark the median of each distribution; the black dotted
lines mark the 16th and 84th percentiles.
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2.3.2 Stellar densities

The ensemble results of our stellar density measurements are presented in Figure 2.6. In

this figure, for each target star, we compare the posterior distributions of log10 ρ∗ derived from

our transit fitting with the constraints on log10 ρ∗ from the Kepler Data Release 25 (DR25)

Stellar Properties Catalog by Mathur et al. (2017). The posteriors from the Mathur et al.

(2017) catalog are derived by performing Dartmouth Stellar Evolution Database isochrone

modeling on input values of Teff, log g, and [Fe/H] obtained from earlier studies relying on

a variety of experimental methods, including spectroscopy, flicker, asteroseismology, and

previous transit modeling.

Our transit modeling-derived log10 ρ∗ is in 1σ or better agreement with the isochrone

modeling-derived DR25 constraint for 55% of our target stars, and in 3σ agreement for 95%.

The only three target stars for which we disagree with the DR25 stellar density constraint at

the 3σ level are tidal targets KOI-5157.01 and 7430.01 and the multi-planet system consisting

of KOIs 153.01 and 153.02. We note that all four of these KOIs have unusually poorly

constrained transit epochs, the parameter that is generally best constrained by our modeling.

Correspondingly, we recommend against adopting our modeled transit parameters for these

KOIs and their host stars.

Our transit modeling-derived log10 ρ∗ is more precise than the isochrone modeling-derived

DR25 constraint for 50% of our targets. The median improvement to fractional uncertainty

for these 50% is a factor of 2.3, meaning that our fractional uncertainty is less than half that

of the literature value for a typical target star. We achieve comparable precision to astero-

seismology (i.e., fractional uncertainty in ρ∗ ≤ 5%) for 62% of our targets. For some others,

e.g. KOI-1793.01, KOI-4351.01, and KOI-3913.01, the bimodality discussed in section 2.3.1

is apparent, and we derive a poor constraint on log10 ρ∗.

We are able to extend sub-5%-fractional-uncertainty stellar density measurements to

Kepler stars three magnitudes fainter than asteroseismology can, across a broad range in
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Figure 2.6: A comparison of our ρ∗ posteriors to previously published constraints. Top
block: KOIs for which we achieve ≤ 5% fractional uncertainty on log10 ρ∗ (62% of targets);
bottom block: KOIs for which we do not. For each KOI, the upper row shows the posterior
distribution of log10 ρ∗ derived in this work, and the lower row shows the Kepler Data Release
25 constraint (Mathur et al., 2017) on log10 ρ∗ derived from Dartmouth Stellar Evolution
Database isochrone modeling. Within each block, the KOIs are sorted from top to bottom
in order of increasing median log10 ρ∗ from our results.
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Teff , as shown in Figure 2.2. Opaque circles in this figure represent stars for which we

achieve fractional log10 ρ∗ uncertainty of less than 5%, and transparent squares represent

stars for which we do not.

2.3.2.1 Comparisons with asteroseismology

Four of our occultation targets (KOIs 1.01, 5.01, 97.01, and 98.01) have previously been

targeted for asteroseismic density measurement by Huber et al. (2013). In Figure 2.7, we

compare our ρ∗ posteriors directly to the asteroseismically measured ρ∗ for each of these four

targets.2

K00001.01

K00005.01

K00097.01

0 1 2 3 ¯ 4 5 6

log10ρ ∗ [kg/m3]

K00098.01

Figure 2.7: A comparison of our ρ∗ posteriors (top rows) to the Mathur et al. (2017) ρ∗
posteriors (bottom rows) and asteroseismic constraints on ρ∗ by Huber et al. (2013) (blue
boxes). We discuss the evident discrepancy between our results and asteroseismology for
KOI-1.01 (TrES-2b) in Section 2.3.2.1.

Our results are in good agreement for KOIs 5.01, 97.01, and 98.01; KOIs 5.01 and 97.01

are in 1σ agreement with asteroseismology, and KOI-98.01 in 2σ agreement. We achieve

comparable precision to asteroseismology except in the case of KOI 5.01, which undergoes

grazing transits at low signal to noise and is subject to the parameter covariances discussed

in section 2.3.1.
2The Mathur et al. 2017 posteriors are derived by feeding these asteroseismic constraints through isochrone

modeling, so they are in excellent agreement with the Huber et al. 2013 results.
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For the final target with available asteroseismic data, KOI-1.01 (TrES-2b), we derive a

higher stellar density than previously published constraints. Although our transit model for

this planet is well-converged and a good match to the Kepler data, we note that our best-

fitting parameters conflict with earlier results from very reliable analyses—in particular, we

derive an eccentricity e = 0.2+0.16
−0.08, while radial velocity observations agree that this planet’s

orbit is consistent with being circular (O’Donovan et al., 2006, 2010; Kipping & Bakos, 2011;

Coughlin & López-Morales, 2012). e and ρ∗ are covariant, and the sense of the covariance is

such that a too-high e would indeed cause us to overestimate ρ∗. We must then explain why

we derive such a high e, especially given that we impose a strong e prior which should favor

near-zero values of e.

We attribute our implausibly high e to a failure of our transit model to accurately capture

the limb-darkening behavior of KOI-1.01’s host star. Upon closer inspection of KOI-1.01’s

posterior distributions, we observe that the posterior distributions of the limb-darkening co-

efficients are strange, particularly that of αr. While the vast majority of our target KOIs

exhibit well-behaved αr distributions like those of KOI-929.01 (see Figure 2.4: the αr distri-

bution is broad and peaked in the middle of the allowable αr range), KOI-1.01’s is instead

narrowly peaked at αr = 0.01+0.07
−0.01. In other words, it abuts the lower boundary of our uni-

form prior on αr, which indicates that the limb-darkening behavior of our highest-likelihood

model is unphysical.

Our transit model fails to capture the limb darkening behavior of KOI-1.01’s host star

because KOI-1.01 undergoes a grazing transit (we derive b = 0.79 ± 0.01; the NEA reports

b = 0.818 ± 0.001). In other words, the planet transits across the limb of the star, so

the transit data contains no information about the star’s limb darkening behavior near

the center of the sky-projected star (µ = 1). Our three-parameter limb darkening law is

actually somewhat of a liability in this situation: a very flexible model, subject to minimal

constraining data, is free to adopt physically implausible (though still technically permitted

within the bounds of the priors) combinations of the αs in pursuit of the highest-likelihood
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Figure 2.8: The limb darkening profile of KOI-186.01, which transits close to the midplane
of its host star, compared to that of KOI-1.01 (TrES-2b), which undergoes a grazing transit.
In each panel, we plot profiles I(µ)/I(1) = 1− c2(1−µ)− c3(1−µ3/2)− c4(1−µ2) computed
from 1000 random draws from the posterior distributions of the LDCs (black lines) and
theoretical predictions for the limb darkening profile from Sing (2010) (red lines).

solution, where a less flexible model, with fewer free parameters, would be fixed by fewer

constraints.

To illustrate the undesirable effects of the flexibility in the limb darkening model in the

case of grazing transits, in Figure 2.8, we compare our measured limb darkening profile of

KOI-1.01 (TrES-2b) to that of KOI-186.01, which transits very close to the midplane of its

host star. KOI-186.01’s limb darkening profile is well-constrained from µ = 0 (the stellar

limb) to µ = 1, while KOI-1.01’s is poorly constrained, with a wide range of plausible α

behavior.

Visual inspection of the posterior distributions for KOI-1.01 confirms that the posterior

samples with near-zero αr correspond to unrealistically high values of e and ρ∗.

We examine the remainder of our target list for other stars which exhibit similarly sus-

picious α posteriors, and we also compare our results to the theoretical predictions of Sing

(2010), based on stellar atmosphere modeling, in figure 2.9. This figure shows a comparison

of our observed α-values to the Sing (2010) predictions, which we calculate by linearly inter-
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polating their Table 2 results and evaluating the interpolation at the NEA-provided stellar

spectroscopic parameters for our target stars. To check for general consistency between our

results and the Sing (2010) predictions, we plot 3σ uncertainty bounds on our α-values. We

highlight the results for KOI-1.01 in bright blue; note in particular its anomalously low αr

value.

We identify a handful of suspect stars which exhibit similarly anomalous values of any

of the three αs, abutting either the lower (α = 0) or upper (α = 1) boundaries of our

prior, and which also have derived values of e which are inconsistent with their strong

eccentricity prior. The KOIs meeting these criteria are, of the occultation targets, KOIs-

1.01 (as discussed already) and 823.01; of the tidal targets, KOIs-1075.01 and 1658.01; and

of the multi-planet targets, the KOI-153 and 1779 systems. All of these lone KOIs, and at

least one KOI orbiting each of the suspect multi-planet targets, undergo grazing transits, so

their behavior is overall consistent with the case of KOI-1.01, discussed above. (We note that

occultation target KOI-1541.01 also has an anomalously high αh, but that its correspondingly

high eccentricity is consistent with the priors in e cosω and e sinω adopted from Coughlin &

López-Morales (2012), and also that it transits at very low impact parameter, so its transits

contain information about its entire limb darkening profile.)

The case of KOI-1.01 demonstrates that strangely behaved LDC posterior distributions

strongly indicate that other transit model parameters—especially ρ∗—may not be reliable.

We therefore advise extreme caution in adopting our transit model parameter posteriors for

these stars.

Aside from these isolated cases, which comprise 12% of our target list, Figure 2.9 es-

tablishes that our results are generally in good agreement with the predictions of Sing

(2010). 79% of our target stars are consistent with Sing (2010) at the 3σ level in all three

α-dimensions, and 94% in at least two of the three α-dimensions. We note that, although

our results statistically agree, there are systematic offsets between our αr and αh values and

those of Sing (2010); in particular, we overpredict αr and underpredict αh. These two pa-
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rameters, however, as we discuss in Section 2.3.1, are not independent—rather, they co-vary

in exactly the sense observed in this figure, with high αr corresponding to low αh. We find

that the fractional uncertainty in the αs is positively correlated with impact parameter b,

consistent with the results for KOI-1.01.
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Figure 2.9: A comparison of our αr, αh, and αθ to the theoretical predictions of Sing (2010),
based on stellar atmosphere modeling. We plot 3σ uncertainty bands on our values to check
for broad consistency. Blue points are occultation targets; orange points are tidal targets;
purple points are multi-planet targets. The dotted lines indicate one-to-one correspondence,
and KOI-1.01 (TrES-2b) is highlighted in bright blue. Transparent points are those with
at least one anomalous α distribution, abutting either the upper or lower boundary of the
prior.

2.3.3 Limb darkening coefficients

We also investigate the relationship of our measured nonlinear limb-darkening coefficients,

αr, αh, and αθ, to various stellar properties from the Kepler input catalog. In Figure 2.10,

we plot various projections of this high-dimensional stellar parameter space to look for corre-

lations. We find that the three αs are totally uncorrelated with Kepler-band magnitude, Teff ,

log g, stellar radius, stellar mass, and each other. The only pattern of note in this parameter

space is the sharp peak of αθ about a value of approximately 0.6; that so many disparate

target stars share this value indicates that αθ is especially uninformative with respect to

stellar properties.
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When we transform the three αs into the more traditional nonlinear LDCs c2, c3, and c4

(see e.g. Sing 2010; Claret 2000), the LDCs remain essentially uncorrelated with any stellar

properties. The strong peak in the αθ distribution evident in Figure 2.10 translates to a

strong peak in c4, indicating that c4 is the least informative LDC with respect to stellar

properties.
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Figure 2.10: Reparametrized limb darkening coefficients (αr, αh, and αθ) vs. various proper-
ties of our target stars. Blue points are occultation targets; orange points are tidal targets;
purple points are multi-planet targets. There are no significant correlations between the
LDCs and stellar properties. We note that the αθ distribution is strongly peaked at 0.6
across a broad range of stellar properties, suggesting that this coefficient contains almost no
information about the properties of the star.

2.3.3.1 Which stars are the best transit-modeling targets?

Having demonstrated the capability of transit modeling to yield high-precision measure-

ments of stellar density, we now ask: Are some stars better suited to measurement by this

method, and if so, can we identify those stars ahead of time? In other words, are there any

properties of a star or its associated KOIs that predict a successful, precise transit-based ρ∗

measurement, or disqualify a star from such a measurement?

In Figure 2.11, we plot the fractional uncertainty of each of our transit-based ρ∗ mea-

surements against various stellar and KOI data properties. Stellar properties include the

Kepler-band magnitude, Teff , log g, stellar radius, and stellar mass; KOI properties include
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whether short-cadence observations were available, whether the KOI is “confirmed” per its

NEA disposition, and the NEA threshold-crossing event signal-to-noise ratio (SNR).

We find that the achieved precision on ρ∗ does not depend on any stellar properties,

meaning that faint and bright, hot and cool, large and small stars are equally appropriate

targets, a priori, for transit-based stellar density measurements. This lack of any dependence

of the success of our method on the properties of our target stars is evident in the distribution

of opaque circles (target stars measured to high ρ∗ precision) across Figure 2.2.

The fractional uncertainty in our ρ∗ measurements does, however, correlate strongly with

the NEA-reported SNR, which is sensible given that the precision of our derived transit pa-

rameters, including ρ∗, depends on our ability to successfully model transits. We furthermore

find that planets observed in short cadence are more likely to have precise ρ∗ measurements,

but that short-cadence data is not necessary to achieve this level of precision. Planets which

are confirmed per the NEA are also more likely to have high-precision ρ∗ measurements,

which is partly due to our ability to discard posterior samples with unphysical Rp/R∗ (and

corresponding ρ∗) for these KOIs. Another contributing factor is that planets which are easy

to confirm by other exoplanet detection methods (large, close to their host stars) are also

likely to have high transit SNR.

2.4 Conclusions

In this work, we demonstrate the promise of exoplanetary transits to characterize planet-

hosting stars with high precision. We select 66 target planet-star systems with strong prior

constraints on planetary eccentricity, either directly measured from secondary eclipses, or

strongly implied by a short tidal circularization timescale or compact multiplicity. We fit

transit models to these targets and derive posterior distributions of ten transit parameters:

transit epoch, period, impact parameter, stellar density, ratio-of-radii, reparametrized ec-

centricity and argument of periastron, and three reparametrized coefficients of a modified
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Figure 2.11: The fractional uncertainty in ρ∗ vs. stellar and KOI data properties for each of
our 66 targets. Blue points are occultation targets; orange points are tidal targets; purple
points are multi-planet targets; the dotted lines in each panel mark 5% fractional uncertainty
in ρ∗.

nonlinear limb darkening law. We make downsampled posterior distributions for the transit

parameters of the 75 KOIs orbiting our 66 target stars available at https://doi.org/10.

5281/zenodo.1028515.

For 95% of our targets, our measured stellar densities are in agreement with previously

published constraints at the 3σ level (55% at the 1σ level). Furthermore, for 50% of our

targets, we improve upon the best available published constraint on stellar density; the

median improvement is slightly greater than a factor of two, meaning that we achieve a

fractional uncertainty less than half of the literature value. For 62% of our targets, we achieve

comparable precision to asteroseismology (typical fractional uncertainty ≤ 5%), generally

considered the gold-standard method of stellar density measurement. We demonstrate that

the success of our method for any given target planet-star system does not depend on any of

the star’s properties, but instead depends only on the signal-to-noise ratio of the planetary
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transits.

Correspondingly, we successfully use this method to extend asteroseismic-level-precision

stellar density measurements to stars three magnitudes fainter than the Kepler asteroseismic

limit, across a broad range of effective temperatures. We note that, although TESS will

observe brighter stars than Kepler, its asteroseismic limit will be several magnitudes brighter

(∼ 8th magnitude) due to its small aperture (Campante et al., 2016; Ricker et al., 2014),

and therefore that this transit-based method will be invaluable in characterizing TESS stars

which are inaccessible to asteroseismology.

We emphasize that this method requires no data beyond a transiting exoplanet light

curve, and it therefore promises to aid greatly in exoplanet host star characterization in the

era of TESS and LSST, when we expect to discover many more transiting planets than we

can hope to quickly follow up spectroscopically.

Finally, in advance of TESS, we note the potential of this precise transit fitting technique

to characterize not just stars, but also singly-transiting planets, as shown by Yee & Gaudi

2008. We demonstrate in this work that transiting planets with strong prior eccentricity

constraints may be used to strongly constrain their host stars, yielding very precise (≤ 5%

uncertainty) measurements of their hosts’ properties, including ρ∗. Once a host star is

“anchored” by a transiting planet (a “stellar anchor” planet) in this way, the properties

of any other transiting planets in the system can be derived to higher precision using the

transit-measured stellar parameters than would be possible without this information.

TESS’ observational baseline will be only 27.4 days over ∼ 30, 000 deg2 on the sky; in

these regions, TESS will be unable to directly measure the period of any planet with a period

greater than 27.4 days, because it will observe at most one transit of such a planet (Ricker

et al., 2014). As shown in Figure 2.12, this short baseline precludes direct measurement of

the periods of planets in a large region of “habitable zone” parameter space.

However, if any of these long-period, singly-transiting planets orbits the same star as a

short-period stellar anchor planet, we will be able to use the anchor’s transits to precisely
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rapu et al., 2013). Planets in the dark gray shaded region will transit at most once during
TESS’ 27.4-day single-visit observational baseline. Earth is plotted as a blue dot.

measure ρ∗ with the method developed in this work, then place better constraints on the

period of the single-transiter using the stellar density constraint.

In the simplest case of an outer single transiter on a circular orbit, we expect the fractional

uncertainty of the period P to equal

σP
P

= 1
2

√√√√(σρ∗

ρ∗

)2

−
(

3σ(a/R∗)

a/R∗

)2

(2.15)

by the propagation of uncertainty through equation 2.3. Here, P and a/R∗ are parameters

of the outer single transiter, and ρ∗ is the density of the star that the outer single transiter

and the inner stellar anchor both orbit.

We assume that the fractional uncertainty in the stellar density, σρ∗
ρ∗

, will dominate over

the fractional uncertainty in the normalized semimajor axis, σ(a/R∗)
a/R∗

, because a/R∗ can be
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measured directly from the shape of the single observed transit of the outer planet, while ρ∗

requires detailed modeling of the inner stellar anchor’s transits subject to a prior constraint

on eccentricity, as described in this work. Under this assumption, a 5% fractional uncertainty

in ρ∗ corresponds to a 2.5% fractional uncertainty in the period P of the single transiter.

While considerably less precise than a direct period measurement, this degree of frac-

tional uncertainly could establish whether a given planet orbits in the habitable zone of its

host star or not, and hence whether it merits follow-up observations. Obtaining a similar

constraint on the period using radial velocity measurements of the host star would be time-

consuming, generally requiring an observational baseline comparable to the orbital period

of the planet (see e.g. Ford 2005). Our method therefore promises to aid greatly in the

characterization of long-period TESS planets.
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3. Estimation of singly-transiting K2

planet periods with Gaia parallaxes

3.1 Introduction

Choosing an observational baseline for a transit survey places fundamental limits on

which planets will be observed to transit. For a baseline B, a planet with orbital period

P > B will transit at most once during the baseline, with the transit probability falling off

as P−1 for longer periods (Yee & Gaudi, 2008).

As a result, transit observations of relatively long-period exoplanets are rare, even as

long-period exoplanets themselves merit intense study. Planets with long periods relative

to the Kepler baseline (∼ 1500 days), for example, are interesting as analogs to the outer

planets of the Solar System, and as examples of planets at or beyond the snow line (e.g.

Kipping et al. 2016). The shortest TESS baseline, 27.4 days for most of the sky (Ricker

et al., 2015), relegates even habitable-zone planets around FGKM stars to the “long-period”

regime.

However, even when a long-period transiting exoplanet is observed, constraining that

planet’s orbital period (and hence its distance from its host star) is difficult unless we see

at least two successive transits. The observational baseline of the Kepler survey was so long

that few single-transit candidates were observed. Wang et al. (2015) identify 17 single-transit

candidates; Uehara et al. (2016) enumerate a further 23 (of which 14 are new discoveries, and

9 rediscoveries of single transits identified by the Kepler transit search pipeline); Foreman-
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Mackey et al. (2016) identify a further 6. Altogether, this yields a catalogue of 46 single-

transit events from the initial Kepler mission.

In the repurposed K2 mission, which has a shorter observational baseline over each ob-

served field (∼ 75 days), Osborn et al. (2016) identify 7 single-transit candidates. LaCourse

& Jacobs (2018) catalogue 164 single-transit events, although they caution that most are

likely eclipsing binaries.

Villanueva et al. (2019), in contrast, estimate that TESS will observe more than 200

single transits among its postage-stamp targets (observed at 2-minute cadence), and a further

∼ 1000 in full-frame images (observed at 30-minute cadence). They further estimate that,

if they are confirmed as planets, these single-transits will double the postage-stamp targets’

yield of planets with P > 25 days, and increase the yield of P > 250 day planets tenfold.

Huang et al. (2018), meanwhile, predict a more modest 75 single transits among the postage-

stamp targets, and ∼ 700 in the full-frame images, but add that the single transiters will

increase TESS’s yield of temperate planets around FGK stars roughly threefold.

Figuring out how to accurately constrain the period distribution of single-transiters is

therefore critical to enhancing the long-period planet yield of the forthcoming TESS data,

as knowledge of that distribution will be important for follow-up observations aiming at

confirming the planetary nature of any signals detected. There is a simple approach, first

suggested by Yee & Gaudi (2008), to constrain the period with observations of a single

transit. From Kepler’s third law, we can relate the period of a planet to the density of its

host star (ρ∗) and its normalised semi-major axis (a/R∗):

P 2 = 3π
G

(
a

R∗

)3
ρ−1
∗ (3.1)

We may measure the single-transiter’s a/R∗ directly by modeling its transit shape; ρ∗,

however, must come from an independent observation of the star.
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Propagating uncertainty through that equation, we may derive:

σP
P

= 1
2

√√√√(σρ∗

ρ∗

)2

+
(

3σ(a/R∗)

a/R∗

)2

(3.2)

If we assume that the uncertainty in ρ∗ will dominate over the uncertainty in a/R∗, the

above equation means that a ∼ 5% uncertainty in ρ∗ translates to a ∼ 2.5% uncertainty in P

for the single transiter (σP ' 9 days for an Earth analog). In summary, a precise constraint

on ρ∗, plus a single transit observation, may yield a precise constraint on the single transiter’s

period P .

Of course, this simple order-of-magnitude calculation omits some important details of

the transit modeling, with which one actually obtains a/R∗. First, the retrieved value of this

parameter, which comes from knowledge of the overall shape of the light curve in addition

to the transit duration, is dominated by other factors in the transit modeling, such as limb-

darkening and whether or not the planet’s orbit is assumed to be circular. These two effects

can lead to large biases in the retrieval of transit parameters if not accounted for (see, e.g.,

Espinoza & Jordán, 2015, on the impact of limb-darkening on the retrieval of a/R∗). In

addition, the long cadence of the data that missions like Kepler and TESS provide for most

stars puts an even stricter limit on the accuracy with which a/R∗ can be retrieved (Kipping,

2010b; Price & Rogers, 2014). (If we were to assume that the uncertainty in a/R∗ dominated

in Equation 3.2, a ∼ 5% uncertainty in a/R∗ would translate to a ∼ 7.5% uncertainty in P

for a single transiter, or ∼ 1 month for an Earth analog.)

Nevertheless, the above approach, of constraining a single-transiter’s P by constraining

its host star’s density, has been adopted by nearly all of the single-transit-catalogue works

listed above. However, in most cases, because ρ∗ is not especially well-constrained by many

types of stellar observations, they derive large P uncertainties for their single-transiters.

Wang et al. (2015), for example, estimate P for their single-transiters using host star den-

sities interpolated from isochrones, achieving a typical fractional P uncertainty of ∼ 100%.

Uehara et al. (2016) adopt stellar density constraints from the Kepler Community Follow-Up
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Observing Program, and furthermore assume circular orbits for their single-transiters, which

limits the achievable P precision severely. Foreman-Mackey et al. (2016) fit transit models,

including inferred P , using priors on stellar mass and radius from the Kepler DR25 Stellar

Properties Catalog (Mathur et al., 2017) and derive similarly large uncertainties on P (the

typical fractional uncertainty for their single transiters is also ∼ 100%). Osborn et al. (2016)

estimate stellar parameters by deriving stellar temperatures from broad-band colours, then

calculating stellar mass and radius from those temperatures under the assumption that their

stars were on the main sequence, and derive typical fractional uncertainty ∼ 50%; however,

they still assume that these single transiters are on circular orbits.

Other methods of stellar characterisation, however, can yield significantly more precise

constraints on ρ∗, which may translate to correspondingly narrow bounds on P for single-

transiters. Asteroseismology, for example, yields a typical ρ∗ precision of ∼ 5% (see e.g.

Huber et al. 2013, Silva Aguirre et al. 2017). Sandford & Kipping (2017) demonstrate that

the method of “stellar anchors,” in which ρ∗ is measured by modeling the transits of a planet

with independently well-constrained eccentricity, can also yield ρ∗ uncertainties of order 5%.

In this paper, we investigate in detail the performance of a third method of constraining

ρ∗: combining stellar radius measurements derived from Gaia DR2 parallaxes (Gaia Collab-

oration et al., 2018) with stellar mass measurements from isochrone fitting. We apply such

stellar density constraints to long-period planets observed by K2. First, we use these stellar

density constraints to model individual transits of known-period K2 planets as if they were

single-transiters, infer their periods, and investigate the precision and accuracy of the infer-

ences. We then apply the method to 12 true single-transiters observed by K2. Throughout,

we treat eccentricity as a free parameter in the transit model fits.
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3.2 Method

3.2.1 Stellar density estimation

In order to determine the stellar physical parameters, we follow a procedure similar to that

presented in Brahm et al. (2019, 2018). For a given star, we first estimate the stellar radius

by combining its publicly available photometry with its GAIA DR2 parallax measurement.

For this step we also require an estimate of the stellar atmospheric parameters in order to

select a spectral energy distribution (SED) model to represent the star being analysed. For

all the systems analysed in the present study we adopt the BT-Settl-CIFIST (Baraffe et al.,

2015) SED models. We consider the following sets of photometric surveys/bands in our

analysis: APASS (V,B,g,r,i; Henden et al., 2009), 2MASS (J,H,Ks; Skrutskie et al., 2006),

WISE (W1,W2,W3; Wright et al., 2010). For each star we construct the observed reddened

emitted flux density at the surface of the star:

~Fo = 4πd2
gaia · ~f, (3.3)

where dgaia is the distance to the star computed from the Gaia parallax, ~f are the flux

densities computed from the observed magnitudes, and the vectors have a length equal to

the number of passband filters that are being considered. We compute the uncertainties in
~Fo by propagating the uncertainties on the observed magnitudes and parallax. The distances

are estimated using the estimation procedures presented in Bailer-Jones et al. (2018).

Meanwhile, our model for the reddened emitted flux density at the surface of the star

takes the form of a vector ~F , where the mth component is given by:

Fm = 4πR2
∗fm · e−Aλ , (3.4)

where R∗ is the stellar radius, fm is the synthetic flux density in bandpass m generated from
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the BT-Settl-CIFIST SED, and Aλ is the reddening or extinction factor in that bandpass.

We assume that reddening follows the Cardelli et al. (1989) law, and therefore we consider

just a single reddening parameter AV in our model, which combined with the reddening

law generates extinction factors for each passband filter. With the model and observed flux

vectors in hand, we explore the posterior distributions for R∗ and AV using the emcee package

(Foreman-Mackey et al., 2013) and a log-likelihood given by logL = ∑
i(Fo,i − Fm

i )2/σ2
Fo,i

.

We adopt uniform priors in R∗ ([0.1R�, 100R�])and AV ([0, 1]) .

Once the stellar radius is estimated, we proceed to estimate the stellar mass and age by

comparing the radius and effective temperature given by stellar evolutionary models to the

observed values for these parameters. Specifically, we use the Yonsei-Yale isochrones (Yi

et al., 2001) as our model, where we fix the metallicity to the reported value, and we use

the interpolating code provided with the isochrones for generating a set of modeled R? and

Teff from an arbitrary stellar mass and age. The distributions for M? and AGE? are explored

using the emcee package. Again we use uniform priors for M? ([0.4 M�, 4.5 M�]) and AGE?

([0.05 Gyr, 4.5 Gyr]). Finally, we use the obtained distributions of the of stellar masses and

radii to determine the distribution of the stellar bulk density (assuming sphericity):

ρ? = M?
4π
3 R

3
?

. (3.5)

The use of stellar evolutionary models for the estimation of stellar densities can in prin-

ciple produce systematic biases if the models are not well calibrated. In order to test the

accuracy of our derived densities, we compare the results obtained with our method with

those obtained with an independent and more precise technique. Specifically, we use a sample

of stars that have asteroseismic density determinations. From the study presented in Silva

Aguirre et al. (2015, 2017) of Kepler stars with densities derived through asteroseismology,

we select stars that have Gaia DR2 parallaxes and no reported companions closer than 4”.

We also select two giant stars, K2-97 and K2-132, that host close-in planets, which have

62



density estimations from K2 photometry (Grunblatt et al., 2016, 2017; Jones et al., 2018).

We use the methods described above to compute the densities for these stars, adopting

for them the stellar atmospheric parameters reported in the literature. Figure 3.1 compares

our density estimates to those obtained through asteroseismology. The densities range from

0.02 g cm−3 to 2.5 g cm−3, which is equivalent to a red giant and a K-type dwarf, respec-

tively. The densities computed with our method are consistent to those obtained through

asteroseismology and the residuals show no significant biases or trends between the two

methods. We also find that the residuals present a root mean square of 0.048 g cm−3, which

is slightly larger than our mean uncertainty in density (0.033 g cm−3), and could signify that

our method and/or the asteroseismic method underestimates the uncertainty in density (by

≈ 40% at maximum).

To confirm that the two methods are consistent, we compute the Bayesian evidence for

seven possible relationships between our stellar densities and those obtained via asteroseis-

mology:

1. A one-to-one relationship with an additional noise term, ρgaia+Y Y
∗ = ρaste∗ + σ2

extra;

2. A relationship with a constant offset, ρgaia+Y Y
∗ = ρaste∗ + b, with and without σ2

extra;

3. A relationship with a stellar-density dependent offset, ρgaia+Y Y
∗ = aρaste∗ , with and

without σ2
extra; and

4. A relationship with both a constant and stellar-density dependent offset, ρgaia+Y Y
∗ =

aρaste∗ + b, with and without σ2
extra.

Of these, model (i) has the highest Bayesian evidence, with measured σ2
extra = 0.0313±

0.0044g/cm3, which is roughly equal to our mean uncertainty in density. We therefore

conclude that we have underestimated our error bars by roughly a factor of two.

We conclude from this exercise that the stellar densities determined using Gaia parallaxes

and the Yonsei-Yale isochrones are reliable estimates to characterise the host stars of single

transiters in order to predict their orbital periods.
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Figure 3.1: The top panel shows a comparison between stellar densities estimated with
asteroseismology (x-axis) and those computed using Gaia parallaxes and the Yonsei-Yale
isochrones (y-axis). The black points correspond to the sample of Kepler host stars presented
in Silva Aguirre et al. (2015, 2017), while the red points correspond to the two giant stars
that have been found to have transiting giant planets using K2 data, K2-97 and K2-132.
The bottom panel presents the density difference between the two methods as a function of
the asteroseismic density.
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Figure 3.2: Illustrative plots of our single-transit fits to known exoplanets HATS-11b (short
cadence, left) and K2-96c (long cadence, right) from K2 photometry (black dots with error
bars). Solid black lines present our best-fit models; blue bands the 1-sigma credibility band
given our posterior parameters. The out-of-transit trend, which we fit by Gaussian process
regression, has been subtracted off of the K2 data.

3.2.2 Light curve analysis

Fitting single-transit light curves is a complex problem on its own, as it entails sampling

parameters that are strongly correlated with one another due to the fact that we are ex-

tracting information of several parameters from the same portions of the light curve (Seager

& Mallén-Ornelas, 2003; Winn, 2010). For example, the transit duration simultaneously

gives information on every parameter that defines the transit light curve except for the limb-

darkening parameters, whereas the ingress and egress times (which are slightly different if

we assume eccentric orbits) constrain all the parameters, including the limb-darkening co-

efficients. All this implies that complex, possibly multi-modal solutions are possible for a

given transit light curve.

Because of these possible complexities, we fit these transits using MultiNest (Feroz et al.,

2009) through the PyMultiNest package (Buchner et al., 2014), which allows us to efficiently

explore the posterior distribution of the parameters given the data in this potentially multi-

modal and degenerate case, and thus marginalise over those possibilities when estimating

the posterior distribution of the periods of our single transiters given the data.
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In our transit fits, we assume as free parameters ~θ all the physical and orbital parameters

that define the transit light curve: the planet-to-star radius ratio Rp/R∗ and the transit

impact parameter b, reparametrised as described in Espinoza (2018) for improved sampling

efficiency; the stellar density ρ∗; the period P ; the time of transit centre t0; the argument

of periastron passage ω; and the eccentricity e. We describe the limb-darkening effect with

a linear law through a parameter q, so the stellar intensity profile has the form I(µ) =

1 − q(1 − µ) with q ∈ (0, 1) in order to sample physically plausible intensity profiles. The

reason for selecting a linear law is the small number of informative, in-transit data points in

any given single long-cadence transit: in such a situation, the variance generated by other

laws is greater than the bias generated by the linear law (i.e., the achievable precision on the

limb darkening parameters of a more complex law would be severely hampered by the small

number of data points in our light curves; see e.g. Espinoza & Jordán 2016). To allow a like-

for-like comparison between all of the transits in our validation sample, we apply the same

linear law to the short-cadence transits as well. However, in general, single transiters should

be assessed individually in order to find the best limb-darkening law for a given candidate

following the prescriptions of Espinoza & Jordán (2016).

To account for out-of-transit trends in the light curve, we simultaneously fit (i) the

eight-parameter transit model described above and (ii) a Gaussian process model with an

exponential squared kernel in time, implemented in george (Foreman-Mackey et al., 2014a).

This model demands an additional four parameters: a constant flux offset f0; a “jitter” term

j to model the white noise in the light curve (j equals the natural logarithm of the white

noise variance added to the diagonal of the covariance matrix); and the two hyperparameters

of the exponential squared kernel (a multiplicative constant and a scale parameter).

We keep 30 and 100 out-of-transit points at each side of our long- and short-cadence

transits, respectively, and fit the combined transit and GP model to this subset of the full

time series. Our likelihood, which we assume to be Gaussian, is constructed from the light

curve information, packed in a vector ~ytr which contains times, fluxes and errors from the
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photometry. To compute the transit model, we use the batman package (Kreidberg, 2015),

which is re-sampled for the case of K2 30-minute cadence light curves following Kipping

(2010b).

For both the validation transits and the true singles, we fit the EVEREST CBV-corrected,

detrended K2 light curves (Luger et al., 2016). We perform no outlier rejection for the

validation transits; for the singles, we exclude a single 60σ discrepant out-of-transit data

point from the light curve of EPIC 211311380d, a single 40σ discrepant in-transit data

point from the transit of EPIC 211311380f, and a series of five 5σ discrepant in-transit data

points (apparently the result of stellar activity) from the transit of EPIC 203311200b. These

excluded points are plotted with the rest of the transit in Figure 3.11.

We impose a split-normal prior on ρ∗,

Pr(ρ∗) = A exp
(
−(ρ∗ − µ)2

2σ2
left

)
, ρ∗ < µ

= A exp
(
−(ρ∗ − µ)2

2σ2
right

)
otherwise

(3.6)

with mode µ and lower and upper standard deviations σleft and σrightderived from the

procedure described in 3.2.1. (The constant A is set to normalize the integral of the prior

to 1.) We assume wide uniform priors for the reparametrised b and Rp/R∗; t0; e; ω; q; and

f0, and wide log-uniform priors for P , j, and the two Gaussian process kernel hyperparam-

eters. Specifically, for our validation K2 planets, we choose the P prior to be a log-uniform

distribution bounded between 1.0 and 1000 days.

For both our validation transits and the true single transits, we also tested the single-

transit period prior suggested by Kipping (2018a) (hereafter K18), which explicitly accounts

for the fact that the planet was only observed to transit once over the observational baseline,

as well as the “phase” of the single transit relative to the beginning and end of the observation.

As in that work, we set α (the power-law index on the underlying intrinsic period prior) equal

to −2/3, which implies uniformity over semi-major axis; the end result is a prior which is
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∝ P−7/3 over the interval Pmin and Pmax and zero elsewhere.

For the true single transiters, we have a meaningful, observed Pmin, based on when the

transit is observed (t0) relative to the beginning (tstart) and end (tend) of its K2 campaign,

Pmin = max[|t0 − tstart|, |t0 − tend|]. (3.7)

However, for the validation sample, in which our observational baseline is in fact longer

than the planet’s period, we must choose Pmin arbitrarily. When we adopt a K18 prior

with arbitrary Pmin (specifically, Pmin = 1.0 days to enable comparison to the log-uniform

prior described above), we find that the validation fits universally converge to solutions

with P = Pmin = 1.0 days, regardless of their true periods. In these fits, the eccentricity

converges to implausibly high values in order to maintain the observed transit duration in

the face of such a short P—this is true regardless of whether the prior on e is uniform, or

instead a Beta distribution with parameters adopted from Kipping (2013). We conclude

from this exercise that, while the K18 prior is appropriate and philosophically motivated for

true single transiters, it is inappropriate for our artificial validation “single” transits with

arbitrary minimum period. We therefore use the log-uniform prior described above for these

validation fits.

Additionally, we impose the physical constraints that b ≤ (1 + Rp/R∗) (this is already

imposed by the b and Rp/R∗ reparametrisation of Espinoza 2018); b ≤ (a/R∗); and 0◦ ≤ i ≤

90◦.

Our single-transit fitter code, single, is available on GitHub1.Typical fits for our targets

are presented in Figure 3.2.
1http://www.github.com/nespinoza/single
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3.3 Validation Fits

In order to test the accuracy of our method, we applied it to known K2 multi-transit

planets, with known periods. For a given planet, we treated each transit independently as

a single transit, and we compared our estimate of the orbital period to the known one. Our

validation sample of 27 planets consists of the confirmed systems from K2 that have available

Gaia parallaxes and stellar atmospheric parameters (which allow us in turn to obtain precise

stellar masses and radii using the method outlined in Section 3.2.1), as well as at least one

transit with SNR > 7, the threshold at which we would expect a transit to be detectable

individually. 21 of the validation planets were observed at long cadence (30 minutes), but

we also considered a set of 6 planets observed at 1 minute cadence.

Among our validation sample were K2-19b and 19c, which underwent three overlapping

transits during K2 Campaign 1. We remove these overlapping transits from our sample.

We also remove one transit of WASP-47b, one transit of WASP-55b, and two transits of

WASP-118b because they have in-transit light curve discontinuities due to stellar activity;

the Gaussian process detrending was able to remove these discontinuities but caused the

resulting de-trended transits to be unphysically much shallower than the other transits of

the same planets.

The systems that we analysed are listed in Table 3.1, along with their assumed and

determined parameters. We adopted the atmospheric parameters reported in the discovery

publications as input for the estimation of the stellar radii and masses. In the table, we report

both the known period (which is measured from the interval between successive transits, and

is not used in our inference in any way) and the period we measure by fitting the planet’s

transits individually. (Note that the parameters reported in this table are summary statistics

over multiple single-transit fits for each of these planets, and therefore are not representative

of any of our individual transit fits. For posterior distributions of each individual single-

transit fit, please contact the authors.)
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Figure 3.3: The posterior distributions for the 21 validation planets observed at long cadence.
Planets are arranged in order of increasing period from bottom to top. Each histogram rep-
resents the posterior P distribution from the fit to each individual transit of the planet,
with the planet’s true period subtracted. The vertical yellow lines represent the lower prior
bound on P , equal to 1.0 days. Transits with in-transit outliers and/or missing in-transit
data points are susceptible to inaccurate measurement of P ; see e.g. K2-32b and K2-140b,
which both have transits with missing data points during ingress or egress. The posterior dis-
tributions appear to dip below the lower prior bound in some cases because of the smoothing
we applied to the histograms in plotting.
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Figure 3.4: The posterior distributions for the 6 validation planets observed at short cadence.
Planets are arranged in order of increasing period from bottom to top. Each histogram
represents the posterior P distribution from the fit to each individual transit of the planet,
with the planet’s true period subtracted. The vertical yellow lines represent the lower prior
bound on P , equal to 1.0 days. The posterior distributions appear to dip below the lower
prior bound in some cases because of the smoothing we applied to the histograms in plotting.
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Figure 3.5: A demonstration of the extreme effect a slightly different transit shape mea-
surement can have on the recovered P posterior, for validation planet K2-140b (Preal =
6.569 days). Eight transits are observed for this planet (left panel: transit data; middle
panel: MultiNest-fit transit models; right panel: corresponding P posteriors). Seven have
very similar transit shapes (black data points and transit models), corresponding to very
similar P posteriors (black histograms). One transit, plotted in blue, has a missing data
point at the position indicated by the vertical blue line in the left panel. As a result, Multi-
Nest converges to a visibly wider transit shape, and the P posterior is offset by ∼ +12.5
days from the true P .
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Figure 3.6: The posterior uncertainty on P as a function of Preal. Semi-transparent small
points represent individual transits of a given planet; larger opaque black points with error
bars summarise the results over all individual transits of each planet. The dotted line is the
best weighted least-squares fit. We achieve smaller uncertainties for planets with smaller
orbital periods.
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Below, we discuss in turn the accuracy and precision of our period inferences for these

planets.

3.3.1 Accuracy of Period Inferences

In Figures 3.3 and 3.4, we present the posterior P distributions from our single-transit

fits to the long- and short-cadence validation planets, respectively, as well as plots of the fits

themselves. Because of the physical requirement that P > 0 (i.e., P − Preal > −Preal), these

posterior distributions have a characteristic asymmetric shape, skewed toward long P . To

summarise these posteriors, we therefore choose to fit each one with a split-normal distribu-

tion and report the mean and left/right standard deviations (Penoyre, prep). (In Table 3.1,

the given summary statistics are from split-normal fits to the concatenated posterior samples

of all individual single transit fits for a given planet.)

Generally, these posterior P distributions are in good agreement with Preal. This is

particularly true for the six validation planets observed at short cadence, where the transit

shape is much better constrained.

Occasionally, a particular transit will yield a P posterior that is significantly offset from

Preal; this is never because of a poor fit to the available light curve data, as Figures 3.3

and 3.4 show. Rather, these are cases where our ability to accurately measure the transit

shape is compromised by missing data, outliers, or both.

In Figure 3.5, we illustrate the surprisingly dramatic effect that even a small discrepancy

in transit shape can have on the accuracy of the P posterior, using K2-140b as an example.

This planet is observed to transit eight times during K2 Campaign 10. Of our fits to the

eight transits individually, seven have very similar transit shapes and return very similar P

posteriors, in reasonably good agreement with Preal = 6.569 days.

The seventh of eight, however, is missing a data point during ingress, and the resulting

MultiNest fit has a noticeably longer transit duration than the others. The resulting P

posterior is centred at µ = 19.0+7.9
−4.0 days, more than 3σleft discrepant with Preal. This is
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Figure 3.7: The posterior fractional P uncertainty for each single-transit fit of the validation
planets, as a function of the fractional P uncertainty predicted by Equation (3.2). The black
dotted line is a one-to-one line (the predicted relationship of Equation 3.2). Each data point
represents one transit of one validation planet; points are colour-coded by Preal (dark for
short Preal to light for large Preal) and sized by the best-fit posterior Rp/R∗.

sensible because P scales as (a/R∗)3/2, so an overestimate in a/R∗ gets amplified in P .

We note also that missing data during ingress and egress can also cause MultiNest to

converge to an erroneously short transit duration, and a correspondingly short period—this

is true for two of K2-32b’s seven observed transits.

We therefore advise caution in fitting single transits with missing data or obvious in-

transit outliers, particularly during ingress and egress, as the fits for such transits are not

reliable. The twelve true single transits discussed in section 3.4 are well-sampled during

ingress and egress, so we have confidence in our ability to measure their transit shapes (and

corresponding periods) accurately (see Figures 3.10 and 3.11, left panels).
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3.3.2 Precision of Period Inferences

We also consider the precision of the period inferences we can make about our validation

planets. In particular: are there specific characteristics of a single transit that enable a

precise period measurement?

We note that we calculate the posterior period uncertainty, σP , by fitting a split-normal

distribution to the P posterior, then taking the average of the resulting σleft and σright. We

make this choice because our posteriors are quite asymmetric, as explained in 3.3.1, and the

traditional percentile summary statistics do not characterise them well. (We adopt the same

procedure for calculating posterior uncertainties σa/R∗ and σe, below.)

In Figure 3.6, we examine the trend between the posterior period uncertainty σP and the

true period Preal for our 27 validation planets. These quantities are positively correlated:

in other words, we derive smaller σP for smaller Preal and vice versa. (This trend is also

visible in Figure 3.3, in the sense that the average width of the P posteriors increases with

increasing Preal.)

Given that σP increases with P , we next investigate trends in the fractional period

uncertainty, σP/P , with other quantities. First, in Figure 3.7, we compare the σP/P from

our posterior P distributions to the σP/P predicted by Equation (3.2). Broadly, the data

follow the expected relationship, but we find that Equation (3.2) tends to underestimate the

observed fractional uncertainty, particularly when σP/P is high.

In Figure 3.8, we investigate σP/P more carefully, examining which sources of uncertainty

contribute most strongly with it. In particular, we examine the correlation of σP/P with the

fractional uncertainty of the input Gaia ρ∗ measurement; with the fractional uncertainty of

a/R∗ and e from our posterior distributions; and with the estimated contribution to σP/P

from K2’s photometric uncertainty in observing each planet’s transit. (This last quantity is

calculated according to Equation 13 of Yee & Gaudi 2008.)

The top panel of Figure 3.8 plots the relationship between the fractional uncertainty in
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ρ∗, which was a prior input to our MultiNest fits, and the resulting σP/P . Since σρ∗/ρ∗

is the same for all planets in a particular system, the planets in this panel bunch up in

vertical lines. Surprisingly, there is no apparent correlation between the prior fractional

stellar density uncertainty and the posterior fractional uncertainty in P : in other words,

the stellar density uncertainty does not appear to be the dominant contribution to the

ultimate P uncertainty. Our order-of-magnitude calculation for an Earth analog, following

Equation (3.2), is clearly too simplistic.

In contrast, the second panel shows that σP/P is very strongly predicted by σa/R∗/a/R∗.

a/R∗ is measured directly from the transit shape; this panel shows that our ability to con-

strain the transit shape is the single most important predictor of how well we can constrain

P for a single transiter.

Since we also expect our constraint on the linear limb darkening coefficient q to depend

on how well we can constrain the transit shape, we plot in the third panel σP/P vs. σq/q, and

find the expected positive correlation; in other words, transits with worse-constrained shapes

have both worse-constrained limb darkening coefficients and worse-constrained periods.

Our ability to constrain e is less important, as illustrated in the fourth panel. There is a

weak positive correlation between σP/P and e, indicating that more eccentric planets (larger

e) have worse period constraints, and vice versa.

Finally, there is essentially no correlation between σP/P and the K2 photometric un-

certainty over the planet transit. Visible in the colours and sizes of points on this plot,

however, are the strong negative correlation between photometric uncertainty and planet

size ((σP/P )photometric ∝ R−5/2
p ) and the weaker negative correlation between photometric

uncertainty and orbital period ((σP/P )photometric ∝ P−1/6).

In summary, a strong constraint on a/R∗, which is measured from the transit shape, is

the best predictor of a strong posterior constraint on P . To improve the constraint on the

transit shape, one could place stronger prior constraints on the limb-darkening profile of the

star, for example by jointly fitting transits of multiple planets in the same system.
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Figure 3.8: An exploration of which terms contribute most significantly to σP/P . Top:
σP/P as a function of the fractional uncertainty on the Gaia-derived ρ∗ measurement input
to MultiNest. Second row: σP/P as a function of the fractional posterior uncertainty on
normalised semi-major axis a/R∗. Third row: σP/P as a function of the fractional posterior
uncertainty on linear limb darkening coefficient q. Fourth row: σP/P as a function of the
posterior modal value of eccentricity e. Bottom: σP/P as a function of the K2 photometric
uncertainty for each transit (calculated from the formula given by Yee & Gaudi 2008). Each
point represents one transit of one validation planet; points are colour-coded by Preal (dark
for short Preal to light for large Preal and sized by the best-fit posterior Rp/R∗. A one-to-one
line is plotted in each panel.
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3.4 Period Predictions for K2 Single Transiters

We next proceed to apply our fitting code to twelve single transiters observed by K2.

These single transiters were first reported by Osborn et al. (2016); Crossfield et al. (2018);

Santerne et al. (2018); Vanderburg et al. (2018); Giles et al. (2018); Vanderburg et al. (2015);

and Vanderburg et al. (2016), as detailed in Table 3.2.

In Figures 3.10 and 3.11, we present our transit fits and posterior distributions for these

twelve single transiters. For all twelve, MultiNest converges to a good fit to the transit, with

a stellar density posterior distribution in complete agreement with the Gaia prior. (In other

words, there were no cases for which MultiNest needed to wander far from the input Gaia

stellar density to fit the transit data.)

Over the twelve single transits, our posterior fractional uncertainty σP/P is 94+87
−58%, which

is comparable to that achieved in previous work. We emphasise that we treat eccentricity e

as a free parameter in these fits.

For a more direct comparison to previous work, we re-fit the single transits with eccen-

tricity e fixed to zero, and find that we achieve posterior period fractional uncertainty σP/P

of 15+30
−6 %, a roughly threefold improvement over typical uncertainties of previous studies.

3.4.1 A note on priors

As discussed in Section 3.2.2, the log-uniform prior adopted for our validation fits does

not formally account for the fact that a single-transiter is only observed to transit once, and

as such does not exploit all of the available information about a single transit. The prior

defined by K18 does account for this fact, and it strongly enforces the expectation that, if

we observe a single transit of a planet over a given baseline, the planet is a-priori less likely

to have a long period than a short one (Pr(P ) ∝ Pα−5/3 between Pmin and Pmax, where we

choose α = −2/3, the power-law index of the underlying intrinsic period prior, for uniformity
1This single transit was observed during a 9-day test of K2 in February 2014, hence its short Pmin.
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Figure 3.9: A comparison of the period posteriors derived for single transiter EPIC
246445793b with three different choices of prior: in red, a K18 period prior with α = −2/3
and a uniform eccentricity prior between 0 and 1; in green, a K18 period prior with α = −2/3
and a Beta distribution eccentricity prior with a = 0.867, b = 3.03 (adopted from Kipping
2013); and in blue, a log-uniform period prior between 1 and 10000 days with a uniform
eccentricity prior between 0 and 1. Left panel: The best-fit transit model given each prior.
Middle panel: The stellar density posterior given each prior. Right panel: The period poste-
rior given each prior. The dashed black line marks the MOST photometry-measured period
for this planet (Vanderburg et al., 2015).

in semi-major axis).

We test both period priors on our twelve true single transiters. For both, we set Pmin

according to Equation 3.2.2 and set Pmax = 10000 days. With the log-uniform period prior,

we keep the eccentricity prior uniform between 0 and 1. With the K18 prior, we test two

eccentricity distributions: (1) e uniform between 0 and 1 and (2) e Beta-distributed, with

parameters a = 0.867, b = 3.03 adopted from Kipping (2013).

The results of these three sets of P and e prior choices for single transiter EPIC 246445793b

(HIP 116454b) are plotted in Figure 3.9. The K18 prior, as expected, yields a P posterior

which drops off much more steeply with increasing period than the log-uniform P prior,

regardless of the choice of e prior.

In the case of EPIC 246445793b, the resulting K18 posteriors drop off so sharply with P

as to be 2σ inconsistent with the period measured from MOST photometry of 9.125±0.0005

days (Vanderburg et al., 2015). We find that the K18 period posteriors for EPIC 211311380f
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(HIP 41378f) are similarly inconsistent with previously published period constraints (Becker

et al., 2019).

These inconsistencies suggest that the K2 long-cadence transit data are insufficient to

constrain our 12-parameter transit model in the face of such a strong period prior. It is

possible that a lower-dimensional model—e.g., one that relied on a less flexible detrending

algorithm than Gaussian process regression—would be less easily overwhelmed by a strong

prior. It is also possible that the choice of intrinsic period prior power-law index α = −2/3

is too steep to describe the long-period exoplanet population, but determining the intrinsic

period prior for long-period exoplanets is well beyond the scope of this work.

As a result of these considerations and its success in the validation fits, we choose to

fit the twelve single-transiters in our sample with a log-uniform prior in P between Pmin

(determined by Equation 3.2.2) and Pmax = 10000 days.

3.4.2 Comparison to previous work

For some of the twelve single transiters, period constraints have been published before.

Vanderburg et al. (2015), for example, obtained MOST photometry and radial velocity

measurements of EPIC 246445793b and measured its period at P = 9.1205 ± 0.0005 days.

Our measurement, though obviously considerably less precise, agrees well with this one.

Santerne et al. (2018) analyze the K2 photometry of the EPIC 228801451 system and

conclude that there are two possible orbital solutions for EPIC 228801451d: one with P =

31.0± 1.1 days, and one with P > 50 days. Our period measurement, P = 25.0+49.8
−0.1 days, is

compatible with both.

Vanderburg et al. (2018) estimate the period of EPIC 248045685b by a very similar

method to ours, also exploiting information from the host star’s Gaia parallax and public

broadband photometry. They conclude that P = 106+74
−26 days, and we agree, with P =

118+119
−41 days.
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Giles et al. (2018) use high-resolution spectra combined with Gaia parallax to measure

the stellar parameters of EPIC 248847494, and then model the transit of EPIC 248847494b

to conclude that P = 3650+1280
−1130 days, which agrees with our P = 1700+4200

−400 days.

Crossfield et al. (2018) estimate that EPIC 212813907b has P of order 1000 days, while

we estimate that it has P = 2000+1100
−300 days.

Vanderburg et al. (2016), who discovered the EPIC 211311380 (HIP 41378) system in K2

Campaign 5 observations, estimate from fits to the respective single transits that planet d

has period P = 156+163
−78 days, planet e has period P = 131+61

−36 days, and planet f has period

P = 324+121
−127 days. All three are consistent with our respective estimates of 49.3+328.5

−0.1 days,

131+250
−12 days, and 600+530

−160 days. Becker et al. (2019) observed subsequent transits of planets

d and f in K2 Campaign 18 and refine the possible periods of all three planets based on the

additional observations and simulations of dynamical stability. Their maximum-probability

period for planet d is consistent with our 1σ credibility band, but their maximum-probability

period for planet f (361 days) is shorter than we estimate. Our modal period for planet e is

comfortably allowed by their dynamical simulations.

Finally, Osborn et al. (2016) fit their single transiters by an analogous method to ours;

they derive effective temperatures for the planet host stars using broad-band photometry,

then estimate stellar masses and radii from these temperatures using stellar models, assuming

they are on the main sequence. Four single transits in our sample—EPIC 201635132b, EPIC

201892470b, EPIC 203311200b, and EPIC 204634789b—are drawn from their work.

However, for these four single transits, we do not agree with period determinations of

Osborn et al. (2016). This is because our stellar properties do not agree; in particular, the

bulk densities we derive from Gaia parallaxes plus photometry do not agree with the bulk

stellar densities calculable from their stellar mass and radius estimates. Only in the case of

EPIC 203311200b are the period measurements even in 1σ agreement; for the other three,

they are very different. Obtaining high-resolution spectra for these host stars would enable

a precise cross-check on their stellar parameters and hopefully clear up this disagreement.
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(In the case of EPIC 204634789b, our Pmin prior excludes their best-fit P , so consistent prior

choices are also important.)

Finally, we note that four of our twelve single transit fits—EPIC 201892470b, EPIC

204634789b, EPIC 228801451d (K2-229d), and EPIC 248045685b—have high modal poste-

rior eccentricity, albeit with large uncertainty (see Table 3.2). We are unable to achieve good

fits to these transits with e fixed to zero. These candidates, particularly EPIC 228801451d,

which has two inner planetary companions, merit further study to determine their orbital

properties more precisely.

3.5 Conclusions

In this work, we have presented new transit fits to twelve K2 single transiters, based

on stellar density priors derived from GAIA parallaxes and publicly available broadband

photometry. We achieve good precision in our period posteriors—when we let e vary, the

fractional P uncertainty over the twelve single transiters is 94+87
−58%, and when we fix e = 0,

it is 15+30
−6 % (a roughly threefold improvement over typical period uncertainties of previous

studies). In future, the best way to handle the question of eccentricity is likely to perform

single transit fits with both fixed and free e, then use Bayesian model averaging to combine

them and obtain a posterior P estimate, but we leave this for future work.

Our fit period values also agree well with previously published period constraints. (Where

we do not agree with earlier period constraints, it is because our stellar properties disagree

with those used in previous work, e.g. Osborn et al. 2016; further study of these host stars,

ideally with high-resolution spectroscopy, will be necessary to resolve the disagreement).

Additionally, we test this fitting method on 27 validation planets observed by K2. These

planets have been observed to transit more than once, so their periods are known precisely;

however, we model each transit individually, to evaluate the accuracy and precision of our

derived P posteriors given this limited information. We conclude that our method is robust
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Figure 3.10: The results of fits to the twelve true K2 single transits, compiled from sources
detailed in Table 3.2. Each row represents one planet. Left panel: The observed transit
(black data points), best-fit model (solid black line), and 1-sigma credibility band given
our posterior parameters (blue band). Middle panel: The Gaussian stellar density prior
(yellow line) derived from Gaia distances plus available photometry for each host, and the
corresponding posterior ρ∗ distribution (red histogram). Right panel: The posterior P dis-
tribution, bounded on the left by the K2 baseline-deduced Pmin (yellow line). We fit each
P posterior with a split normal distribution (blue dotted line) to allow us to write down
summary statistics (right panel text).
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Figure 3.11: A continuation of Figure 3.10. The P posterior for the second-to-last planet,
EPIC 248847494b, abuts the upper end of the P prior, Pmax = 10000 days.
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as long as the individual transits we fit are well-sampled during ingress and egress, because

our ability to measure a/R∗ from the transit shape is the most important predictive factor

in the success of the method, both in terms of accuracy and precision.

TESS, with its relatively short 27.4 day observational baseline over much of the sky, is

predicted to reveal tens to hundreds of new single transiters, and it will be necessary to

estimate the periods of these planets to constrain their orbits, temperatures, surface and

atmospheric properties, and potential habitability. Combining information from multiple

surveys, including Gaia, promises to aid greatly in their characterisation.
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4. Shadow imaging of transiting

objects

4.1 Introduction

Transit light curves are rich in information. If we assume a physical model for a transiting

object—usually, a spherical body in a Keplerian orbit about a host star—we may then infer

the parameters of this model, including physical properties of the transiter, its orbit, and

the host star, from the light curve.

However, anomalous transit-like events, such as those observed in star KIC 8462852 (Boy-

ajian et al., 2016), resist this type of analysis, because their physical cause, and consequently

the appropriate model, is not apparent. In this paper, we consider the general problem of

inferring the transiting shape, or shadow image, that generated a particular light curve. We

wish to infer this image from the light curve alone, with as few additional assumptions as

possible.

A number of problems related to shadow imaging have been studied before. The inverse

problem, of how to calculate the light curve of an arbitrary transiting shape, has been

tangentially addressed by several numerical transit-light-curve-calculating codes. Generally,

however, these assume some parametric model for the transiting object—in the case of

BATMAN (Kreidberg, 2015), the transiting object must be a spherical planet; LUNA (Kipping,

2011), a spherical planet accompanied by a spherical moon; PyTranSpot (Juvan et al., 2018),

circular starspots projected on a stellar surface; and the Universal Transit Simulator (Deeg,
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2009), a planet with moons or rings.

Meanwhile, significant advances have been made in another problem closely related to

shadow imaging: eclipse mapping, which attempts to reconstruct the two-dimensional surface

features of an exoplanet undergoing secondary eclipse from the light reflected off the planet’s

surface as it disappears and reappears from behind the star. Majeau et al. (2012) and de Wit

et al. (2012) were the first to demonstrate this method, on hot Jupiter HD189733b. Kawahara

& Fujii (2011) extended this theory to surface mapping of exoplanets in face-on orbits using

scattered light, and Farr et al. (2018) recently released the exocartographer code to carry

out surface mapping in a fully Bayesian framework with robust uncertainty estimation.

Berdyugina & Kuhn (2019) showed that next-generation coronagraphic telescopes will be

able, using these techniques, to map the surface of a handful of nearby planets, including

Proxima b.

Analogous two-dimensional mapping methods have been successfully applied to the prob-

lem of starspot inversion, or deducing the pattern of starspots responsible for time variations

in the spectrum or light curve of a star. Goncharskii et al. (1982) were among the first to

attempt starspot inversion, aiming to explain spectral variations in Ap stars by inferring

the pattern of chemical inhomogeneities on the surface that would generate them. Vogt &

Penrod (1983) introduced Doppler imaging to infer maps of starspots on rapidly rotating

stars from time series spectra, and Vogt et al. (1987) refined the technique by introducing

maximum entropy regularization as a means of choosing from a set of degenerate solutions

to the same observations. Piskunov et al. (1990) compared the maximum entropy method,

which prefers a solution with the minimum spatial correlation between points on the star’s

surface, to an alternative constraint, Tikhonov regularization, which prefers the smoothest

possible pattern of starspots that matches the observations. Similar techniques, with varying

choices of regularization, have been applied to stellar light curves by e.g. Lanza et al. (1998).

In this work, we build upon these techniques to develop a mathematical and numerical

treatment of shadow imaging, which has a similar geometric setup to and is subject to
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similar degeneracies as eclipse mapping and starspot inversion. In Section 4.2, we investigate,

analytically, the degeneracies inherent to the light curve imaging problem. We explain how

discretizing the problem—modeling the transiting object as a grid of pixels of fixed opacity,

rather than as a smooth, continuous image—allows us to make progress on the problem

despite these degeneracies. In Section 4.3, we define the pixel-grid model which can be

used to represent any transiting object and explain how to calculate its light curve. In

Section 4.4, we consider how, starting from a transit light curve, we may infer the pixel grid

image which generated it, and we discuss the results of this inference on a number of test

cases. In Section 4.5, we consider the results of light curve inversion on the real cases of the

TRAPPIST-1c,e,f triple transit and the anomalous transits observed in Boyajian’s Star. We

conclude in Section 4.6.

4.2 Transit Degeneracies

Calculating the light curve of a transiting object is an act of projection. It begins with

a three-dimensional object in space, projected against the sky to make a two-dimensional

image. At a few discrete points in time, as this image crosses a star, the starlight that the

image does not block is summed up, and the sums strung together to make a light curve: a

one-dimensional time series.

Deducing the image that generated a particular light curve, therefore, is a problem of

inferring two-dimensional data from one-dimensional. As such, we do not expect to find a

unique solution to match each light curve. Vogt et al. (1987); Piskunov et al. (1990); Majeau

et al. (2012), and de Wit et al. (2012) note similar degeneracies in starspot inversion and

eclipse mapping, respectively.

We begin by examining mathematically the degeneracies inherent to the problem of infer-

ring the shape that generated a particular light curve. We operate under the assumptions,

discussed further in 4.3, that the occulting shape is unchanging in time and moving at a
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constant velocity across the star; that the star is spherical and of uniform brightness; and

that the observed light curve is well sampled in time.

4.2.1 The Flip Degeneracy

The first important degeneracy in the shadow imaging problem results from the reflection

symmetry of the star about its horizontal midplane. An opaque shape that transits at an

impact parameter b above the midplane produces the same light curve as a “flipped” shape

that transits below the midplane.

In planetary transit modeling, this degeneracy can be ignored, because the sign of the

impact parameter b = cos i
(
a
R∗

) (
1−e2

1+e sinω

)
is a function of the inclination angle i of the

planet’s orbital plane and does not describe any inherent property of the transiting planet.

However, if we wish to model more general transiting shapes, we must consider the full space

of flip-degenerate solutions.

To express the degree of flip degeneracy in a given shadow imaging problem, we consider

an image made up by a grid of opaque and transparent pixels, N rows by M columns. (See

Figure 4.1 for an example.) Although there are 2NM unique permutations of opaque and

transparent pixels arranged in this grid, each of these permutations does not yield a unique

light curve, and in general, a light curve cannot be inverted to produce a unique pixel grid

shadow image.

We can express the degree of degeneracy by calculating the number of unique light curves,

ULC , possible for this N -row by M -column grid,

ULC =


(

2× 3
(N−1)

2

)M
, N odd(

3N
2
)M

, N even.
(4.1)

For intuition, consider first the even-N case. In each of the M columns, there are N
2

pixels above the midplane; each of these has a counterpart below the midplane with the
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same impact parameter. There are four possible opacity states of this pair of pixels: 00,

01, 10, or 11. However, because of the flip degeneracy, the 01 and 10 cases produce the

same light curve, so only three arrangements are unique. Hence, three unique opacity values

for each degenerate pixel pair, raised to the power of the total number of pixels above the

midplane.

The arithmetic in the odd-N case is the same, except that the middle pixel row has no

across-midplane counterpart. Each pixel in that row may only take on opacity 0 or 1.

In the case of a square, 3× 3 pixel grid, then, there are 29 = 512 unique permutations of

opaque and transparent pixels, but only 216 unique light curves.

As a result, the binary-opacity pixel grid solution to any given light curve inversion is

not unique, unless the light curve was, in truth, generated by a grid of binary-opacity pixels

(τ = 0 or 1) that is symmetrical about its horizontal mid-plane. Physically, we would only

expect such a situation for the case of a perfectly spherical planet, or perhaps a planet-moon

system or ringed planet, transiting a star at an impact parameter of 0.

In general, therefore, the inverted pixel grid which generates a light curve is not unique.

Figure 4.1 shows four transiting pixel images which generate identical light curves. Starting

with the pixel image at the top and flipping any pixel about the horizontal mid-plane leaves

the light curve unchanged. The pixel image in the bottom panel is the average of the full

set of flip-degenerate solutions.

We hope, therefore, to recover shadow images analogous to this bottom panel, which

represent a kind of “superposition” of the full set of flip-degenerate solutions to a particular

light curve.

4.2.2 The Arc Degeneracy

There is, however, another degeneracy inherent to the shadow imaging problem by which

the set of physically allowable images matching any particular light curve becomes infinitely

large. This degeneracy allows a transiting pair of semicircular arcs to generate the same
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Figure 4.1: Four transiting binary-opacity pixel images which generate the same light curve.
The bottom pixel image (opaque black pixels have τ = 1; semi-transparent gray pixels have
τ = 0.5) is the average of the full set of flip-degenerate solutions which match this image’s
light curve.
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light curve as a single opaque point, and we term it the “arc” degeneracy.

Figure 4.2 illustrates the geometry of the pair of arcs which generates the same light curve

as an infinitesimally small opaque point transiting exactly along the horizontal midplane of

the star. Consider this shape to transit from left to right across the star: because the right-

hand arc traces the shape of the stellar limb, the entire right-hand arc will ingress upon the

star at the same moment, yielding the same vertical ingress feature in the light curve that

we would expect from an infinitesimally small transiting planet. (A correspondingly sharp

egress feature in the light curve happens when the left-hand arc egresses all at once some

time later.)

After the moment of ingress, the top- and bottom-most edges of the right-hand arc

immediately egress again. However, this egress is balanced by the ingress of the middle of

the left-hand arc. If opacity is appropriately distributed along each arc, then the ingress of

the left-hand arc and egress of the right-hand arc may balance exactly. Here, we derive the

functional form of the opacity distribution along the arc to allow this exact balance.

Let α (see Figure 4.2) denote the angle between the horizontal midplane of the star and

the point of intersection between the stellar limb and the right-hand arc (which ingresses

first). At the moment of ingress, α = π
2 ; at the moment of egress, α = 0. Let β denote the

corresponding angle to the point of intersection on the left-hand arc, and let β range from 0

at ingress to π
2 at egress.

Let θ represent an angle measured from the horizontal midplane of either arc to its

outermost point, and let λ(θ) represent the opacity along the arc as a function of this angle.

Figure 4.3 illustrates this setup. Note that λ(θ) cannot be constant, because, for example,

during some small time interval dt immediately after the moment of ingress, the length of

the right-hand arc which egresses is greater than the length of left-hand arc which ingresses.

Let T be the duration of the transit of the pair of arcs (in other words, the interval

between the moment of ingress and the moment of egress). Let the moment of ingress

happen at t = 0, and let us define a dimensionless time coordinate κ = t
T
to parametrize the
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αβ

Motion of transiting object

θ

Figure 4.2: A pair of arcs which generates the same light curve as a single opaque point
transiting along the horizontal midplane of the star. For this shape to generate a perfect
box-like transit, the arcs must be infinitely thin and cannot be of uniform opacity; rather,
opacity must be distributed symmetrically along them as a function of θ.

x
λ(θ)

θ

Figure 4.3: θ represents the angle from the horizontal midplane of either arc to any point
along it. λ(θ) represents the opacity of the arc at θ. We wish to solve for λ(θ) such that the
arc pair can produce a flat-bottomed transit.
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progress of the transit. At ingress, then, κ = 0, and at egress, κ = 1.

Following these definitions, we may write

cosα = κ, (4.2)

cos β = 1− κ. (4.3)

The total opacity L(κ) transiting the star at a particular moment κ is equal to

L(κ) =
∫ α(κ)

0
λ(θ)dθ +

∫ β(κ)

0
λ(θ)dθ. (4.4)

For the transit to be flat-bottomed, we require that L(κ) be constant, or that dL
dκ

= 0.

Differentiating both sides of Equation (4.4) by κ, we obtain

dL

dκ
= λ(α)dα

dκ
+ λ(β)dβ

dκ
, (4.5)

because λ is time-independent and therefore independent of κ.

Setting this expression equal to 0 and substituting, we obtain

0 = λ(α) 1√
1− κ2

+ λ(β) 1√
1− (1− κ)2

, (4.6)

or

λ(α)
λ(β) = −

√
1− κ2√

1− (1− κ)2
. (4.7)

By the definitions of α and β, we may write

λ(α)
λ(β) = −

√
1− cos2 α√
1− cos2 β

= sinα
sin β . (4.8)
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By inspection, then,

λ(θ) ∝ sin θ, (4.9)

where we choose the sign to be positive because physically meaningful opacities are

between 0 and 1.

The overall normalization of λ(θ) sets the transit depth of the arcs’ light curve. Figure 4.4

shows a transiting arc pair with λ(θ) = sin θ.

We note that there are two other solutions to λ(θ) that satisfy the condition that dL
dκ

= 0.

The first is the trivial solution, λ(θ) = 0. The second is a Dirac delta function at θ = 0,

λ(θ) ∝ δ(θ = 0), (4.10)

where again the overall normalization sets the transit depth.

For intuition, the two non-trivial solutions to λ(θ) given by Equations (4.9) and (4.10)

represent two extremes: the least and most compact arrangements of opacity, respectively,

that produce the same flat-bottomed, box-like transit. Any linear combination of these

solutions also satisfies dL
dκ

= 0 and generates a box-like transit.

The above derivation has demonstrated that a pair of arcs of variable opacity can match

the transit shape of an infinitesimal point of opacity transiting along the horizontal midplane

of the star, at impact parameter b = 0. The same logic applies to an infinitesimal point at

arbitrary impact parameter b. Figure 4.5 illustrates the geometry of this situation.

Mathematically, a change in the impact parameter b means that the limits of integration

in Equation (4.4) change,

L(κ) =
∫ α(κ)

arcsin b
λ(θ)dθ +

∫ β(κ)

arcsin b
λ(θ)dθ. (4.11)

Since b is constant, the subsequent steps and resulting solutions for λ(θ) do not change,

except that the delta function solution is localized at θ = arcsin b.

We note finally that the arc degeneracy technically only operates for an occulter transiting
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Figure 4.4: A transiting arc pair with opacity distributed as λ(θ) = sin θ. This shape
generates a box-like transit light curve. The circles in the left-hand panels mark the time
along the transit at which the right-hand panels occur.
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b = 0

b = 0.6

b = 0.85

b = 0

b = 0.6

Figure 4.5: A pair of truncated arcs, as illustrated in the lower panel, can match the transit
shape of an infinitesimal opaque point transiting at arbitrary impact parameter.

a uniformly bright star: if the star is limb-darkened, then there is no (unchanging) arc

arrangement which can maintain the perfect opacity ingress-egress balance described by

Equation (4.6). However, in practice, the limited time resolution of light curve observations

leaves room for significant arc-degenerate behavior in shadow images recovered from real

transit data (see 4.5 below).

4.2.3 The Stretch Degeneracy

A third degeneracy inherent to light curve imaging results from the “scale-free” nature

of the problem, and allows a wide image moving at high velocity to generate the same light

curve, within an arbitrarily small measurement uncertainty, as a narrower image moving at

lower velocity. We term this degeneracy the “stretch” degeneracy.

The stretch degeneracy is mathematically simpler than the arc or flip degeneracies. Two
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occulters with the same transit duration T both obey

T = W

v
, (4.12)

where W is the width of the occulter, and v is its velocity. The right-hand side of this

equation can be multiplied by the same constant in the numerator and denominator without

consequence to T . In other words, a “stretched” image traveling fast can generate a transit

event of the same duration as a narrow image traveling slowly.

Figure 4.6 illustrates the stretch degeneracy for a simple, low-resolution circular occulter.

Note in particular two features of the “stretched” image: first, that it is semi-opaque rather

than fully opaque like the un-stretched image, and second, that its edges are less opaque

than its middle. The semi-opacity of the stretched image is necessary in order to match the

transit depth of the un-stretched image: because the stretched image is wider, it occults

more of the stellar surface, so it must let some light through, or it will produce a much

deeper transit than the un-stretched image. Meanwhile, the lightened edges of the stretched

image are necessary to better match the ingress and egress shape of the un-stretched image’s

light curve; with arbitrarily high image resolution, it is possible to match the un-stretched

image’s light curve to arbitrary accuracy.

In practice, the stretch degeneracy is the least important of the three non-trivial degen-

eracies we explore in this section, because a fast-transiting, stretch-degenerate image can

only match a narrow, slower image’s light curve if the image resolution is high enough, as

suggested by the example in Figure 4.6. For real data, image resolution is constrained by the

number of observed data points, which causes us to prefer the narrowest, slowest possible

image which can match an observed light curve (see 4.4.2 for further discussion).
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v = 0.4 d-1

v = 0.8 d-1

R
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Figure 4.6: Two transiting images with light curves that differ by O(1%). The lower image
transits at a velocity twice that of the upper image. Note that the left- and rightmost edges
of the lower image are slightly less opaque than the middle, an adjustment made to better
match the ingress and egress shape of the upper image’s light curve. At higher resolution
for the lower image, an even better match to the upper image’s light curve could be found.

4.2.4 Trivial Degeneracies

Finally, we note two trivial degeneracies which do not affect the inference of a shadow

image. The first relates to the arbitrary sign of the velocity of the transiter; an image

which transits left-to-right across the star generates the same light curve as the same image,

horizontally mirrored, transiting right-to-left across the star at the same velocity. We choose

positive v to indicate that the image transits left-to-right (see 4.3.2, below).

The second trivial degeneracy relates to a time translation of the entire transit event. As

we discuss in 4.3.2, we must choose a “reference time,” analogous to a transit midpoint time,

along a light curve in order to recover a shadow image; shifting this reference time forward

or backward along the light curve results in a shadow image which is shifted right or left,

respectively (given our choice of v direction, above).
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4.3 Model: Generating a Light Curve from a Discretized

Image

By the arguments of Section 4.2, a given light curve may be generated by infinitely

many images. To constrain the solution set, we therefore conclude that it is necessary to

impose further constraints on the shadow image. (Starspot inversion requires an analogous

constraint—popular choices include the maximum entropy principle, which chooses the so-

lution with minimum spatial correlation between points on the stellar surface, and Tikhonov

regularization, which chooses the smoothest solution, or the solution with minimum spatial

derivative.)

In this section, we define a forward model for generating a light curve, sampled at discrete

time intervals, from a pixelated image. This simulated light curve can be compared to

observations of a real transit event. After we establish this forward model, we investigate

the inverse problem, of how to infer a pixelated image from an observed light curve, in the

next section. We return to the question of degeneracies in 4.4.3.

4.3.1 Discretizing the Image

Pixelating, or discretizing, the shadow image is motivated by recognizing that real light

curves are themselves discrete time series. A light curve is not infinitely resolved in time,

and therefore we should not attempt to recover a shadow image that is infinitely resolved

spatially. Similarly, each flux measurement in a light curve has an associated uncertainty; we

should not attempt to recover a shadow image with pixel elements too small to be definitively

detected within that uncertainty (see Section 4.4.2 below for further discussion).

Discretizing the pixel image, furthermore, enables us to investigate two physical variants

of the shadow imaging problem:

1. What if the transiting object which generated the light curve is a solid body, and
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therefore our shadow image should only admit of completely transparent (opacity τ =

0) or completely opaque (τ = 1) pixels?

2. What if the transiting object is dusty or translucent, or is a solid body smaller than

the pixel scale, and our shadow image can contain pixels of intermediate opacity (0 ≤

τ ≤ 1)?

These two variations of the shadow imaging problem have different constraints on the

pixel opacities, and require different mathematical approaches to inversion. In case (1),

discretizing the pixel image is necessary to divide it up into opaque and transparent elements.

In case (2), discretizing the pixel image enables us to set up the light curve inversion problem

as a single matrix equation (Equation (4.35), below), and to explore both analytic and

numerical approaches to solving this equation. (Similar mathematical formulations exist for

both starspot inversion (Vogt et al., 1987) and eclipse mapping, e.g. Berdyugina & Kuhn

2019.)

The same forward model, or procedure for generating a light curve from a pixelated

image, can be used in both cases, so we begin there. How do we calculate the light curve of

a pixelated image grid transiting a star?

4.3.2 Grid Definitions and Positions

We consider a pixel grid of N rows and M columns transiting a star. We normalize the

physical scale of the problem such that the radius of the star is unity.

The grid lives in the X-Y sky-projected plane, with the observer at Z = +∞. The grid

moves laterally along the X axis, with dX/dt > 0, and does not translate up or down (i.e.

dY/dt = 0). We illustrate this setup in Figure 4.7.

We treat the grid as moving at a constant lateral velocity v ≡ dX/dt, where dv/dt ≡ 0.

This is a reasonable approximation over the timescale of a transit, unless the object resides

on a very tight orbit, or the object is near pericenter on a highly eccentric orbit. We define
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grid moves as 
dX/dt=v

w=2/N

j=1 j=2 j=M

i=1

i=2

i=N

R★=1

. . .

. . . . . . . . . . . . . . . . . . . . .

!ij=0

!ij=1

XX=0

Y

Y=0

. . .
. . .

. . .
. . .
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Figure 4.7: (Top panels) Illustration of a N = 10 by M = 10 binary-opacity grid model
with 16 opaque pixels. The star itself is not pixelated; rather, the pixelated grid transits
across the star and the exact area of overlap of each square pixel and the star is evaluated
at each discrete time step in order to generate a light curve. (Bottom panel) The light curve
generated when this grid transits across a uniformly bright star at v = 0.4 days−1, tref =
0 days.
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positive v to mean that the grid transits from left to right across the star, such that the

rightmost column of pixels ingresses first.

We define the vertical position of the grid such that the top of the highest row of pixels

falls at Y = 1 and the bottom of the lowest row of pixels falls at Y = −1. In this way, the

grid perfectly overlaps with the star in the vertical dimension.

This definition sets the size of each pixel to have a width, w, of

w = 2/N. (4.13)

We emphasize that every pixel has the same square shape with this dimension. For

N = 1, then, w = 2 and is thus equal to the diameter of the star.

To refer to individual pixels, we adopt the index notation i ∈ [1, N ] to denote the row

and j ∈ [1,M ] to denote the column. To calculate the amount of stellar flux the grid blocks

at each discrete time step tk of the transit observation, we must first calculate the X and Y

positions of each grid pixel i, j at each time step.

We may write the Y -position of the center of pixel i, j as

Yi,j = 1− (w/2)− (i− 1)w, (4.14)

where setting i = 1 recovers Y1,j = 1 − (w/2), and setting i = N recovers YN,j =

−1 + (w/2). The Y positions of the grid pixels are constant.

For the X positions of the pixels, which evolve in time, we first define a reference X

position for each pixel at a reference time t = tref as

Xref
i,j = Xi,j[t = tref ]. (4.15)

We choose the reference time such that the grid is centered on the star at t = tref .
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Therefore:

Xref
i,j = (j − jmid)w, (4.16)

where

jmid = 1 + (M − 1)/2. (4.17)

We may now write the time-evolving X-position of the center of any pixel as

Xi,j(tk) = Xref
i,j + (tk − tref)v, (4.18)

where tk is the kth time index, and k ∈ [1, K]. Practically speaking, tref is analogous to

the transit mid-time fitted in conventional transit models.

We may use the above equation for the time-evolving Xi,j to solve for the time at which

the grid makes first and last contact with the star, tenter and texit. The grid moves from left

to right across the star, so at first contact, the M th column of pixels has an X position equal

to −1− (w/2), and for the last contact the 1st column of pixels has an X position equal to

1 + (w/2), giving

tenter = tref −
1 +Mw/2

v
, (4.19)

texit = tref + 1 +Mw/2
v

. (4.20)

We assign a time-independent opacity τi,j to each pixel. τi,j is a binary value equal to

zero or unity—in other words, we construct our grid of perfectly transparent pixels (τi,j = 0)

and opaque pixels (τi,j = 1).

In total then, our model has MN opacity parameters, which are binary-valued (case 1)

or real numbers between 0 and 1, inclusive (case 2), and two auxiliary parameters, tref and
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v, which are real-valued.

4.3.3 Computing the Light Curve of a Pixel

As pixel i, j transits the star, it occludes a fractional area Ai,j(tk) of the stellar disk at

time tk; A = 0 for pixels which do not overlap the star, and A = w2

π
for pixels which overlap

completely (since we choose R = 1, the area of the entire stellar disk is equal to π).

If we assume that the stellar disk is uniformly bright (i.e., there is no limb darkening),

we may then compute the light curve F(t) of the transiting grid by recognizing that the

fractional flux blocked by the grid at each time step tk is equal to the fractional area of the

star occulted by non-transparent pixels (τi,j > 0), in proportion to their opacity. Therefore,

the unocculted flux at time tk is given by:

F (tk) = 1−
N∑
i=1

M∑
j=1

τi,jAi,j(tk). (4.21)

This is the equation for the transit light curve, normalized such that F = 1 out-of-transit.

We emphasize that, while opacities τ < 0 and τ > 1 are mathematically permissible in

this equation, they are unphysical: a τ < 0 would represent a transiting pixel brighter than

the stellar surface it occulted, and a τ > 1 would describe a pixel that blocked more than

its proper area’s worth of starlight.

We compute the area of overlap Ai,j(tk) of pixel i, j at time step tk from the (X, Y )

position of the pixel’s center at tk, given by Equations (4.14) and (4.18), and the pixel’s

width, given by Equation (4.13). When a pixel partially overlaps the star, we approximate

its overlap area as either a triangle, a trapezoid, or a square missing a triangular corner.

We choose the appropriate overlap-shape by computing the number of intersection points

between the edge of the star and the sides of the pixel, and also noting whether the center

of the pixel falls inside or outside the star. We then correct this approximation by using the

length of the chord between intersection points to calculate the area of the sliver of occluded
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star yet unaccounted for by this approximation.

For a limb-darkened star, we must also account for the position of each opaque pixel

relative to the stellar limb at each time step in order to determine how much flux it occludes.

We adopt the small-planet approximation of Mandel & Agol (2002), in which it is assumed

that the star’s surface brightness is constant across a pixel. In other words, we treat the

pixel as occulting a thin, uniform-surface-brightness, annular slice of the stellar disk, where

the radius of the annulus is the distance from the center of the stellar disk to the center of

the pixel, and the annulus is just wide enough to encompass the pixel.

We denote the area of this annulus as Aannulus, and its emitted flux as Fannulus. As a rule of

thumb, this small-planet approximation is only appropriate for w . 0.2 (i.e. N > 10), which

corresponds roughly to an occulter-to-star ratio-of-radii of 0.1, for a circular occulter of the

same area as the pixel. The exact ratio-of-radii at which the small-planet approximation

becomes inappropriate depends on the impact parameter of the pixel, the size of the pixel,

the limb-darkening profile of the star, and the bandpass of the observations, so there is no

general exact cutoff.

To calculate the light curve in the limb-darkened case, we must re-normalize Equa-

tion (4.21): the fractional flux occulted by an opaque pixel is no longer equal to the fractional

area of the stellar disk occluded by the pixel, but rather to:

Āi,j(tk) = Ai,j(tk)
Aannulus

Fannulus

F?
, (4.22)

where F? is equal to the flux of the entire unocculted, limb-darkened star, relative to

the non-limb-darkened star (which must be calculated given a choice of limb-darkening co-

efficients). We note that this equation reduces to Āi,j(tk) = Ai,j(tk) in the case of uniform

limb-darkening.

The value of the light curve at tk is then given by:
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F (tk) = 1−
N∑
i=1

M∑
j=1

τi,jĀi,j(tk). (4.23)

We provide Python code to calculate the transit light curve of any grid in the case of

uniform, linear, quadratic, or 4-parameter nonlinear (Claret, 2000) limb-darkening in the

software package accompanying this paper, EightBitTransit.

4.4 Fitting: Shadow Imaging a Pixel Grid from a Light

Curve

In this section, we describe how we use the forward model described above to solve the

inverse problem, “shadow imaging.” We observe a light curve F , made up of discrete flux

measurements Fk ≡ F (tk) over K points in time: what pixelated image generated that light

curve?

To illustrate the complexity of this problem, we begin with an order-of-magnitude esti-

mation of the number of arrangements of pixels in a binary-valued shadow image (case (1)).

There are 2NM unique permutations of transparent and opaque pixels for an N by M grid,

and O[3NM/2] unique light curves that can result (by the flip degeneracy, discussed in 4.2.1).

For a 10 by 10 grid, then, there are O[1030] unique permutations of the binary pixel opacities;

accounting for the flip degeneracy, if one wished to find the binary pixel opacity arrangement

of the just top half of a 10 by 10 grid to best match a particular light curve, one would have

to evaluate O[1024] possibilities.

A full parameter search is therefore not practically feasible. The largest square grid

which could be reasonably fully searched is 5 by 5, for which there are 33.6 million full-grid

permutations and 1.9 million half-grid permutations (by Equation (4.1)). We must therefore

infer the pixel opacities from the light curve, not attempt to guess them.
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To infer a pixel grid from a light curve F , we must first select the grid parameters: the

dimensions N and M , the velocity v, and the reference time tref . Given these choices, we

may calculate the areas of overlap of each grid pixel at each light curve time step, and the

corresponding Āi,j(tk) for any choice of limb-darkening law. All that remains is to solve

Equation (4.23) for the opacities of the grid pixels, τi,j, subject to the constraints of either

case (1) (τi,j = 0 or 1) or case (2) (0 ≤ τi,j ≤ 1).

4.4.1 Mathematical Setup

To be exact, we note that F is a column vector of length K, of which each scalar entry

Fk ≡ F (tk) is given by Equation (4.23). Let us “unravel” the double sum in Equation (4.23)

by defining a new index l, such that

l[i, j] = j + (i− 1)M. (4.24)

Since i ranges from 1 to N , and j from 1 to M , l ranges from 1 to MN .

We may then rewrite Equation (4.23) as

Fk = 1−
L∑
l=1

τlĀl(tk), (4.25)

where we define L ≡MN . If we further define Āk,l ≡ Āl(tk), then

Fk = 1−
L∑
l=1

τlĀk,l. (4.26)

Let us now rewrite Āk,l in matrix form:
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A =



a1,1 a1,2 · · · a1,L

a2,1 a2,2 · · · a2,L

... ... . . . ...

aK,1 aK,2 · · · aK,L


. (4.27)

A is a matrix of shape K by L, where the kth row encodes the state of overlap of the

entire pixel grid at time step k, and the lth column encodes the overlap state of pixel l across

all time steps.

Similarly, we may “unravel” the opacity matrix τ into a column vector τ of length L:

τ =



τ1

τ2

...

τL


. (4.28)

We may now re-express Equation (4.23) in matrix form:

F = 1 − Aτ , (4.29)

where

F =



F1

F2

...

Fk


(4.30)
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and 1 is a column vector of ones, equal in length to F .

If we define a vector R = 1 − F , we may rearrange this equation to read

Aτ = R. (4.31)

If A were invertible, then our work would be done: we could solve Equation (4.31) directly

for the vector of pixel opacities τ . However, because of the flip degeneracy, pixel i, j has the

same area-of-overlap at every time step as pixel (N + 1− i), j, and as a result, A always has

repeated columns. By the invertible matrix theorem, a matrix with repeated columns is not

invertible.

We may proceed by recognizing that A and τ , since they describe the entire pixel grid,

contain redundant information. We need only solve for the opacities of one half of the pixels

(we choose the top half, for convenience). We define a new index

Lhalf


(N−1)M

2 +M, N odd

NM
2 , N even.

(4.32)

We define a new area-of-overlap matrix Ahalf , which represents the left half (columns 1

through Lhalf , inclusive) of A, and a new opacity vector τ half , which represents the corre-

sponding top half of τ . We may then write:

Ahalfτ half = R. (4.33)

Since, in general, K 6= Lhalf , we may multiply both sides of this equation by AT
half to yield

AT
halfAhalfτ half = AT

halfR (4.34)

so that both sides of the equation are column vectors of length Lhalf , and AT
halfAhalf is a

square matrix.
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For notational simplicity, let B ≡ AT
halfAhalf , and let C ≡ AT

halfR, such that

Bτ half = C . (4.35)

We have therefore reduced our shadow imaging problem to the problem of solving a

system of linear equations for the entries of the column vector τ half . These entries, re-

shaped into the matrix τ , correspond to the opacities of the pixels making up the top half

of the grid, which define the image.

In the sections below, we elaborate upon the two steps of shadow imaging: first, selecting

the grid parameters, and second, solving Equation (4.35) for the pixel opacities subject to

our chosen physical constraints.

4.4.2 Constraining the Grid Parameters

In general, the auxiliary parameters tref and v can be set to reasonable approximations

of their “true” values, and the pixel image will slightly shift or stretch, respectively, relative

to the “truth,” without disturbance to its principal morphology. This means we can proceed

by fixing these terms and optimizing the opacities τ only. We may then, depending on

the success of the solution τ , perform further iterations, varying the grid parameters each

time, to reach an optimal grid with optimal auxiliary parameters. We discuss here some

constraints of the grid parameters which allow us to estimate their values initially.

The first constraint we consider is that the number of pixel elements should not exceed the

number of data points obtained during the transit event of interest. For regularly sampled

data, such as that of Kepler, we may write the sampling constraint as

NM ≤ tevent

tcadence
, (4.36)

where tevent is the timescale of the event we wish to image and tcadence is the cadence of
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the time series, i.e. the interval between successive observations.

The second constraint we consider is that a pixel should not be too small to detect in-

dividually. In other words, the transit depth of a single opaque pixel should not be smaller

than the uncertainties on the flux measurements. In principle, smaller pixels could be re-

solved over repeated transit observations, but this approximation again aids in selecting a

unique initial grid size from which to begin optimizing the grid opacities.

Mathematically, we can express the precision constraint as:

w2

π
& σ (4.37)

where σ is the typical photometric uncertainty. Combining Equation (4.13) with this

constraint gives

N .

√
4
πσ

. (4.38)

For reference, using a 60 ppm uncertainty, this yields N . 146. (In practice, we are

usually limited to much smaller values of N by the number of data points in the observed

light curve.)

The third constraint we consider is the size of M . Our grid must be wide enough to

create a total duration sufficient to explain the event timescale, tevent. We require that

texit − tenter ≥ tevent, or

2 + 2(M/N)
v

≥ tevent. (4.39)

Similarly, we consider that a single pixel needs to be able to traverse the entire disk of the

star within the event timescale. The actual duration of a single pixel’s transit will depend on
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the pixel’s latitude Y , but to simplify things, we consider an equatorial pixel of infinitesimal

size and use an approximate symbol for the inequality, to give

v & 2/tevent. (4.40)

Together, these expressions constrain the velocity to the range

2/tevent . v ≤ 4/tevent. (4.41)

As a general strategy, then, we choose a grid velocity v equal to 2/tevent, and tref to

correspond to the minimum of the observed light curve. To choose N and M , we recognize

that, for a chosen N , we may solve for M such that the grid continuously overlaps the star,

by rearrangement of Equations (4.20). We can then adjust N to accommodate the constraint

that NM be less than the number of observed data points. Once the grid dimensions have

been chosen, we re-execute the inversion for different velocities, until the fit ceases to improve.

Because of the resolution constraint, we prefer the slowest grid velocity v which returns

a reasonable fit to the observed light curve, because this slow velocity corresponds to the

highest image resolution N . This is, in a sense, an image prior which prefers narrow, slow

images to their fast, stretch-degenerate counterparts.

4.4.3 Solving for the Pixel Opacities

Once we have reasonable first estimates for tref , v, N , and M , and have chosen a limb-

darkening law to describe the stellar disk, we may use Equation (4.22) to solve for Āi,j(tk)

for each grid pixel at each light curve time step. At this stage of shadow imaging, it is

helpful to think of the grid pixels as containers for as-yet-to-be-determined opacity: each
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transits the star in a definite way according to the grid parameters, so Āi,j(tk) and hence A

are well-defined, but its opacity is not yet known.

For a chosen tref , v, N , and M and , we restrict our attention to the observed light curve

data points that satisfy tenter < t < texit. In other words, we consider only the points in

time during which the grid partially overlaps the star, because the transiting grid could not

influence points outside this range.

To determine the opacities, we must solve Equation (4.35) for the entries of the opacity

vector τ . Since this matrix equation is linear, in principle it can be directly, analytically

solved.

However, direct solution of Equation (4.35) cannot accommodate constraints on the pixel

opacities. Namely, there is no way to restrict the entries of τ to the physically meaningful

range [0, 1] (case (1)), let alone to the binary values 0 or 1 (case (2)). Mathematically,

introducing these constraints transforms the problem into a nonlinear optimization problem,

which is not susceptible to solution by a linear matrix equation. We furthermore find that

transforming the opacity variables through a logistic function, which maps the real numbers

to the range [0, 1], results in numerical instabilities in our attempts to solve Equation (4.35)

both directly and iteratively (e.g. with SART; see 4.4.3.2 below).

Furthermore, we find that choosing grid parameters tref , v, N , and M that deviate even

slightly from the true values leads to completely nonsensical recovered τ . Direct analytic

solution is therefore not robust enough to apply to a light curve of unknown origin, where

our initial guesses for the grid parameters are unlikely to be so accurate.

We therefore explore less exact, but significantly more robust, algorithmic approaches to

solving for τ . Below, we discuss each of these algorithms in turn. The first two address case

(1), where pixels may take on intermediate opacities, and the latter three address the more

restrictive case (2), where pixels are constrained to be binary-valued.

In Figures 4.8 and 4.9, we compare their performances in recovering a number of known

test grids from noiseless light curves. In these recovery tests, the parameters N , M , v, and
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tref were assumed to be known. Eight of the test grids are binary-valued, and three (the

low-resolution planet-moon, planet-ring, and comet) include intermediate-opacity pixels.

In Figures 4.8 and 4.9, we have chosen to generate our test light curves with a uniformly

bright star, i.e., without limb darkening. We make this choice because non-limb-darkened

light curves are sharper and less rounded than limb-darkened light curves, and the inversions

result in correspondingly sharper image grids, among which the differences between the

images generated by our four recovery algorithms stand out most clearly.

We find that introducing realistic limb darkening results in very similar recovered images

to those shown in Figures 4.8 and 4.9, with two notable qualitative differences: first, for

the limb-darkened case, opacity tends to be pushed farther out towards the top and bottom

edges of the recovered image. This effect is most obvious in the arc-combinatoric images.

Second, the recovered images appear blurrier, which makes intuitive sense given the more

rounded features of a limb-darkened transit event compared to a non-limb-darkened transit.

4.4.3.1 Arc-Averaging

The first algorithmic approach we explore relies on the time derivative of Equation (4.31).

At each time step dt, the overlap state of the grid changes; we can express the change in

overlap area as the matrix dA/dt, calculated at each time step. Most of the entries of this

matrix will be equal to 0, because only the pixels overlapping the stellar limb at that time

step will have nonzero change in overlap area.

Meanwhile, at each dt, we can calculate the net change in the observed light curve,

dR/dt. Two effects can contribute to nonzero dR/dt at a particular time step: (i) one or

more pixels with nonzero opacity overlapping the stellar limb at that time step, and (ii) in

the case of non-uniform limb darkening, one or more pixels with nonzero opacity overlapping

any part of the star. For the low-resolution grid inversions possible given the time resolution

of currently available transit data (see e.g. 4.5.1 and 4.5.2), effect (i) is much larger than

effect (ii). Additionally, the stellar intensity profile changes most steeply near the limb, so
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effect (ii) is most prominent for limb pixels anyway.

Therefore, for the “arc-averaged” algorithm, we take the naive approach of calculating

the average dR/dt per pixel which overlaps the limb at that time step. Then, we endow

each limb pixel with that average opacity, weighted by 1
sin θpixel

= R∗
bpixel

= 1
bpixel

to mitigate the

effects of the arc degeneracy.

We do the above arc-averaging independently for each time step dt, then average the

results over all time steps to compute the final grid. Finally, we re-normalize the pixel grid

to match the transit depth of the observed light curve. (Renormalization is necessary because

the arc-averaging algorithm only exploits information from the derivative of the light curve,

not from the light curve itself.)

Arc-averaged pixel solutions, because they exploit the arc degeneracy, exhibit semicircular

arc-like features. They are also horizontally symmetrical as a result of the flip degeneracy.

Overall, they are smoother and more dispersed than their true pixel grid counterparts, with

smoother light curves, because the averaging step precludes sharp, isolated islands of opacity.

The impact parameter weighting causes opacity to be concentrated at the midplane of the

grid.

As shown in Figures 4.8 and 4.9, the light curves of arc-averaged solutions match ob-

served light curves well, particularly for large, centrally-concentrated test shapes. The worst

matches are for grazing shapes (see e.g. the 16 by 16-pixel grazing circle), because the 1
bpixel

weighting pushes opacity strongly toward the grid midplane and away from the top and

bottom of the grid. The arc-averaged light curves also tend to be more rounded than the

observed light curve, meaning that the arc-averaging approach struggles to reproduce sharp

light curve features. This is sensible because, by design, it produces solutions where opacity

is distributed continuously along overlapping arcs rather than confined to discrete islands.

We also note that, because arc-averaging can easily accommodate pixel opacities between

0 and 1, it can be applied to semi-opaque pixel grids, like the low-resolution planet-moon,

planet-ring, and comet test grids.
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4.4.3.2 Simultaneous Algebraic Reconstruction Technique (SART)

The next algorithm we test is called the Simultaneous Algebraic Reconstruction Tech-

nique, or SART (Andersen & Kak, 1984). SART was originally developed for medical com-

puted tomographic imaging. Specifically, SART reconstructs a 2D image from the projec-

tions of X-rays through the body—this is directly analogous to our shadow imaging problem,

where the “projections” of the pixelated image against the stellar disk are the individual data

points in the light curve.

SART operates iteratively upon an initial guess for the opacity vector τ half , which encodes

the opacities of the pixels of the top half of the image grid. Beginning from this initial guess,

it computes subsequent corrective updates to the individual entries of τ half .

The (q + 1)th iteration of τl, the opacity of pixel l, is given by

τ q+1
l = τ ql +

Lhalf∑
k=1

Bkl

Ck−
Lhalf∑
λ=1

(Bkλ τqλ)

Lhalf∑
λ=1

Bkλ


Lhalf∑
k=1

Bkl

, (4.42)

The scalar τ ql is the lth entry of τ half at iteration q, representing the opacity of pixel l;

the scalar Bkl is kth-row, lth-column entry of B; and the scalar Ck is the kth entry of C . B

and C are defined in Equation (4.35).

For intuition, the update term in Equation (4.42) is equal to the average correction to

pixel opacity τl over all rows and all columns of B. (Hence, the sum in the denominator

is over all rows of column vector Bl, and the sum in the numerator term’s denominator is

over all columns of row vector Bk.) The numerator, specifically, is the average value over

all pixels in the grid of a sort of “residual” between the observed light curve and the model.

This residual is equal to Ck minus the scalar projection of τ q
half along Bk. In effect, these

two averages allow for a correction to the opacities which is averaged over all time steps of

the light curve and all pixels in the grid.
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By running the SART algorithm for a large number of iterations (usually, ∼ 104 for a 16

by 16 pixel grid), we achieve good convergence to the observed light curve for a number of

test cases. The RMS error between the light curve of the input image and the light curve of

the SART solution declines monotonically over the SART iterations, indicating that SART

achieves a progressively better fit to the light curve as it proceeds.

We find that starting from an initial guess of all τl = 0.5 works well, because the step-by-

step updates to τ are generally small, so the algorithm does not wander far into unphysical

parameter space (i.e., τl < 0 or τl > 1). In the event that the resulting SART solution does

have slightly unphysical opacities, we redistribute the excess positive or negative opacity

uniformly among the pixels whose centers fall within a distance of w/2 of the arc pair

that intersects at the unphysical pixel. This redistribution renders the SART solution fully

physical without drastically changing its light curve. Because SART exploits information in

the light curve, not just its derivative, it is not necessary to re-normalize the SART solution

pixel opacities.

SART solutions exhibit horizontal symmetry as a result of the flip degeneracy, and semi-

circular arc-like features as a result of the arc degeneracy. Like the arc-averaging algorithm,

SART tends to smear out sharp features in the true input image along arcs, resulting in pixel

grid solutions which are smoother, with more dispersed opacity than the true image. (SART

solutions are even smoother than the corresponding arc-averaged solutions.) As as a result,

SART fails, for example, to match the sharply flat-bottomed transits of the 16 by 16-pixel

circle and square test grid light curves (Figure 4.9), producing slightly rounded light curve

shapes instead. On the other hand, because SART allows the pixel opacities to take any

continuous value between 0 and 1, it can accurately reproduce the light curves of non-binary

test grids, like the planet-moon, planet-ring, and comet.
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4.4.3.3 Brute Force Search

The next three algorithms we explore attempt to invert light curves subject to the con-

straint of binary pixel opacities: in other words, we attempt to recover grids with pixel

opacities of 0 (completely transparent) or 1 (completely opaque). We begin with the sim-

plest, a brute-force search of every possible arrangement of binary pixel opacities.

As discussed in 4.2.1, by the flip degeneracy, a grid of N by M opaque and transparent

pixels can generate O[3NM/2] unique light curves. Correspondingly, one would have to eval-

uate O[3NM/2] permutations of transparent and opaque pixels to find the grid that matches

a given light curve best. The largest square grid for which such a full search is feasible is

5 by 5 pixels, which has 1.9 million associated pixel arrangements with unique light curves

(for comparison, a 6 by 6 grid has ∼ 390 million).

In Figure 4.8, we illustrate the results of a brute force full-grid search for noiseless test

light curves generated by number of 5 by 5 known input grids. The brute force algorithm

returns the pixel arrangement which, when transiting the star, generates a light curve with

the lowest RMS error compared to the truth.

Unsurprisingly, when the input grid is truly binary, i.e. made up of completely opaque and

completely transparent pixels, the full search converges to the best possible solution every

time. However, when the input grid includes semi-opaque pixels, as in the low-resolution

planet-moon, planet-ring, and comet test cases, the brute force search struggles; the lowest-

RMS solution does not necessarily bear any resemblance to the input grid, even though its

light curve matches the true light curve well. This is a testament to the complex and multi-

modal likelihood landscape of the pixel opacities, and also an illustration of why conventional

nonlinear optimization methods cannot solve the light curve inversion problem. (We note

here that we also investigated both a genetic algorithm and a downhill simplex algorithm

(Nelder & Mead, 1965), without success—both methods tended to reach local optima and

stall, and as illustrated here, locally optimal grids are not necessarily morphologically similar

to the true grid.)
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Brute-force search solutions are not presented in Figure 4.9, because these grids are far

too large to be exhaustively permuted.

4.4.3.4 Parsimonious Opacity Assignment

The next two algorithms we test rely, like arc-averaging, on the time derivative of Equa-

tion (4.31). However, instead of averaging the ingress or egress opacity over all of the limb

pixels at each time step, we attempt to parcel it out in units of 0.5 opacity (to accommodate

the flip degeneracy). We note that consequently, these two algorithms do not work well for

inverting shallow transits observed with low time sampling (i.e., few light curve data points),

because in such cases, the grid will be low-resolution, and the transit depth of a single pixel’s

worth of opacity can be greater than the observed transit depth. There will then be no good

match to the light curve.

First, we explore the “parsimonious” approach, which assigns opacity to as few pixels as

possible in order to accommodate the change in the light curve. This algorithm is motivated

by compactness–is it possible to match the light curve with as few “on” pixels as possible?

The parsimonious approach assigns opacity first to the pixel with the largest change in

overlap area dA/dt, then steps through successively “less influential” pixels until the entire

change in the light curve has been accounted for. As with the arc-averaging approach, it is

necessary to average the results over all time steps dt, then renormalize the resulting pixel

grid to match the observed transit depth; the pixel grid solutions presented in Figures 4.8

and 4.9 therefore have some pixel opacities between 0 and 1.

In practice, this algorithm generates pixel grids which are strongly concentrated at the

stellar midplane, because these middle pixels undergo the greatest change in overlap area at

fixed dt during their ingress and egress. Correspondingly, it fails to reproduce high-impact-

parameter features in the input grids, and is especially poor at matching the light curves of

grazing shapes, like the grazing circle and grazing triangle (Figure 4.9). Overall, it is the

least successful of the four algorithms.
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4.4.3.5 Arc Combinatorics

Finally, we consider an algorithm which attempts to assign units of 0.5 opacity to the

best combination of limb pixels at every time step in order to match the observed light

curve. At every dt, the algorithm calculates the number of “spaces” on the stellar limb, s,

that could accommodate a unit of 0.5 opacity. This is equal to twice the number of limb

pixels of the appropriate “sign:” if the light curve is decreasing at dt, we need only consider

the limb pixels which are undergoing ingress, and vice versa.

Next, it calculates the number of 0.5-opacity units n that need to be accommodated.

This is equal to the change in the light curve, dR/dt, divided by the mean overlap area of

the limb pixels at that time step, multiplied by 2 (because we wish to distribute opacity in

units of 0.5, not 1).

The number of ways to arrange n opacity units over s spaces is then
(
s
n

)
. The algorithm

explores each combination and chooses the one which matches the vector dR/dt best. Finally,

as with arc-averaging and the parsimonious approach, the resulting grid is averaged over all

time steps and renormalized to match the observed transit depth (so once again, the pixel

grid solutions presented in Figures 4.8 and 4.9 therefore have some pixel opacities between

0 and 1).

The arc combinatorics approach is able to match certain vertically-sharp features in the

input images, such as the 16 by 16-pixel annulus and column test cases (Figure 4.9). It

can also accommodate narrow features at high impact parameter; to see this, compare the

parsimonious and arc combinatorics solutions to the 16 by 16-pixel four-squares test case.

Because of the arc degeneracy, however, the arc combinatorics algorithm tends to prefer

solutions where opacity is pushed too far toward the top and bottom edges of the grid (e.g.

the 16 by 16-pixel circle and square test grids, Figure 4.9). (This is the opposite problem

of the parsimonious algorithm.) It also struggles to capture the nuances of semi-opaque test

grids, like the planet-moon, planet-ring, and comet. Finally, we note that the computational

cost of this algorithm scales poorly with increasing grid resolution (i.e., increasing s), because
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the algorithm needs to evaluate
(
s
n

)
opacity arrangement possibilities.

4.5 Real Data

In this section, we discuss the performance of shadow imaging on two real test cases:

first, the light curve of the triple transit of TRAPPIST-1c, e, and f (Gillon et al., 2017),

and second, two unexplained transit-like events observed in KIC 8462852, or Boyajian’s Star

(Boyajian et al., 2016).

4.5.1 TRAPPIST-1c,e,f triple transit

We begin with the TRAPPIST-1c,e,f triple transit, for which the expected shadow image

is known. We hope to recover an image of three transiting planets, analogous to the diagram

presented in Gillon et al. (2017) Extended Data Figure 1.

In attempting to invert this light curve, we have useful prior information beyond the

expected image. First, because of the repeated transit observations and N-body dynamical

simulations presented in (Gillon et al., 2017), the periods and eccentricities, respectively, of

planets c, e, and f are well-constrained. This enables us to calculate the Keplerian orbital

velocities of c, e, and f, which we can use as v of our transiting grid. (We note that since these

three orbital velocities are different, the pixel image we are attempting to recover changes

during the transit, so we will only be able to recover an approximate image for any single

choice of v.)

Second, because the physical behavior of this system is so well-understood and the other

properties of these planets (Rp/R∗, b, a/R∗) are so well-constrained by transit modeling,

we can generate an extremely finely time-sampled model light curve, based on a BATMAN

model (Kreidberg, 2015), of this triple transit, which matches the observed light curve. We

can use this high-resolution light curve to test the effects of grid resolution on the success

of shadow imaging: when the light curve is finely sampled, we can recover a much higher-
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resolution grid than when the light curve is sparsely sampled. Finally, we can adopt the

same approach to determining the quadratic limb-darkening coefficients for TRAPPIST-1 as

Gillon et al. (2017) did in their analysis, interpolating for TRAPPIST-1’s stellar properties

from the tables of Claret et al. (2012).

In Figure 4.10, we present three inversions of the BATMAN-modeled high-resolution

TRAPPIST-1c,e,f, triple transit light curve, conducted with grid v equal to the Keplerian

velocity of planets c, e, and f, respectively. We choose N = 16 because it is a high-enough

resolution that pixel width w / Rp/R∗ for planet e, the smallest planet ((Rp/R∗)2 = 0.52,

according to the transit modeling of Gillon et al. 2017). We show the results of the arc-

averaging algorithm here, because it produces the cleanest and most interpretable shadow

images, although results from the other three algorithms are qualitatively similar.

In the shadow images, which transit the star moving left-to-right (i.e., the pixels at the

right-hand edge of the image transit first), clear ingress and egress arcs for each planet are

visible, in the expected order: first, planets c and f ingress together; then, e ingresses; c

egresses; f egresses; and e egresses.

The three planets move at three different velocities to produce the light curve, but the

grid moves as a unit, so none of the three inversions perfectly matches the light curve model.

When the velocity is correct for a particular planet, that planet’s image is a pair of arcs

whose points of intersection fall at the planet’s impact parameter as measured by Gillon

et al. (2017), demonstrating that shadow imaging of that planet is successful within the

constraints of the arc and flip degeneracies.

When the grid v is slower than the planet’s velocity, the planet’s ingress and egress arcs

are spaced too closely together; this effect is most visible for planet c in the top panel,

where the grid moved at planet f’s velocity. In the light curve, the overlapping arcs manifest

themselves in a too-early dip, caused by c’s egress arc entering too quickly, and in a too-deep

transit depth between the egresses of c and f, caused by c’s ingress arc remaining in front of

the star for too long.
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Conversely, when the grid velocity is faster than the planet’s, the planet’s arcs are too

widely separated; this effect is most visible for planet f in the bottom panel. This time, the

light curve is too shallow between the egresses of planets c and f, because f’s ingress arc

egresses too soon.

We next investigate what happens if we attempt to invert the observed Gillon et al. (2017)

light curve of this triple transit, which is noisy and much more coarsely time-sampled, rather

than a high-resolution BATMAN model light curve. Additionally, we ask what happens if

we attempt to recover a shadow image without knowing the true velocity of the transiting

object: what happens if we use the guidelines presented in 4.4.2 instead?

We invert the observed TRAPPIST-1 triple transit light curve at a range of velocities: the

slowest is 31.9 d−1, corresponding to 2 divided by the entire triple-transit event duration (in

accordance with the guidelines presented in 4.4.2), and the fastest is 135.9 d−1, corresponding

to 4 divided by the duration of planet c’s transit by itself. At each velocity, we choose the

maximum grid resolution N that, when combined with v to solve forM , allows the transiting

grid to partially overlap the star at all time steps of the light curve, while still maintaining

NM less than the number of observed data points. Accordingly, the resolution N decreases

as v increases, because M increases with v to maintain full light curve coverage.

In Figure 4.11, we present the results of these inversions. There are a number of in-

teresting features about these results. We note, first of all, that SART is consistently the

most successful inversion algorithm—this is true across the range of tested grid velocities.

Furthermore, the SART shadow image consistently resembles the expected shadow image

illustrated in Figure 4.10, even at low image resolutions. Arc combinatorics is somewhat

successful at matching the observed light curve at the slowest tested velocity (corresponding

to the highest grid resolution), but fails otherwise.

The other algorithms fail consistently across the range of tested velocities. For arc par-

simony and arc combinatorics, this results because these algorithms assign binary opacities

(0 or 1) to individual pixels, rather than assigning continuous opacities. (We note that the
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shadow images presented in Figure 4.11 do not have binary opacities because the final step

of both the arc parsimony and arc combinatorics algorithms is to average the binary shadow

images produced at each time step dt and re-normalize the average to match the observed

transit depth.)

When the pixel resolution of the grid is too low, a single pixel’s transit depth can exceed

the transit depth of a shallow event like the TRAPPIST-1c,e,f triple transit (maximum

transit depth ∼ 2%). As a result, the smallest unit of opacity that the arc parsimony or arc

combinatorics algorithms can assign is too deep, and these algorithms cannot reproduce the

observed light curve. Instead, they tend to assign opacity to pixels along the top and bottom

of the image grid, which have the smallest impact on the light curve. This is especially visible

in the high-v arc combinatorics panels in Figure 4.11.

Meanwhile, the arc averaging algorithm also fails to match the observed light curve,

regardless of velocity. This is because the arc-averaging algorithm, unlike SART, is not

robust to noise in the light curve; noise is tantamount to light-curve fluctuations at much

higher frequency than can be accommodated by the grid velocity. While SART is able to

average out high-frequency noise over many corrective iterations, arc averaging calculates

only one arc arrangement per time step dt; if these arrangements are wildly different for

neighboring time steps, as they will be for noisy light curves, arc averaging fails.

From these investigations, we conclude that SART is the most robust light curve imaging

algorithm. In particular, light curves with large measurement uncertainties and/or shallow

transit depths should only be inverted with SART.

4.5.2 Boyajian’s Star

Next, we proceed to a light curve with an unknown generative shadow image: that of

KIC 8462852, Boyajian’s Star (Boyajian et al., 2016). This star exhibits aperiodic, deep

transit events of unknown origin; hypotheses to explain these events include a family of

transiting comets (Boyajian et al., 2016; Bodman & Quillen, 2016); circumstellar rings (Katz,
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2017); an intervening occulter not orbiting Boyajian’s Star directly, such as structure in

the interstellar medium or an object with a dusty disk (Wright & Sigurdsson, 2016); or

circumstellar debris following the star’s earlier engulfment of a planet (Metzger et al., 2017);

or alien megastructures orbiting the star (Wright et al., 2016).

We focus on the two deepest dimming events observed in the Boyajian’s Star light curve

during the Kepler mission, which Boyajian et al. (2016) label Dip 5 and Dip 8, respectively.

Since these events are aperiodic, the appropriate grid velocity v is not obvious; furthermore,

in both dips, the light curve smoothly tapers to a sharp point, so the “beginning” and

“ending” points of the event are not obvious. Correspondingly, we start from a velocity

v = 2/tevent, max, where tevent, max is a wide window around the deepest part of the transit,

outside of which the flux of the star has essentially returned to 1 again. (These time ranges

are plotted in Figures 4.12 and 4.13). We then test several other velocities doubled from

this starting point. We interpolate quadratic limb-darkening coefficients for Boyajian’s Star

from Sing (2010).

The inverted images for Dips 5 and 8 are presented in Figures 4.12 and 4.13, respectively.

There are a number of interesting features in these images.

First, there is a circular ring-like feature, of the same radius as the star, that appears

generally in images from all four algorithms when the grid velocity v is too slow. (See Dip

5, v ≤ 1.6 days, and Dip 8, v ≤ 1.2 days, for examples.) This happens because, when the

grid velocity is too slow, the grid struggles to produce narrow features in the light curve; the

rate of change of the state of the grid overlap is simply too slow. Under this constraint, the

circular ring is the grid pattern that matches a narrow light curve feature best, in the sense

that it generates the narrowest possible V-shaped light curve feature.

For intuition, consider a copy of the circular ring with the addition of some opaque interior

pixels: at some time steps, these interior pixels will be entirely contained within the stellar

disk, and their effect on the light curve during these time steps will be constant. In other

words, their transit will be flat-bottomed. This is not the case for the ring, whose overlap
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state changes at every time step of the transit; the ring is the “opposite” of a flat-bottomed

semicircular arc pair in this sense.

Velocities which produce a ringed shadow image are therefore too slow. This is also

obvious from the light curve of the shadow image, which is wider than the observed transit

event.

When v is fast enough, we find that all four algorithms produce qualitatively similar

shadow images for both Dip 5 and Dip 8, and furthermore that the shadow images of the

two dips are similar to each other. As in the case of the TRAPPIST-1 triple transit, the arc

parsimony and arc combinatorics algorithms generate “noisy” shadow images where the light

curve is shallow, because they cannot assign opacity in units smaller than 1 fully opaque

pixel. For Dip 5, SART is clearly the best match to the shadow image; arc averaging produces

a light curve which is too narrow, likely because the near-transparent pixels farther from the

center which would have produced the “wings” of the transit event have been averaged away

in the last combination-and-normalization step of the algorithm. Meanwhile, for Dip 8, the

shadow images from both arc averaging and SART match the light curve well.

We strongly caution that there is no straightforward way to interpret these images, for

two reasons. First, these images are subject to both the flip and arc degeneracies; second,

the grid resolution is low (N = 5 for Dip 5; N = 6 for Dip 8) because we are limited by the

30-minute cadence of Kepler observations, and technically this resolution is so low that the

small-planet limb-darkening approximation used to calculate the light curves of these shadow

images is inappropriate. Nevertheless, these limitations should only affect the distribution of

opacity among the semi-opaque pixels in the shadow images of Figures 4.12 and 4.13; pixels

which are fully transparent in the shadow images should remain so, even if we were to obtain

a much higher-resolution time series of these events.

We therefore note that the “gaps” of near-zero opacity (i.e., nearly transparent regions)

which symmetrically frame the opaque transiting blob at the center of the shadow images in

Figures 4.12 and 4.13 suggest that structured occulters are responsible for Dips 5 and 8 of
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the light curve of Boyajian’s Star. The gap structure appears to be necessary to produce a

shadow image which matches the ingress and egress shape of both Dip 5 and Dip 8; we note,

for example, that this gap structure is missing in the arc-averaged shadow image of Dip 5

at v = 3.2d−1, and the ingress and egress features of the corresponding light curve are too

sharp to match the observed light curve.

4.6 Conclusions

Here, we have developed a mathematical and computational framework to address the

problem of shadow imaging, or inferring the shape of a transiting object from its light curve

alone. We find that this problem, which amounts to reconstructing a two-dimensional map

from a one-dimensional time series, is degenerate, like the analogous problems of eclipse

mapping and starspot inversion. In particular, by the flip degeneracy, shadow images are

horizontally symmetrical; by the arc degeneracy, any infinitesimal opaque point in a shadow

image can be replaced by a pair of intersecting semicircular arcs without consequence to

the light curve; and by the stretch degeneracy, a wide image transiting at high velocity can

produce the same light curve as a narrow image transiting slowly, given high enough pixel

resolution.

In spite of these degeneracies, we are able to recover informative shadow images by

adopting additional assumptions in algorithmic approaches to inverting light curves. We

investigate four algorithms with different underlying assumptions. The first is arc averag-

ing, which assumes that opacity should be distributed along arcs in inverse proportion to

the sin θ opacity distribution characteristic of the arc degeneracy. The second is the Si-

multaneous Algebraic Reconstruction Technique, an iterative approach which assumes that

opacity should be distributed so as to minimize the RMS averaged over all time steps of

the light curve and all pixels in the grid. The third is arc parsimony, which assumes that

opacity should be distributed to as few individual opaque pixels as possible. The fourth is
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arc combinatorics, which assumes that opacity should be assigned to the best combination

of individual opaque pixels to match the light curve. More broadly, the first two algorithms

require only that the grid opacities be physical (i.e., restricted to the range [0, 1]), while

the latter two algorithms operate under the more restrictive assumption that the grid pixel

opacities ought to be binary-valued. The less-restrictive case can accommodate pixel images

of dusty, translucent, or solid objects smaller than the pixel scale, while the more-restrictive

case is in principle more appropriate for recovering an image of a solid body which is larger

than the pixel scale..

Overall, we conclude that SART is the approach which is most robust to our choices of

grid resolution and velocity, most robust to noise in the observed light curve, and best able

to accommodate shallow transit events. The only downside of SART is that, because it is

an iterative optimization method, it is not parallelizable. For grids of the size investigated

here (N ≤ 16), it is of perfectly manageable computational cost.

We evaluate the performance of the four algorithms on a number of test cases, and find

that we can recover informative shadow images for both binary- and continuous-valued opac-

ity grids. We also apply them to real transit events—first, the triple transit of TRAPPIST-1

c, e, and f, for which the true shadow image is known. We recover a shadow image of

TRAPPIST-1 c, e, and f which matches our expectations, subject to the constraint that our

model grid transits the star at a single velocity, while the real TRAPPIST-1 planets all move

individually.

We also apply our techniques to two of the dips observed in Boyajian’s Star, for which

the true shadow image is unknown. We recover images which are self-consistent in the sense

that the results from all four algorithms are qualitatively similar; also, the shadow images

of Dip 5 and Dip 7 resemble each other. Transparent gaps in the shadow images of both

events suggest that both dips were caused by structured occulters. However, we caution

that these shadow images are difficult to interpret: they are subject to both the flip and

arc degeneracies, and they are limited in resolution by the cadence of the original Kepler
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observations. In the future, for successful shadow imaging of events like these, high time

sampling of the light curve is key.

An important next step in shadow imaging will be to expand the framework presented

here to encompass a true inference of shadow images: in other words, to recover, given a

transit light curve, a distribution of images which could have generated it, complete with

uncertainties on the pixel opacities. Such a distribution would meaningfully represent the

full set of degenerate solutions that could generate a particular observed set of uncertain flux

measurements in a way that a single image cannot.

Accounting for measurement uncertainties is certainly possible within the work presented

here; one could, for example, draw repeated “realizations” of a particular light curve given

the uncertainties on the individual flux measurements, then invert each realization to recover

a single shadow image. The deeper question is how to take what is currently a deterministic

retrieval procedure—one light curve, inverted with any of our algorithms, yields exactly one

reproducible shadow image—and build in a way to account for the physical degeneracies

of the problem, particularly the arc degeneracy, such that one light curve can generate an

ensemble of possible shadow images.

In principle, one could also attempt to engineer such an ensemble from a single shadow

image by perturbing opacity along arcs. We find that in practice, because of the complex

overlapping pattern of the ingress and egress arcs, it is very difficult to perturb opacities and

maintain a good fit to the observed light curve. In other words, the arc structure renders the

pixel opacities strongly and non-trivially correlated. It remains nevertheless an interesting

avenue for future work.

To accompany this work, we present the software package EightBitTransit, imple-

mented in Python, which is able to calculate the light curves of arbitrary pixel arrange-

ments and to recover shadow images from an input light curve, given the user’s choice

of grid parameters and inversion algorithm. This software package is available at https:

//github.com/esandford/EightBitTransit.
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Figure 4.8: The performance of several light-curve inversion algorithms on eleven known 5
by 5-pixel test grids. The leftmost two columns represent the true input grid; the subsequent
columns represent the grid recovered by each inversion algorithm given only the (noiseless)
true light curve as input. The eight test grids above the horizontal line are pure binary
grids (i.e., pixel opacities are either 0 or 1); the three below have intermediate, semi-opaque
pixels. Each algorithm was initialized with correct grid parameters N , M , tref , and v, and
the light curves were generated with a uniform limb darkening law. The brute-force search
algorithm performs the best, i.e. returns the light curve with lowest RMS error compared to
the true image’s light curve, in every pure binary test case, but SART performs best on the
semi-opaque test cases.
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Figure 4.9: The performance of several light-curve inversion algorithms on eleven known 16
by 16-pixel test grids, which are too large to allow for a brute-force permutation search.
The leftmost two columns represent the true input grid; the subsequent columns represent
the grid recovered by each inversion algorithm given only the (noiseless) true light curve
as input. The eight test grids above the horizontal line are pure binary grids (i.e., pixel
opacities are either 0 or 1); the three below have intermediate, semi-opaque pixels. Each
algorithm was initialized with correct grid parameters N ,M , tref , and v, and the light curves
were generated with a uniform limb darkening law. SART performs the best, i.e. returns
the light curve with lowest RMS error compared to the true image’s light curve, in every
test case; arc-averaging is second-best in every case except the offset circle, for which arc
combinatorics does better.
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Figure 4.10: Three inversions of a BATMAN-modeled, high-resolution TRAPPIST-1c,e,f,
triple transit light curve, conducted with the arc-averaging algorithm, with grid v equal to
the Keplerian velocity of planets c (bottom), e (middle), and f (top). These images transit
the star moving left to right, so the features at the right-hand side of the image influence the
light curve first. The BATMAN model light curve (black) and arc-averaged shadow image
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images to indicate the positions of planets c (pink), e (yellow), and f (green). (Note that c
and f ingress together, so their ingress arc is green + pink = gray.)
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Figure 4.11: The performance of several light-curve inversion algorithms on the observed
TRAPPIST-1c,e,f triple transit light curve. The test velocities and corresponding grid res-
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light curve has the lowest RMS error compared to the observed light curve is the SART
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and logarithmic color scaling to represent opacity. SART performs best, by RMS, at all four
choices of v.
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5. The multiplicity distribution of

Kepler’s exoplanets

5.1 Introduction

From our vantage point within the Solar System, it seems natural to expect that stars

should be accompanied by multiple planets. Around stars similar to the Sun, planetary

systems are common, with numerous studies of the Kepler sample converging on an occur-

rence rate of at minimum one planet per star (Petigura et al., 2013; Foreman-Mackey et al.,

2014b; Burke et al., 2015; Hsu et al., 2018). In the majority of Kepler systems, there is just

a single transiting planet detection (Thompson et al., 2018) but the strong observational

biases plaguing transit surveys (Kipping & Sandford, 2016) mean that one might reasonably

expect many of these to in fact be multi-planet systems (“multis”) yet to be revealed.

Measuring the multiplicity distribution is crucial, as it is a vital clue to the origins

and evolution of detected systems. For example, hot Jupiters rarely reside in multi-planet

systems (Wright et al., 2009; Steffen & Agol, 2005; Gibson et al., 2009; Latham et al., 2011;

Steffen et al., 2012) barring exceptional cases like WASP-47b (Becker et al., 2015; Weiss

et al., 2017). This is often interpreted as evidence for late inward migration from beyond the

snow line, leading to scattering of interior planetesimals (Beaugé & Nesvorný, 2012; Spalding

& Batygin, 2017; Heller, 2019; Dawson & Johnson, 2018). At the other extreme, systems

like Kepler-11 (Lissauer et al., 2011b) and TRAPPIST-1 (Gillon et al., 2017) pack half a

dozen planets within the orbit of Mercury, which suggests that disk migration and resonant
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trapping may guide the evolution of such systems (Quillen, 2006; Mustill & Wyatt, 2011;

Ormel et al., 2017; Tamayo et al., 2017; Papaloizou et al., 2018).

Unfortunately, the multiplicity distribution is not directly observable from transit surveys

like Kepler, because of the extreme biases inherent to the technique. Nevertheless, the

unparalleled volume and homogeneous detection biases of the Kepler planets still make it

arguably the best resource for the task. If we imagine a system of multiple planets around

a star, it is likely that only a subset of the planets (if any) will be detected by a transit

survey such as Kepler, because it is guaranteed neither that all of the planets will be aligned

with our line of sight, nor that all will transit at high enough signal-to-noise to be detected.

Furthermore, Zink et al. (2019) investigate the detection efficiency of the Kepler pipeline

and find that it drops in multi-planet systems—specifically, the detection efficiency is higher

for the first transiting planet discovered around a star than for subsequent transiting planets

in the same system.

Unveiling the true multiplicity distribution from the observed one is therefore a chal-

lenging task that needs to account for both geometric and detection biases. Specifically,

the mutual inclination distribution between planets should be taken into account in any

exploration, since it combines with the underlying multiplicity distribution to produce the

observed catalog (Tremaine & Dong, 2012; Brakensiek & Ragozzine, 2016).

One of the first attempts to model the Keplermultiplicity distribution is presented by Lis-

sauer et al. (2011a), who test a Poisson multiplicity model and find that the Kepler catalog is

best fit when the mean of this model is equal to 5.5 planets, and the mutual inclinations of the

planets are low. However, they find that this best-fitting model significantly underpredicts

the number of single-planet systems observed by Kepler. The case for low mutual inclina-

tions in particular has been reproduced in numerous studies (Fang & Margot, 2012; Figueira

et al., 2012; Weissbein et al., 2012; Fabrycky et al., 2014). Ballard & Johnson (2016), who

study the Kepler M-dwarfs, suggest that the under-prediction of single-planet systems can be

resolved by introducing a dichotomous population, with one component being a dynamically
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cold set of multis and the second being a population of singles or highly-mutually-inclined

multis.

This Kepler dichotomy, if it extended to FGK stars, may also explain the under-prediction

of singles observed by Lissauer et al. (2011a). This has motivated follow-up efforts to deter-

mine if there are fundamental differences in the stellar hosts between singles and multi-planet

systems. In particular, Munoz Romero & Kempton (2018) search for, but ultimately find

no evidence of, metallicity differences among the hosts of the two types of systems, which

might be expected if giant planets were responsible for the dynamically hot population.

The lack of any significant metallicity difference has led some to question the dichotomous

hypothesis, even as it explains the observed M-dwarf multiplicities better than a single-

population model. The drop in detection efficiency for subsequent planets detected in multi-

planet systems noted by Zink et al. (2019) hints at another explanation for the overabundance

of observed singles, that the Kepler pipeline simply fails to detect subsequent planets around

some percentage of “singles.” Indeed, after accounting for this effect, Zink et al. (2019) find

that a modified Poisson model fits the observed multiplicities of Kepler GK stars well.

Another alternative explanation to a dichotomous model is a flatter inclination distribu-

tion in the inner parts of multi-planet systems than previously assumed—because this in-

clination distribution works together with the underlying multiplicity distribution to create

the observed multiplicities, it is important to model both (Tremaine & Dong, 2012). Bovaird

& Lineweaver (2017) show that by adopting a flat-disk model, rather than a “flared” disk,

they can match the observed Kepler multiplicities without invoking a dichotomous model.

In this work, we aim to address the question of multiplicity by presenting a comparison

of several plausible multiplicity distribution models, including both single and dichotomous

populations.

We structure this paper as follows. In Section 5.2, we introduce the methods, models

and inference approach of this work. In Section 5.3, we present the results, visualizations

and analysis of the fits. Finally, we place our work in a broader context in Section 5.4.
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Table 5.1: Observed multiplicities in the final subset of 1966 KOIs considered in this work.
Taking the sum of each multiplicity by its count yields 1966, as expected.

Multiplicity, m Counts, nobs,m
1 1225
2 218
3 76
4 15
5 1
6 2
7 0
8 0
9 0
10 0

5.2 Methods

5.2.1 Input catalog

We downloaded the Kepler DR25 Kepler Objects of Interest (KOIs) catalog via the NASA

Exoplanet Archive (NEA; Akeson et al. 2013), with several filters applied. First, we selected

only KOIs for which the “Disposition using Kepler Data” was reported as “CANDIDATE”.

Second, we required that the NEA-reported surface gravity of the star satisfied log g > 4 and

that the stellar mass was 0.8 < (M?/M�) < 1.2, in order to focus on FGK dwarfs. Finally,

we filtered for planetary candidates which satisfied 6.25 < (P/days) < 400 (the same range

considered by Petigura et al. 2013 and Foreman-Mackey et al. 2014b) and 0.5 < (RP/R⊕) <

32. This led to a population of 1966 KOIs, of which the majority were dispositioned as

“CONFIRMED”.

These 1966 KOIs define our observed data set, Dobs, which comprises three key pieces

of information. First, the observed multiplicity distribution, which is simply the occurrence

tally of multiplicities from 1 to 10 and is reported in Table 5.1. Second, the list of maximum

a-posteriori probability orbital periods, of which there are 1966 elements. Third, the list of

maximum a-posteriori probability planetary radii, of which again we have 1966 entries.
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After compiling Dobs, we also queried all Kepler target stars for stars which match the

filters imposed above. For this, we took the Mathur et al. (2017) DR25 catalog of stellar

parameters, which listed 197,096 stars, and cross-matched these with the CDPP6 values

(combined differential photometry on a 6-hour timescale; see Christiansen et al. 2012) as

obtained from the Mikulski Archive for Space Telescopes (MAST). The mean CDPP6 across

all quarters of a given star was saved as the representative CDPP6. In some rare instances,

these values were not available on MAST and thus these stars were dropped, leaving us with

196,792 stars. We then applied the same cuts for log g and M? as described in the previous

paragraph, leaving us with 108,429 FGK dwarfs. This catalog of stars will be used later in

Section 5.2.3.

5.2.2 Tackling completeness

Our objective is to infer the multiplicity distribution from the Kepler catalog. At a very

basic level, this objective is challenged by the incompleteness of the Kepler catalog itself -

just because a star has a planet doesn’t mean Kepler is guaranteed (or even likely) to see

it. A great deal of attention has been paid to this issue in connection to estimating the

underlying planet occurrence rate from Kepler, and so although our objective is distinct, it

is useful to briefly review the approaches used in such studies a source of guidance.

The simplest form of incompleteness to deal with is the geometric transit probability,

which decreases with increasing planet orbital radius. In estimates of Kepler planet occur-

rence rates, this can be most easily accounted for by simply dividing apparent occurrence

rates by R?/a (the geometric transit probability), under the assumption of close-to-circular

orbits (e.g. see Howard et al. 2012).

The second, and more challenging, component to completeness is detection efficiency.

The simplest solution is to limit one’s analysis to a parameter subset where one assumes

that the completeness is approximately unity (e.g. Howard et al. 2012; Fang & Margot

2012). This naturally comes at the expense of a smaller sample size. In order to expand the
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sample to lower signal-to-noise ratio (SNR) events, it is necessary to estimate the detection

efficiency in more detail. A typical approach is the so-called “inverse detection efficiency

method” (IDEM)1, where each planet is assigned a detection efficiency score and ultimately

the true occurrence rate is inferred by dividing by both the transit probability and the

detection efficiency. Detection efficiencies are typically estimated by injection and recovery

exercises (e.g. see Petigura et al. 2013; Dressing & Charbonneau 2015). As an example, for

a given choice of orbital period and planetary radius, the associated detection efficiency for a

particular star may be computed using the KeplerPORTs software (Burke et al., 2015; Burke

& Catanzarite, 2017).

In the case of planet occurrence rate estimation, the simplest strategy to account for

detection efficiency is the IDEM approach. However, recently Hsu et al. (2018) argue that

this approach leads to systemic biases in the inferences since the efficiencies are drawn from

estimated planet properties, which are themselves uncertain. Instead, they use a forward-

model to inject a population, filter it through a realistic detection efficiency model, and then

compare the surviving population to the observed population with some distance metric and

Approximate Bayesian Computation (ABC). This approach is shown to more faithfully infer

the occurrence rate of the injected population and so a similar approach is adopted here.

Rather than comparing occurrences, our work ultimately is interested in the frequency of

various multiplicities, but the same approach can be employed (and is discussed further in

Section 5.2.4).

In principle, it should be possible to define a detection efficiency model unique to each

star using KeplerPORTs. However, when conducting Bayesian inference, detailed calculations

of these efficiencies for every star and at every step in period and radius comes at high

computational cost. A simpler yet still accurate approach is to use a global Kepler detection

efficiency model, for which one inputs the so-called multiple event statistic (MES) of a

planetary candidate and the model returns a detection probability. This is appropriate since
1As dubbed by Foreman-Mackey et al. (2014b).
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we primarily care about the ensemble rather than individual systems. One example of a

global detection efficiency model comes from Christiansen et al. (2016), who use the actual

Kepler detection pipeline to inject and recover and planets and find that, for FGK stars, the

average detection efficiency is well-approximated by either a cumulative gamma function or

a logistic function. We use the latter in this work since it is faster to compute. It is given by

Pr(detection|MES) = dl −
dl

1 + (MES/cl)bl
, (5.1)

where bl, cl and dl are coefficients defined in Christiansen et al. (2016) using Kepler DR24.

An update to the cumulative detection fraction versus MES is presented in Thompson et al.

(2018) for DR25, who find a similar distribution which we use in this work.

The MES (see Jenkins 2002) is a statistic that measures the combined significance of

all the observed transits in the detrended, whitened Kepler light curves, assuming a linear

ephemeris. In practice, it is not feasible to generate very large populations of synthetic

planets (required for Bayesian Monte Carlo work), inject their transits, detrend, whiten, and

thus compute MES in the same way as the real Kepler pipeline.

Instead, we use the transit SNR as a proxy for the MES in what follows. We note

that the two are not equal—specifically, the MES depends on the goodness-of-fit between a

transit search template and a transit signal mediated by stellar noise, while the SNR does

not depend on the template—but they are, to first order, proportional to each other (Burke

& Catanzarite, 2017). By combining the SNR with Equation (5.1), we are able to estimate

the detectability of any synthetic KOI.

5.2.3 The forward model

Our model works by first choosing a random star from the filtered stellar catalog described

in Section 5.2.1. We then inject a planetary system around it composed of m planets, where
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m is always less than or equal to mmax = 10 and is drawn from a chosen multiplicity distri-

bution as described later in Section 5.2.5. Each of the planets is assigned a random period

drawn from a log-uniform distribution from 6.25 to 400 days. A log-uniform distribution was

chosen since it both provides a reasonably close match to the observed marginalized period

distribution reported by Foreman-Mackey et al. (2014b), and is the same assumption used

in previous multiplicity studies, such as Ballard & Johnson (2016).

Next, the innermost planet in the system is assigned a random radius drawn from a

double-sided power law (DSPL) distribution, described by

Pr(R) ∝


(logR− logRmin)−αsmall if Rmin < R ≤ Rcrit,

(logR− logRcrit)−αbig if Rcrit < R < Rmax.

(5.2)

We normalize the DSPL distribution such that the two sides meet at Rcrit and integrate

to unity over the interval Rmin < R < Rmax. The terms Rmin and Rmax are fixed to 0.5R⊕

and 32R⊕ respectively, but the parameters Rcrit, αsmall and αbig are treated as unknown

shape parameters to be inferred.

To reflect the observed “peas-in-a-pod” covariance of planet radii (Weiss et al., 2018),

the radii of subsequent planets in the system are drawn from a Gaussian distribution centred

at the innermost planet’s radius. The scale parameter of this distribution, σR, is treated as

another free parameter to be inferred. This parameter is able to extend out to very large

values, thereby accounting for the possibility of no correlation (Zhu, 2020).

The simplified double-sided power law radius distribution is designed to capture the

turn-over in planet occurrence seen at around mini-Neptune radii, reported in numerous

studies (Fressin et al., 2013; Petigura et al., 2013; Foreman-Mackey et al., 2014b). It does

not, however, describe the radius valley reported by Fulton et al. (2017). This effect was

only revealed by substantial improvements to the precision of measured stellar radii, and

we argue that it is not influential enough to significantly affect our study which focusses on

multiplicity.
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The radius distribution used here essentially represents a set of nuisance parameters

which is marginalized over in the final results.

Having generated m proposal planets around the star, with periods and radii drawn from

the distributions described above, we next check whether the system is dynamically stable.

Following the same approach as Ballard & Johnson (2016), we test for Hill stability using

Equation (3) of Fabrycky et al. (2014). Specifically, we define the mutual Hill radius between

planets “1” and “2” as

RH =
M1 +M2

3M?

1/3
a1 + a2

2 , (5.3)

where the Hill stability criterion is satisfied if

a2 − a1

RH

> ∆crit, (5.4)

where M and a refer to the masses and semi-major axes of the planets. To estimate

M for each planet, we use the maximum a-posteriori probability forecaster mass-radius

relation derived by Chen & Kipping (2017). We compute semi-major axes are from periods

using the stellar mass and Kepler’s Third Law.

The critical separation is ∆crit = 2
√

3 for neighboring planets, and for three-or-more

planets, Fabrycky et al. (2014) require ∆inner + ∆outer > 18 for neighboring inner and outer

pairs of planets.

If the proposed planetary system violates Hill stability, we use the same star and same

multiplicity but make a new realization of the periods and radii for the planetary system.

We allow this process to repeat up to 1000 times, after which we abandon the star and draw

a new star from the KIC catalog.

After this point we have generated a stable multi-planet system. Next, we need to
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calculate how many of these planets actually transit. The innermost planet, labelled with

subscript “1”, has a transit impact parameter, b1, of (a1/R?) cos I1, where I1 is the orbital

inclination angle2. Inclination is isotropically distributed and thus we adopt a uniform

distribution for cos I1, which in practice means that we draw a random real number for

cos I1 from U [0, 1], where U denotes a uniform distribution. The other planets in the system

are assumed to have inclinations perturbed away from this angle by an angle ∆I, representing

their mutual inclinations within a flared disk (see Bovaird & Lineweaver 2017 for a flat-disk

model). ∆I is drawn from a Rayleigh distribution characterized by a scale parameter σI :

Pr(∆I) = ∆I
σ2
I

exp
−∆I2

2σ2
I

 (5.5)

For each planet in the system, we calculate the impact parameter bj = (aj/R?) cos (I1 + ∆Ij).

Any planet for which bj < 1+(Rj/R?) is treated as a transiting planet and is saved. Systems

with zero transiting planets need not be considered further and are discarded, leading us to

draw a new star from the KIC catalog.

At this point, we now have a simulated system of at least one transiting planet orbiting

a chosen KIC star. The final component of our forward model is to simulate what fraction

of transiting planets in the system would actually be detectable. To do this, we first assign

each planet a random transit epoch. Next, we query which quarters that particular KIC

star was observed by Kepler for, since many stars were not observed in every quarter due to

spacecraft rotation and loss of CCDs during the mission.

Using our simulated ephemeris for each planet, we can now calculate how many transits of

each planet would have been observed by Kepler. We estimate the SNR of each planet using

Equation (10) of Kipping & Sandford (2016), multiplied by the square-root of the number of

observed transits. Finally, the detection probability is computed using Equation (5.1) from

Christiansen et al. (2016). To decide if the transiting planet is detectable or not, we make a
2Note that a near-circular orbit is assumed here and throughout.
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random Bernoulli draw, with probability equal to this computed detection probability.

This process culminates in a set of m simulated detected transiting planets around a

particular star. At this point, we loop back to the beginning of the forward model and keep

going until 1966 detected planets have been generated (since this represents the size of the

observed sample, Dobs, that we will ultimately compare to).

The forward model therefore ultimately yields a simulated data set, Dsim, with the same

elements and form as Dobs. Further,Dsim is clearly dependent upon the simulation’s choice

of multiplicity, radius and inclination distributions - which are characterized by model pa-

rameters θ = {β, αsmall, αbig, Rcrit, σR, σI} (where β is a stand-in term(s) describing the

multiplicity distribution, described below in Section 5.2.5, and the other terms have been

previously defined).

We note that since non-detections are discarded and not counted, our approach does not

enable an estimate of the underlying planet occurrence rate.

5.2.4 Comparison to observations

A single run of the forward model described in Section 5.2.3 generates a population of

simulated detected transiting planets described by Dsim. Our task is now to infer the pa-

rameters of the forward model, θ, which would have generated the observed Kepler systems,

Dobs, by comparing Dsim to Dobs. In particular, we are interested in inferring the parameters

of the multiplicity distribution, β.

Conventional Bayesian inference might proceed using hierarchical Bayesian modeling

(HBM), where the multiplicity distribution is described by some parameterized form and

then each system’s true multiplicity is treated as a free parameter drawn from this overall

distribution - giving rise to a large number of unknown variables to solve for (see Hogg

et al. 2010 for an astronomer’s introduction to HBMs). In this case, the likelihood function

used for inference would be well-defined as the product of the likelihoods for each individual

system.
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Hierarchical models allow for rigorous inference but typically come at great computa-

tional expense. Instead, we seek to learn the multiplicity distribution by comparing some

distance metric which quantifies how closely the simulated population matches the observed

population - thereby ignoring the individual systems and treating the population as an en-

semble. By using one or more distance metrics to quantify goodness-of-fit, we are thus

conducting what is typically referred to as approximate Bayesian computation, or ABC (see

Ishida et al. 2015; Hahn et al. 2017; Hsu et al. 2018; Witzel et al. 2018 for recent applications

in astronomy).

The three key ingredients for ABC inference are a forward model which generates Dsim,

prior distributions for the model parameters, Pr(θ), and a distance function ρ(Dobs,Dsim)

which quantifies how well the simulated distribution resembles the observed sample.

Although our primary goal is to learn the multiplicity distribution, we elect to define

a distance metric which considers the agreement between the simulated and observed mul-

tiplicities but also the agreement between the simulated and observed radius distribution.

This is because the two cannot be assumed to be independent: planetary radii determine

planetary masses, which in turn determine their stability and whether they could reside in

a high-multiplicity system. We therefore infer not only the multiplicity model parameters,

but also the radius distribution parameters. Further, the mutual inclination distribution

strongly influences the fraction of planets observed to transit and thus is also a parameter

we should expect to constrain and be covariant with the other model terms.

Our goal here, of course, is not to infer the true radius distribution of the Kepler catalog,

nor the distribution of mutual inclinations among its multi-planet systems. However, the

known inter-relationships between these terms necessitates that we have some reasonable

description of them and that we freely explore them in conjunction with the multiplicity

distribution. At the end, we can simply marginalize over these “nuisance” terms in our final

calculation of the multiplicity distribution.

Having established that we require a distance metric which incorporates both the mul-
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tiplicities and radii, let us consider the multiplicity component first. Previous works have

most commonly invoked a Poisson likelihood function in comparing a simulated multiplicity

to the observed value (Weissbein et al., 2012; Ballard & Johnson, 2016). This essentially

asserts that probability distribution for the observed number of m-planet systems, nm, is a

Poisson distribution with a mean rate given by nsim,m. The Poisson model is well-motivated

for inference based on counting statistics, such as this, and thus is adopted in this work too.

Accordingly, the probability of observing a particular number of m-planet systems, nobs,m,

is given by

Pr(nm = nobs,m) =
e−nsim,mn

nobs,m
sim,m

nobs,m! . (5.6)

The Poisson likelihood function is defined by a product of the above over all m (=mul-

tiplicities), and this function certainly describes how close a simulated set of multiplicities,

nsim, resembles the observed set, nobs - thereby providing a suitable distance metric:

ρ(nobs,nsim) =
Mmax∏
m=1

e−nsim,mn
nobs,m
sim,m

nobs,m! , (5.7)

where nobs and nsim represent vectors containing all the m-indexed observed and simu-

lated population multiplicities, respectively. The nobs vector is fixed and given by Table 5.1.

Meanwhile, the nsim vector, which needs to be counted up after each forward model call,

is directly controlled by the choice of forward model parameters θ, which we ultimately

wish to infer. It should be noted that our choice of distance metric here, shown in Equa-

tion (5.7), does not decrease as the distributions approach one another, but rather increases.

Accordingly, it could perhaps be better thought of as an inverse distance metric although

we’ll continue to refer to it as distance metric in what follows, with the only important

consequence being that our task is to maximize ρ, rather than minimize ρ.
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We now turn our attention to the component of the distance metric which characterizes

the planetary radius distribution. The objective here is not to fit each and every planetary

radius - which would be more in line with an HBM. Instead, we wish to simulate a population

whose statistical properties broadly match those of the observations. A straightforward

approach for accomplishing this is to the use the Kolmogorov-Smirnov (K-S) test, following

on from the approach adopted by Fang & Margot (2012).

We therefore compute the K-S p-value between the observed radii and the simulated set

as our radius distance metric, since this follows the behaviour of the multiplicity component

in terms of being a term we seek to maximize. We multiply this by the multiplicity distance

metric given by Equation (5.7) to define an overall distance metric, ρ(Dobs,Dsim). The two

components are equally weighted under this definition.

A variety of sampling techniques are suitable for ABC inference (Beaumont, 2019), and in

this work we elect to use the Markov Chain Monte Carlo (MCMC) approach (Marjoram et al.,

2003; Marin et al., 2012). We sample the model parameter space of θ with Gaussian proposals

where the acceptance criterion is chosen such that the probability of accepting a proposal is

ρproposal/ρi, where i denotes the current index in the chain. In this way, improvements in the

distance metric (which recall equates to an increase in the “distance” under our definition)

are always accepted. This means that samples near the beginning of the chain, prior to

convergence, can often have poor distance scores. We remove these burn-in samples by only

including samples in the chain past the first instance exceeding the median distance metric.

We demand that 50,000 accepted samples are achieved for each model, with the final chains

inspected to verify convergence and mixing.

Because of the somewhat subjective nature of choosing an appropriate distance func-

tion in ABC, there is no formal guarantee the model posterior will converge to the true

posterior distribution. For this reason, it is important to test the accuracy of our ABC in-

ference framework through fake data generation and recovery simulations, which we present

in Section 5.3.2.
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5.2.5 Proposed multiplicity models

In Section 5.2.3, we described how exoplanetary radii could be described using a DSPL

distribution, mutual inclinations with a Rayleigh distribution, and orbital periods with a

log-uniform distribution. However, we did not propose a specific form for the multiplicity

distribution itself - which we turn our attention to here.

Specifically, we here describe ten choices of multiplicity distribution: five single-population

models, each parameterized by a single free parameter β, and five corresponding “dichoto-

mous” models. The dichotomous models are mixture models of two populations: (1) a frac-

tion f of single-planet systems and (2) a fraction 1− f of multi-planet systems, distributed

according to one of the models parametrized by β.

5.2.5.1 Constant model

One of the first multiplicity models proposed in the literature is presented by Ballard

& Johnson (2016), who initially adopt a simple approach where every system has the same

multiplicity, βconst, which is treated as a free parameter (we refer to this as the constant

model):

Pr(m|βconst) =


1 if m = βconst,

0 otherwise ,
(5.8)

Ballard & Johnson (2016) conclude that this model is unable to provide a good fit to

the observed multiplicities of Kepler M-dwarf systems and thus expand upon the constant

distribution in that same work to include a second component of single-planet systems (m =
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1), which represent a fraction f of all systems:

Pr(m|βconst, f) =



f if m = 1,

1− f if m = βconst,

0 otherwise ,

(5.9)

Following the terminology used by the authors, we refer to this as the “dichotomous”

constant model.

Simple models are often attractive since one might plausibly purport that the laws that

govern planetary architectures (or whatever other phenomenon one is considering) are fun-

damentally simple themselves. However, we suggest here that the constant model is almost

certainly too simple a model to be a realistic description of the exoplanet multiplicity dis-

tribution. It is rather implausible to suppose that every system should have an identical

number of planets, and even after including a second population of singletons, this still yields

a highly unnatural distribution composed of two distinct peaks at m = 1 and m = βconst,

with zero probability that systems have multiplicities other than this. For this reason, we

felt motivated to consider other models in addition to the constant formalism.

5.2.5.2 Uniform model

A simple improvement to consider would be to adopt a discrete uniform distribution,

where every multiplicity is just as likely as any other, above some minimum multiplicity,

βuniform:

Pr(m|βuniform) =


1

(mmax+1)−βuniform
if βuniform ≤ m ≤ mmax,

0 otherwise .
(5.10)

This can be similarly be extended to a dichotomous model by assuming that some fraction

of planetary systems, f , belong to a separate population of singles.
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5.2.5.3 Truncated Poisson model

Arguably, a more natural model is a Poisson multiplicity distribution, which appears to

be the most commonly adopted law (e.g. see Lissauer et al. 2011a; Fang & Margot 2012;

Gaidos et al. 2016; Bovaird & Lineweaver 2017). This might be expected if the multiplicity

of an exoplanetary system were the result of a constant rate of generating planets within a

fixed interval of time or space. One may write that the probability of forming an m-planet

system would thus be

Pr(m|βpoisson) ∝


βmpoisson
m! if 1 ≤ m ≤ mmax,

0 otherwise ,
(5.11)

where we drop normalization terms which do not depend on m. For βpoisson ≥ 2, this

implies a peaked, non-monotonic distribution at a specific multiplicity, unlike the uniform

case. In practice, we reject any trial m equal to zero or exceeding mmax, i.e. we truncate

the distribution. The Poisson can again be extended to a dichotomous model as was done

before.

5.2.5.4 Exponential model

Another previously adopted law is that of a discrete exponential distribution (e.g. Bovaird

& Lineweaver 2017) which imposes that the multiplicity, m, follows

Pr(m|βexp) ∝


βmexp if 1 ≤ m ≤ mmax,

0 otherwise,
(5.12)

which can again be extended to a dichotomous model as above.
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5.2.5.5 Zipfian model

Finally, we consider a Zipfian distribution, which represents a discrete power-law given

by

Pr(m|βzipf) ∝


m−1−βzipf if 1 ≤ m ≤ mmax,

0 otherwise,
(5.13)

and a corresponding dichotomous model constructed as above.

Zipf’s Law (Zipf, 1935) is known to be an excellent approximation for word frequency

versus rank for human languages, and even some animal communications (Doyle et al.,

2011a). On this basis, it might seem like a peculiar choice to use when modeling the exoplanet

multiplicity distribution, but Zipf’s Law also appears in much wider array of problems, such

as the population frequency of cities (Auerbach, 1913). Zipf’s Law has been argued to be a

natural by-product of models with many underlying latent variables, somewhat analogous to

the arguments behind the Central Limit Theorem (Belevitch, 1959; Aitchison et al., 2016),

and thus on this basis would seem a very reasonable model to propose for exoplanets too -

despite the fact it has seemingly not been used in the past for this purpose.

5.3 Analysis

We run the forward model described in Section 5.2.3 ten times, once for each choice of mul-

tiplicity model described above, and fit for the free parameters θ = {β, αsmall, αbig, Rcrit, σR, σI}

(and f , for the dichotomous models) via ABC, as described in Section 5.2.4.

In these fits, we adopt a uniform prior on Rcrit between Rmin = 0.5R⊕ and Rmax = 32R⊕,

and a uniform prior on f between 0 and 1. We also adopt (improper) priors insisting that

αsmall and αbig be greater than −1 and that σR and σI be positive.

For the constant model, we adopt a prior that restricts βconst to be an integer between

1 and mmax, inclusive. For the uniform model, we adopt a prior that restricts βuniform to be
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Table 5.2: One-sigma credibility intervals of the model parameters for each of the ten mul-
tiplicity models. Recall that β is defined differently for each model, as described in Sec-
tion 5.2.5.

Model αsmall αbig Rcrit [R⊕]σR [R⊕] β σI [◦] f
Constant 0.13+0.37

−0.26 4.47+1.82
−1.39 2.91+0.88

−0.55 0.27+0.30
−0.18 4.54+0.64

−0.87 3.95+0.76
−0.57 -

Uniform 2.27+0.42
−0.47 3.17+2.16

−1.39 3.09+0.58
−0.37 0.19+0.21

−0.13 1.54+0.73
−0.36 6.16+0.45

−0.50 -
Poisson −0.32+0.18

−0.22 3.97+0.80
−0.76 2.77+0.28

−0.29 0.15+0.18
−0.10 5.10+0.60

−0.62 2.18+0.16
−0.17 -

Exponential 0.54+0.48
−0.37 4.55+1.06

−0.78 2.59+0.31
−0.27 0.14+0.18

−0.10 1.66+0.34
−0.26 2.71+0.96

−0.79 -
Zipfian 0.63+0.45

−0.37 4.69+1.02
−0.69 2.62+0.30

−0.24 0.13+0.16
−0.09 0.80+0.28

−0.33 2.28+0.87
−0.71 -

Di-Constant −0.22+0.23
−0.22 3.18+0.88

−0.63 2.96+0.38
−0.33 0.11+0.18

−0.07 5.00+0.32
−0.37 2.75+0.31

−0.32 0.72+0.04
−0.05

Di-Uniform 1.80+0.42
−0.44 4.24+1.03

−0.93 2.84+0.25
−0.25 0.13+0.17

−0.09 1.77+0.63
−0.49 4.28+0.52

−0.48 0.65+0.06
−0.08

Di-Poisson −0.36+0.19
−0.19 4.24+1.01

−0.81 2.74+0.26
−0.27 0.12+0.16

−0.08 4.94+0.66
−0.62 0.72+0.29

−0.30 0.53+0.04
−0.05

Di-Exponential 0.52+0.63
−0.40 4.74+1.06

−0.77 2.66+0.29
−0.28 0.15+0.16

−0.10 1.55+0.42
−0.35 2.09+1.24

−0.95 0.44+0.12
−0.12

Di-Zipfian 0.82+0.50
−0.42 4.59+0.97

−0.79 2.66+0.28
−0.24 0.15+0.16

−0.11 0.40+0.40
−0.52 2.70+0.76

−0.75 0.23+0.22
−0.15

an integer between 1 and mmax − 1, inclusive. For the exponential and Poisson models, we

adopt a prior that insists βexp or βpoisson be positive. We place no prior constraints on βzipf .

One-sigma credibility intervals for these parameters in each of our ten model fits are

presented in Table 5.2, and an example posterior distribution, for the single-population

Zipfian model, is presented in Figure 5.1.

5.3.1 Model comparison

To compare models, we use the Akaike Information Criterion, AIC (Akaike, 1974). There

are two major reasons behind this choice. First, the AIC does not require that one of the

models being tested is the correct model, it merely asks which of the models is the closest

approximation to the truth (unlike the BIC; Schwarz 1978). Second, the AIC does not

functionally depend on the sample size, which is somewhat ill-defined in our problem since

our inference employed a likelihood approximation. We therefore calculate the AIC for each

model by first finding the most probable realization from the 50,000 posterior samples, as

defined by the distance function, and then using
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Figure 5.1: Joint posterior probability distribution for the non-dichotomous Zipfian mul-
tiplicity model - the favored model deduced in this work. We find that the parameters
converge to unique and physically plausible values.
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Table 5.3: AIC scores and estimated uncertainties for the ten different models used to
describe the Kepler exoplanet multiplicity distribution.

Multiplicity ModelAIC
Constant 72.58± 1.75
Uniform 64.72± 0.86
Poisson 72.15± 1.15
Exponential 56.92± 0.88
Zipfian 53.79± 0.54
Di-Constant 53.99± 0.47
Di-Uniform 53.30± 0.60
Di-Poisson 54.10± 0.61
Di-Exponential 53.85± 0.67
Di-Zipfian 54.14± 0.74

AIC = −2 log ρ̂+ 2k, (5.14)

where k is the number of free parameters used by each model. Since we constructed our

distance metric ρ as a product of two likelihood-like terms, ρ approximates the likelihood in

the AIC calculation above. For the non-mixture models, k = 6 since we have free parameters

β, σI , Rcrit, σR, αsmall and αbig. The dichotomous models add one extra free parameter, the

fraction of single-planet systems f .

We assign uncertainties to our AIC scores through a bootstrapping procedure. First, we

split the chain up into S segments. For each segment, we compute the AIC, and estimate

its standard deviation as 1.4826 multiplied by the median absolute deviation. We repeat

this procedure, varying S from 2 to 50 in unity steps, and for the non-mixture models use

the median score across all experiments. For the dichotomous models, we find that the

scatter tends to decrease as we approach small S, and thus we fit a simple quadratic model

of scatter versus S to estimate the scatter at S = 1. These uncertainty estimates, along with

the overall AIC scores, are compiled in Table 5.3.

Amongst the non-mixture models, Table 5.3 shows that the Zipfian distribution is pre-
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ferred, favored over the next-best model (exponential) with an odds ratio of e(56.92−53.79)/2 =

4.78. Since all of these models have the same number of parameters, this preference is purely

driven by the much improved distance metrics. The constant model is found to be the worst

description of the multiplicity distribution, disfavored versus a Zipfian model by a factor of

12,000.

Amongst the dichotomous models, the field is much more level, with all five models

roughly equally favorable to each other and also to the single-population Zipfian distribution

model. As a check on this, we also tried computing the Savage-Dickey ratio by evaluating the

posterior density at fsingle = 0. Only the di-exponential and di-Zipfian models had enough

samples around this region to reliably estimate the single-population model:dichotomous

model odds ratio, yielding ratios of 0.040 and 1.607, respectively. These are broadly consis-

tent with the AIC results of approximately equal weights (= e−∆AIC/2), demonstrating that

the AIC approach is a suitable approximation for this model selection problem.

On this basis, we conclude that the simpler hypothesis of a single population model is

not significantly rejected by the current data. A single Zipfian distribution appears quite

capable of describing the Kepler exoplanet multiplicity distribution for FGK hosts.

In Figures 5.2 and 5.3, we plot the underlying simulated population of planetary systems

(inset figures) and the “detected” subset of these systems, for all ten multiplicity models, to

investigate the effect of detection biases on this subset and to compare it to the real Kepler

detections. Despite very different underlying multiplicity models, the detected sample is

qualitatively similar in all ten cases: strongly peaked at m = 1, and falling off at higher

multiplicities. It is not surprising in this light that the Zipfian model performs best of the

five single-population models, as it has this general shape already, and that the dichotomous

models (which by definition include a peak at m = 1) perform equally well.

Consequently, we conclude overall that the current Kepler data prefer multiplicity models

which peak at m = 1, but have little distinguishing power between such models. Choos-

ing among them thus becomes a question of prior beliefs about the underlying planet
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distribution—e.g., is there theoretical support for two planetary system formation path-

ways?

In what follows, we investigate more fully the single-population Zipfian multiplicity

model, on the basis of its simplicity.

5.3.2 Testing the inference framework

The use of ABC and also AIC model selection are both approximate tools and thus one

might reasonably question how robust they really are. To test this, we decided to generate

a total of 20 fake data sets where the true multiplicity distribution is known and test how

well we can recover that true distribution using the same machinery used thus far.

We generate the first ten mock populations assuming a Poisson multiplicity distribution.

Every population has the same input parameters, chosen to be close to the inferred solutions

in our earlier fits, specifically αsmall = 0.33, αbig = 5.0, Rcrit = 2.5R⊕, σR = 0.05R⊕,

βPoisson = 1.0, σI = 2.0◦. However, these ten fake “observed” data sets, D′obs, are slightly

different to each other due to the stochastic nature of the forward simulation. The second ten

are generated in the same way except we switch to a Zipfian distribution (replacing βPoisson

with βZipf = 1.0).

We fit each of these twenty data sets with two models: a Poisson and a Zipfian. Thus, we

should be able to test whether AIC scoring is able to pick out the correct model in each case

- a basic assumption upon which the previous subsection rests. Second, we can test whether

the inferred parameters (in cases where the correct model is regressed) are compatible with

the input values. In this way, we can provide a detailed assessment of the validity of our

inference framework. To save computational time, we use 10,000 post-burn-in steps for each

MCMC fit.

The AIC results, summarized in Table 5.4, show that the correct model is identified in

18 out of 20 cases. In general, the Zipfian model appears to be more flexible and gets closer

to describing the Poisson model than vice versa, likely as a result of the very harsh selection
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Figure 5.2: Left: Linear-scale histogram of the multiplicities of “detected” simulated plan-
etary systems for Kepler FGK stars for the five single-population models. We inset the
underlying simulated multiplicity distribution in each panel. The dark regions signify the
1-σ credible interval, and light regions give 2-σ. Black circles represent the real observed
Kepler sample. Right: Same as left except log-scaled.
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Figure 5.3: Left: Linear-scale histogram of the multiplicities of “detected” simulated plane-
tary systems for Kepler FGK stars for the five dichotomous models. We inset the underlying
simulated multiplicity distribution in each panel. The dark regions signify the 1-σ credible
interval, and light regions give 2-σ. Black circles represent the real observed Kepler sample.
Right: Same as left except log-scaled.
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Table 5.4: AIC scores for twenty fake data sets fitted using two models. Boldened numbers
indicate the favored model, which equals the true model in 18/20 cases.

Experiment AIC (Poisson)AIC (Zipfian)
Truth = Poisson
1 38.73 40.59
2 39.22 39.69
3 39.78 40.62
4 39.70 39.66
5 38.78 39.34
6 38.45 42.42
7 38.16 37.95
8 38.93 40.61
9 38.50 38.55
10 39.17 40.96
Truth = Zipfian
1 76.27 48.02
2 71.06 50.32
3 64.30 45.90
4 64.84 47.91
5 53.59 45.97
6 62.84 47.51
7 74.26 52.27
8 75.54 48.42
9 58.27 47.00
10 63.34 47.01
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functions which push the distributions towards an ostensibly monotonic form. Nevertheless,

the AIC scoring system appears to be a reliable tool for identifying the best model.

Comparing the actual parameters which result, as shown in Figure 5.4, we find good

agreement between the results and the injected truths: over the 10 fits to the 6 parameters,

the recovered parameter is in 1σ (2σ) agreement with the injected parameter in 37 (50) of

60 cases for the Poisson trial and 49 (60) of 60 cases for the Zipf trial. We also inspected the

distances metrics versus parameter samples and verified that the distance metrics approach

their maximum around the true injected values, as expected. This establishes that the ABC

inference framework is able to accurately recover the correct parameters, as well as being

suitable for model selection via the AIC.

5.3.3 Properties of the preferred Zipfian distribution

Given that the non-dichotomous Zipfian multiplicity model is the favored model of this

work, it is worthwhile to consider the parameters inferred from this model. We show a corner

plot of the joint posteriors in Figure 5.1, where the converged, unique nature of the inferred

solution is evident.

It is also instructive to compare the multiplicity of the generated systems in our fits,

versus the apparent multiplicity of these same systems after being filtered through our mock

Kepler pipeline. This is is shown in Figures 5.2 and 5.3, where one can see how the true

sample (inset figures) is considerably diminished as a result of detection bias.

5.3.3.1 Interpreting the Zipfian slope

When interpreting the inferred value of βZipf , it is worth highlighting that βZipf = −1

leads to a precisely uniform distribution, βZipf < −1 leads to distributions whose probability

density monotonically increases with increasing multiplicity, and vice versa βZipf > −1 leads

to distributions which decrease with increasing multiplicity.

With a shape parameter of βzipf = (0.80+0.28
−0.33), our fit strongly favors a distribution which
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Figure 5.4: Violin plots comparing the retrieved a-posteriori distributions of the five free
parameters in our Poisson (left) and Zipfian (right) model, using the described ABC in-
ference framework. Each panel shows a different parameter, with each labeled experiment
representing an independently generated fake data set. The injected truth is given by the
horizontal lines. and the median and 1-sigma credibility band of the recovered parameter in
each trial are plotted in black.
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Table 5.5: One-sigma credible intervals of the underlying planet multiplicity for Kepler FGK
stars with periods 6.25 < (P/days) < 400 and sizes 0.5 < (R/R⊕) < 32, as computed from
the marginal posterior of the favored non-dichotomous Zipfian model. Quoted scores are
defined as the percentage of FGK planetary systems with at least one planet in the quoted
period and radius range.

Underlying multiplicityCredible interval
1 31.08+7.18

−8.94%
2 19.72+1.44

−2.07%
3 13.93+1.13

−1.25%
4 10.48+1.66

−1.61%
5 7.85+1.95

−1.61%
6 5.83+1.98

−1.43%
7 4.22+1.76

−1.20%
8 2.97+1.52

−0.95%
9 2.03+1.16

−0.70%
10 1.40+0.88

−0.54%

decreases with increasing multiplicity. This is evident from Table 5.5, which presents the

relative frequency of each multiplicity as determined from the Zipfian fit. Since Mercury is

less than half an Earth radius and Mars is beyond the period threshold used in this work,

the Solar System is a 2-planet system in our framework - a configuration found in 19.7+1.4
−2.1%

of our simulated FGK planetary systems. Packed, compact systems are rare, with 7-planets

or more constituting 10.6% of our simulated FGK planetary systems.

5.3.3.2 Probability of additional planets in known systems

One can also see that although the fraction of observed one-planet systems represents 80%

of all systems (see Table 5.1), in reality only 31% of system are truly single (see Table 5.5).

Another way to think about this is that the Zipfian model finds that 31% of the simulated

systems are genuinely single and all of these must yield a planet with the correct geometry

and detectability to have been “detected” by the simulated Kepler survey (else they would

not have been included in the final simulated catalog since our code would have not saved

the realization). Since 100% of the 31% truly single planet systems appear as singletons

in the final catalog, 80 − 31 = 49% of the detected singles are multiple planet systems for
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which only one planet was detected to transit. Thus, of the 80% of ostensibly single planet

systems, a fraction 31/80 = 0.39 are indeed genuinely single and the other 49/80 = 0.61 are

yet-to-be-revealed multi-planet systems.

Accordingly, radial velocity follow-up of single transiting FGK Kepler systems has an

a-priori 60.8+11.2
−8.8 % chance of detecting new planets (after correctly propagating the uncer-

tainties) with periods and radii in our specified range. Given that there are 1225 single-planet

systems in our sample, that equates to 745+137
−108 hidden planets in the single-planet systems.

5.3.3.3 Total number of missing planets

By calculating the total number of planets generated in the simulated systems, we find

that the Zipfian model predicts a total of 4843+915
−586 planets residing around the 1537 FGK

systems with known detections. Since only 1966 known planets reside around these stars,

that means that there are 2877+915
−586 hidden planets - which are expected to be dynamically

stable. Discovering these planets, perhaps through radial velocity follow-up, could increase

the planet count around these stars by a factor of 2.46+0.47
−0.30.

5.4 Discussion

The principal finding of this work is that the observed multiplicities of the Kepler FGK

transiting systems can be well-explained without invoking a dichotomous population model.

Specifically, we find that a Rayleigh mutual inclination distribution with a Zipfian multi-

plicity distribution (the latter of which appears to have never been tried before) is able

to well-reproduce the observed catalog. This is not to say that dichotomous models are

disfavored—indeed, the single-population Zipfian and the five dichotomous models perform

equally well—only that invoking a dichotomous population is not necessary to explain the

detected Kepler multiplicities. Furthermore, we find that the Kepler data do decisively prefer

multiplicity models peaked at m = 1 over those peaked at higher multiplicities.
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Bovaird & Lineweaver (2017) also suggest that the dichotomous model may not be neces-

sary by considering an alternative inclination distribution. Since inclination and multiplicity

both affect the final catalog (Tremaine & Dong, 2012), then it is certainly plausible then

either (or both) of these effects are able to explain the observed multiplicities without in-

voking dichotomy. Zink et al. (2019) note, furthermore, that the Kepler pipeline’s decreased

detection efficiency for multi-planet systems could also explain the overabundance of Ke-

pler singles. Finally, although our work centers on FGK stars, we highlight that Gaidos

et al. (2016) also find that a dichotomous distribution may not be necessary by changing the

underlying models in the case of M-dwarfs.

It is curious that Zipf’s Law (Zipf, 1935), most commonly associated with linguistics,

works well for exoplanet multiplicities. Zipfian laws are argued by Aitchison et al. (2016) to

be natural outcomes of systems involving a large number of latent variables, and this may

represent another example. Extending our analysis to M-dwarfs, particularly from TESS,

will provide a good test as to whether the Zipfian model can persist in the face of new data.

Using our preferred model, we are able to make predictions about the numbers of missing

planets. For example, we predict that 7 or more planet systems are rare, with just 10.6% of

detected systems being so packed. This is in sharp contrast to Mulders et al. (2018), who

recently estimated that 42% of Sun-like stars have nearly coplanar planetary systems with 7

or more exoplanets. Although our numbers are not measuring precisely the same quantity,

it would be difficult to reconcile the Mulders et al. (2018) value with our estimates given the

stark paucity of such systems in our observed sample.

Our model does predict a large number of missing planets, ' 2900 around the 1537 host

stars considered, of which some ' 750 reside in ostensibly single-transiting-planet systems.

It may therefore be possible to test the predictions of these models by conducting radial

velocity follow-up of the Kepler field in the future to measure the true multiplicities.
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6. On planetary systems as ordered

sequences

6.1 Introduction

The planets belonging to any particular system are not random, and neither are they

independent. We broadly expect them to have formed from the same protoplanetary disk,

collapsed initially from the same cloud, around the same star (Williams & Cieza, 2011). We

expect early-forming planets to determine which planets form later. Within our own Solar

System, for example, Jupiter and Saturn are thought to have formed early, migrated inward,

and truncated the protoplanetary disk at ∼ 1 AU, which left relatively little mass to form the

terrestrial planets over the subsequent ∼ 50 Myr (Walsh et al., 2011; Batygin & Laughlin,

2015). Within exoplanetary systems, we observe correlations between the properties of

sibling planets, suggesting similar interdependence (Ciardi et al., 2013; Millholland et al.,

2017; Weiss et al., 2018).

After the disk dissipates, we expect the planets to continue interacting dynamically,

through orbital migrations, resonances, and scatterings; the present-day configuration of

the system, from the multiplicity (Nesvorný, 2011; Sandford et al., 2019b), to their spacing

and ordering (Lissauer et al. 2011a; Fabrycky et al. 2014; Weiss et al. 2018; Kipping 2018b;

see Winn & Fabrycky 2015 for a review), to their mutual inclinations and consequent co-

transiting probability (Tremaine & Dong, 2012; Fang & Margot, 2012; Figueira et al., 2012;

Weissbein et al., 2012; Ballard & Johnson, 2016), will naturally depend on this dynamical
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history.

The planetary system—the star and its planets, in their specific configuration—encodes

its formation and dynamical history; there is information in the individual components, but

also in their arrangement. It is therefore valuable, especially now that we know of so many

exoplanetary systems, to, in the words of Gilbert & Fabrycky (2020), “treat the system as

the fundamental unit [of exoplanet science]” and investigate planets within the context of

their siblings and host stars.

Historically, the relationship of planets to their context has been difficult to investigate

because of the combinatoric proliferation of relationships between planets as system mul-

tiplicity grows, and because of the lack of an obvious way to compare systems of different

multiplicity. Gilbert & Fabrycky (2020) address these problems by defining seven scalar

statistics, each of which captures some aspect of the planetary system overall: three rele-

vant examples are the system multiplicity; the monotonicity, which describes how strictly

size-ordered the planets are; and the characteristic spacing of the planets in mutual Hill

radii.

Here, we take a different approach to studying planetary systems, inspired originally by

the study of linguistics. Linguistics concerns itself not just with vocabularies of individual

words, but also with their arrangement into meaningful sequences; a particular arrangement

of words conveys information which the same words, randomized, do not. Furthermore,

any particular language has grammatical rules and conventions that govern these arrange-

ments, which is interesting for two reasons: first, because grammatical logic allows you to

make inferences about missing words, and second, because studying the set of allowable

arrangements as a whole can allow you to infer the underlying rules.

By analogy, we concern ourselves here with planetary systems as ordered sequences,

the structure of which is governed, presumably self-consistently, by the rules of physics and

probability. We adapt models from computational linguistics to explore two questions. First,

can we infer the properties of a missing or unobserved planet based on its observed context?
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If yes, these predictions would be useful in planet searches, to narrow the range of parameter

space in which we might expect to find the planet. Second, what can the patterns of planets

in systems tell us? Can we infer anything about the underlying “grammatical structure” of

planetary systems, if there is such a structure?

In Section 6.2, we describe our input catalog of KOIs arranged in systems. In Section 6.3,

we investigate the regression question: how well can we predict the period and radius of an

exoplanet based on its context, i.e. the properties of its host star and the periods and radii

of its neighbour planets? Furthermore, which contextual information is most important

in making those predictions? In Section 6.4, we turn to classification, and apply a model

based on linguistic part-of-speech tagging to explore the categories of exoplanet and the

“grammatical roles” they play in their systems. In Section 6.5, we conclude and highlight

some open questions.

6.2 Input catalog

The goal of this work is to model the relationships between planets and their surrounding

system context. For this investigation, we limit ourselves to planets discovered by the Kepler

mission. We do not expect Kepler planetary systems to be complete, because of the inherent

biases of the transit method and the detection efficiency of the Kepler pipeline (see e.g. Zink

et al. 2019), but we nevertheless expect the arrangement of these systems to contain some

interesting information.

To construct our input catalog, we downloaded the list of Kepler DR25 Objects of In-

terest (KOIs) from the NASA Exoplanet Archive (NEA; Akeson et al. 2013).1 We selected

planetary systems containing only KOIs with “Disposition Using Kepler Data” of “CANDI-

DATE” and cross-matched these with the catalog of Chen & Kipping (2018), who predicted

masses for the DR25 KOIs using forecaster (Chen & Kipping, 2017). We discarded any

system which included a KOI without a mass prediction.
1Accessed 24 January 2019.
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We also discarded any system which contained a KOI with Rp > 500 R⊕ (to eliminate

unphysically big entries in the catalog), forecaster-predicted Mp > 0.08 M� (the Jovian-

star boundary identified by Chen & Kipping 2017), or P > 3000 days. After these cuts,

our catalog comprised 3690 KOIs, grouped into 2804 systems. These systems range in

multiplicity from 1 to 7 KOIs each, where the count of each multiplicity is given in Table 6.1.

We note here that we do not make any effort to account for the selection bias of the

transit method in our sample: it is certain that there exist additional planets in these systems

which either do not transit or are too small to be detected in transit. For our purposes, this

incompleteness does not matter—if we find that we are able to predict the properties of a

planet based on its surrounding context, that will remain true even if additional planets are

later discovered in the same system. Likewise, any grammatical structure we find in these

incomplete systems may be incomplete, but will not be rendered incorrect by further planet

discoveries.

We decided to limit our investigation to four salient features of each planetary system:

the effective temperature Teff and surface gravity log g of its host star, and the radius Rp (in

units of R⊕) and period P (in days) of each planet. We choose Rp and P because they are

simply interpretable, physically meaningful dimensions. Period (which has the additional

advantage of being directly measurable from transit light curves) encodes the ordering of

planets outward from their star, as well as some information about their insolation. Plane-

tary radius (although it is not directly observable from transits, and depends on isochrone

modeling of the host star) contains information about both composition and equilibrium

temperature, and is an axis along which we know there to be meaningful boundaries be-

tween categories of planets, such as the small rocky planets and super-Earths on opposite

sides of the radius gap at 1.5 − 2.0R⊕ (Fulton et al., 2017). Likewise, we choose Teff and

log g because they are simple to interpret, capture a lot of information about the host star,

and are directly spectroscopically observable.

Because Rp and P span 2 and 3 orders of magnitude, respectively, we take log10 of both.
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Table 6.1: Multiplicities in the final subset of 3690 KOIs, grouped into 2804 systems, consid-
ered in this work. Taking the sum of each multiplicity by its count yields 3690, as expected.

Multiplicity, m Counts
1 2211
2 393
3 132
4 47
5 18
6 2
7 1
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Figure 6.1: Histograms of the two planetary (left) and two stellar (right) features of interest
across our catalog of KOIs. The two planetary-feature histograms are over the 3690 planets,
and the stellar-feature histograms are over the 2804 systems.

Histograms of these four features are presented in Figure 6.1.

6.3 Regression: Prediction of planet properties from

system context

The first question we ask of our KOI catalog is: what can we say about the properties of

a “target” planet, based only on its “context”? We define “context,” as above, as consisting

of the host star’s Teff and log g, as well as the radii and periods of the other planets in the

system. We seek to constrain the target planet’s Rp and P .
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6.3.1 Analytic considerations

We begin by considering the analytic constraints we can place on the period and ra-

dius, respectively, of a target planet, based on the assumption that the planetary system

is dynamically stable. Following Fabrycky et al. (2014), this means that the separation ∆

between neighbouring planets in units of mutual Hill radii satisfies:

∆ > 2
√

3, (6.1)

where ∆ is defined as

∆ ≡ aouter − ainner

RH

(6.2)

and RH by

RH ≡
(
Minner +Mouter

3M∗

)1/3 ainner + aouter

2 . (6.3)

Fabrycky et al. (2014) further suggest a conservative heuristic stability criterion for neigh-

bouring pairs of planets, but we do not consider it here.

The goal of this section is to adopt the most conservative possible constraints (in the

sense of adopting the fewest further assumptions about the planetary system), yielding the

widest physically allowable intervals of Rp,target and Ptarget. As we will see, the analytic

constraints we derive this way are so broad as to be practically irrelevant, so the further

assumptions that we do adopt in this section are not important to subsequent sections.

6.3.1.1 Period

Assuming circular orbits, we can bracket the period of any unobserved target planet by

the periods of its inner and outer neighbour planets: Pinner < Ptarget < Pouter. (Circularity is

a conservative assumption, given that orbital eccentricity of either neighbour planet would
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impose stricter bounds on the allowed period range of the middle one.) If a target planet is

the innermost in its system, we can similarly bracket its period by

√√√√ 4π2R3
∗

G(M∗ +Mp)
< Ptarget < Pouter, (6.4)

where the inner limit comes from calculating the period of an orbit at a semi-major axis

of R∗ using Kepler’s Third Law.

If the planet is the outermost in its system, we can bracket its period by Pinner < Ptarget ≤

Pmax in data set, where the latter is 1694 days.

6.3.1.2 Radius

The radius constraint is slightly more involved, and requires us to adopt a mass-radius

relationship for the KOIs in our sample. In brief, the procedure for constraining Rp,target is:

1. Using the mass-radius relationship, calculate Mp,inner and Mp,outer from Rp,inner and

Rp,outer;

2. Use these to calculate the maximum allowable stable mass of the target planet,Mp,target,max;

3. Again use the mass-radius relationship to translate this maximum mass into an upper

limit on radius, Rp,target,max.

For steps 1 and 3, we adopt the probabilistic broken power law mass-radius relationship

of Chen & Kipping (2017), implemented in the forecaster package. We use forecaster to

translate the NEA-reported 1σ uncertainty range of Rp into a corresponding range of Mp for

the inner and outer planets (see Figure 6.2 for examples from the Kepler-1073 (or KOI-2055)

system).

Step 2 involves a rearrangement of the stability equations of Fabrycky et al. (2014). For

stability, we require that ∆ > 2
√

3 for both the inner-target and target-outer pairs, i.e. that

the middle target planet is sufficiently far from both its inner and outer neighbours. In
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equation form, it must hold both that:

Mp,target <
M∗√

3

(
atarget − ainner

atarget + ainner

)−3

−Mp,inner (6.5)

and

Mp,target <
M∗√

3

(
aouter − atarget

aouter + atarget

)−3

−Mp,outer. (6.6)

Since M∗ is known, and a and Mp are known for both neighbours, these constraints

represent upper limits on Mp,target as a function of atarget, which (in accordance with our

circularity assumption, above) could take any value between ainner and aouter.

The maximum allowable mass for the target planet overall, i.e. anywhere in the allowable

range of semi-major axis, is at the intersection of the two constraints, where atarget satisfies

(
atarget − ainner

atarget + ainner

)3

− Mp,inner
√

3
M∗

=
(
aouter − atarget

aouter + atarget

)3

− Mp,outer
√

3
M∗

. (6.7)

We adopt this maximum allowable mass, Mp,target,max, as our upper mass constraint, and

translate it to an Rp,target,max with forecaster.

For the innermost planet in any system, we may similarly derive anMp,target,max based on

the outer-planet mass constraint, Equation 6.6. We must also make sure that the planet is

small enough not to be tidally destroyed by the star, so we use forecaster to translate the

upper limit on Mp,target as a function of atarget into an upper limit on Rp,target as a function

of atarget, then calculate the star’s Roche limit d as a function of that Rp,target:

d = Rp,target

(
2 M∗
Mp,target

)1/3

. (6.8)

We take Mp,target,max to be the maximum allowed Mp,target at which atarget exceeds d.

For the outermost planet, we can adopt the largest allowable mass by the inner-planet

mass constraint (Equation 6.5) at the semi-major axis of the maximum period in the data
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set,

amax =
(
GM∗P

2
max in data set
4π2

)1/3

. (6.9)

In Figure 6.2, we take as an example the first three planets of the Kepler-1073 system,

and plot the mass upper limits we derive for the middle planet (Kepler-1073c) based on its

inner neighbour (KOI 2055.03) and its outer neighbour (KOI 2055.04). The mass constraints

from the inner and outer neighbour as a function of atarget are plotted as blue and red curves,

respectively, with the corresponding excluded regions shaded in blue and red. The true mass

and semi-major axis of the middle planet are plotted as a black point.

This system is representative of our results for the KOI data set overall: in practice,

the upper limit on Mp,target that we derive by this procedure—and the corresponding upper

limit on Rp,target—is orders of magnitude larger than the true value, and indeed orders of

magnitude too large to be practically relevant for our prediction problem.

Consequently, having explored this analytic avenue, we drop it for the remainder of this

work.

6.3.2 Machine learning approach

We next explore another approach to predicting the properties of a planet based on its

system context: training a neural network model. A diagram of this approach is presented

in Figure 6.3.

We begin by dividing our data set of 2804 Kepler systems into a training set of 1962

systems (70% of the total) and a test set of 842 systems (the remaining 30%).

For each target planet in the training set, the network’s goal is to take as input the

planet’s context, and provide as output a prediction of the log planetary radius log10Rp and

log period log10 P , which can then be compared to the true values.

Specifically, the network’s contextual input consists of:

1. the stellar Teff and log g;
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Figure 6.2: An investigation into which regions of parameter space are excluded by simple
analytic stability criteria for representative planet Kepler-1073c, which is bounded by inner
planet KOI 2055.03 and outer planet KOI 2055.04. Top panel: Masses above the blue line
are excluded by the inner planet; masses above the red line are excluded by the outer planet.
Lower panel: A zoomed-in view, showing the Forecaster-predicted 1σ mass ranges for all
three planets based on their NEA-reported 1σ radius ranges. In practice, the analytic upper
mass limits are generally much too large to meaningfully constrain the middle planet’s mass.
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Figure 6.3: A diagram of the machine learning approach to predicting the properties of an
unobserved middle planet bounded by four observed planets.
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2. a vector of log10 P of the w planets immediately inner to the target planet and the w

planets immediately outer to the target planet, where w is a network hyperparameter

called the context width;

3. a corresponding vector of log10Rp of these 2w neighbour planets.

In other words, for each target planet, the network sees the planet’s host star and the

neighbouring planets within a window of width 2w centered on the target planet. Of course,

because the maximum multiplicity of systems in our data set is m = 7 and these systems

are heavily skewed toward low multiplicity, most planets will not have w inner and w outer

neighbours, even for w = 1. In this case, the period and radius vectors are zero-padded

such that they still have length 2w. Based on testing and considering the tradeoff between

capturing more information about high-multiplicity systems (high w) and training speed

(low w), we choose w = 2.

Our network is implemented in pytorch. It has two fully-connected hidden layers of

width 10 and 5, respectively. For the hidden layers, we use a rectified linear unit (ReLU)

activation function; for the output layer, which needs to generate real-valued predictions of

arbitrary sign, we use a linear activation function.

The cost function the network minimizes over training is the mean squared error:

MSE = 1
N

N∑
i=1
|X true −Xpred|2, (6.10)

where X true is the vector [log10Rp,true, log10 Ptrue] for the target planet, Xpred is the cor-

responding network prediction, and N is the number of planets in the training set (or, in

practice, training batch). We note that this cost function does not account for the observa-

tional uncertainty in log10Rp,true and log10 Ptrue: in other words, we are training the network

to predict the maximum-likelihood values of log10Rp,true and log10 Ptrue, not their full credible

intervals.

We train the network with an Adam optimizer (Kingma & Ba, 2014) with learning rate
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0.002, although this hyperparameter has minimal effect on the training efficiency. We train

the network in batches of 100 training planets over 500 epochs, which (by visual inspection

of cost vs. epoch number) is more than sufficient for the network cost to decline to a roughly

constant value. To all neurons, we impose a dropout probability of 1% at every training

epoch to discourage overfitting.

We train the network 100 times with different random initializations of the neuron weights

and take the version which achieves the minimal MSE on our training set as our result. This

optimal network’s predictions for the 842 test systems, grouped by system multiplicity, are

shown as yellow points in Figure 6.4.

For comparison, we also plot the “predictions” of an extremely naive model: for each

target planet, we “predict” the radius and period by drawing 100 random training set planets

which satisfy the basic stability criterion Pinner < Pdraw < Pouter. If the target planet is the

innermost (outermost) of its system, we adopt as Pinner (Pouter) the minimum (maximum)

period of any planet in our training set. We plot the 1 and 2σ confidence intervals over the

100 draws as gray bars in Figure 6.4. We note that in the period-prediction scatterplots,

you can clearly pick out the planets which are innermost (outermost) in their systems, as

these are the planets for which the gray bars extend all the way to the lower (upper) limit

of the plotted period range. The gray bars for all of the one-planet systems, for example, fill

the entire period range (with some statistical noise that results from our sample size of 100

draws).

As Figure 6.4 shows, the network predictions are no better than random for the vast

majority of the 1-planet systems, but improve dramatically with system multiplicity. This

indicates that the network is learning primarily from the other planets in the system, not

from the stellar features.

For period, especially, it makes sense that the network is learning mainly from the context

of neighbouring planets—after all, the network is directly given the bracketing periods of the

neighbour planets. However, the network does better than the naive model, which relies only
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on period bracketing—so the network is learning something deeper from the arrangement of

planets in the training systems. The network does better than the naive model for middle

planets as well as inner/outermost planets, meaning that the network’s improvement over

the naive model does not result purely from our choice to bracket the inner/outermost planet

periods by Pminimum and Pmaximum.

The network’s radius predictions, while less tightly scattered around the true values than

the period predictions, are also markedly better than those of the naive model. Interestingly,

unlike with period, there is a small subset of high-radius single-planet systems for which the

network is able to make a meaningful prediction: there is some stellar information which

correlates with radius for this subset. Again, the radius predictions generally improve with

system multiplicity.

A summary of the network vs. naive model performance is presented in Figure 6.5, which

shows the mean absolute error (MAE) in both radius and period as a function of system

multiplicity, transformed into linear Rp and P space, for the trained network and the naive

model. The mean absolute error is defined:

MAE = 1
N

N∑
i=1
|xtrue − xpred|, (6.11)

where N is the number of planets, xtrue is the true value of Rp (or P ), and xpred is the

predicted value of Rp (or P ). We choose to plot MAE in linear space to make it easier to

judge the accuracy of the two models’ predictions in meaningful units.

Because the mean absolute error is already normalized by the number of planets, we can

compare the different multiplicities in this plot directly. Both the network and the naive

model’s Rp predictions become more accurate for multiplicities up to m = 5, then worsen

for m = 6 to 7; this could be the result of the very small number of m ≥ 5 systems in the

data set (and one of the two 6-planet systems, as well as the lone 7-planet system, were by

chance assigned to the test set, not the training set, so the network did not train on either).
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In period space, there is an equally dramatic uptick in MAE beginning at m = 5.

Despite this uptick in MAE for high multiplicities, the network consistently outperforms

the naive model: its radius predictions are better on (weighted) average by a factor of 2.4,

and its period predictions by a factor of 1.8.

6.4 Classification: The grammar of planets and plane-

tary systems

We next turn to the question of planet grammar. In this section, we adopt a model used

for part-of-speech tagging in computational linguistics to ask: do planets fall into natural

categories with different roles in their systems, as words can be categorized into parts of

speech? If these categories exist, can we deduce them from the set of observed planetary

systems? Finally, what can we infer about the underlying rules governing the arrangement

of planetary systems?

We begin by exploring the analogous linguistic question that inspired this work. What

is part-of-speech tagging, why is it useful, and how is it done?

6.4.1 A model for our model: part-of-speech tagging

Part-of-speech tagging is the problem of categorizing the words in a body of text by their

grammatical function or behavior (see e.g. Greene & Rubin 1971; Brown et al. 1992). In

the preceding sentence, for example, “is” is a verb; “tagging”, “problem”, “categorizing”,

“words”, “body”, “text” “function”, and “behavior” are nouns, etc. This task is deceptively

simple: often, the part of speech of a word changes depending on its context, so it has no

single true classification. For example, in other sentences, “words”, “text”, and “function”

can all be verbs, as in, “She words the sentence carefully,” “I will text you later,” or “The

computer cannot function.”
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Figure 6.4: The performance of the trained regression network on the 842 test systems.
Scatterplots: Network-predicted planet properties vs. true values. In yellow are the network
predictions; in dark (light) gray are the 1σ (2σ) confidence intervals of the “naive” model
(see text). The corresponding histograms show distributions of (predicted value - true value)
for the network (yellow) and naive model (gray).
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Figure 6.5: The mean absolute error per planet of the regression network (yellow) and naive
model (black) predictions, as a function of multiplicity, transformed into linear Rp and P
space. The network consistently outperforms the naive model, by (on average, weighted by
the number of planets per multiplicity) a factor of 2.4 in radius and 1.8 in period.
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Part-of-speech tagging is interesting and useful because it represents sentences abstractly.

It captures the patterns of words organized according to a grammar, independent of the

choice of words in any particular sentence. For example, “The bird sings” and “The plot

thickens” both follow the same part-of-speech pattern, “article noun verb,” despite very

different meaning. The abstraction to “article noun verb” reveals the common structure.

Tagging an entire corpus of English text in this way would reveal several common pat-

terns: “noun verb” if the sentence ends in a period, but “verb noun” if it ends in a question

mark; verbs and adjectives allowed to occur in sequence, but not prepositions. These pat-

terns in turn reveal the underlying grammatical rules of the language. Grammar induction

has many further linguistic applications, including translation of dead languages, machine

translation of extant languages, and machine reading comprehension.

Over the past two decades, computational linguists have made great strides in unsuper-

vised part-of-speech tagging (see Christodoulopoulos et al. 2010 for a review), where a model

learns to identify the correct parts of speech without training on a data set labeled with the

correct answers. Because grammatical patterns in sentences exist regardless of the content

of those sentences, it is not especially necessary to train part-of-speech tagging models on

a labeled training set; part-of-speech tagging can be treated more like a clustering problem

(e.g. Brown et al. 1992). For our purposes, where we do not have “correct” planet labels to

train on, unsupervised learning is ideal.

Here, we investigate a particular unsupervised machine learning technique introduced

by Stratos (2019), based on theoretical work by McAllester (2018), and adapt it to classify

planets in systems. This technique, called mutual information maximization, simultaneously

trains two models to predict the part-of-speech (class membership) of any word (planet). The

first model, called the target network, takes as input the target word (planet); the second

model, called the context network, takes as input the surrounding context words (star and

neighbouring planets). Both networks output a prediction of the target’s class membership,

and the cost function rewards agreement between these predictions. In other words, the
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goal is to maximize the mutual information—the amount of information learned about one

variable by measuring another—between the target network’s representation of the target

(based on itself) and the context network’s representation of the target (based on its context).

6.4.1.1 The mutual information cost function

Here, we explore this cost function in slightly more detail. This will be a simplified

treatment; for the full derivation and information-theoretic justification, see Stratos (2019).

Following the derivation of Stratos (2019) section 3.2 (and adopting the same notation),

let us label our target planet as x ∈ X, where X is the space of all possible planets, and

our planet context as y ∈ Y , where Y is the space of all possible contexts. If we aim to

classify the planets into Nclasses classes, our goal is to train the target network to assign a

class label z ∈ 1, ..., Nclasses to the target, to train the context network to assign a class label

z ∈ 1, ..., Nclasses to the target, and for those assigned labels to agree as far as possible.

Let us call the output of the target network p(z|x). This is a vector of probabilities of

length Nclasses, where e.g. p(1|x) is the probability that planet x belongs to class 1, etc.

Similarly, let us call the output of the context network q(z|y).

Let us assume first that we know q(z|y) and we wish to train the target network such

that p(z|x) matches it as well as possible. We can reward that agreement by minimizing the

cross-entropy H(q, p):

H(q, p) = E[−
∑
z

q(z|y) log p(z|x)], (6.12)

where the expectation value is over all target-context pairs (x, y) in the training set.

However, we do not actually know q(z|y), and rewarding agreement alone would allow the

two networks to trivially agree by e.g. assigning all planets to the same class. So we must

simultaneously penalize that behavior, i.e. reward assigning examples to different classes.

This can be achieved by maximizing the entropy of q(z|y) over the different choices of

label z. First we marginalize q(z|y) over all y, so we are left with the distribution of labels

q(z). Let Z represent a random draw from this distribution. We wish to maximize the
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entropy of Z:

H(Z) = −
∑
z

q(z) log q(z). (6.13)

The overall cost function to be maximized is then −1 times the cross-entropy term, to re-

ward agreement, plus the label entropy term, to penalize trivial agreement. Mathematically,

we wish to maximize:

J = H(Z)−H(q, p). (6.14)

6.4.1.2 Network design and performance on simulated data set

To apply this mutual information maximization framework to our planets, we first design

the target and context networks, then test them on a (highly artificial) data set of simulated

planetary systems. A diagram of our classification model is presented in Figure 6.6.

The target and context networks (again implemented in pytorch) have the same inter-

nal architecture, but with different inputs. The target network takes as input the vector

[log10Rp,target, log10 Ptarget]. The context network (as in Section 6.3.2) takes as input the stel-

lar features Teff and log g, as well as a length-2w vector of the log10Rp of the w inner and w

outer context planets, and a corresponding length-2w vector of the log10 P of these planets.

As in the regression problem, we adopt a context width w = 2 and zero-pad the context

vectors where there are fewer than 2w context planets.

Both networks have two fully-connected hidden layers of width 100 and 10, respectively,

with ReLU activations. The output layer is of size Nclasses, and we apply a softmax function

to its output to transform it into a vector of class membership probabilities (i.e. the first

entry is the probability that the particular training example belongs to class 1, etc.). We

again train the networks with an Adam optimizer with learning rate 0.002 in batches of 100

training examples over 500 epochs, from 100 different random initializations of the neuron

weights. To all neurons, we again impose a dropout probability of 1% at every training

epoch to discourage overfitting.

To test this setup, we simulate a data set of planets that follow an invented toy planetary
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grammar. A diagram of allowed planetary systems under this grammar is shown in the top

panel of Figure 6.7.

In the simulated data set, planets belong to three classes: small, or class A (Rp = 1R⊕);

medium, or class B (Rp = 5R⊕); and large (Rp = 10R⊕), or class C. The radius distributions

are extremely narrow, and there is no overlap in radius between the classes (in other words, a

planet’s radius determines its class exactly). In our invented grammar, small planets act like

articles (e.g. “the” or “a”), medium planets act like compoundable nouns (a single medium

planet could represent the word “planet,” a sequence of two medium planets could represent

the phrase “planety planet,” and so on), and large planets act like verbs (e.g. “is”).

Allowable planetary systems under this grammar include [A,B,C] (“the planet is”),

[A,B,B,C] (“the planety planet is”), [A,B,B,B,C] (“the planety planety planet is”), and

[A,B,B,C,A,B,B] (“the planety planet is a planety planet”), but not [A,A,A] (“the the

the”) or [C,B,A,C] (“is planet the is”).

To generate a simulated system, we first draw a random star from the catalog of Kepler

planet hosts satisfying 3 < log g[cm/s2] < 5.3, 2400K < Teff < 9600K, and R∗ < 10R�.

(These cuts are somewhat arbitrary, because our toy grammar does not depend on stellar

properties.) We then draw a system multiplicitym from a Zipfian distribution with maximum

multiplicity mmax = 10 and index β = 0.80, as found to be the best-fit model to the

multiplicity distribution of Kepler multis in Sandford et al. (2019b):

Pr(m) ∝


m−1−βzipf if 1 ≤ m ≤ mmax,

0 otherwise,
(6.15)

We then draw periods for them planets in the system from a uniform distribution between

6.25 and 400 days. (Because class A planets often begin systems, and class C planets often

end them, a planet’s period contains weak information about its class membership.) We

then populate the radii according to our grammar rules, and check for dynamical stability
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Bottom: The joint period-radius distribution of the planets in 10,000 test planetary systems
generated according to these grammar rules. The planets are colormapped by the context
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the context network and the target network recover the truth exactly.
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per the equations of Fabrycky et al. (2014). If the system is stable, we keep it; otherwise,

we discard it and draw new periods; if it is still unstable after 1000 period draws, we draw

a new m and start over.

We generate a population of 10,000 training and 10,000 test systems according to this

procedure, train the context and target networks on the training set, and then run the test

set through the trained models. For both the training and test phases, we must also choose

the number of categories Nclasses into which the networks attempt to sort the planets; when

we choose the truth, Nclasses = 3, both the target and context networks classify the simulated

planets perfectly. When we choose Nclasses > 3, the networks begin to subdivide the true

classes arbitrarily.

The lower panel of Figure 6.7 shows the radius and period distributions of the planets in

the test set, color-mapped according to the (perfectly accurate) class membership assigned

by our context network. The target network’s classifications are identical, so we do not plot

them.

Having demonstrated that the network is capable of classifying planets belonging to

systems of this arbitrary grammar, we now turn to the real KOI data set to see what we can

learn.

6.4.2 Kepler systems, classified

We next apply the model shown in Figure 6.6, with the same architectures and hyper-

parameters given above, to the set of real KOI systems described in Section 6.2. For these

real systems, we do not know in advance whether or if there is a sensible choice of Nclasses,

so we run the network for Nclasses = 2 to 10, inclusive. For each choice of Nclasses, we again

run 100 different training runs with different random initializations of the network weights,

then take the one with the optimal cost function on the training set as our result. Figure 6.8

shows the cost function on the training set as a function of Nclasses for all these trials.

We next investigate what class boundaries the networks drew, to see if it picked up on any
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Figure 6.8: The best-achieved value of the cost function on the training set as a function of
Nclasses. For each choice of Nclasses, we ran the network with 100 different random initializa-
tions of the network weights (small circles); the median value over the 100 trials is plotted
as a large circle.

physically meaningful categories. The target network’s classifications for the varying choices

of Nclasses are shown in Figure 6.9. The context network’s classifications are considerably

noisier, with much more overlap between the classes; this makes sense because the context

network is attempting to predict the target planet’s class membership based on contextual,

indirect information, rather than based on the period and radius of the target planet itself.

Interestingly, although the context network sees the stellar properties Teff and log g, both

networks draw their boundaries exclusively in the period-radius plane; the stellar properties

seem irrelevant, in the sense that there is no information about planet categories in those di-

mensions. Given that the Kepler planet hosts in our sample occupy a relatively narrow range

of Teff and log g (see Figure 6.1), we might expect a fairly homogeneous planet population

around these stars, so this null result is sensible.

What can we make of the classification boundaries plotted in Figure 6.9? Some features

persist despite the choice of Nclasses; for Nclasses ≥ 6, for example, the short-period (∼ 0.5− 8
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day) planets at the leftmost edge of the plot (plotted in orange for Nclasses = 6, green for

Nclasses = 7) are assigned to a class of roughly the same shape and size, as are the slightly

longer-period (∼ 3− 10 day) small (∼ 0.4− 2R⊕) planets (plotted in purple for Nclasses = 6,

orange for Nclasses = 7).

Similarly, the intermediate-to-long-period (∼ 30− 2000 day), large (∼ 3− 15R⊕) planets

(plotted in yellow for Nclasses = 6) are assigned to an essentially stable class from Nclasses = 6

upwards. So are the intermediate-to-long-period (∼ 30 − 2000 day), super-Earth-sized (∼

1− 3R⊕) planets just below them in the plane (plotted in red for Nclasses = 6).

Class assignments for the middle section of the plane are less stable.

It is not obvious how to decide which choice of Nclasses is best: the achieved cost on the

training set increases monotonically with Nclasses, but we would expect this trend to continue

indefinitely (albeit slowly), because a higher Nclasses means a model with more parameters,

more easily moldable to our data set. Ideally, we would wish to define some analog of the

Bayesian evidence, which could account for both the goodness-of-fit (i.e., cost) and the model

complexity and allow us to compare the varying choices of Nclasses more directly, but it is not

obvious how to do this either.

In Figure 6.8, we can see that the optimal network cost on the training set jumps notice-

ably from Nclasses = 5 to 6 in Figure 6.8, then grows more slowly for higher Nclasses. On this

basis, we select Nclasses = 6 to investigate further.

We next ask: what do the class boundaries the network draws when Nclasses = 6 really

mean? How are planets of these 6 types arranged in systems, and can we deduce any

“grammatical rules” from these arrangements? In Figure 6.10, we plot the systems from our

test set, with each planet size-scaled according to its radius and color-coded by the target

network’s class assignment. For reference, we show the class boundaries drawn by the target

and context networks as insets in the lower-right corner.

We can see immediately that certain trivial patterns arise from the period ranking of

systems in the panels: “orange” planets, which come from the shortest-period group, occur
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Figure 6.10: Target network classification of planets in test-set systems. Each row represents
one system; each circle represents one planet, with area proportional to Rp. Systems are
sorted by outermost planet period (note the change in x-axis limits across the 1-planet
systems). Planets are color-coded by their target network class assignment. Bottom right:
Maps of the class boundaries by the target and context networks, respectively.
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more frequently toward the top of each multiplicity panel, and red and yellow planets, from

the long-period groups, occur more frequently toward the bottom. Within systems, which are

individually sorted by period, certain sequences are impossible given the period distributions

of the groups: a green planet cannot precede an orange, for example.

Also evident are the well-known patterns which result from the observational biases of

the transit method. In general, planet size and period are correlated, i.e. planets at longer

periods are larger; this pattern is sculpted by Kepler ’s increasing incompleteness toward the

lower-right quadrant of the period-radius plane (see e.g. Petigura et al. 2013, figure 1).

There are several interesting patterns beyond these, however. First, the largest planets,

which generally belong to the yellow group, are overrepresented among the single-planet

(m = 1) systems. In contrast, planets from the small-radius, intermediate-period green

group are underrepresented among the single-planet systems.

Within the multi-planet systems (m ≥ 2), an interesting pattern arises overall, which

perhaps sheds some light on why the network decided on these particular class boundaries:

it is rare for neighbouring planets in a system to come from non-contiguous classes in the

map (i.e., classes that do not share a border). Only 16% of multi-planet systems (31/194)

have neighbouring pairs from non-contiguous classes (e.g., have a green planet immediately

following an orange, or a yellow immediately following a green). Vastly more common are

either (1) successive planets from the same class, e.g. “orange orange” or (2) neighbouring

planets from neighbouring classes—the patterns “orange purple”, “purple green”, “green

red”, and “blue yellow” occur frequently, which can be seen clearly in the 2-planet systems.

Planet pairs from non-contiguous classes which are farther apart in the map are even rarer:

“orange red” happens only about half as often as “orange green”.

The commonness of same-group pairs and contiguous pairs is overall superficially con-

sistent with a “peas in a pod” picture of planetary systems, where planets are correlated in

size with their neighbours and periods are regularly spaced (Weiss et al., 2018).
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6.5 Discussion & open questions

Here, we have explored two avenues to understanding planetary systems as ordered se-

quences, in which the arrangement of individual planets contains information beyond that of

the planets themselves. In other words, we have explored ways to understand planets in the

context of their systems (i.e., their host star and their sibling planets). We specifically inves-

tigate a data set consisting of 3690 Kepler objects of interest, grouped into 2804 planetary

systems of multiplicity ranging from 1 to 7.

We first explore a regression problem: is it possible to accurately predict the radius and

period of a planet, if the radii and periods of its surrounding planets are known? We find

that our trained model indeed can. We compare our network’s predictions to those of a naive

model, which accounts only for basic orbital stability, and find that the network can predict

both planetary radius to a factor of 2.4 better, and period to a factor of 1.8 better, than the

naive model.

We find furthermore that the network’s predictions improve with increasing system mul-

tiplicity, and that neither the network nor the naive model are able to make meaningful

predictions about most single-planet systems, indicating that planet context information,

not stellar context information, is driving the accuracy of the network’s predictions. The

only exception to this is a small subset of large (i.e., high-radius) single-planet systems, for

which the network seems to be exploiting contextual stellar information to accurately predict

high radii. This work is still in progress, but we will identify which planets these are.

We next explore a planetary classification model based on recent advances in linguistic

part-of-speech tagging. Our model consists of two networks; one which sees the “target”

planet whose properties we are trying to predict, and the other which sees the surrounding

stellar and planetary context. The network trains by maximizing the mutual information

between the class assignments of the target network and those of the context network, a

principle which has proved very successful in linguistic applications but has not, to our
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knowledge, previously been used in the noisier realm of exoplanet science.

We find, most importantly, that the context and target networks draw their classification

boundaries in the period-radius plane only, despite the context network also having access

to the stellar properties Teff and log g. This indicates that the network has found no useful

correlations to exploit in the stellar dimensions, which is not surprising given the relative

homogeneity of the stars in our sample. In future, it would be very interesting to expand

our sample to include e.g. TESS systems, where cool stars are much better represented

than among the Kepler target stars. (It would be extremely interesting also to apply these

methods to a data set of transiting planets containing more hot Jupiters, which are overall

larger, closer-in, and lonelier than the planets investigated here, and form a cluster in the

period-radius plane that is quite distinct from the planets in our sample.)

For Nclasses ≥ 6, we find that the target network consistently identifies four stable classes.

The first consists of short-period (∼ 0.5 − 8 day) planets of all sizes. The second consists

of slightly longer-period (∼ 3− 10 day) small (∼ 0.4− 2R⊕) planets. The third consists of

intermediate-to-long-period (∼ 30− 2000 day), super-Earth-sized (∼ 1− 3R⊕) planets, and

the fourth of intermediate-to-long-period (∼ 30 − 2000 day), large (∼ 3 − 15R⊕) planets.

The classification boundaries drawn by the context network are unsurprisingly much noisier.

When we look at the “grammatical patterns” in the classifications assigned by the net-

work, we find that all neighbour-planet pairs in 84% of multi-planet systems come from either

the same class or classes which are contiguous in the period-radius plane. In other words,

pairs where the two members come from non-contiguous classes are rare. This pattern is

superficially consistent with a peas-in-a-pod picture, where sequences of similar planets are

common.

Overall, these methods show promise for picking up on subtle patterns in the arrange-

ment of planetary systems. We caution that our data set is small and quite noisy, so the

conclusions offered here are tentative, and certainly fall short of the ultimate goal of induct-

ing planetary grammar—but prospects can only improve as we gather more data.
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7. Conclusion

There is much to be learned from the shadows of exoplanets. By carefully modeling the

shapes of transit light curves, we can deduce the properties of individual exoplanets, their

orbits, and their host stars, as well as begin to understand the population of exoplanets and

the arrangement of planets in systems. Here, we summarize the results presented in the

preceding chapters and discuss avenues for future work.

7.1 Summary of results

In Chapter 2, we measured the densities of 66 Kepler planet host stars from the light

curves of their transiting planets, following the method originally suggested by Seager &

Mallén-Ornelas (2003). We selected these planets because they have strong prior eccentric-

ity constraints, either because their secondary eclipses have been measured, because their

theoretical tidal circularization timescales are short, or because they belong to compact

multi-planet systems; because both stellar density and eccentricity influence the transit du-

ration, these strong eccentricity constraints are necessary to derive a correspondingly tight

constraint on stellar density. We demonstrated that density constraints derived from the light

curve can be as precise as density constraints derived from asteroseismology, for stars up to

three magnitudes fainter than the Kepler asteroseismic limit, for mid-F to mid-K dwarfs.

Finally, we show that the major limiting factor in the precision of stellar density measured

from a transit light curve is the signal-to-noise ratio of the transits. In other words, our

ability to precisely measure the density depends mainly on our ability to precisely measure

the transit shape.
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We concluded Chapter 2 with a brief discussion of the potential of this method to help

constrain the periods of singly-transiting planets: if a star’s density can be “anchored” by

precisely modeling the light curve of another planet in the same system, the stellar density

can then be used, in conjunction with the shape of the single transit, to constrain the single

transiter’s period (an application originally suggested by Seager & Mallén-Ornelas (2003)

and Yee & Gaudi 2008).

Of course, as we explored in Chapter 3, a stellar density constraint need not come from

transits to be useful in constraining the period of a single transiter. In this chapter, we

derived stellar density constraints for the host stars of 12 single transiters observed by K2.

We combined their Gaia-measured parallaxes with published broad-band photometry, then

ran these data through Yonsai-Yale isochrone modeling to obtain bulk stellar densities; we

demonstrated that these densities are consistent with densities derived by asteroseismology.

We then modeled the transits of these 12 planets assuming these stellar density values a

priori and achieved good precision in our period posteriors: when we treated eccentricity as

a free parameter, the fractional period uncertainty over the 12 single transiters was 94+87
−58%,

and when we fixed e = 0, it was 15+30
−6 %, which represents a roughly threefold improvement

over typical period uncertainties of previous studies. We also explored the accuracy of period

posteriors derived this way by applying our method to a sample of 27 validation planets of

known period. We demonstrated that the method’s accuracy depends strongly on our ability

to measure a/R∗ from the transit shape, which means that the transit must be well-sampled

during ingress and egress for the period estimation to be reliable.

In Chapter 4, we considered the general problem of “shadow imaging,” or inferring the

shape of a transiting object from its light curve without assuming a physical model for

the object itself. We identified several interesting degeneracies inherent to this problem,

including the “flip” degeneracy, by which shadow images are horizontally symmetrical; the

“arc” degeneracy, by which an infinitesimal opaque point produces the same transit light

curve as a pair of intersecting semicircular arcs; and the “stretch” degeneracy, by which
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a wide image transiting at high velocity produces the same light curve as a narrow image

transiting slowly. Despite these degeneracies, if we adopted additional assumptions in our

algorithmic “inversion” of the light curves, we could recover informative shadow images

of arbitrary transit light curves, including the TRAPPIST-1 c, e, and f triple transit and

Dips 5 and 8 of Boyajian’s Star. The conclusions we could draw about the Boyajian’s Star

occulter were limited by the time-sampling of their Kepler light curves, but our shadow

images suggested structure, with alternating bands of transparency and opacity.

In Chapter 5, we shifted from considering the shape of individual transits to the “shape”

or arrangement of planets in systems. First we considered the underlying multiplicity dis-

tribution of Kepler systems orbiting FGK dwarfs. We generated ten catalogs of “observed”

simulated planetary systems, each from a different intrinsic multiplicity distribution, ac-

counting for both geometric and detection biases. We then used approximate Bayesian

computation to compare the “observed” simulated catalogs to the real Kepler multis, and

concluded that, in contrast to previous work which invokes a dichotomous planet population

to explain the high number of observed single-planet systems, a single-population Zipfian

model matches the real data as well as any of the dichotomous models. According to the

best-fit Zipfian model, we predicted that ∼ 750 additional planets should exist in ostensibly

single-planet Kepler systems, and that RV follow-up of these single-planet systems could test

this prediction.

Finally, in Chapter 6, we investigated the relationship between planets and their sur-

rounding “context,” i.e. their host star and sibling planets. We built a neural network

model to predict the radius and period of a planet based on its context, and found that this

model predicts both of these properties to a factor of 2 better than a “naive” model which

considers only basic dynamical stability constraints. We also adapted a part-of-speech tag-

ging model from computational linguistics to explore the “grammar” of planetary systems

and concluded that (1) within our relatively homogeneous sample of FGK host stars, the

model does not seem to learn anything from the stellar features; (2) the network consis-

207



tently identifies certain clusters in the period-radius plane, including short-period (∼ 0.5− 8

day) planets of all sizes; slightly longer-period (∼ 3− 10 day) small (∼ 0.4− 2R⊕) planets;

intermediate-to-long-period (∼ 30− 2000 day), super-Earth-sized (∼ 1− 3R⊕) planets; and

intermediate-to-long-period (∼ 30− 2000 day) large (∼ 3− 15R⊕) planets; and (3) that it is

rare for a multi-planet system to include a pair of neighboring planets from non-contiguous

classes in the period-radius plane (only 16% of multis contain such a pair). This last pattern

is superficially consistent with a peas-in-a-pod picture, where we expect sequences of planets

belonging to the same class to be common.

7.2 Future work

A natural extension of Chapters 2, 3, 5, and 6 would be to apply these methods to

systems discovered around TESS stars, which are overall closer, brighter, and cooler than

Kepler host stars. As we note in the conclusion to Chapter 2, the TESS asteroseismic

limit is brighter than that of Kepler because of its smaller aperture (Campante et al., 2016;

Ricker et al., 2014), so transit light curves could be used to measure the densities of TESS

stars too faint for asteroseismology. Since the publication of Chapter 2, the asteroseismic

capabilities of TESS have been more carefully modeled: Schofield et al. (2019) constructed

a list of TESS stars to target for asteroseismic measurements and predicted the yield of

asteroseismic detections from this list, finding that the distribution of V-band magnitudes

for the stars with detections peaks at V ' 8.5, on average 4 to 5 magnitudes brighter than

Kepler (see their Figure 11).

Similarly, since the publication of Chapter 3, the first of the hundreds of TESS single-

transit detections predicted by Huang et al. (2018) and Villanueva et al. (2019) have begun

rolling in. Several TESS single transits have been followed up with RV observations or

ground-based photometry and confirmed as planets, including HD 21749 b (also known as

TOI-186.01; Dragomir et al. 2019), GJ 143 b (Trifonov et al., 2019), HD 332231 b (Dalba
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et al., 2020), HD 332231 b (Dalba et al., 2020), NGTS-11 b (also known as TOI-1847.01;

Gill et al. 2020a; TIC 238855958 b (Gill et al., 2020b), and TIC 231005575 b (Gill et al.,

2020c), but so far there exists no catalog of TESS single transits overall.

Meanwhile, there have been further injection-recovery simulation studies done about the

TESS single transiters as a population. Cooke et al. (2019) investigate how the planned

re-observation of the southern ecliptic hemisphere during the TESS extended mission will

further illuminate the population of single transiters detected there during the primary mis-

sion: they calculate that approximately 80% of their predicted single transiters will transit

again during the second year of observations, but that 75% these will only transit again once

(i.e., TESS will have seen these planets transit exactly twice: once during the primary mis-

sion, and once during the extended mission). Because ∼ 3 years will have elapsed between

the two observations, these second transits will not suffice to identify unique periods for

this population, so period constraints from transit modeling based on prior stellar density

information could be very useful.

Yao et al. (2019), meanwhile, consider how TESS single transiters could be identified

in ground-based photometric surveys, namely the Kilodegree Extremely Little Telescope

(KELT) survey: they inject TESS single transits as periodic signals into KELT light curves,

then attempt to detect these signals using a box-least squares search tuned to the TESS-

observed transit midpoint time, depth, and duration over a range of possible periods. The

methods of Chapter 3 could constrain this range, making such searches more efficient.

An extension to TESS systems is even more important for the work described in Chap-

ters 5 and 6, because these chapters attempt to infer certain aspects of the underlying

structure of planetary systems from the Kepler sample, which is limited to a relatively nar-

row range of stellar types similar to the Sun (FGK dwarfs). Ballard (2019) predicts that

TESS, in contrast, will detect multi-planet systems around ∼ 200 M-dwarfs (a factor of ∼ 4

higher than Kepler ’s yield of M-dwarf multis). Because Ballard & Johnson (2016) initially

suggested a dichotomous planet population to explained the observed Kepler M-dwarf sys-
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tem multiplicities, this new TESS sample will be a critical test of the underlying multiplicity

distribution.

It will also be extremely interesting to apply the part-of-speech tagging-inspired model

from Chapter 6 to M-dwarf systems. We found that, within our relatively homogeneous

sample of FGK host stars, our neural network did not seem to learn anything from the

stellar features we included as part of the “context;” this may or may not hold true for a

sample expanded to include M-dwarf systems. Furthermore, this expanded sample would

allow us to see if there are meaningful differences between the “grammar” of FGK and M

systems, offering another window onto the Kepler dichotomy.

The next steps for shadow imaging (Chapter 4) are much more theoretical than applied:

as it stands now, despite our good understanding of the degeneracies of the problem, shadow

imaging is a deterministic algorithmic procedure to recover exactly one image from exactly

one light curve, with no attempt made to estimate the uncertainty of this image, i.e. the

uncertainties of the opacities of the constituent pixels. Because of the degeneracies (par-

ticularly the arc degeneracy), these opacities are strongly and non-trivially correlated, so

even small perturbations to the best-fit shadow image generally substantially worsen the fit

to the light curve. I believe there is analytic progress to be made on this front, beginning

by further exploring the mapping between a maximally compact image and its maximally

arc-dispersed counterpart.
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