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Abstract 

 

Hydroclimate variability and environmental change in Eurasia 

over the past millennium and its impacts 

 Mukund Palat Rao 

 

 Streamflow records in many regions of Eurasia including South Asia are short and 

fragmentary. This makes it challenging to contextualise natural climate variability relative to 

anthropogenic climate change and evaluate the severity of recent extreme events. In the first 

section of the dissertation (Chapter 1 and 2) we use tree rings to reconstruct centennial-scale 

streamflow of the Indus and Brahmaputra Rivers in South Asia for the past six centuries. These 

two rivers and their tributaries are fed by Himalayan glaciers and the South Asian Monsoon and 

are the basis of economic, social, and cultural life of over 700 million people in the region. These 

centennial reconstructions of past discharge provide valuable information about long-term 

hydroclimate variability, drought and flood hazard. They also help us to interpret recent climate 

extremes relative to those in the past and benchmark projections of climate change for the region. 

 Large tropical (and extratropical) volcanic eruptions can release large quantities of 

reflective sulphate aerosols into the stratosphere where they may persist for up to 3 years. In 

Chapter 3 we discuss how these aerosols can impact European and Mediterranean hydroclimate 

by causing dry conditions over northwestern Europe and the British Isles and wet conditions over 

the western Mediterranean. We examine this hydroclimate response using Superposed Epoch 

Analysis (SEA), a statistical method used to identify consistent responses to events by testing for 

the possibility of random occurrence. Finally, in Chapter 4 we describe in further detail (cf. 



 
 

Chapter 3) the modified double-bootstrap SEA that we developed in Chapter 3 to examine the 

uncertainty inherent in SEA within a probabilistic framework. We describe our modified SEA by 

applying it to two datasets, a reconstruction of northern hemisphere summer temperature for the 

past millennium, and a compilation of tree ring fire scar records for the western U.S. Using these 

two datasets we examine post-eruption northern hemisphere cooling following volcanism and the 

synchrony between drought conditions and fire events in the western U.S. respectively. 
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Introduction 

Variability in the width of annual tree rings and their many other wood properties are 

influenced by climate variability [Fritts, 1976]. The most limiting climate factor is the one that 

exerts the primary control on tree growth. This principle is known as Leibig’s Law of the 

Minimum [Liebig, 1841]. The primary climate variables that control tree-growth across the 

world are most commonly found to be local soil moisture conditions and growing season 

temperature [St. George and Ault, 2014]. The factors that control which climate variable is most 

‘limiting’ can however depend on the site location, local climatology, species, the wood 

parameter used (e.g. ring-width, isotopes, density), and the individual trees [Buckley et al., 1997; 

Bunn et al., 2018; Gagen et al., 2006; Pederson et al., 2004; Stine, 2019]. 

In a similar fashion river discharge and its seasonality are also controlled by climate 

variables [Dettinger and Diaz, 2000]. The most relevant climate variables are commonly 

precipitation (rain and or snow), temperature, and evapotranspiration. When tree growth and 

river streamflow are under similar climatic controls, tree rings can be used to reconstruct past 

river discharge [Martin et al., 2019; Meko et al., 1995]. Climate variables that can drive both 

river discharge and tree-growth may include winter snowpack and summer temperatures [e.g. 

Woodhouse and Lukas, 2006], summer hydroclimate [e.g. Cook and Jacoby, 1983; Devineni et 

al., 2013], and monsoonal precipitation [e.g. D’Arrigo et al., 2011]. 

Some of the earliest efforts to reconstruct past streamflow using tree rings were for the 

Colorado River in the United States (U.S.) by Schulman [1942] and by Stockton and Jacoby 

[1976] (also see [Stockton, 1971]). In their work Stockton and Jacoby [1976] found that long 

term reconstructed mean flow of the Colorado River was ~10% lower than average observed 

instrumental flows up to that point. Their findings helped elucidate how instrumental 
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observations of discharge that were used to allocate Colorado River water among U.S. basin 

states in the Colorado River Compact of 1922 (México was initially excluded) were among the 

wettest of the past 400 years. Impacts of the overallocation of Colorado River water beyond what 

is ‘naturally’ available in the system have had serious consequences [Owen, 2017] that are now 

being exacerbated by climate change [Milly and Dunne, 2020; Woodhouse et al., 2016b]. 

The relevance of developing longer-term streamflow records is particularly high in the 

context of South Asia. Gauged records of streamflow in South Asia are limited, with few gauged 

records longer than 20 years [Dettinger and Diaz, 2000]. This leaves a large gap in our 

understanding of long-term decadal to centennial-scale natural climate variability in the region. 

At the same time human society in the South Asian countries of Bangladesh, India, and Pakistan 

experience some of the highest water scarcity in world due in part to a combination of strong 

seasonality in the availability of fresh water, the high human pressure on the resource, and the 

lack of built storage capacity [Mekonnen and Hoekstra, 2016]. 

The Indus River and the Brahmaputra River flank the western and eastern edges of the 

Himalaya. Along with the Ganga River they are among the most important perennial South 

Asian rivers that originate in the Himalaya [Amrith, 2018]. Despite starting close to the same 

glacial complex near Lake Mansarovar, the Indus and Brahmaputra rivers have contrasting fates 

[Pranavananda, 1939]. The Indus flows westwards through western Tibet and India, and then 

south through Pakistan where it drains into the Arabian Sea. The Brahmaputra on the other hand 

flows eastwards along the Tibetan Plateau, and then exits southwards through northeastern India 

and Bangladesh where it drains into the Bay of Bengal. Additionally, while most of the Indus 

watershed is arid to semi-arid and receives less than 1,000 mm mean annual precipitation, the 
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Brahmaputra watershed is among the wettest in the world with some regions receiving in excess 

of 5,000 mm/year of precipitation (Figure 0.1). 

1Figure 0.1 Mean annual precipitation averaged between 2001 and 2015 as estimated by the 
TRMM dataset (mm/year) over South Asia and the Indus River and Brahmaputra River 
watersheds (in red). The larger Ganga-Brahmaputra-Meghna watershed is demarcated as 
black dashed lines. TRMM – Tropical Rainfall Monitoring Mission [Huffman et al., 2007] 

The underlying climate regime also shifts in moving east from the Indus to the 

Brahmaputra watersheds from being winter precipitation dominated to summer monsoon 

precipitation dominated [Greene and Robertson, 2017; Lutz et al., 2014]. This can be observed in 

the transition in the percentage of total annual precipitation received in the months of January-

February-March (JFM) and June-July-August (JJA) for the two watersheds shown in Figure 0.2. 

The northwestern section of the Indus watershed that constitutes the Upper Indus Basin (UIB) 

(see Chapter 1) is located in the far western Himalaya and Karakoram Ranges. This region forms 

the principal headwater for the Indus and receives a majority of its precipitation as wintertime 
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precipitation (primarily as snowfall due to the high mean elevation of the region) [Greene and 

Robertson, 2017; Kapnick et al., 2014]. The Brahmaputra watershed on the other hand receives 

almost all of its annual precipitation in the summer months from the South Asian Summer 

Monsoon (Figure 0.1b).  

In the first half of this dissertation we reconstruct streamflow discharge variability in the 

UIB (Chapter 1) and the Brahmaputra rivers (Chapter 2) respectively. In both chapters we also 

evaluate the climatic factors that contribute to streamflow variability in the watershed. As the 

gauged instrumental data available in the region is sparse, we developed our streamflow 

reconstructions using Hierarchical Bayesian Regression (HBR) [Devineni et al., 2013]. In 

Chapter 1, we find that HBR with partial pooling [Devineni et al., 2013] provides a powerful 

framework to simultaneously reconstruct streamflow at multiple gauges within a watershed when 

discharge is correlated across the gauges being reconstructed. However, at one gauge that has a 

long enough instrumental record to allow for split calibration-validation of the tree-ring 

2Figure 0.2 Percentage of annual precipitation received between (a.) January-March and (b.) 
June-August for the Indus and Brahmaputra River watersheds. Percentages are calculated 
between 2001 and 2015 from the TRMM data set. The Indus River watershed is located at a 
transition between the wintertime westerly dominated precipitation regime of West Asia 

and the South Asian Summer Monsoon (SASM) dominated precipitation in the Indian sub-
continent. The Brahmaputra River watershed on the other hand receives almost all its 

annual precipitation during the summer. 
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reconstruction model we found that HBR compares well with Principal Components Regression 

(PCR) in terms of their estimates of past discharge, width of uncertainties, and reconstruction 

skill statistics. As PCR is much more commonly used in dendroclimatology is it reassuring that 

tree-ring reconstructions are not dependent on the choice of statistical method used. This also 

opens the avenue to harness the inherent hierarchy in streamflow discharge in a watershed (e.g. 

upstream to downstream gauges) to develop HBR based tree-ring reconstructions across a 

complex watershed network [e.g. Ravindranath et al., 2019]. 

In the second half of the dissertation in Chapter 3 and Chapter 4, we examine the 

response of European and Mediterranean hydroclimate to tropical volcanism and describe a 

modified version of the statistical method of superposed epoch analysis (SEA) to identify 

consistent responses to randomly occurring events (e.g. volcanic eruption). The modified SEA 

method we implement in Chapters 3 and 4 helps better quantify multiple inherent uncertainties in 

the conventional application of SEA. These include, the out-sized leverage of one or more events 

(e.g. fire year, volcanic eruption) on the mean response, uncertainty in the timing of the events 

themselves, and the exact definition of what constitutes an event. In this dissertation we exclude 

one additional study that I lead during my PhD, Rao et al. [2015], where we evaluate how 

extreme winters and summer drought can contribute to mass mortality events of livestock in 

Mongolia (known as dzud). 
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Chapter 1: Six centuries of Upper Indus Basin streamflow 

variability and its climatic drivers 

This chapter is published as Rao et al. [2018], Six Centuries of Upper Indus Basin Streamflow 

Variability and Its Climatic Drivers, Water Resour. Res., 54(8), 5687-5701. 

 

Abstract 

Our understanding of the full range of natural variability in streamflow, including how 

modern flow compares to the past, is poorly understood for the Upper Indus Basin (UIB) because 

of short instrumental gauge records. To help address this challenge, we use Hierarchical 

Bayesian Regression (HBR) with partial pooling to develop six centuries long (1394-2008 C.E.) 

streamflow reconstructions at three UIB gauges (Doyian, Gilgit, and Kachora), concurrently 

demonstrating that HBR can be used to reconstruct short records with interspersed missing data. 

At one gauge (Partab Bridge), with a longer instrumental record (47 years), we develop 

reconstructions using both Bayesian Regression (BR) and the more conventionally used 

Principal Components Regression (PCR). The reconstructions produced by PCR and BR at 

Partab Bridge are nearly identical and yield comparable reconstruction skill statistics, 

highlighting that the resulting tree-ring reconstruction of streamflow is not dependent on the 

choice of statistical method. Reconstructions at all four reconstructions indicate flow levels in the 

1990s were higher than mean flow for the past six centuries. While streamflow appears most 

sensitive to accumulated winter (January-March) precipitation and summer (MJJAS) 

temperature, with warm summers contributing to high flow through increased melt of snow and 

glaciers, shifts in winter precipitation and summer temperatures cannot explain the anomalously 

high flow during the 1990s. Regardless, the sensitivity of streamflow to summer temperatures 
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suggests that projected warming may increase streamflow in coming decades, though long-term 

water risk will additionally depend on changes in snowfall and glacial mass balance. 

1.1 Introduction 

The Indus River and its tributaries provide the main source of water for Pakistan’s vast 

irrigation network and hydropower generation for its power grid in an otherwise arid to semi-arid 

country. The river basin consists of seven main rivers, the Indus, Kabul, Jhelum and Chenab, 

known collectively as the western tributaries, and the Beas, Ravi and Sutlej known as the eastern 

tributaries [Zawahri, 2009]. Of these, the Indus is the most important as it contributes close to 

half of the overall discharge of the basin. The Indus River Basin is typically divided into two 

sections, the Upper Indus Basin (UIB) and Lower Indus Basin (LIB). The UIB refers to the 

section of the river above the Tarbela reservoir, an important source of water for Pakistan’s 

irrigation network and hydropower potential [Rashid et al., 2018] and located on the main Indus 

before its confluence with its other major tributaries [Archer, 2003]. The headwaters of the UIB 

originate in the upper reaches of the Karakoram and Himalaya ranges. Approximately three-

fourths of UIB discharge is estimated to be a result of melting snow and ice, while summer 

rainfall plays a smaller role in contributing to the total discharge [Immerzeel et al., 2009]. The 

interannual variability in UIB discharge is largely controlled by variability in the ablation of 

glacial mass balance and seasonal snowfall [Forsythe et al., 2017]. Consequently, future changes 

in UIB flow will likely be regulated by changes in glacial mass balance and seasonal snowfall 

and the melt rate of both of these components. These melt rates are primarily controlled by 

changes in temperature and humidity [Harpold and Brooks, 2018; Immerzeel et al., 2010]. 

Overall, for the Indus Basin (LIB and UIB) climate model projections of future runoff exhibit 

high uncertainty due to a large spread in precipitation (winter and summer) projections [Ali et al., 
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2015; Immerzeel et al., 2013; Lutz et al., 2016]. However, there is a broad consensus that as 

glaciers recede, annual glacial runoff volume will likely increase until a maximum point known 

as ‘peak water’, beyond which runoff will decrease due to the reduced glacial area becoming 

unable to sustain the same runoff [Huss and Hock, 2018; Lutz et al., 2014]. Future water 

management strategies (e.g., at the Tarbela reservoir) will therefore naturally depend on expected 

changes in UIB discharge [Tahir et al., 2011]. 

Conflicting interpretations of recent climate and glacier trends have been observed over 

the high ranges of the Karakoram Mountains. While glaciers have declined over much of the 

Himalayas, glaciers in the Karakoram have either remained stable, or even expanded in certain 

cases [Bolch et al., 2012; Brun et al., 2017; Gardelle et al., 2012; Kapnick et al., 2014; Minora et 

al., 2013]. This anomalous behavior of glaciers has been referred to as the ‘Karakoram 

Anomaly’ [Hewitt, 2005]. Two-thirds of high-altitude snow over the Karakoram accumulates in 

the winter, and is caused by synoptic westerly disturbances, while the remainder is attributed to 

monsoonal influences [Benn and Owen, 1998; Greene and Robertson, 2017; Palazzi et al., 

2014]. While the underlying causes of the Karakoram Anomaly remain unclear, it has been 

attributed to increases in summertime cloudiness [Bashir et al., 2017; Hewitt, 2005; Zafar et al., 

2015], decreasing summertime temperature [Fowler and Archer, 2006], increases in wintertime 

snowfall [Farhan et al., 2014; Kapnick et al., 2014; Ridley et al., 2013; Tahir et al., 2011], high 

debris loading on the glaciers which insulates the underlying glaciers [Kraaijenbrink et al., 2017; 

Minora et al., 2013], land-surface feedbacks due to intensified lowland irrigation [de Kok et al., 

2018], and a southward shifted summertime westerly jet [Forsythe et al., 2017]. 

Our understanding of recent streamflow trends, if any, is to a large extent limited by the 

short instrumental streamflow discharge records in the region that extend back two to four 
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decades at the longest. Having such short instrumental records encumbers our understanding of 

the full range of natural variability, especially at decadal to centennial timescales, and cannot 

provide a sufficient long-term context to assess possible recent changes in discharge. Predictions 

of future water risk may also be improved by a better understanding of the current and past 

variability and climatic controls of discharge [Archer et al., 2010; Forsythe et al., 2017; Lutz et 

al., 2014]. 

To help address these multiple challenges, we present three new and one updated (cf. 

Cook et al., 2013b) reconstruction of UIB discharge at four discharge gauging stations (Partab 

Bridge, Doyian, Gilgit, and Kachora) for the past six centuries. These paleohydrologic 

reconstructions are developed using annually resolved climatically sensitive tree-ring 

chronologies in the UIB (Figure 1.1). These longer-term estimates of past flow can be used to 

better assess recent trends in UIB streamflow. Due to the constraints of sparse instrumental 

discharge data at the three shorter gauges records (Doyian, Gilgit, and Kachora) we develop 

reconstructions using Hierarchical Bayesian Regression (HBR) with partial pooling [Devineni et 

al., 2013]. At one gauge with a long instrumental record (Partab Bridge) we test two 

reconstruction methods, Bayesian Regression (BR) and Principal Components Regression (PCR) 

(see Methods). The motivation behind developing a reconstruction using both PCR and BR at the 

same target gauge (Partab Bridge) from the same tree-ring predictor network is to test the 

hypothesis that streamflow reconstructions and their uncertainties should be highly comparable 

notwithstanding of the choice of statistical methodology used. The objectives of this are twofold. 

First, this provides a useful foundation upon which to base the choice of statistical methodology 

(i.e. PCR vs BR) for future reconstructions of streamflow or climate. Second, it allows us to 

compare the newly developed HBR reconstructions of streamflow at the three streamflow gauge 
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records (Doyian, Gilgit, and Kachora) against the reconstruction developed at Partab Bridge (cf. 

Cook et al., 2013b). We then investigate the potential climate drivers of streamflow at the four 

gauges for which we develop reconstructions of past discharge, along with the climate drivers of 

annual growth for the suite of tree-ring predictors used in our reconstruction model. We 

hypothesize that if the trees show a similar growth response to climate as the streamflow 

response to climate, that provides additional evidence that the paleo-discharge estimates 

presented here were caused by the same climatic forcing. Finally, the climate analyses allow us 

to specifically test how climate may have contributed to the high discharge rates in the 1990s and 

declining flows in the early 2000s [Cook et al., 2013b; Forsythe et al., 2017; Hasson et al., 

2017]. Taken together, we believe that the four long-term reconstructions of past discharge, 

along with the streamflow-climate and tree-growth-climate response analysis, provides a useful 

framework and context to better predict UIB hydrological regime changes. 

 

3Figure 1.1 Map showing locations of streamflow gauges (blue squares) and tree-ring 
sites (red triangles) used in this study. The red box in the figure on the left highlights the 

region for which a close up is shown on the right. 
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1.2 Data 

1.2.1 Instrumental streamflow and climate data 

Instrumental streamflow data were obtained from the Pakistan Water and Power 

Development Authority (WAPDA) at the four target gauges, Partab Bridge, Doyian, Gilgit, and 

Kachora (Figure 1.1). Mean annual (January-December) discharge at each of these gauges is 

shown in Figure 1.2, and Table 1.1 describes some additional characteristics of the data (e.g. sub-

basin names, mean, standard deviation etc.). The instrumental record for Partab Bridge was 

updated to 2008 (dashed line Figure 1.2) using estimates from three other gauges (Daiynor, 

Gilgit and Kachora) as described in Cook et al. (2013). The data quality in the early part of the 

Gilgit record between 1960 to 1972 exhibits greatly reduced inter-annual variability compared to 

the later part of the record. Consequently, we assume this to be a data quality issue and disregard 

the early period of the Gilgit data in subsequent analysis. Discharge at the gauges peaks between 

May through September as seen in the monthly discharge hydrograph (Figure 1.3). We obtained 

temperature and precipitation data from the global gridded 0.5° resolution CRU TS.v.4.01 

dataset that covers the period 1901-2016. A box plot of monthly climate (temperature and 

precipitation) averaged across a 2° latitude x 2° longitude grid (73.5°E-75.5°E and 34.5°N-

36.5°E) between 1961-2016 is also shown in Figure 1.3. These 2°x2° regionally averaged 

temperature and precipitation series are used in the climate analyses with streamflow and tree 

growth. 
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5Figure 1.2 Instrumental period mean annual discharge (m3/s) at four streamflow 
gauges in the Upper Indus Basin (UIB) watershed (solid black). The Partab Bridge 

record between 1997-2008 (dashed line) is estimated by using three proximal 
streamflow gauges (Cook et al. 2013). 

4Figure 1.3 Boxplots showing month-by-month variability in precipitation (mm) and 
temperature (°C) between 1961-2016, and monthly discharge hydrographs (m3/s) for the 

instrumental period at four streamflow gauges in the UIB. Note different y-axis ranges. X-
axis labels represent months of the year. 
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1.2.2 Tree-ring network 

The annual growth of trees is often controlled on interannual and decadal timescales by 

the same climatic factors that control streamflow in rivers [Meko et al., 1995]. These may 

include winter snowpack and summer temperatures [e.g. Woodhouse and Lukas, 2006], summer 

drought [e.g. Cook and Jacoby, 1983; Devineni et al., 2013], and monsoonal precipitation [e.g. 

D’Arrigo et al., 2011]. This underlying principle has allowed for the use of tree-rings to develop 

reconstructions of past flow and flow extremes, including for one gauge on the UIB (Cook et al., 

2013b). These paleohydrologic records from tree rings have found a wide variety of applications, 

from placing instrumental mean discharge in a long-term context [Stockton and Jacoby, 1976], to 

being used as forecasting, planning and research tools by water managers [Meko and 

Woodhouse, 2011], and understanding continental scale streamflow co-variability and clustering 

[Ho et al., 2017]. 

For our study, as an initial screening for useful tree-ring predictors to develop our 

streamflow reconstruction models we downloaded all tree-ring series located within the broad 

Karakoram and Western Himalaya region with an end year later than 2005 from the International 

Tree-Ring Data Bank (ITRDB) (https://www.ncdc.noaa.gov/data-access/paleoclimatology-

data/datasets/tree-ring). The raw annual ring-width data for each site were ‘standardized’ [Cook 

and Kairiukstis, 1990; Fritts, 1976] using the ‘signal-free’ (SF) method [Melvin and Briffa, 

2008]. The SF method aims to maximize the preservation of common medium frequency 

variance in tree-ring series and eliminate trend distortion effects with attention paid to preserving 

multi-decadal to centennial variability due to climate. A series was retained as a predictor in a 

model if it correlated at p<0.05 using a two-sided t-test with the streamflow gauge record. Tree-

ring series were also tested as potential predictors with a lag of one year (lag t+1) with respect to 
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the streamflow data, as often prior year climate can influence current year tree-growth [Fritts, 

1976]. In our analyses, we develop two sets of models. The first is a reconstruction of May 

through September (MJJAS) flow at Partab Bridge using two reconstruction methods, PCR and 

BR (Model I). The second is an HBR reconstruction of annual (January-December) flow at 

Doyian, Gilgit, and Kachora (Model II). The choice of the MJJAS season at the target for the 

reconstruction at Partab Bridge is that it coincides with the peak flow season (cf. Cook et al., 

2013b). For the HBR reconstructions of flow at Doyian, Gilgit, and Kachora, we first attempted 

to develop MJJAS season streamflow reconstructions as well, followed by a northern hemisphere 

water-year (October-September) reconstruction. However, these two models performed poorly 

compared to a model reconstructing mean annual (January-December) discharge based on their 

calibration-validation statistics (see Methods Section). Based on our predictor screening criteria 

we use 15 tree-ring series as predictors for the reconstruction model at Partab Bridge, and 10 

series as predictors for the HBR reconstruction model at the other 3 gauges. The final set of 

predictor tree-ring series used in Models I and II are shown in Table A.1 and plotted in Figure 

A.1 [Bunn, 2010]. The original source for these collections are Ahmed et al. [2011], Ahmed et al. 

[2013], and Zafar et al. [2010]. 

1Table 1.1 Streamflow gauge network in the Upper Indus Basin. *We only use the 1980-2008 
section of the Gilgit gauge record for ensuing analysis 

Gauge River 
(sub-
basin) 

Lat. Lon. Elev. 
(m) 

Start End Missing 
data 

Annual 
Mean 
(m3/s) 

St. 
Dev. 
(m3/s) 

Skewness 

Partab 
Bridge 

Indus 35.78 74.63 1419 1962 
 

1996 - 1763.43 237.34 0.66 

Doyian Astore 35.33 76.42 1195 1974 2008 - 135.79 27.79 0.21 

Gilgit Gilgit 35.11 74.06 1140 1960 
*1980 

2008 1973-1979, 
Jul-Dec 
1999 

286.99 45.50 1.44 

Kachora Indus 35.27 75.25 1460 1970 2008 - 1074.85 181.79 0.38 
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1.3 Methods 

1.3.1 Reconstruction model 

A commonly used method to reconstruct a predictand (or dependent) variable such as 

streamflow or climate from tree rings is principal components regression (PCR) [Cook et al., 

1999b; Cook et al., 2010a; Cook et al., 2013b; Harley and Maxwell, 2017; Harley et al., 2017]. 

However, PCR cannot be easily used to reconstruct streamflow at gauges that have extremely 

short records and data gaps, without an imputation step for the missing data. For the UIB 

specifically, while the length of each available gauge record is relatively short (Figure 1.2), we 

are fortunate to have a network of gauging stations that are in close proximity to each other and 

located on different tributaries in the same watershed (Figure 1.1; Table 1.1). An alternative 

streamflow reconstruction method to PCR is Hierarchical Bayesian Regression (HBR) with 

partial pooling [e.g. Devineni et al., 2013]. HBR with partial pooling allows regression 

coefficients to be correlated across the gauges being reconstructed by modelling the vector of 

regression coefficients as draws from a common multivariate normal distribution. The physical 

basis of this assumption is that streamflow discharge tends to be correlated at the scale of a 

watershed [Figure A.2 and Ho et al., 2017; Sobkowiak et al., 2020]. This partial pooling 

framework allows us to shrink the number of free parameters to be estimated and reconstruct 

streamflow at gauges with short instrumental records. This can result in lower uncertainty in 

estimated parameters and reconstructed discharge, along with improving the skill of the final 

model by combining the regression strength of the model across gauges [Devineni et al., 2013]. 

Finally, HBR estimates predicted values by drawing from prior distributions and can therefore 

handle data gaps in a very natural way. 
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For the UIB, Cook et al. [2013b] used PCR to reconstruct May through September 

(MJJAS) peak season discharge at Partab Bridge between 1452-2008 C.E. Partab Bridge was 

chosen as the target gauge for reconstruction by Cook et al. (2013) because it has the longest 

continuous available record of flow and also includes discharge from both the east and west 

regions of the UIB (Figure 1.1). We develop PCR and BR models at Partab Bridge to produce a 

slightly longer reconstruction (cf. Cook et al. 2013) between 1430-2008 C.E. (originally 1452-

2008 C.E.). The original Cook et al. 2013 PCR reconstruction at Partab Bridge and the one 

developed here are nearly identical over the period of overlap between 1452-2008 C.E. In all 

reconstructions we used a multiple linear regression framework where we estimated streamflow 

(the predictand variable) using a vector of predictor variables. The vector of predictor variables 

used are the principal component (PC) scores [Cooley and Lohnes, 1971] of the suite of 

normalized tree-ring-width indices (RWI). The RWI were normalized using their respective 

calibration period means and standard deviations and the PCs were computed from the RWI suite 

to be orthogonal during the calibration period (Cook et al., 1999). In each model, only leading 

PCs with eigenvalues greater than 1 were retained as potential predictors for streamflow as an 

estimate of common shared ‘signal’ (versus noise) across the different tree-ring series using the 

Kaiser-Guttman criteria [Guttman, 1954; Kaiser, 1960]. We used a ‘nested’ approach in both 

models I and II, where shorter tree-ring predictor series were dropped sequentially until the 

predictor suite was exhausted and reconstructions were made for each nest [e.g. Meko, 1997]. To 

develop the final nested reconstruction, we appended each longer nest to the start year of the 

shorter nest after scaling its variance to that of the calibration period instrumental data. 

For the reconstruction at Partab Bridge using PCR and BR (Model I) we used a 30-year 

period between 1975-2004 as a model calibration period, and the early part of the data between 
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1962-1974 (13 years) as the model validation period. This is the same calibration and validation 

period used in Cook et al. (2013). For the HBR models at Doyian, Gilgit, and Kachora (Model 

II) we used a 1970-2004 calibration period with a leave-one-out cross-validation (LOOCV) 

approach to compute model validation statistics. LOOCV was used for the HBR model as the 

individual instrumental time series were too short to divide into separate calibration and 

validation periods. After accounting for the varying start years of the gauge records (Table 1.1) 

the length of the calibration periods for Model II were as follows: Doyian (n=29), Gilgit (n=23), 

and Kachora (n=33). The longer Partab Bridge record was not included in the HBR 

reconstruction (Model II) to maintain the independence between the predictand variables (i.e. the 

streamflow gauge) being reconstructed, as the Partab Bridge record between 1997-2008 was 

estimated by Cook et al. 2013 using the Gilgit and Kachora records. We used the Shapiro-Wilk 

normality test [Shapiro and Wilk, 1965] to test the null hypothesis that the streamflow data come 

from normal distributions. For instrumental MJJAS flow at Partab Bridge, and annual flows at 

Doyian and Kachora we accepted this null hypothesis of normality, while at Gilgit we rejected 

the null hypothesis that annual flow is normally distributed at p<0.05. However, after examining 

the kernel density plot (not shown) and time series plot of mean annual streamflow at Gilgit 

(Figure 1.2), we found that if the high flow anomaly in 2005 is excluded, the skewness decreases 

from 1.44 to 0.14, and we would have accepted the null hypothesis of streamflow being normally 

distributed at Gilgit. When testing for normality during the calibration period (1975-2004 – 

Partab Bridge; 1970-2004 – Doyian, Gilgit, and Kachora) at all three gauges we accepted the 

null hypothesis of normality. Therefore, we chose to not transform (e.g. log or power transform) 

the original data at Gilgit in our streamflow reconstruction. This was also done to retain the same 

units across the three gauges being reconstructed using HBR. Prior to developing the PCR, BR, 
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HBR models, the streamflow data were also normalized by subtracting their respective 

calibration period means and dividing by their respective calibration period standard deviations. 

The final reconstructions were then scaled to the calibration period mean and variance. 

We tested model calibration and validation fidelity by computing the following statistics, 

i.) CRSQ (calibration period coefficient of multiple determination or R2), ii.) CVRE (calibration 

period reduction of error calculated by leave-one-out cross-validation), iii.) VRSQ (validation 

period square of the Pearson correlation or r2), iv.) VRE (validation period reduction of error) 

and v.) VCE (validation period coefficient of efficiency) [see supplementary material in Cook et 

al., 2010a]. The VCE is equivalent to the Nash-Sutcliffe Efficiency test [Nash and Sutcliffe, 

1970]. For the HBR model, we only present CRSQ, CVRE, and RE (reduction of error) statistics 

as the model does not have a formal validation period due to the shortness of the gauge records. 

The formulation used for calculating RE for the HBR model is as follows 

𝑅𝐸 = 1 −
𝑆𝑆𝐸!
𝑆𝑆𝐸"#$$

 

where SSEv is the sum-of-squares of cross-validation errors and SSEnull is the sum-of-squares of 

differences is the calibration mean is used as the prediction for each year [Meko, 2006]. In 

general, models with VRE, VCE, and RE values greater than 0 are considered an indication that 

the model has skill compared to using the calibration period, validation period, and calibration 

period means respectively as the estimate for each year. We also compared model performance 

using median-normalized root mean square error (RMSE) [Janssen and Heuberger, 1995] 

statistic calculated as 

𝑅𝑀𝑆𝐸 = 	)
1
𝑛 + (𝑦% − 𝑦%. )&
%'(:"
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𝑚𝑒𝑑𝑖𝑎𝑛 − 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑	𝑅𝑀𝑆𝐸 = 	100 ∗
𝑅𝑀𝑆𝐸

𝑚𝑒𝑑𝑖𝑎𝑛(𝑦%)
 

where yt and 𝑦%.  are the observed and predicted discharge in year t respectively. The median-

normalized RMSE can be thought to represent how large the model error is as a percentage of 

the median discharge, with larger values representing larger error. 

1.3.1.1 Principal Components Regression 

Principal Components Regression (PCR) is used here to reconstruct streamflow discharge 

from tree-rings and is the same method used to reconstruct UIB discharge at Partab Bridge by 

Cook et al. (2013). Following that work, we also estimated model uncertainties in PCR by 

applying maximum entropy bootstrapping (n=300) [MEBoot - Vinod, 2006; Vinod and López-

de-Lacalle, 2009] to both the tree-ring and streamflow data. MEBoot can be thought of here as a 

random perturbation method that is applied to both the predictor and predictand series. In so 

doing, MEBoot preserves the overall stochastic properties of the original time series used in 

regression line the chronological order of the data being resampled, but changes in a random 

fashion the principal components derived from the PCR procedure, along with the streamflow 

data. As such, the MEBoot procedure also produces an empirical probability distribution 

functions (pdfs) for each reconstructed year that contributes to the uncertainty estimates on the 

reconstructions (Cook et al., 2013b). 

1.3.1.2 Bayesian Regression 

1.3.1.2.1 Hierarchical Bayesian Regression with partial pooling 

𝑦*,%|𝛼* , 𝜷𝒊 = 𝛼* + 𝜷* ∗ 𝑿% + 𝜀*,% (i=1,2,3) 

𝛃𝐢	~	MVN(𝜇. , ∑𝑩) 
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Priors modelled as: 

	α0~	N(0, 101) 

𝜀*,%~ N(0,101)	

	𝝁𝑩	~	MV𝑁(0, 101𝑰)	

∑𝑩	~	𝐼𝑛𝑣 −𝑊𝑖𝑠ℎ𝑎𝑟𝑡23	(𝜦𝟎) 

HBR reconstructions with partial pooling were developed at each gauge using a multiple 

linear regression of streamflow (yi,t) at gauge i at year t on a vector of predictors (Xt). The matrix 

X contains the PC score time series of tree-ring predictors used in the current nest. βi is a vector 

of the corresponding regression slopes for each predictor in the vector Xt at gauge i. Each 

regression includes at intercept term αi and a prediction error term εi,t. We modeled priors to be 

vague or non-informative [Gelman and Hill, 2006], and the covariance structure of regression 

coefficients βi for each streamflow gauge to be derived from a multivariate normal distributions 

(MVN). This assumption is based on the consideration that annual flows are correlated across 

gauges (Figure A.2). Parameter βi is in turn described by two hyperparameters μB and a 

dispersion matrix ∑B leading to the hierarchical framework in our model [Gelman and Hill, 

2006]. We assumed the prior for covariance matrices ∑B to be an inverse-Wishart distribution 

with scale matrix Λ0, specified to be an identity matrix I with v0 degrees of freedom [Devineni et 

al., 2013]. v0 is set to be one more than the dimension of the matrix or the total number of 

predictors used in the nest. 

We hypothesise that by modelling the covariance structure of regression coefficients we 

are able to borrow the strength of the regression estimates at one streamflow gauge and use that 

for predictions at another gauge [Devineni et al., 2013]. This permits us to derive a better 

regression estimates during the model calibration period, and consequently make a better 
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prediction of past streamflow. Unlike in Devineni et al. [2013], here we modeled the associated 

prediction error terms, or residuals, εi,t be derived from a normal distribution and not a MVN. 

This is because each streamflow gauge discharge series spans a different range of years (Figure 

1.2). Consequently, it was not possible to compute the spatial covariance of the error term. Also, 

our matrix X uses PC scores and not the standardized tree-ring series directly [c.f. Devineni et 

al., 2013]. This predictand ‘data-reduction’ was necessary due to shortness of the gauge records, 

to reduce the number of ‘free-parameters’ to be estimated relative to the number of years of 

streamflow data available for model calibration. 

The final joint posterior distribution P(θ⁄y) for the partial pooling case, with regression 

intercepts αi slopes βi, error εi,t, and covariance ∑B is described as follows. 

𝑷(𝜽 𝒚⁄ ) ∝ 	YY
[𝑁(𝑦*(𝑡)|𝛼* + 𝜷𝒊	𝑿(𝒕), 𝜀*(𝑡))] ∗ 𝑁(𝛼*|0, 101)	
𝑀𝑉𝑁(𝜷𝒊|𝜇. , 	∑𝑩)*𝐼𝑛𝑣𝑊𝑖𝑠ℎ(∑𝑩|𝑉3, 𝛬3)
𝑀𝑉𝑁(𝜇.|0, 101𝐼) ∗ 𝑁(𝜀*(𝑡)|0, 101)

"!

%'(

6

*'(

 

For each model we estimated the parameters θ and the posterior distributions P(θ⁄y) by 

employing a Gibbs sampler, a Markov Chain Monte Carlo (MCMC) method using the software 

Just Another Gibbs Sampler [JAGS - Plummer, 2003]. We simulated three chains, where the 

parameters were assigned random starting values. This was done to test whether starting values 

affect convergence towards the final parameter estimates. The chains were run for a 1,000-cycle 

burn-in following which we ran 10,000 simulations. We determined the chains to have 

converged by visually analyzing the trace plots for the parameters, and checking whether the 

Gelman-Rubin diagnostic shrink factors were less than 1.1 [Gelman and Rubin, 1992]. To 

validate the fit of our model we computed the Bayesian p values for the mean, and sum of 

squared errors (SSQ). The Bayesian p value for the mean and SSQ were calculated as the 

proportion of times the mean and SSQ of the model simulated calibration and validation data 
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was greater than that of the actual streamflow data. A Bayesian p value of close to 0.50 indicates 

good model fit. The final reconstructions and our JAGS code are available in Data Set S1 and S2 

respectively (in the online version of the published paper). 

1.3.1.2.2 Bayesian Regression 

While the relatively more complex HBR model was used to reconstruct multiple gauges 

simultaneously (Doyian, Gilgit, and Kachora), we developed a simplified BR to reconstruct 

streamflow at Partab Bridge for comparison with the PCR reconstruction. Unlike the HBR 

model, the BR model has no hierarchy, as only one gauge is being reconstructed. In this model, 

we assumed the regression slopes βi to be derived from a normal distribution. Two sets of BR 

models were used to develop flow estimates at Partab Bridge. The first is a model which uses 

tree-ring predictors, and the resulting reconstruction from it was then used for comparison with 

the streamflow reconstruction developed using PCR. In the second model, we use our analysis of 

the climatic controls of streamflow at Partab Bridge to develop an estimate of streamflow 

between 2009 through 2016 using a climate-variable driven BR model. 

 

1.4 Results 

1.4.1 Streamflow reconstructions 

The MJJAS seasonal reconstruction of streamflow at Partab Bridge (Figure 1.4) and the 

three HBR reconstructions of mean annual streamflow at Doyian, Gilgit, and Kachora (Figure 

1.5) all indicate that the period of decadal high flow between 1991-2000 is unusual in the long-

term context of the past six centuries. The only comparable period of high flow in the 

reconstructions occurs during the 1470s. In all reconstructions, the 20-year low-pass filtered 

discharge exceeds the 90th percentile of reconstructed discharge over the past six centuries (but 
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remains within reconstruction uncertainties) indicated by the dashed blue horizontal lines. 

Following this peak in the 1990s, both the instrumental data and reconstructions suggest a 

decrease in discharge post-2000. Periods of anomalous low flow are indicated in the MJJAS 

seasonal reconstruction at Partab Bridge in the early 1600s, 1890s, and the 1970s, and in the 

three-gauge HBR annual reconstruction during the 1650s, and 1820s. 

 

6Figure 1.4 Reconstructed mean May through September (MJJAS) discharge (m3/s) at Partab 
Bridge 1430-2008 C.E. (solid black) using Principal Components Regression (PCR) and 

Bayesian Regression (BR) along with 20-year low pass filtered reconstruction (solid red). 
Horizontal dashed red and blue lines are 5th and 95th percentiles of the reconstructions. The 
horizontal white line between 1400-2008 C.E. represents the mean of the full reconstruction, 

and that between 1962-2008 C.E. is the mean of the instrumental period. 
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We produced a MJJAS seasonal streamflow reconstruction at the updated Partab Bridge 

record using PCR and BR (Figure 1.4). The final reconstruction produced by both methods (PCR 

and BR) are virtually identical, with minor differences in the widths of their uncertainties (Figure 

A.3). The reconstructions are highly correlated over the 575 years of reconstructed discharge 

(Pearson’s r=0.91). Importantly, the calibration-validation statistics of the two reconstructions, as 

calculated using the CRSQ, VRSQ, CVRE, VRE, and VCE metrics are comparable for the entire 

length of the reconstruction between 1430-2004 C.E. (Figure A.4). The median value of these 

statistics for the full reconstructions are, i. CRSQ: PCR - 49.80%, BR - 56.04%; ii. VRSQ: PCR 

- 54.70%, BR - 53.79%; iii. CVRE: PCR - 42.50%, BR - 43.68%; iv. VRE: PCR - 0.52, BR - 

0.54; and v. VCE: PCR - 0.50, BR - 0.52. The HBR model annual discharge estimates during the 

instrumental period are shown in Figure A.5, and the calibration-validation statistics computed 

7Figure 1.5 Same as Figure 1.4 but showing reconstructed mean annual (January-December) 
flow (m3/s) at Doyian, Gilgit, and Kachora between 1394-2008 C.E. using Hierarchical 

Bayesian Regression (HBR) with partial pooling. 
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by LOOCV are shown in Figure A.6. The consistently positive VRE and VCE values for each 

nest in PCR and BR reconstruction at Partab Bridge (Figure A.4) and RE values for the HBR 

reconstructions at Doyian, Gilgit, and Kachora (Figure A.6) indicates the reconstructions are 

skillful. Bayesian p values for predictions of the mean, and mean squared errors were 

consistently close to or equal to 0.50 for all nests for the BR and HBR models. 

1.4.2 Climate controls on discharge 

We then used the updated Partab Bridge (1962-2008 C.E.) record, the longest of our four 

records (n=47), to evaluate the relationship between climate and streamflow in the region. We 

first examined the relationship between monthly climate (precipitation and temperature) and 

mean MJJAS streamflow (Figure 1.6a) and tested for both contemporaneous and lagged 

relationships between climate and streamflow. All tests are based on the Pearson correlation and 

a 2-sided hypothesis test with each series computed as first-differences to minimize the effect of 

trends and auto-correlation in the data. We found MJJAS streamflow to be positively correlated 

with current year January through March precipitation (r<0.01), inversely correlated with prior 

year July (r<0.05), and positively correlated with current year June (r<0.05) and current year 

July (r<0.01) mean monthly temperature. When the same monthly climate versus discharge 

correlation analysis was carried out separately for each month of streamflow between May 

through September (not shown) we found that monthly discharge in a month was always 

significantly positively correlated with monthly temperature for that month (r<0.01). Based on 

these results, we infer the main climate seasons relevant for MJJAS streamflow at Partab Bridge 

to be January through March (JFM) precipitation likely in the form of snowfall, inferred from 

subfreezing temperatures in the region during this season (temperature boxplot Figure 1.3), along 
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with MJJAS mean temperature.

 

8Figure 1.6 Pearson’s correlations between MJJAS mean discharge at Partab Bridge (1962-
2008) and a) month-by-month precipitation (blue) and temperature (red) (’*’ - p<0.05, and ‘+’ - 

p<0.01) for months between prior year (t-1) May through current year (t0) December, b.) 
January-March (JFM) mean precipitation (positive-green; negative-red), and c.) MJJAS mean 

temperature (positive - red, negative - blue). All time series were computed as first-
differences. In b. and c. stippling indicates significance at p<0.01, while the red square is 

location of the gauge station. 

Next, we computed spatial correlations between MJJAS discharge at Partab Bridge and 

JFM monthly mean precipitation and MJJAS monthly mean temperature to assess the spatial 

footprint of the climate to discharge relationship (Figure 1.6b and 1.6c). We found that MJJAS 

mean discharge at Partab Bridge is positively correlated (stippled blue shading for r<0.01) with 

JFM precipitation within the Karakoram region (Figure 1.6b), and positively correlated with 

temperature (stippled red shading for r<0.01) over a broad spatial region spanning the 

Karakoram, Hindu Kush, and Toba Kakar ranges (Figure 1.6c). To further understand if the 

climate controls on discharge at Partab Bridge vary through the MJJAS season, we also 

computed the month-by-month correlations of mean May-July (MJJ) discharge against 

temperature and precipitation (Figure A.7a), along with similar correlations for mean August-

September (AS) discharge (Figure A.7b). For MJJ discharge we find significant positive 

correlations with JFM precipitation and MJJ temperature (r<0.05), while for AS discharge 
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significant positive correlations were found with January and March precipitation and August 

temperature (r<0.01). 

We also performed a similar month-by-month correlation analysis between climate 

variables and mean MJJAS flow at Doyian (n=35) Gilgit (n=27), and Kachora (n=38) (Figure 

A.8). Discharge at all gauges shows a significant positive correlation with February precipitation 

(r<0.01). At Doyian there is broad significant positive correlation between discharge and 

February through May precipitation (r<0.05), but no significant correlation between discharge 

and temperature was observed (Figure A.8a). At Gilgit, discharge was found to be positively 

correlated with February and March precipitation (r<0.05), and negatively correlated with 

February temperature (r<0.05) (Figure A.8b). Finally, at Kachora discharge was significantly 

positively correlated with JFM precipitation (r<0.01), and with May, June, and August 

temperature (Figure A.8c). While the HBR reconstructions at Doyian, Gilgit, and Kachora 

presented in the previous section are for mean annual discharge, we found that the climate to 

streamflow relationship was nearly identical for mean annual discharge and mean MJJAS 

discharge shown in Figure A.8 (not shown). 

The positive relationship between wintertime precipitation and summertime temperature 

at Partab Bridge and Kachora suggests that discharge at these gauges is influenced by both 

winter snow accumulation and summer snow and glacial melt. However, at Doyian and Gilgit 

that lack of temperature sensitivity suggests that discharge at these gauges depends primarily on 

wintertime snowfall and with temperature dependent glacial melt playing little to no contributing 

role. These findings are consistent with Mukhopadhyay and Khan [2014], who use the 

percentage of watershed within a hypsometric band (i.e. elevation zone) and determine that main 

Indus sub-basins where Kachora and Partab Bridge are located are more heavily glaciated and 
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have a higher mean elevation than the Astore and Gilgit sub-basins where the Doyian and Gilgit 

gauging stations are located (also see Table 1.1 for basin names). 

1.4.3 Climate controls on tree-growth 

We then examined the climate to tree-growth response of the predictor suite used in the 

first nest for the MJJAS reconstruction at Partab Bridge. In our reconstruction model, we 

retained the first four PC time series in the first nest, with the following percentage variance 

explained, PC1 - 50%, PC2 - 14%, PC3 - 9%, and PC4 - 7%. Cumulatively, these PCs explain 

80% to the total variance of the predictor suite. The month-by-month climate to PC1 and PC2 

correlations for the time period 1962-2008 are shown in Figure 1.7a and 1.7b, while those for 

PC3 and PC4 are shown in Figure A.7c and A.7d. We find that PC1 shows a broad January 

through May positive correlation with precipitation (r<0.01), while PC2 shows a significant 

inverse correlation with temperature that peaks in current year May through August (r<0.01). 

Both PC3 and PC4 show significant inverse correlations with June (r<0.01) and July (r<0.05) 

temperature. The PC loadings of each tree-ring series on the first four PC time series are shown 

in Figure 1.7c. All sites except MuaABP.t1 and NltPCS.t1 show strong positive loadings on PC1, 

as indicated by the shaded green circles. This together with Figure 1.7a, reveals that almost all 

tree-ring predictors used in our model respond positively to wintertime snowfall. While the PC2-

PC4 time series all represent an inverse summer temperature sensitivity, the loadings of each 

tree-ring series were either positive (green shading) or negative (pink shading). A positive 

loading on PC2-PC4 indicates that a particular tree-ring series responds inversely to summer 

temperature, while a negative loading indicates that the tree-ring site responds positively to 

summer temperature [also see Ahmed et al., 2011]. We also conducted a similar analysis with the 

first four PC time series with eigenvalues greater than one which were retained as predictors in 
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the first nest for the HBR reconstruction at Doyian, Gilgit, and Kachora. The PCs showed a 

nearly identical climate response as the first four PCs retained in the BR model at Partab Bridge 

(not shown). 

 

9Figure 1.7 Climate response during instrumental period of the tree ring predictor suite of 
the first nest between 1962-2004. a.) Same as Figure 5a but PC1 time series and, b.) PC2 time 

series, c.) Loadings of each tree-ring series on PC1 through PC4 used in the Model I at Partab 
Bridge with the size of the circle and its shading are scaled to magnitude of loading on the 

respective PC. 
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1.4.4 Climate informed discharge prediction at Partab Bridge 

To test if anomalies in winter precipitation and summer temperature can explain the 

1990s high flow (Figure 1.4 & 1.5), we developed a multivariate regression model to predict 

MJJAS mean streamflow at Partab Bridge using JFM mean precipitation and MJJAS mean 

temperature as predictors (green line - Figure 1.8). The multivariate regression model was built 

using the ‘raw’ (i.e. not first-differenced) climate data and BR with LOOCV. This climate-

informed statistical streamflow model explained ~49.34% of the variance in the instrumental 

data. This climate-based streamflow prediction of instrumental MJJAS discharge at Partab 

Bridge was compared to that predicted by the PCR and BR reconstructions (red and blue lines in 

Figure 1.8). The PCR and BR model estimates are significantly correlated at r=0.98 during the 

instrumental period between 1962-2004, and these modes each explained 52.97% and 54.43% of 

the variance in the instrumental data. The calibration and validation statistics of the climate-

informed statistical streamflow model as measured by the CRSQ, CVRE, and RE metrics for the 

model are presented in Figure A.9. Using this model, we present discharge estimates of 

streamflow for the period between 2009 and 2016 beyond the last year of instrumental data 

which ends in 2008 (Figure 1.8). While the climate based model predicts the high flow in 1973 

reasonably well, a year of significant UIB flooding [Deutsch and Ruggles, 1978], it under-

predicts flow between 1991-2000 while still capturing the direction of inter-annual variability 

during this period. During the common period of overlap between 1962-2008 the RMSE of the 

BR, PCR, and climate-variable informed statistical models are 370.93 m3/s, 373.58 m3/s, and 

421.13 m3/s respectively, while the median-normalized RMSE are 10.19%, 10.26%, and 11.57% 

respectively. However, for the period of high flow between 1991-2000 the RMSE for the three 

models are 397.17 m3/s, 351.75 m3/s, and 532.52 m3/s respectively, while the median-normalized 
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RMSE are 10.08%, 8.93%, and 13.52%. The greatly increased RMSE and median-normalized 

RMSE for the climate-variable informed model between 1991-2000 as compared to 1962-2004 

indicates that the climate-informed statistical model is performing relatively poorly in this 

decade compared to its quality of fit over the entire instrumental period. 

 

10Figure 1.8 Instrumental mean MJJAS discharge at Partab Bridge (black) compared against 
predictions of flow (m3/s) generated by models using PCR (red), BR (blue), and climate 

variables (green). Table shows R2 across instrumental data and models. 

 

1.5 Discussion and Conclusions 

Understanding climate change and assessing recent trends in climate data requires an 

understanding of long-term natural variability. For the UIB, available instrumental streamflow 

data only span two to four decades, an insufficient time span to accurately characterize decadal 

to centennial timescale streamflow variability. Paleohydrologic records can play an important 

role in helping us extend the instrumental record to better understand these longer-term processes 
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[Pages Hydro2k Consortium, 2017; Stockton and Jacoby, 1976]. Our reconstructions of past 

discharge at four gauging stations (Partab Bridge, Doyian, Gilgit, and Kachora) extend our 

instrumental record of UIB discharge back six centuries to the 1400s. Our reconstructions 

highlight extended dry periods during the mid 1600s, late 1700s, and early 1900s that have no 

analogue in the short instrumental period (Figure 1.4 and 1.5) [also see Cook et al., 2013b]. 

Further, these longer-term reconstructions of flow help us better contextualize streamflow 

variability during the past two decades associated with the ‘Karakoram Anomaly’ [Forsythe et 

al., 2017; Hewitt, 2005]. The high flows in the instrumental period in the late 1980s through 

1990s do appear to be unusual in the context of the past six centuries. Using the reconstructions 

as a reference baseline, the recent post-2000 decrease in discharge [Archer et al., 2010] may 

represent a return to long-term mean flow conditions following the high discharge rates observed 

in the 1990s. At the same time, our climate-variable informed discharge predictions between 

2009 to 2016 at Partab Bridge (Figure 1.8) suggest that discharge rates might be increasing after 

the decrease between 2000-2009 due to rising summer temperatures. However, considering the 

under-performance of the climate-informed model in the 1990s this result should be viewed with 

caution. 

This most recent wet period, however, is difficult to reconcile with the main climate 

drivers of discharge in the region. Nevertheless, the high flow between 1991-2000 likely has 

climatic origins. We infer this because the tree-ring based models are able to capture the high 

instrumental discharge during this period. However, its proximate causes are likely not changes 

in JFM snowfall or summer MJJAS temperatures. This is shown by the much better prediction of 

high streamflow between 1991-2000 by the two tree-ring models (BR and PCR) as compared to 

the climate-informed model, even though all three models exhibit similar overall performance 
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for the entire instrumental period been 1962-2004. Specifically, the climate variable informed 

statistical model has a large offset in the magnitude of predicted discharge during this period 

despite capturing the direction of interannual variability. Although the underlying causes of this 

wet period still need to be investigated, they may lie in climate variability in the shoulder seasons 

that may be still relevant to streamflow yet not be primary controls on the interannual variability 

of streamflow. The reason our tree-ring model captures some of these changes may be because 

the tree-growth to climate response exhibits a slightly broader climate sensitivity than the 

streamflow data. When analyzing the instrumental precipitation and temperature data, we did not 

find any significant changes in monthly climate (e.g. summer precipitation) during this period. 

However, most of the climate records used in our discharge model come from low-elevation 

locations relative to the high-elevation runoff generating regions of the UIB. It is possible that 

some of the poorer discharge estimates maybe be a reflection of this. These low-elevation 

stations might not be capturing regional processes that might differentially affect high and low 

elevation regions, such as a preferential increase in high elevation winter snowfall [Kapnick et 

al., 2014], or land-surface feedbacks from lowland irrigation causing high elevation snowfall [de 

Kok et al., 2018]. 

Over the coming few decades, discharge in the UIB is expected to increase based on 

climate model predictions due to a combination of predicted warming enhancing the rate of 

glacial melt and increases in winter and summer precipitation [Ali et al., 2015; Brun et al., 2017; 

Immerzeel et al., 2013; Kraaijenbrink et al., 2017; Lutz et al., 2014; Wijngaard et al., 2017]. At 

the sub-regional level however, these changes might not be uniform. For example, the climatic 

controls of MJJAS discharge at Partab Bridge and Kachora are primarily wintertime (JFM) 

snowfall and summertime temperature, but at Doyian and Gilgit there is no temperature 
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dependence of streamflow. Consequently, in basins where glacial melt is important (Partab 

Bridge, Kachora), future warming may increase discharge as long as the remaining glacial mass 

can support increased flow. Assuming no increase in wintertime snowfall to offset the loss of 

glacier ice, this meltwater contribution to streamflow will very likely decrease sometime in the 

future, thus leading to a long-term decrease in discharge. In snowfall dominated sub-basins 

(Doyian and Gilgit) changes in streamflow are more likely to depend on changes in wintertime 

snowfall. At no gauge did we find a relationship between peak flow MJJAS season discharge and 

summertime monsoonal precipitation. This suggests that while monsoonal precipitation may play 

a minor contributing role in maintaining baseline flow [Mukhopadhyay and Khan, 2014], it is not 

a driver of interannual discharge variability. The spatial correlation between MJJAS flow at 

Partab Bridge and JFM winter precipitation shows a region of positive correlation that is 

relatively limited to Karakoram, Hindu Kush, Western Himalaya. This region of positive 

correlations broadly spans the region where winter is the most important precipitation season 

[Greene and Robertson, 2017; Kapnick et al., 2014]. The region of significant positive 

temperature correlations with discharge extends west and southwest from the Karakoram broadly 

tracing the region of the Pakistan-Afghanistan border and does not extend east into the main 

Himalayas (Figure 1.6c). This suggests that the atmospheric processes that control temperature 

driven glacial melt in the summer are different for the Karakoram and the main Himalayas, 

consistent with the findings of Forsythe et al. [2017] (their Figure 2); hypothesized by them to be 

the position of the summertime westerly jet. 

We establish that tree-ring reconstruction of past MJJAS discharge at Partab Bridge 

produced using PCR and BR are nearly identical in terms of the median flow reconstructed for 

each year. While there are differences in the widths of the uncertainties produced by the two 



35 
 

reconstructions, estimated from regression prediction intervals and Bayesian credible intervals 

respectively, these differences in uncertainties appear to be minor. We find that BR typically, but 

not always produces slightly wider uncertainty intervals. Commonly used statistical approaches 

for tree-ring reconstructions of past streamflow and climate include PCR [e.g. Allen et al., 2018; 

Anchukaitis et al., 2017; Cook et al., 1999b; Cook et al., 2010a; Cook et al., 2013b; Palmer et 

al., 2015; Stahle et al., 2016], a Bayesian framework [Devineni et al., 2013; Luterbacher et al., 

2016; Steinschneider et al., 2017; Tingley and Huybers, 2010]., along with other statistical 

methods [e.g. Bracken et al., 2016; Gangopadhyay et al., 2009; Woodhouse et al., 2016a]. Our 

results suggest that for a one predictand variable case at the Partab Bridge gauge, both PCR and 

BR methods produce comparable reconstructions in terms of their estimates, uncertainties, and 

reconstruction skill statistics. However, for a multiple-gauge network within a watershed, HBR 

with partial pooling provides a powerful framework to develop reconstructions of streamflow (or 

climate) with short instrumental records and missing data. This finding was also supported by 

our preliminary analysis (not presented here), where we found that our HBR model with partial 

pooling performed better than alternate HBR models with ‘no pooling’ and ‘full pooling’ [also 

see Devineni et al., 2013]. Finally, we also demonstrate that the suite of tree-ring predictors used 

in the reconstructions have a nearly identical climate to growth response as the climate to 

streamflow relationship. This enhances our confidence that the reconstructions presented here 

capture paleo-hydrologic variability caused by past changes in these climate variables, and that 

these reconstructions help us better characterize longer term climate-driven decadal to centennial 

timescale streamflow variability within the UIB. 
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Chapter 2: Seven centuries of reconstructed Brahmaputra River 

discharge demonstrate underestimated high discharge and flood 

hazard frequency 

Abstract 

The lower Brahmaputra River often floods during the monsoon season (July-August-

September; JAS). While most climate models predict an intensified monsoon through the 

twenty-first century, robust baseline estimates of natural climate variability and flood hazard for 

the region are limited by short and fragmentary observational records. To provide a baseline 

assessment of Brahmaputra River hydrology, we present a new seven-century (1309-2004 C.E) 

tree-ring reconstruction of mean JAS Brahmaputra discharge. Our reconstruction demonstrates 

that the early instrumental period (1956-1986 C.E.) ranks amongst the driest of the past seven 

centuries (13th percentile). Further, flood hazard as inferred from the recurrence frequency of 

high discharge is severely underestimated between 24-38% in the instrumental record, 

independent of future increases suggested by RCP8.5 CMIP5 projections. Thus, a focus on only 

recent observations will be insufficient to determine the frequency of flood hazard for coming 

decades, both in the context of natural variability and climate change. 

 

2.1 Introduction 

The Brahmaputra River contributes nearly half of the ~40,000 m3/s mean annual 

discharge of the Ganga-Brahmaputra-Meghna river system (Figure 2.1). This makes it the joint 

third largest river system in the world (tied with the Río Orinoco, Venezuela) in terms of its 

mean annual discharge after the Amazon and Congo rivers [Best, 2019]. The high discharge rates 
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of the Brahmaputra (Jamuna in Bangladesh) are caused, in part, by annual precipitation (rain and 

seasonal snow) in excess of 3,000 mm/year for much of the watershed (Figure B.1) and 

snowmelt from its highly glaciated upper basin encompassing the Eastern Himalaya and parts of 

the Southern Tibetan Plateau [Bookhagen and Burbank, 2010; Immerzeel et al., 2013; Maurer et 

al., 2019; Pritchard, 2019; Smith and Bookhagen, 2018]. The river and its tributaries provide 

important societal, ecological, cultural, and economic services to more than 60 million people in 

Bangladesh, North-eastern India, Bhutan, and Tibet, China [Best, 2019; Mahanta and Saikia, 

2015]. These benefits include fish (a primary source of protein in the region), water to irrigate 

many seasonal rice varieties that need annual flood waters to survive, the deposition of fresh 

sediment to sustain the large inhabited riverine islands (known as chars), and the prevention of 

salt-water intrusion from the Bay of Bengal into the low-lying Sundarban delta [Becker et al., 

2020; Mahanta and Saikia, 2015; Mondal et al., 2015]. 

Although the Brahmaputra River provides these important benefits, it is also a frequent 

cause of human suffering from flooding in Bangladesh and Northeast India (primarily in Assam) 

[Coleman, 1969; Mahalanobis, 1927]. Long-duration (>10 day) floods that cause the most 

widespread disruptions are most common during the monsoon season between July and 

September [Chowdhury, 2000; Mahalanobis, 1927; Uhe et al., 2019; Webster et al., 2010]. The 

main driver of monsoon season July-August-September (JAS) discharge in the Brahmaputra is 

upper basin precipitation (Figure 2.1a and Figures B.2, B.3, and B.4), along with smaller 

contributions from glacial melt, snow melt, and base flow [Jian et al., 2009; Lutz et al., 2014]. 

For example, the year 1998 witnessed intense monsoon flooding between July and September in 

both Bangladesh and Assam, inundating nearly 70% of Bangladesh, affecting over 30 million 

people and causing a humanitarian emergency in the region [Chowdhury, 2000; Hopson and 
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Webster, 2010; Jian et al., 2009; Webster et al., 2010]. Similar floods in 1987, 1988, 2007, and 

2010 along with the currently ongoing flooding in 2020 have caused large fatalities, permanent 

loss of livelihoods, and the displacement of thousands of people to urban centres like Dhaka 

where they joined the ranks of the urban poor, in addition to raising regional food security 

concerns due to famine from damaged crops [Brammer, 1990; Chowdhury, 2000; Mirza, 2003; 

Webster et al., 2010]. 

 

11Figure 2.1 The Ganga-Brahmaputra-Meghna and Brahmaputra watersheds (black and red 
dashed lines), and locations of the 28 tree-ring predictors (diamonds) used in the mean July-
August-September (JAS) streamflow reconstruction at the Bahadurabad gauge, Bangladesh 
(red star). (a.) Infill shading in diamond markers represent the Pearson correlation between 

mean JAS discharge at Bahadurabad and each tree ring predictor (1956-1998 C.E.). 
Background shading is the spatial field correlation between mean JAS discharge at 

Bahadurabad and mean JAS precipitation (1956-2011 C.E.) (b.) Spatial field correlation 
between the first principal component (PC1) of the 28 tree ring predictors (variance 

explained: 24.86%) and mean JAS precipitation (1956-1998 C.E.). Spatial correlations in (a) 
and (b) are against CRU Ts 4.01 precipitation. Together, (a) and (b) show that monsoon 

season JAS flow in the Brahmaputra is positively related to upper basin precipitation in a 
region largely co-located with the tree ring predictor network. They also demonstrate that the 

predictor network effectively captures regional JAS precipitation independent to its 
correlation with JAS Brahmaputra discharge. Note that the locations of predictors are jittered 

for display. Only correlations significant at p<0.05 using a 2-tailed t-test are shown. See 
Supplementary Table S1 for more information on the predictor network and Figure B.2 for 

similar analyses with GPCC precipitation. 
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While anthropogenic sulphate aerosol emissions caused a reduction in South Asian 

Summer Monsoon (SASM) activity during the latter half of the twentieth century [Bollasina et 

al., 2011; Bollasina et al., 2014; Liu et al., 2019; Shawki et al., 2018], increasing carbon-dioxide 

emissions and decreased aerosol loading are projected to intensify the SASM through the 

twenty-first century [Turner and Annamalai, 2012]. This intensification of the monsoon, along 

with accelerated warming-driven glacial melt, is expected to lead to greater flow in the 

Brahmaputra River [Immerzeel et al., 2013; Lutz et al., 2014] and likelihood of flood hazard in 

the region [Gain et al., 2011; Hirabayashi et al., 2013; Nepal and Shrestha, 2015; Uhe et al., 

2019]. 

Studies of long-term flood hazard in the Brahmaputra watershed have however been 

limited by the relatively short and fragmentary instrumental discharge records available 

[Immerzeel, 2008; Jian et al., 2009]. The longest instrumental record of Brahmaputra discharge 

comes from the Bahadurabad gauging station in Bangladesh, shortly after the river enters the 

country from Assam, India (Figure 2.1). The Bahadurabad discharge record spans about six 

decades from 1956 to 2011, interspersed with some missing data (Figure 2.2 & Figure 2.3a). 

Such a short record makes it difficult to assess and put into perspective the magnitude of 

projected future changes relative to natural variability especially at decadal and centennial 

timescales [Jian et al., 2009; Turner and Annamalai, 2012]. 

Tree-ring reconstructions of hydroclimate (including streamflow) are used to extend 

instrumental records to evaluate the severity of past droughts and pluvials [Buckley et al., 2010; 

Cook et al., 2010a; Gou et al., 2007; Pederson et al., 2014; Stockton and Jacoby, 1976; Yang et 

al., 2014], as a reference to interpret recent climate extremes relative to those in the past [Hessl 

et al., 2018; Rao et al., 2018; Woodhouse et al., 2010], and to contextualise ‘natural’ climate 
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variability in the system [Li et al., 2019] relative to climate change projections [Cook et al., 

2015a; Cook et al., 2010b; Hessl et al., 2018]. To that end, we develop a monsoon season 

reconstruction of mean JAS Brahmaputra River discharge at Bahadurabad, Bangladesh.  

We use our reconstruction, along with historical documentation of flood events 

[Coleman, 1969; Mahalanobis, 1927] to evaluate the connections between discharge and 

monsoon season flooding. Finally, we derive projections of future Brahmaputra River discharge 

from climate model simulations (historical and RCP8.5) participating in the fifth phase of the 

Coupled Model Intercomparison Project [CMIP5 - Taylor et al., 2012]. We use these models and 

our reconstruction to evaluate two situations. The first is how the recurrence of high discharge 

events (used here as a proxy for flood hazard) in recent decades compares to longer-term 

estimates over the last several centuries. The second is how the increase in Brahmaputra River 

discharge caused by projected regional wetting [Lutz et al., 2014] compares to natural climate 

variability estimated by the instrumental data and our tree-ring derived reconstruction. In this 

paper we define flood hazard as an exceedance of mean JAS discharge of 48,800 m3/s 

corresponding to observed discharge in 2007, the lowest discharge of 6 instrumental period flood 

years between 1956-2011. 

 

2.2 Results and Discussion 

2.2.1 Seasonal hydrograph and recent flood events in the observed record 

The most severe monsoon-season floods by the Brahmaputra River are those that cause 

inundation for more than 10 consecutive days. Such floods most commonly occur during JAS, 

the season with largest discharge during the year [Webster et al., 2010]. The annual maximum 

10-day mean discharge hydrograph at Bahadurabad between 1956-2011 shown in Figure 2.2a 
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describes the evolution of discharge from a dry, low-flow period between November of the prior 

year through May of the current year, and a period of peak discharge during the monsoon season 

in JAS. As tree rings typically provide information regarding seasonal hydroclimate [Meko et al., 

1995], we then attempted to determine whether JAS monsoon season discharge is related to sub-

seasonal flow at the 10-day timescale relevant to regional flooding. We found a strong and 

significant positive relationship between mean JAS seasonal discharge and the maximum 10-day 

mean discharge in each year (Spearman r=0.79; Pearson r=0.82; n=55, p<0.001, Figure 2.2b). 

This coupling between ‘instantaneous’ and ‘seasonal’ discharge is a common feature among 

large river basins across the world including the Brahmaputra [Immerzeel, 2008; Milly et al., 

2002]. 

This relationship is further supported by comparing the 10-day mean discharge 

hydrograph of six instrumental period flood years (i.e. 1966, 1987, 1988, 1998, 2007, and 2010) 

to the overall 10-day mean discharge hydrograph between 1956-2011 [Figure 2.2a; also see Jian 

et al., 2009]. In each of these known flood years, 10-day mean discharge exceeded the 50th and 

95th percentile of daily discharge for an extended duration. The median number of discharge days 

that exceeded the 50th percentile and 95th percentile of daily JAS discharge during these flood 

years were 76 and 17 respectively, representing 82% and 18% of the total of 92 days in the 3-

month JAS period (Figure B.5). In particular, in the year 1998, peak 10-day mean discharge was 

~94,000 m3/s. This was greater than twice the median flow for the season [Best, 2019; 

Chowdhury, 2000; Jian et al., 2009], with daily flow exceeding the 95th percentile of daily flow 

for a total of 39 of the 92 days, or 42% of the days in the JAS season. These results confirm the 

use of JAS discharge as a proxy for 10-day discharge and as an indicator for the likelihood of 
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flood hazard.

 

12Figure 2.2 Brahmaputra River discharge characteristics at Bahadurabad, Bangladesh 
between 1956-2011 C.E. (a.) Annual 10-day mean discharge hydrograph. The brown and green 
envelopes represent the 5th, 50th, and 95th percentiles of 10-day mean discharge respectively. 
The 5 grey and 1 red line represent 10-day mean discharge during instrumental period flood 

years in 1966, 1987, 1988, 1998 (in red), 2007, and 2010 C.E. (b.) Scatter plot of mean JAS 
discharge against maximum 10-day mean daily discharge. The six flood years are highlighted 

in red. The bootstrapped Pearson and Spearman rank correlations are calculated as the 
median and 5th and 95th percentile of 1,000 draws with replacement. The grey uncertainty 

envelope (±2s) is derived from the best-fit linear regression (blue line). 

 

2.2.2 Predictor selection and reconstruction model fidelity 

To extend the short instrumental record, we developed a reconstruction of mean JAS 

monsoon season discharge extending from 1309-2004 C.E. (Common Era) for the Brahmaputra 

River at Bahadurabad, Bangladesh, using Bayesian Regression (see Methods section). We used a 

pool of 28 annually dated tree-ring series that were proximally located to the Brahmaputra 

watershed boundary (Table B.1). All chosen series correlate well with mean JAS streamflow at 

Bahadurabad (p<0.10, using a 2-tailed t-test) during the 1956-1998 model calibration-validation 

period. Of these 28 predictors, 5 are located relatively distant (~670 km) to the watershed. We 

retained these 5 predictors as they contributed additional model skill, as is commonly found in 
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tree-ring hydroclimate and streamflow reconstructions [Allen et al., 2013; Chen et al., 2019; 

Littell et al., 2016b; Martin et al., 2019; Palmer et al., 2015; Stockton and Jacoby, 1976], 

consistent with spatial autocorrelation in climate fields [Harris et al., 2014a; Ljungqvist et al., 

2016; Yatagai et al., 2012]. 

The first principal component (PC1) of the 28 tree-ring predictors explained 24.86% of 

the total variance in the set of predictor chronologies. The PC1 timeseries of these predictors also 

correlated significantly with JAS discharge at Bahadurabad between 1956-1998 (r=0.73, n=42, 

p<0.01, 2-sided t-test), and with mean JAS precipitation in the Brahmaputra basin (Figure 2.1b 

and Figure B.2b). The loadings of each predictor on PC1 (and PC2) are described in Table B.1. 

The correlation between the PC1 series and regional precipitation in Figure 2.1b indicates that 

the ‘shared variance’ between the selected predictors captures regional hydroclimate variability 

independent to their statistical relationship with Brahmaputra streamflow. 

Median calibration-validation statistics of our reconstruction between 1309-2004 C.E. are 

as follows: i. CRSQ (calibration period coefficient of multiple determination): 65.58%, ii. VRSQ 

(validation period square of the Pearson correlation): 45.61%, iii. VRE (validation period 

reduction of error): 0.41, and iv. VCE (validation period coefficient of efficiency): 0.31. A 

comparison of the correlations between reconstructed discharge and upper basin climate 

variables indicates that the reconstruction captures the climate-streamflow relationships inherent 

in the instrumental observations (Supplementary Fig. S4). However, these climate-streamflow 

relationships are slightly weaker for reconstructed discharge than for instrumental discharge. The 

calibration-validation statistics for each model nest are shown in Figure B.6 along with the 

number of tree ring predictors used in each nest (maximum 28, minimum 10). That VRE and 
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VCE values are consistently greater than zero across the full reconstruction period indicates that 

the model has some skill [Cook et al., 2010a]. 

2.2.3 Reconstruction of past discharge  

The reconstructed discharge estimates during the observational period are shown in 

Figure 2.3a and our full reconstruction between 1309-2004 C.E. is presented in Figure 2.3b. 

While the reconstruction is calibrated to the instrumental mean and variance in the reconstruction 

procedure (Figure 2.3 c-d), we found that the mean reconstructed discharge over the full 

reconstructed period between 1309-2004 C.E. was significantly higher than the instrumental 

mean between 1956-2011 C.E. (46,993 ± 812 m3/s cf. 43,350 m3/s, difference of means = 3,644 

m3/s, t-statistic = 5.11, p<0.01) (Figure 2.3a). The uncertainty range around the mean was 

derived from the 5th and 95th percentiles of the means across all 400 iterations of the median 

reconstruction. The reconstruction was also significantly (p<0.01) wetter than the instrumental 

period even if we used the 1956-2004 C.E. instrumental mean of 43,442 m3/s or the 1956-1998 

C.E. calibration-validation period instrumental mean of 43,233 m3/s. This difference between the 

instrumental and reconstructed mean is largely driven by the first three decades of the 

instrumental observations between 1956-1986 C.E. that was unusually dry in the long-term 

context of the past seven centuries [Wang et al., 2020]. The instrumental mean between 1956-

1986 C.E. was 41,206 m3/s. We also compared mean JAS discharge during these 4 intervals (i.e. 

1956-1986, 1956-1998, 1956-2004, and 1956-2011) to random block bootstrap draws from the 

full reconstruction. We found all four intervals to be significantly drier (p<0.05) than the 

reconstruction (Figure B.7). 

The 31-year 1956-1986 C.E. instrumental mean of 41,206 m3/s ranked in the 13th 

percentile of our 696-year reconstruction. The 1956-2004 C.E. mean of 43,233 m3/s and the full 
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56-year 1956-2011 C.E. instrumental mean of 43,350 fell in the 22nd percentile of the full 

reconstruction. These results highlight the unusually dry nature of the modern instrumental 

period relative to the full reconstructed record, although we do observe dry periods of similar or 

greater magnitude in the early 1400s, late 1600s, early 1800s, and late 1800s (also see Figure B.8 

and refs. [He et al., 2018; Wang et al., 2020] for perspectives on upper Brahmaputra watershed 

May-June hydroclimate, and refs. [Shah et al., 2014; Thapa et al., 2017]). On the other hand, the 

reconstruction indicates long multidecadal wet periods of above normal discharge between 

~1560-1600 C.E., 1750-1800 C.E., and ~1830-1860 C.E. that have no analogues in the 

instrumental data (Figure 2.3, Figure B.8, also see ref. [He et al., 2018]). We do note that both 

instrumental observations and the reconstructions show a return to wetter conditions starting in 

1987 [also see refs. Chen et al., 2020; Shi et al., 2018a]. For example, more recent instrumental 

observations of discharge between 1987-1998 C.E., 1987-2004 C.E., and 1987-2011 C.E. are 

relatively wetter than the instrumental data prior to 1987 and fall in the 59th, 48th, and 39th 

percentile of full reconstruction (Figure B.8). However, the lack of more up-to-date streamflow 

data preclude us from being able to contextualise more recent years of discharge relative to the 

longer term reconstructed mean. 

2.2.4 Historical flood events 

Next, we evaluated the relationship between discharge and 12 historical Brahmaputra 

flood years in 1787, 1842, 1858, 1871, 1885, 1892, 1900, 1902, 1906, 1910, 1918, 1922 C.E. 

identified [from refs. - Chowdhury, 2000; Coleman, 1969; Mahalanobis, 1927] and 6 recent 

instrumental period flood years in 1966, 1988, 1987, 1998, 2007, 2010 C.E.[Jian et al., 2009]. 

These flood years (18 total) are marked as red triangles in Figure 2.3b. The mean observed JAS 

discharge during these six instrumental period flood years was ~53,800 m3/s (purple line in 
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Figure 2.3c). The reconstructed discharge of 60,312 m3/s in 1998 C.E. that was concurrent with 

large scale flooding in Bangladesh is only exceeded five times in the 696-year reconstruction. 

While our reconstruction model underpredicts the instrumental discharge of 62,840 m3/s in 1998 

C.E. by ~2,500 m3/s (Figure 2.3a), this comparison still suggests that within the reconstruction, 

discharge that year was unusually high [Chowdhury, 2000; Jian et al., 2009] even in the long-

term context of the past seven centuries. 

Following this, we tested the probability of random association between the 16 flood 

years and high discharge over the reconstruction period (excluding 2007 and 2010 as the 

reconstruction ends in 2004) using superposed epoch analysis [SEA - ref. Rao et al., 2019]; see 

Methods). We found that mean reconstructed flows across these 16 years are significantly wetter 

(p<0.001) and approximately one standard deviation higher than would be expected by chance 

(Figure 2.4a). This result is consistent with our finding using the instrumental discharge data 

(Figure 2.2) that flood events co-occur with high seasonal JAS discharge. However, we found 

this relationship to be much weaker in the reconstructions. Six of the 12 pre-1956 C.E. flood 

events occurred in relatively dry years. SEA of the 12 flood years prior to 1956 did show a 

median result of wet conditions in the year in which a flood was documented (Figure B.9). 

However, this result was not statistically significant at p<0.05 despite the 95th percentile of 

bootstrapped discharge responses being significant at p<0.001. This asymmetric response may be 

partly due to some of these historical flood years being undivided Bengal (Bangladesh, and West 

Bengal, India) flood years and not solely Brahmaputra flood years, and lack of information 

regarding the magnitude of flooding in the historical sources that we used. 
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13Figure 2.3 Instrumental observations, the reconstruction, and CMIP5 projections of mean 
JAS discharge at Bahadurabad. (a.) JAS instrumental discharge and its mean (43,350 m3/s) 

compared against reconstructed JAS discharge and its long-term mean (46,993 ± 812 m3/s). (b.) 
Reconstructed discharge for each year between 1309-2004 C.E. as a departure from the 

reconstructed mean (as green and brown bars), along with the 50-year low-pass filtered 
reconstruction (solid black) highlighting multi-decadal variability. The instrumental JAS 
discharge and its mean between 1956-2011 C.E. is shown in the blue and dashed blue lines 

respectively. Red triangles mark 18 documented flood years between 1787 and 2010 C.E. The 
3 dark green lines represent the 50-year low-pass filtered interquartile range (IQR – 25th, 

50th, and 75th percentiles) of the multi-model CMIP5 RCP8.5 ensemble (20 models; 42 runs; 
Table B.2) along with the full range of variability (light green lines) during both the 

‘historical’ (1850-2005 C.E.) and ‘future’ (2006-2099 C.E.) simulation period of these runs. (c.) 
Kernel density profiles of the median reconstruction (in red), instrumental period (in blue), 
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the full 42 member CMIP5 RCP8.5 end of the century simulation period (2050-2099 C.E.) 
ensemble suite (in green) and their respective means. The observed mean discharge of the 6 

instrumental period flood years from Figure 2.2 are shown in purple. The inset figure (d) 
shows the kernel density profiles of mean JAS instrumental discharge (in red) and 

reconstructed mean JAS discharge (in blue) over the calibration-validation period (1956-1998 
C.E.) along with their means. The reconstruction matches the features of instrumental 

discharge such at its mean and variance in this period. 

2.2.5 Projections of future discharge 

We calculated projections of runoff for the Brahmaputra River at Bahadurabad using an 

ensemble of 20 CMIP5 climate models (42 ensemble members) that provided continuous 

simulations from 1850 through 2099 C.E. (historical simulation from 1850-2005 C.E.; high 

emissions RCP8.5 scenario from 2006-2099 C.E.) (Table B.2). During the historical simulation 

period, the multi-model ensemble interquartile range (IQR – 25th, 50th, and 75th percentiles) of 

the 20 climate models shows a decreasing trend from ~1940-1980 C.E. (shown in solid green, 

Figure 2.3b), with a recovery in discharge between 1980-2005 C.E. Future projections of the 

IQR of multi-model ensemble discharge suggest a large increase in discharge relative to the 

instrumental mean starting ~2025 C.E. that is expected to persist and intensify through to the end 

of the century. 

We find that towards the end of the century, between 2050-2099 C.E., the 25th percentile 

of CMIP5 multi-model discharge remains relatively constant but there are large increases in the 

50th and 75th percentiles of projected discharge. This can also be observed in a comparison of the 

kernel density profile of all 42 ensemble members of CMIP5 RCP8.5 scenario discharge 

projections between 2050-2099 C.E., compared to the kernel density profiles of both the 

instrumental data between 1956-2011 C.E. and the full period of the reconstruction between 

1309-2004 C.E. (Figure 2.3c). The kernel density profile of discharge over instrumental 

observations between 1956-2011 C.E. and the horizontal line representing the instrumental mean 
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in this period also illustrate that the instrumental observations are drier than the long-term mean 

variability in the river system suggested by the reconstruction, and likely drier than future 

projected runoff. 

2.2.6 High discharge related flood hazard relative to instrumental observations 

We then calculated the difference in the likelihood of high discharge in the instrumental 

observations (1956-2011 C.E.) against the final median reconstruction (1309-2004 C.E.) and the 

20 model CMIP5 RCP8.5 end-of-the-century discharge projections split between 2050-2074 

C.E. and 2075-2099 C.E. We divided the end-of-the-century CMIP5 RCP8.5 discharge 

simulations into two halves (2050-2074 C.E. and 2075-2099 C.E.) to estimate the sensitivity of 

our results to different levels of global mean warming relative to the pre-industrial era with 

continued anthropogenic carbon-dioxide emissions under the RCP8.5 scenario (+3.05°C by 

2050-2074 C.E., and +4.30°C by 2075-2099 C.E.; Figure B.10). The 3.05°C warming of global 

mean annual temperatures that we estimate here by 2050-2074 C.E. under RCP8.5 is roughly 

equivalent to the projected warming that will be achieved by 2099 C.E. under the lower emission 

RCP4.5 scenario [see Figure 1 in Knutti and Sedláček, 2013]. Using these datasets, we then 

calculated the recurrence interval of JAS discharge greater than 48,800 m3/s (Figure 2.4b). This 

discharge exceedance threshold was equal to JAS discharge in 2007 C.E., the lowest discharge of 

all instrumental period flood years (Figure 2.2b). The recurrence intervals were calculated by 

sampling 1,000 draws of 30 years with replacement from all datasets (see Methods section).  

The median recurrence intervals (in years) were: (i) 4.35 for the instrumental 

observations between 1956-2011 C.E., (ii) 3.57 for the reconstruction between 1956-2004 C.E., 

(iii) 2.7 for the full reconstruction (1309-2004 C.E.), (iv) 2.5 across all RCP8.5 discharge 

projections between 2050-2074 C.E., and (v) 2.17 for RCP8.5 discharge projections between 
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2075-2099 C.E.. The median recurrence interval for instrumental observations between 1956-

2004 C.E. and 1956-1998 C.E. were also 4.35 (Figure B.11).  

The estimated difference in the recurrence of high discharge greater than 48,800 m3/s 

between the full reconstruction relative to recent decades therefore lies between 24.37-37.93%, 

calculated as (3.57-2.7)/3.57*100 and (4.35-2.7)/4.35*100. As our reconstruction shows a slight 

wet bias with more recurrent exceedances of the flooding threshold relative to observations over 

the instrumental period (3.57 years cf. 4.35 years), the 24.37% lower bound of our estimate 

accounts for this bias explicitly by comparing the full reconstruction only against tree-ring 

reconstructed instrumental period flows. However, there is substantial overlap in the full 

distributions of flood hazard recurrence intervals calculated during the instrumental observations 

(1956-2011 C.E.) and the reconstruction’s instrumental period (1956-2004 C.E.) (first two 

columns in Figure 2.4b). This result remains consistent even if we use instrumental observations 

between 1956-2004 C.E. or 1956-1998 C.E. (Figure B.11).  

The difference in the recurrence of high discharge greater than 48,800 m3/s between the 

instrumental data and CMIP5 RCP8.5 in the intervals spanning 2050-2074 C.E. and 2075-2099 

C.E. are 42.53% and 50.11% respectively [also see Whitehead et al., 2015]. Therefore, using the 

reconstruction as a baseline for long-term discharge variability and the CMIP5-simulated 

discharge as an estimate of climate change impacts on discharge in the basin, we find that recent 

decades underestimate the frequency of high discharge and in turn flood hazard from natural 

variability by 24.37-37.93% and climate change impacts by 42.53-50.11%. 

In the instrumental observations, mean JAS discharge exceeded 48,800 m3/s in 13 years 

(Figure 2.2b). Despite high discharge during these 13 years, more than half of these years (n=7) 

experienced no flood. While our recurrence interval analysis focusses on the frequency of high 
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discharge that is associated with the likelihood of flood hazard, many other factors play a role in 

determining whether high discharge translates to a flood event. These may include rainfall 

intensity and pattern, landscape heterogeneities, antecedent soil moisture conditions, and land 

use and forest cover change [Blöschl et al., 2017; Bradshaw et al., 2007; Cox et al., 2002] . Our 

return interval analyses also rely on the assumption that these high discharges will continue to be 

associated with an increased likelihood of flood hazard in the future, disregarding (for example) 

potential changes in policy, land use, or infrastructure that may ameliorate ‘flood risk’. The 

occurrence of a flood event that impacts society is however closely intertwined with highly 

localised human exposure and vulnerability [McGlade et al., 2019; Winsemius et al., 2013]. 

Therefore, our calculations of underestimated high discharge and associated likelihood of flood 

hazard in the return interval analyses in Figure 2.3b only contributes one component of the 

multiple dimensions of flood risk. 

 

14Figure 2.4 Discharge characteristics of wet and dry periods and flood years (a.) Superposed 
Epoch Analysis (SEA) showing higher than normal flows in historical and instrumental 

period flood years (in year t+0) between 1780-2004 C.E. than would be expected by chance. 
The response is the 5th, 50th, and 95th percentiles of mean flow across 1,000 unique draws of 

10 flood years at random out of 16. The horizontal dotted lines indicate the threshold 
required for epochal anomalies to be statistically significant using random bootstrapping at 

three different statistical thresholds. These thresholds were calculated by compositing 10,000 
draws of 10 years at random (or ‘pseudo-flood years’) from the reconstruction between 1780 

and 2004 C.E. (b.) Recurrence intervals (in years) of discharge greater than the 2007 C.E. flood 
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year JAS discharge calculated from 1,000 draws of 30 years with replacement form the 
instrumental data (1956-2011 C.E.), the reconstructions (over the instrumental period, 1956-
2004 C.E.), and the full 42 ensemble member CMIP5 RCP8.5 simulation suite between 2050-
2074 C.E. and 2075-2099 C.E. The median recurrence interval for each dataset is noted below 
each boxplot. The median recurrence interval for instrumental discharge between 1956-2004 

C.E. and 1956-1998 C.E. remains 4.35 (Fig B.8). 

 

2.3 Climate teleconnections 

We did not find any meaningful or statistically consistent relationship between monsoon 

season flow in the Brahmaputra River and variance in ocean sea surface temperatures (SSTs) or 

indices such as the El Niño-Southern Oscillation (ENSO) or the Indian Ocean Dipole (IOD) 

(Figure B.12). This is consistent with prior studies [Immerzeel, 2008; Jian et al., 2009; Shaman 

et al., 2005], even though we used a more up-to-date discharge dataset that extends up through 

2011. 

 

2.4 Conclusions 

We found the magnitude of peak 10-day Brahmaputra River discharge during the JAS 

monsoon season is tightly coupled to mean discharge for the entire JAS monsoon season. We 

also show that flood events have almost always occurred during years of high seasonal 

discharge. Our tree-ring reconstruction of mean JAS Brahmaputra River discharge between 

1309-2004 C.E. helps inform us about past and long-term hydroclimate variability in this river 

system. Additionally, the frequency of recurrence of high discharge in the reconstruction relative 

to the instrumental observations provides us valuable information regarding the likelihood of 

flood hazard in the region. While the Brahmaputra River has experienced large floods in the past 

few decades, most notably in 1998 C.E., our reconstruction suggests that the instrumental period 

that informs our current baseline assessments of flood hazard in the region is actually one of the 
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driest periods over the past seven centuries. This finding and the wet and dry periods we 

described in our reconstruction are also consistent with other hydroclimate reconstructions in the 

Southeast Tibetan Plateau covering the upper Brahmaputra watershed [He et al., 2018; Liu et al., 

2012; Wang et al., 2020]. Climate model simulations under the RCP8.5 scenario suggest wetting 

over the Brahmaputra River basin leading to increased discharge towards the end of the twenty-

first century. While this projected wetting falls within paleo-discharge natural variability 

estimates, taken in conjunction, the wetter reconstruction and projections relative to the 

instrumental period suggest that we may be currently underestimating the reconstructed and 

future frequency of high discharge in the Brahmaputra River watershed. 

A limitation of our analyses regarding flood hazard is that we reconstruct Brahmaputra 

mean JAS monsoon season discharge and not flood years per se. Improved paleo-hydrology 

work in other archives, such as geomorphic evidence and field stratigraphy [Ely et al., 1996; 

Kale et al., 1994; 1996; Thomas et al., 2007], the documentation of tree-ring flood-scars that can 

precisely date past flood events [Ballesteros-Cánovas et al., 2015; Speer et al., 2019; Wilhelm et 

al., 2019], and additional tree-ring sampling in the region of traditional [Thapa et al., 2017] and 

non-traditional species [Chowdhury et al., 2016; Islam et al., 2018; Maxwell et al., 2018] can 

help establish more skillful reconstructions of Brahmaputra discharge, its flooding history, and 

its flooding frequency in future work [Allen et al., 2020]. Additionally, we focus on the 

likelihood of high discharge as a proxy for flood hazard, and not on flood exposure and 

vulnerability [Kundzewicz et al., 2018; Winsemius et al., 2016]. In recent years, large advances 

have been made in the region with accurate flood warnings being made available with lead times 

of ~8-10 days. Villages taking specific actions have been able to minimise economic and social 

loss. Therefore, developing such adaptive capabilities to extreme events lends well towards 
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better preparedness in times of increased flood hazard to reduce overall risk. Finally, as lower 

basin Brahmaputra discharge in Bangladesh is closely tied to upper basin discharge and 

precipitation, greater availability of real-time river discharge data across all basin states (China, 

India, Bhutan, and Bangladesh) will help advance these efforts. 
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https://www.ncdc.noaa.gov/data-access/paleoclimatology-data/datasets/tree-ring. Tree ring data 

are from refs. - [Cook et al., 2003; Cook et al., 2010a; Cook et al., 2013a; Gou et al., 2007; 

Krusic et al., 2015; Li et al., 2017]. CMIP5 data -  https://esgfnode.llnl.gov/search/cmip. 

Huffman et al. [2007] TRMM precipitation data from the IRI Data Library at 

http://iridl.ldeo.columbia.edu/SOURCES/.NASA/.GES-

DAAC/.TRMM_L3/.TRMM_3B42RT/.v7/.daily/.precipitation/; [Harris et al., 2014a] CRU data 

http://www.cru.uea.ac.uk/data/; [Schneider et al., 2017] GPCC v7 precipitation data - 

https://www.esrl.noaa.gov/psd/data/gridded/data.gpcc.html#detail; ERA-5 [Copernicus Climate 

Change Service (C3S), 2019] runoff - 

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land-monthly-

means?tab=form.  

 

We downloaded shapefiles for country boundaries from 

https://github.com/nvkelso/natural-earth-vector/ and the authors and publisher remain neutral 

regarding them. Reconstructions and Bangladesh Meteorological Department (BMD) 
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Bahadurabad instrumental discharge data will be made available through to the NOAA-NCEI 

Paleoclimatology Data repository at: http:xxx. They are also available in Supplementary Data 1 

along with all 28 standardised tree-ring predictor series and our R and JAGS code. Any other 

associated data may also be made available by request from the authors. 

 

Methods 

Tree Ring Network. As an initial selection criterion, we first downloaded tree-ring data located 

between 20°N-35°N and 86°E-101°E available in the International Tree Ring Databank (ITRDB) 

that are approximately located within ~670 km or less from the basin boundaries, consistent with 

spatial auto-correlation in regional hydroclimate [Cook et al., 2010a]. We then ‘standardized’ 

[Cook and Kairiukstis, 1990; Fritts, 1976] each of annual raw ring-width series using the signal 

free (SF) method [Melvin and Briffa, 2008] to reduce the influence of non-climatic growth 

factors on tree growth and maximize the preservation of common median frequency at decadal to 

centennial timescales and truncated each chronology to the section with an Expressed Population 

Signal > 0.85 [Cook et al., 2013b; Wigley et al., 1984]. Finally, we retained a tree-ring series as a 

potential predictor if it correlated significantly with p<0.1 using a 2-tailed t-test with mean JAS 

flow at Bahadurabad, Bangladesh in its ‘raw’ and ‘pre-whitened’ (i.e. serial-autocorrelation 

removed) forms. We allowed for the inclusion of lag t+1 predictors in our model, where tree-

growth lagged climate and consequently streamflow by one year. This is because tree-growth in 

the current year is often influenced by previous year climate [Fritts, 1976]. The details of the 

series (e.g. species, location, chronology length, lag t+0 or lag t+1) retained as predictors in our 

reconstruction model are described in Supplementary Appendix, Table S1. The two tree ring 

series located in Myanmar are developed by us. 
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Reconstruction. We used the Bayesian Linear Regression model prescribed below [Devineni et 

al., 2013; Rao et al., 2018] to reconstruct streamflow (yt) in year t, as function of an intercept, 

slope, and predictor vector X.  

y7|α, β	 = 	α + β ∗ X7 + ε7 

with non-informative priors modelled as 

α~N(0,101)	and	β~N(0,101) 

The matrix X in the equation above contained the Principal Component scores ([PCs - 

ref. Cooley and Lohnes, 1971]) for all tree ring predictors with eigenvalues greater than 1. We 

used this Kaiser-Guttman cutoff criteria [Guttman, 1954; Kaiser, 1960] as an estimate of 

common shared signal (versus noise) between the tree ring predictors. In the reconstruction 

procedure, we explicitly incorporated the covariance between the streamflow series and the tree-

ring series by weighting each tree-ring predictor series by a power of its correlation with the 

streamflow data during the 1956-1998 C.E. calibration period [Cook et al., 2019]. This weighting 

can be expressed by the following equation 

wTR = uTR ∗ r8 

where wTR represents the final correlation-weighted matrix of tree ring chronologies, 

uTR is the matrix of unweighted tree-ring series normalized to N(0,1) over the calibration period, 

r is the absolute value of the calibration period Pearson’s correlation, and p is a range of 

exponent powers (0, 0.1, 0.25, 0.5, 0.67, 1.0, 1.5, 2.0) [Cook et al., 2010a; Cook et al., 2013b]. 

We use this range of powers, as there is no a priori reason for any single correlation weight to be 

more suitable than any other weight [Cook et al., 2010a; Cook et al., 2013b].  
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To develop the reconstruction, we chose the 43-year period between 1956-1998 C.E. as 

calibration-validation period to maximize the number of tree-ring predictors available as most 

tree-ring series ended in 1998 C.E. We used a ‘nested’ reconstruction approach where we 

sequentially dropped shorter tree-ring series until the predictor suite was exhausted and 

developed a new reconstruction model each time a shorter tree-ring series was dropped. We then 

appended each reconstruction ‘nest’ together by scaling its variance to the calibration period to 

develop the longest possible reconstruction of flow possible. Due to the relatively short 

instrumental period of 43 years (1971 missing) available for calibration-validation, we used a 

leave-10-out at random calibration-validation approach. In each iteration we calibrated a model 

on 32 years of streamflow data and validated it on the remaining 10 years. This choice of a 32-

year calibration and 10-year validation period provided a trade-off between retaining sufficient 

years for calibration while developing a conservative estimate of model skill. This is because 

leave-one-out-cross-validation skill thresholds are easier to pass than leave-k-out validation. For 

each nest and for each PCA matrix correlation weight, we developed 50 such reconstructions. 

These 50 leave-10-out-cross-validations when taken together with the 8 different correlation 

weights used in the PCA analysis gave us 400 reconstructions. The final reconstruction shown in 

Fig. 3 was calculated as the median of this 400-reconstruction ensemble. 

We evaluated the fidelity of our reconstruction using the following metrics: (i) CRSQ 

(calibration period coefficient of multiple determination), (ii) VRSQ (validation period square of 

the Pearson correlation), (iii) VRE (validation period reduction of error), and (iv) VCE 

(validation period coefficient of efficiency) that is equivalent to the Nash-Sutcliffe efficiency 

test[Nash and Sutcliffe, 1970]. The full description of these metrics is provided in the 
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supplemental material in Cook et al. [ref. - Cook et al., 2010a]. The CRSQ and VRSQ were 

calculated on the 32-year calibration and 10-year validation periods respectively.  

 

Flood hazard and recurrence interval. The list of flood years prior to the start of the 

instrumental gauge records in the 1950s at Bahadurabad were primarily collated from Coleman 

et al. and Chowdhury et al. [refs. - Chowdhury, 2000; Coleman, 1969]. Flood years from these 

two studies include 1842, 1858, 1871, 1885, 1892, 1900, 1902, 1906, 1918, and 1922 C.E. 

Additional records of Brahmaputra floods in 1910 C.E. and in 1787 C.E., when severe heavy 

rains in the upper basin caused a major flood, and the Teesta River changed its course to flow 

into the Brahmaputra River north of Bahadurabad are from Mahalanobis [1927].  

To calculate the recurrence interval of flood events we computed 1,000 bootstrapped 

draws with replacement of 30 years each from (i) the instrumental observations (1956-2011 

C.E.), (ii) the reconstruction over the instrumental period (1956-2004 C.E.), (iii) the full 

reconstruction period (1309-2004 C.E.), (iv) CMIP5 RCP8.5 2050-2074 C.E. period runoff 

simulations, and (v) CMIP5 RCP8.5 2075-2099 C.E. period runoff simulations. For the draws 

from the reconstruction we used the median reconstruction, while for the CMIP5 data we 

included all 42 ensemble members of the 20-model suite to represent the full range of variability 

in the model simulations of discharge. In each draw, we calculated the percentile (P) of the 2007 

C.E. JAS discharge of 48,800m3/s. We then calculated the return interval as 100/(100-P), to give 

an estimate of the likelihood of the occurrence of high discharge related flood hazard in any 

given year. For example if in a random draw of 30 years, the 2007 C.E. flood year discharge 

placed in the 90th percentile, its return interval probability would be once every 100/(100-90)=10 

years. However, if it placed in 80th percentile its return interval would be more frequent at once 
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every 100/(100-80)=5 years. An alternate approach to the bootstrap sampling we apply here 

could be to explicitly fit an extreme value distribution to the JAS discharge data. 

 

Climate Models. We obtained the surface runoff parameter output in the spatial domain 

upstream of the Bahadurabad gauging station within the Brahmaputra watershed from a 20-

model ensemble suite of phase five of the Coupled Model Intercomparison Project (CMIP5 ref. -

[Taylor et al., 2012]). This was done both for the 1850-2005 C.E. ‘historical’ simulation period, 

and 2006-2099 C.E. ‘future’ simulation period. For the future simulation period we used the 

representative concentration pathway 8.5 (RCP8.5) scenario that represents a net radiative 

imbalance of 8.5 W/m2 in earth’s radiative budget by the end of the twenty-first century [Riahi et 

al., 2011]. Table B.2 lists all CMIP5 models and their respective ensemble members used. We 

only chose a model run where the same simulation scenario was available both for the historical 

and RCP8.5 simulation period, to be able to compare ‘future’ and ‘historical’ discharge against 

each other. As a preliminary check, we first tested that the standardized annual hydrographs of 

the instrumental discharge data and the CMIP5 runoff data matched reasonably well both over 

the 1956-1998 C.E. calibration period from the CMIP5 historical runs and the RCP8.5 2050-

2099 C.E. future simulation period (Figure B.13). We did this to ensure that the models 

accurately capture seasonal runoff dynamics within the watershed, such as the wet JAS monsoon 

season period and the dry January through April winter period (Figure 2.2a). When comparing 

the variability across model members for the RCP8.5 2050-2099 C.E. simulation period to the 

instrumental data and the CMIP5 historical data, we found that it showed a large increase in 

runoff in the months of June through September. Before computing the annual runoff hydrograph 

using the CMIP5 models and all runoff projections, we bi-linearly interpolated all the CMIP5 
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runoff data into a common 0.25*0.25 grid, and lagged regions in the upper basin lying in an 

isochrone greater than 16 days [refs. - Jian et al., 2009; Webster et al., 2010] by one month to 

account for the temporal delay between surface runoff in the CMIP5 simulations in the upper 

part of the basin and the time it would take to reach the Bahadurabad gauging station located in 

the lower part of the basin (Figure B.14). Finally, to develop the CMIP5 estimates of historical 

and future discharge, we computed z-scores of each runoff simulation using its 1956-1998 C.E. 

mean and standard deviation, and then scaled these z-scores to discharge (in m3/s) by using the 

1956-1998 C.E. instrumental mean and standard deviation. This scaling to the 1956-1998 C.E. 

instrumental period allowed us to directly compare the reconstructions with the CMIP5 

projections, and the magnitude of projected change into the ‘future’ compared to the ‘historical’ 

period and instrumental discharge. 

 

Superposed Epoch Analysis (SEA). We tested the probability of the association between higher 

than normal discharge during flood years occurring by chance using a modified double bootstrap 

SEA [Haurwitz and Brier, 1981; Rao et al., 2019]. To do this, we first calculated the variability 

in discharge based on 5th, 50th, and 95th percentile of mean discharge across 1,000 unique draws 

of 10 flood years out of the total 16 between 1780-2004 C.E. We then determined the statistical 

significance of this response by comparing its probability distribution to that generated from 

10,000 unique draws of 10 years at random (‘pseudo-flood years’) from the reconstruction 

between 1780 C.E. and 2004 C.E. We subtracted the five-year pre-event mean across both draws 

of the ‘flood years’ and ‘pseudo-flood year’ to reduce the impact of low-frequency variability on 

the overall composite mean response. We also conducted SEA using only the 12 pre-1956 C.E. 
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instrumental period in a similar fashion with reconstructed discharge. In this SEA we used 495 

unique event year draws 8 of the 12 flood years due to the lower available sample size. 
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Chapter 3: European and Mediterranean hydroclimate responses to 

tropical volcanic forcing over the past millennium 

This chapter is published as Rao et al. [2017], European and Mediterranean hydroclimate 

responses to tropical volcanic forcing over the last millennium, Geophys. Res. Lett., 44(10), 

5104-5112. 

 

Abstract 

Volcanic eruptions can have global climate impacts, but their effect on the hydrologic 

cycle is poorly understood. We use a modified version of superposed epoch analysis, an eruption 

year list collated from multiple datasets, and seasonal paleoclimate reconstructions (soil 

moisture, precipitation, geopotential heights, and temperature) to investigate volcanic forcing of 

spring and summer hydroclimate over Europe and the Mediterranean over the last millennium. In 

the western Mediterranean, wet conditions occur in the eruption year and the following 3 years. 

Conversely, northwestern Europe and the British Isles experience dry conditions in response to 

volcanic eruptions, with the largest moisture deficits in post-eruption years 2 and 3. The 

precipitation response occurs primarily in late spring and early summer (April-July), a pattern 

that strongly resembles the negative phase of the East Atlantic Pattern. Modulated by this mode 

of climate variability, eruptions force significant, widespread, and heterogeneous hydroclimate 

responses across Europe and the Mediterranean. 

3.1 Introduction 

Large volcanic eruptions can inject sulfur dioxide into the stratosphere where it is 

converted into aerosolized sulfuric acid. These aerosols can persist in the stratosphere for several 

years, where they reflect and absorb incoming solar radiation, cooling global surface 
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temperatures but warming the stratosphere [Robock, 2000]. Volcanic eruptions are therefore 

useful events to study the response of Earth’s climate system to short-term changes in radiative 

forcing. However, the temperature effects of volcanic forcing have received considerable 

attention [e.g. Anchukaitis et al., 2012; Anchukaitis et al., 2017; D’Arrigo et al., 2009; 

Luterbacher and Pfister, 2015; Meehl et al., 2004; Stoffel et al., 2015a], and are relatively better 

constrained than the hydroclimate response [Anchukaitis et al., 2010; Broccoli et al., 2003; Iles 

and Hegerl, 2014].  

Modeling and observational studies find a global decrease in precipitation in the 

immediate years following volcanic events [e.g. Iles et al., 2013; Joseph and Zeng, 2011], 

although the regional and seasonal scale responses are more nuanced [Anchukaitis et al., 2010; 

Fischer et al., 2007b]. The decrease in global precipitation is likely caused by the reduction of 

incident shortwave radiation at the surface due to stratospheric volcanic aerosols, suppressing 

evaporation and leading to a cooler and more stable troposphere [Iles and Hegerl, 2014]. 

However, many of these studies focus on the past century when instrumental climate data are 

available, or are based on climate model outputs. In terms of global radiative forcing, there have 

only been two major volcanic eruptions during the past half-century, El Chichón in 1982, and 

Mt. Pinatubo in 1991, both of which coincided with El Niño events. Consequently, our 

understanding of the climate system’s response to multiple eruptions over the past millennium is 

extremely limited. 

Over Europe, the winter hydroclimate response to volcanic forcing resembles a positive 

phase of the North Atlantic Oscillation (NAO) [e.g. Driscoll et al., 2012; Shindell et al., 2004; 

Zanchettin et al., 2013]. Less is known, however, about the effect of volcanic eruptions on spring 

and summer hydroclimate. The response may be further complicated by the influence of various 
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modes of climate variability on interannual and decadal timescales over Europe and the 

Mediterranean. These include the winter and spring NAO, the East Atlantic Pattern (EAP), the 

East-Atlantic-Scandinavian Pattern, the East-Atlantic West-Russia Pattern (EAWR) [Barnston 

and Livezey, 1987; Schrier et al., 2006], and the summertime parallel of the winter NAO known 

as the summer NAO (SNAO) [Folland et al., 2009]. 

Here, we investigate the spatiotemporal hydroclimate response to volcanic eruptions over 

Europe and the Mediterranean using a modified version of superposed epoch analysis (SEA), and 

test whether volcanism modulates spring and summer hydroclimate through variability in the 

aforementioned climatic modes. Our modified SEA generates multiple unique draws of key 

years and determines the volcanic response in a probabilistic framework, allowing us to present 

uncertainty estimates in this response. We expand on previous analyses [Fischer et al., 2007b] 

using updated volcanic forcing data, and investigate the hydroclimate response in a new, longer 

(1100-2012 C.E.) hydroclimate reconstruction: the tree-ring based ‘Old World Drought Atlas’ or 

OWDA [Cook et al., 2015b] that allows assessment of the response over a greatly expanded list 

of event years. Further, we extensively evaluate the seasonality of climatic anomalies and 

teleconnection forcings that may modulate this observed response [cf. Büntgen et al., 2017; Gao 

and Gao, 2017]. We compare the OWDA response to a largely independent multi-proxy 

seasonal precipitation reconstruction (1500-2000 C.E.) [Pauling et al., 2006] and a recent 

temperature reconstruction (755-2003 C.E.) [Luterbacher et al., 2016]. 
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3.2 Data and Methods 

3.2.1 Data 

Estimates of past hydroclimate variability over Europe and the Mediterranean are from 

the OWDA [Cook et al., 2015b], a gridded tree-ring based reconstruction of mean June through 

August (JJA) self-calibrating Palmer Drought Severity Index [PDSI - Palmer, 1965; Schrier et 

al., 2013]. Along with the OWDA we use a gridded multiproxy seasonal precipitation 

reconstruction for Europe [Pauling et al., 2006], and a summer (JJA) European temperature 

reconstruction [Luterbacher et al., 2016]. See Text C.1 [Cook et al., 1999a; Dai et al., 2004; 

Fritts, 1976; George et al., 2010] for more details on the OWDA and Pauling et al. [2006] 

reconstructions. Other datasets used include, National Center for Atmospheric Research - 

National Center for Environmental Prediction (NCAR-NCEP) mean monthly sea level pressure 

(MSLP) [Kalnay et al., 1996], gridded Climate Research Unit (CRU) TS 3.21 precipitation and 

temperature [Harris et al., 2014b], and National Oceanic and Atmospheric Administration – 

Climate Prediction Centre (NOAA-CPC) NAO, EAP, and EAWR indices. To develop a ‘key 

year list’ of volcanic eruptions we compile data from five volcanic event lists (Table C.1), 

generated by analyzing sulfate loading in bipolar ice cores [Crowley and Unterman, 2013; Gao 

et al., 2008; Plummer et al., 2012; Sigl et al., 2013; Sigl et al., 2015]. 

 

3.2.2 Analysis 

To facilitate the interpretation of volcanically forced hydroclimate anomalies, we first 

examine the seasonality of climate signals integrated by the OWDA, along with the relationship 

between regional precipitation and temperature. We do this by calculating the spatial field 

correlation between the OWDA and gridded climate data (CRU precipitation and temperature), 
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and the spatial field correlation between the two gridded climate datasets themselves (see Text 

C.1). Next, we use SEA to determine the statistical significance of volcanically forced climatic 

anomalies [e.g. Adams et al., 2003; Anchukaitis et al., 2010; Fischer et al., 2007b]. The SEA is a 

statistical method to identify consistent responses to events, by testing for the possibility of 

random occurrence [Haurwitz and Brier, 1981]. One assumption of the SEA however is that the 

‘key year list’ (volcanic event years in our case) is accurate [Zanchettin et al., 2013], when in 

fact there are uncertainties associated with estimates of volcanic event years from ice-core 

evidence [Baillie, 2008; Plummer et al., 2012; Sigl et al., 2015]. Additionally, conventional SEA 

does not provide response uncertainty estimates based on the choice of key years. 

We estimate the volcanic response using (n1=1000) unique subsets of eruption years from the 

‘key year list’ in Table C.1. Each subset is the mean response of n2=10 key years. Next, we 

determine the median, 10th and 90th percentile of these (n1=1000) mean responses on a grid cell 

basis, providing an estimate of the sensitivity of the observed response to the choice of key event 

years, and the widest possible uncertainty estimate based on this choice. For each of the 10 years 

in the 1000 draws of non-repeating subsets, we study the fifteen-year delayed post-eruption 

anomalies with respect to pre-eruption climatology, defined as the mean state over the five-year 

period preceding the eruption. The short reference period minimizes the effect of mean 

background low-frequency climate variability. Since it is likely that some of the ‘key years’ in 

Table C.1 correspond to the same event (e.g. 1168-69; 1229-30; 1257-58; 1344-45; 1458-59; 

1600-01; 1694-95; 1815-16), only key years separated by more than five years were included in 

each draw. 

We determine the statistical significance of the PDSI, precipitation, and temperature 

response using SEA by bootstrapped resampling [Haurwitz and Brier, 1981].This is done by 
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comparing the post-eruption response to the likelihood of random occurrence, by generating 

(n3=10000) sequences of (n2=10) ‘pseudo-key year’ samples treated in the same fashion as the 

actual volcanic key years, including checking that key years chosen in sequences are separated 

by more than five years. We consider epochal anomalies to be significant if the ‘actual response’ 

either falls below the 5th percentile or is greater than the 95th percentile (i.e. one-sided epochal 

anomaly at p<0.05). 

To evaluate whether volcanically forced hydroclimate observed in the SEA analysis 

could be modulated though teleconnection patterns (e.g. NAO, EAP, SNAO, EAWR etc.), we 

calculate spatial field correlations between these teleconnection patterns and both CRU 

instrumental precipitation and OWDA PDSI. All temporal correlations are calculated on linearly 

detrended data and significance is calculated after adjusting the sample size for temporal first 

order auto-correlation [Bretherton et al., 1999]. 

Based on the results of these preliminary analyses (not shown), we present the spatial 

field correlation between mean April through July (AMJJ) EAP and MSLP over Europe between 

1950 and 2012. We then compute the pattern correlation between the SEA response to volcanic 

forcing and PDSI anomalies forced by the EAP. We adjust the sample size (n=5414 grid cells) 

used to estimate significance using a 5x5 Gaussian kernel weighting matrix (σ=1) to account for 

spatial autocorrelation in the PDSI and precipitation fields [Cliff and Ord, 1981]. Finally, we 

develop an estimate of EAP variability for the period 1766-1949, prior to the availability of the 

reanalysis data, using rotated principal components analysis (RPCA) [Barnston and Livezey, 

1987] on a reconstruction of 500hPa geopotential heights (GPH) developed by Casty et al. 

[2007] [see Text C2 for details; Raible et al., 2014]. We use this estimated EAP series to 
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examine the post-eruptive EAP response following the large nineteenth century volcanic 

eruptions. 

 

3.3 Results 

Over the 1901-1978 period, JJA PDSI correlates significantly (p<0.05, two-sided 

Student’s t-test) with both concurrent and antecedent precipitation and temperature (Figure 3.1; 

C.1). Precipitation is positively and significantly correlated with JJA PDSI in all seasons over 

much of the domain, with JJA precipitation showing the strongest signal. Correlations over the 

Mediterranean are most significant during spring (March through May - MAM), the main season 

of moisture supply relevant to tree growth in this region (Figure C.2). Over the Mediterranean, 

this relationship is leveraged primarily by May precipitation; while over northwestern Europe the 

JJA signal is predominantly a reflection of June and July precipitation (not shown). Temperature 

is negatively correlated with PDSI, especially during JJA (Figure 3.1 – center panels), reflecting 

either the direct impact of temperature on PDSI (i.e., higher temperatures translate to increased 

evapotranspiration and lower soil moisture), or the strong inverse correlation during JJA between 

temperature and precipitation (or soil moisture) over much of the region [Figure 3.1 & C.1 - right 

panels; Casty et al., 2007; Fischer et al., 2007a; Seneviratne et al., 2006].  

In the immediate years following an eruption, the median bootstrap hydroclimate 

response in the OWDA is widespread and significant (p<0.05, one-tailed epochal anomaly) 

(Figure 3.2). In the western Mediterranean, pluvial anomalies peak during the event year (year 

t+0) and one year after (year t+1), but persist up to three years post eruption (year t+3) (Figure 

3.3a). Conversely, a large and somewhat delayed drying signal emerges over northwestern 

Europe and the British Isles, peaking two to three years post-eruption (years t+2 and t+3) (Figure 
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3.3b). These results are further supported by analysis of the 10th percentile response over the 

western Mediterranean, and the 90th percentile response over northwestern Europe (Figure 3.3; 

Figure C.3). Thus, even the driest years post-eruption over the western Mediterranean are 

relatively wet, and the wettest years post-eruption over northwestern Europe are relatively dry, 

compared to pre-eruption values. While persistent positive PDSI anomalies are observed over 

northern Fennoscandia in years t+1 through t+3 (Figure 3.2), this response may be a combination 

of wetting and post-eruption cooling, as the OWDA also shows strong summer temperature 

sensitivity over Fennoscandia (Figure 3.1). 

 

15Figure 3.1 Pearson correlation between (left panel) JJA OWDA PDSI and CRU 
precipitation, (center panel) JJA OWDA PDSI and CRU temperature, and (right panel) CRU 

precipitation and CRU temperature between 1901-1978. Only correlations significant at 
p<0.05 (two-sided Student’s t-test) shown. Top panel March-May (MAM), lower panel June-

August (JJA). 
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The median response to volcanic forcing in MAM precipitation [Pauling et al., 2006] 

shows significant wetting (p<0.05, one-tailed epochal anomaly) over the western Mediterranean 

two years (year t+2) following an eruption (Figure C.4). Over northwestern Europe and the 

British Isles a significant (p<0.05, one-tailed epochal anomaly) reduction in summer JJA 

precipitation is observed three and four years (years t+3 and t+4) after an eruption [Figure C.5; 

Fischer et al., 2007b]. Following an eruption, summer JJA temperatures show significant cooling 

across the entire region, as documented previously [Figure C.6; Luterbacher et al., 2016]. 

 

16Figure 3.2 Superposed epoch analysis (SEA) showing OWDA JJA PDSI response to 
volcanic forcing for years t+0 through t+5 between 1100-2012 C.E. Response is the median 

value for each grid cell. Stipples indicate statistically significant (p<0.05, one-tailed) epochal 
anomalies. 

The EAP is a prominent mode of climate variability over the North Atlantic second to the 

NAO. It appears as a leading mode through the year and is characterized by a northwest-
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southeast dipole of pressure centers [Barnston and Livezey, 1987; Schrier et al., 2006]. It is 

positively correlated with precipitation over northwestern Europe, the British Isles and southern 

Fennoscandia in MAM and JJA, and inversely correlated with MAM precipitation in the western 

Mediterranean and JJA precipitation over southern Iberia (Figure 3.4 – left panel). In MAM, a 

positive EAP is linked to lower than normal MSLP along the European Atlantic sector, and 

anomalously high MSLP around the Mediterranean basin, that suppresses precipitation in the 

region (Figure 3.4 – right panel). During a positive EAP the low pressure centered near Scotland 

intensifies during JJA. 

 

17Figure 3.3 SEA showing area-weighted mean PDSI response over (a.) western 
Mediterranean (blue box - Figure 2) and (b.) northwestern Europe (red box - Figure 2). 

Uncertainty intervals are 10th and 90th percentile of the response. Dashed horizontal line 
indicates threshold required for statistically significant (p<0.05, one-tailed) epochal 

anomalies. 

The spatial correlation between the mean AMJJ EAP index and JJA OWDA PDSI 

between 1950 and 1978 is shown in Figure 3.5a. A positive phase of the EAP corresponds to wet 

conditions over northwestern Europe and the British Isles, and dry conditions over the western 

Mediterranean basin. Drying is strongest over southern Iberia, northern Morocco, and northern 

Algeria. The spatial pattern of PDSI conditions following volcanic eruptions (Figure 3.2) 
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strongly resembles a negative phase of the EAP, especially in post-eruption years t+1, 2 and 3, 

suggesting that volcanic forcing may modulate spring and summer climate over Europe by 

stimulating a negative EAP-like atmospheric response. The Pearson correlations between the 

years t+1, 2 and 3 response (Figure 3.2) with the EAP-OWDA pattern are r=-0.47, -0.44, and -

0.52 respectively (p=0, N’=686; p=0, N’=589; and p=0, N’=581 respectively, 2-sided Student’s 

t-test, N’ - sample size adjusted for spatial autocorrelation). Other teleconnection patterns such as 

the NAO, SNAO, and the EAWR were tested for their influence on hydroclimate over Europe 

and were not found to force hydroclimate responses spatially similar to that observed following 

volcanic eruptions. 
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18Figure 3.4 Correlation between East Atlantic Pattern (EAP) and (left) CRU precipitation 
(right) NCAR-NCEP mean sea level pressure (MSLP) for (upper panel) MAM, and (lower 

panel) JJA between 1950 and 2012. Stippling indicates significant correlation (p<0.05, 2-sided, 
Student’s t-test). Note different colorbars. 
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19Figure 3.5 EAP and European hydroclimate. (a.) Correlation between April-July (AMJJ) 
NOAA-CPC EAP index and OWDA JJA PDSI between 1950-1978. Stippled blue (red) 

shading indicates significant positive (negative) correlation (p<0.05, 2-sided Student’ t-test). 
(b.) AMJJ NOAA-CPC EAP index between 1950-2016 (red) and estimated from Casty et al. 

[2007] 500 hPa reconstruction (black - see Text S2). Inset shows five-year post-eruptive AMJJ 
EAP response after 1809 (grey), 1815 (yellow), 1831 (pink), 1835 (olive), 1884 (black), 1982 

(blue), and 1991 (green) after subtracting five-year pre-event mean. 

The NOAA-CPC AMJJ EAP timeseries between 1950-2016 (in red) and the estimated 

AMJJ EAP between 1800-2002 using the Casty et al. [2007] 500 hPa GPH reconstruction (in 

black) are shown in Figure 3.5b. The two series are significantly correlated during the period of 

overlap between 1950-2002 (r=0.71, p=0.0001, N=53, N’=50 (for temporal autocorrelation), 2-

sided Student’s t-test). The inset shows the post-eruption AMJJ EAP response after El Chichón 

in 1982 (blue line) and Mt. Pinatubo in 1991 (green line) after subtracting the five-year pre-event 

NOAA-CPC mean EAP index, and estimated EAP response following the unknown event in 

1809 (grey line), Tambora in 1815 (yellow line), Babuyan – 1831 (pink), Cosiguina – 1835 

(olive), and Krakatau in 1884 (based on radiative forcing - black line) after subtracting the five 

year pre-event estimated EAP index. While variability in post-eruption EAP and estimated EAP 

response is high, there is a clustering of negative values at year t+0, and in four out of five cases 

in year t+1 and t+2. It should be noted however, that the response after El Chichón is mostly 

positive.  
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3.4 Discussion 

While post-volcanic spring and summer cooling is a consistent response both regionally 

[Figure C.5; Esper et al., 2013a; Luterbacher et al., 2016] and globally [D’Arrigo et al., 2009; 

Stoffel et al., 2015a], here we show that the hydroclimate response to volcanic forcing is much 

more spatially heterogeneous [e.g. Anchukaitis et al., 2010]. Post-eruption hydroclimate 

anomalies (Figure 3.2) over Europe and the Mediterranean resemble those caused by a negative 

phase of the EAP (Figure 3.4 & 3.5a), with pluvial conditions over the western Mediterranean 

and drought conditions over northwestern Europe and the British Isles [Figure 3.2; Figure 3.3; 

also see Büntgen et al., 2017; Gao and Gao, 2017]. A similar response is observed in a largely 

independent seasonal precipitation reconstruction [Figure C.4 & C.5; Fischer et al., 2007b], and 

also simulated, albeit with slightly northward displaced anomalies, in volcanically forced mean 

May through September precipitation by the Community Earth System Model [Figure 4 in 

Colose et al., 2016]. 

The hydroclimate system has a high degree of internal spatiotemporal variability. At the 

same time, there are also uncertainties in the volcanic eruption years themselves [Baillie, 2008; 

Plummer et al., 2012; Sigl et al., 2015]. To account for this uncertainty, we use a novel form of 

the SEA with non-repeating subsets of eruption years from a larger key year list (Table C.1). 

Thus, we are able to examine the degree of variability in the hydroclimate system based on 

different choices of key event years (Figure 3.3 & C.3), and incorporate this uncertainty into our 

results. 

Our analyses suggest that volcanic impacts on spring-summer European hydroclimate are 

likely modulated by predisposing the EAP towards its negative phase [Zanchettin et al., 2012]. 

While the mechanisms for this are still uncertain, one possibility examined in model simulations 



78 
 

suggests its causes may originate in the tropics. Following an eruption, a reduction in shortwave 

radiation at the surface causes faster cooling over land compared to oceans due to the former’s 

lower heat capacity. This reduces the land-sea thermal contrast, weakening monsoon circulations 

including the west African monsoon [Joseph and Zeng, 2011]. In turn, the weakened monsoonal 

precipitation and equatorial convergence reduces latent heat fluxes in the free troposphere and 

leads to weakening of Hadley and Ferrel cell circulations [Rind et al., 1992]. Using the ECHAM 

5.4 model Wegmann et al. [2014] found that weakening these circulations weakened the 

meridional pressure gradient in the North Atlantic, causing southward shifted storm tracks and 

anomalous uplift over the Mediterranean that increased convection and precipitation over the 

Mediterranean. Our findings (Figure 2-5) suggest that the hydroclimate response to volcanic 

forcing is consistent with this hypothesized weakening of the descending branch of the Hadley 

circulation and southward shift of storm tracks, causing springtime wetting over the western 

Mediterranean and spring and summer drying over northwestern Europe. Although this 

mechanism is largely consistent with that proposed by Gao and Gao [2017], we show that the 

OWDA primarily reflects spring through summer soil moisture (Figure 3.1 & C.1). Thus, it is 

unlikely that volcanically induced wintertime teleconnection anomalies, such as a positive winter 

NAO play a dominant role in influencing the observed response. Based on these dynamics and 

the resemblance between hydroclimate anomalies induced by volcanic eruptions (Figure 3.2) and 

those triggered by the EAP (Figure 3.4 and 3.5), this theory offers at least a plausible physical 
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mechanism for volcanic forcing of spring-summer hydroclimate over Europe and the 

Mediterranean by inducing a negative phase of the EAP. 

 

5 Conclusions 

We used a new millennium-length tree-ring based hydroclimate reconstruction with an 

expanded event year list and a novel modification to SEA, to demonstrate a robust but spatially 

complex response of European and Mediterranean hydroclimate to volcanic eruptions. The 

forced hydroclimate response appears to be triggered by a negative phase of the EAP which 

causes anomalous spring uplift over the western Mediterranean, southward shifted storm tracks, 

and a weakened spring-summer meridional pressure gradient over the North Atlantic. 

Consequently, we observe wetting over the western Mediterranean and drying over northwestern 

Europe following volcanic eruptions. However, the exact dynamical mechanisms by which 

volcanic eruptions trigger this response (e.g., possibly by weakening equatorial convergence and 

the west African monsoon) still need to be better understood. These results highlight the 

complexity of hydroclimate response to eruptions, and suggest the need to consider carefully 

how aerosol forcing (e.g. from volcanoes, pollution, or geoengineering) may modulate 

hydroclimate in the future. 
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Chapter 4: A double bootstrap approach to Superposed Epoch 

Analysis to evaluate response uncertainty 

This chapter is published as Rao et al. [2019], A double bootstrap approach to Superposed Epoch 

Analysis to evaluate response uncertainty, Dendrochronologia, 55, 119-124. 

 

Abstract 

The association between climate variability and episodic events, such as the antecedent 

moisture conditions prior to wildfire or the cooling following volcanic eruptions, is commonly 

assessed using Superposed Epoch Analysis (SEA). In SEA the epochal response is typically 

calculated as the average climate conditions prior to and following all event years or their 

deviation from climatology. However, the magnitude and significance of the inferred climate 

association may be sensitive to the selection or omission of individual key years, potentially 

resulting in a biased assessment of the relationship between these events and climate. Here we 

describe and test a modified double-bootstrap SEA that generates multiple unique draws of the 

key years and evaluates the sign, magnitude, and significance of event-climate relationships 

within a probabilistic framework. This multiple resampling helps quantify multiple uncertainties 

inherent in conventional applications of SEA within dendrochronology and paleoclimatology. 

We demonstrate our modified SEA by evaluating the volcanic cooling signal in a Northern 

Hemisphere tree-ring temperature reconstruction and the link between drought and wildfire 

events in the western United States. Finally, we make our Matlab and R code available to be 

adapted for future SEA applications. 
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4.1 Introduction 

Superposed Epoch Analysis (SEA) is a statistical method used to identify the link 

between discrete events and continuous time or spatiotemporal processes and test the probability 

of such an association occurring by chance [Haurwitz and Brier, 1981]. SEA has been widely 

applied in climatology and dendroclimatology to test for the impact of volcanic eruptions on 

climate [e.g. Esper et al., 2013b; Kelly and Sear, 1984; Kelly et al., 1996; Lough and Fritts, 

1987; Taylor et al., 1980; Trouet et al., 2018], the significance of soil moisture and climate 

conditions (e.g. ENSO, PDO) on the occurrence of forest fires [e.g. Baisan and Swetnam, 1990; 

Gedalof et al., 2005; Hessl et al., 2004; Schoennagel et al., 2005; Swetnam, 1993; Swetnam and 

Betancourt, 1998; Swetnam et al., 2016], and to evaluate tree growth response to drought events 

[e.g. Lévesque et al., 2014; Martín-Benito et al., 2008; Orwig and Abrams, 1997; Woodhouse, 

1993] and insect defoliation [Flower et al., 2014; Nola et al., 2006; Pohl et al., 2006]. 

SEA requires two independent datasets. The first is an ‘event list’. These ‘events’ are 

usually discrete in time, such as years of volcanic eruptions or the precisely dated years of fire-

scars in the annual rings of trees. The second variable is usually a long, continuous, and evenly 

sampled timeseries (e.g. climate observations or paleoclimate reconstructions). The underlying 

hypothesis of SEA is that the ‘events’ either cause or are themselves a response to the 

characteristics of the continuous timeseries, and that the identification of the sign, magnitude, 

and timing of that response may be optimised by averaging across all events. To evaluate this, 

first, a ‘composite matrix’ is made by drawing fixed windows of consecutive observations from 

the continuous timeseries that span years before, during, and after the event. The mean of this 

composite matrix, or its deviation from climatology is then calculated as the epochal response. 

Finally, the statistical significance of this response is determined using randomisation schemes to 
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evaluate the result against a null hypothesis to determine how likely the observed response would 

have occurred by chance [Haurwitz and Brier, 1981]. The compositing and averaging process 

serves as a filter that enhances the high-frequency response signal of interest while minimising 

noise [D'Arrigo et al., 1993]. This technique also accounts for long-term drift, or low frequency 

variability that may be present. For example, using SEA one can infer that volcanic eruptions 

cause widespread northern hemisphere cooling [e.g. Anchukaitis et al., 2017; Briffa et al., 1998; 

Sear et al., 1987; Stoffel et al., 2015b], or that fire-events are associated with anomalously dry 

soil moisture conditions [e.g. Hessl et al., 2016; Kipfmueller et al., 2017]. 

Within the SEA literature the two commonly used randomisation schemes to determine 

response significance are ‘random bootstrapping’ [Haurwitz and Brier, 1981] and ‘block 

reshuffling’ [Adams et al., 2003]. While both rely on Monte Carlo type bootstrapping approaches 

to determine confidence interval thresholds, they test for different hypotheses [Anchukaitis et al., 

2010]. The random bootstrap takes multiple random draws from the entire ‘event’ timeseries by 

generating ‘pseudo key years’, and then computes statistics of random variability within the 

‘response’ dataset to determine significance thresholds. The block reshuffling method on the 

other hand creates random surrogate composite matrices by first permuting the original ‘event’ 

composite matrix, and then computing distributions based on this random shuffling of the 

‘response’ anomalies for each event series [Wanliss et al., 2018]. Prior to the reshuffling, the 

serial autocorrelation of the ‘response’ timeseries is used to determine the block length sampled, 

helping preserve the data’s autocorrelation structure. By resampling in blocks, exclusively within 

the composite matrix, the statistics and autocorrelation of the composite matrix are preserved 

while destroying preferred pre and post-event temporal ordering, ensuring that the resulting 
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confidence intervals take into account the confounding influence of temporal structure in the 

time series [Adams et al., 2003]. 

While the compositing and averaging process in SEA serves as a high-frequency filter to 

increase the signal-to-noise ratio of the mean epochal response, it has multiple drawbacks. The 

first is that one or more events might have an outsized leverage on the mean response value 

across epochs [Adams et al., 2003]. The second relates to noise added to the SEA results due to 

dating uncertainty in the events [Sigl et al., 2015; Toohey and Sigl, 2017] or the timeseries, along 

with the potential lack of temporal resolution in the proxy to resolve the seasonality of the event 

or the response. The dating uncertainty means that there might be an offset between the event 

response (e.g. as post-volcanic winter warming [Zambri et al., 2017]) and what is recorded in the 

seasonal climate proxies like as tree-rings and corals. Another source of uncertainty in SEA is 

the a priori subjective definition of what constitutes an event and the effect this choice has on the 

SEA response. For example, the threshold to use to define a volcanic event (e.g. radiative forcing 

larger than Pinatubo, Tambora, etc.), or the percentage cut-off used to define fire events (e.g. 

10% scarred trees, 20% scarred trees etc.) tend to be subjective choices. Finally, the simple 

averaging of the response matrix in conventional SEA relies on the implicit hypothesis that all 

event signals are equal when in reality each event (e.g. volcanic eruption, fire year) is unique. 

Additionally, even the response to the same kind of event might differ due to natural variability 

within the climate system modulated by pre-event background states [Esper et al., 2013b; 

Zanchettin et al., 2019]. 

Here in this study we describe a modified double-bootstrap SEA framework that first 

generates multiple unique draws of the key year list itself. We first used this method in Rao et al. 

[2017] to evaluate the impact of volcanic eruptions on post-volcanic hydroclimate over Europe 
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and North Africa. This double-bootstrap SEA methodology describes the event response in a 

probabilistic framework and therefore explicitly and quantitatively addresses the uncertainties in 

SEA mentioned above.   

4.2 Data 

We test our modified SEA method using two datasets. The first is a recent tree ring 

reconstruction of Northern Hemisphere May-though-August mean temperature spanning 750-

2011 C.E. [N-TREND -Wilson et al., 2016]. The second is a compilation of annually resolved 

tree ring based fire scar records from the western United States [Trouet et al., 2010]. The original 

authors of both papers and datasets also conducted SEA analysis, demonstrating that Northern 

Hemisphere temperatures cool in the years immediately following large tropical volcanic 

eruptions [Wilson et al., 2016], and wildfire years in the western US coincide with drought years 

[Trouet et al., 2010]. Hence, we focus on the implementation of our SEA method and do not 

seek to reinterpret the physical mechanisms behind the event signals. 

The tropical eruption key years used to evaluate the N-TREND temperature 

reconstruction response to volcanism come from the eVolv2k database [Toohey and Sigl, 2017]. 

We chose a total of 20 tropical eruptions, between 30°S-30°N and 1100-2011 C.E. that have a 

peak northern hemisphere aerosol optical depth (AOD) greater than 0.08 as eruption key years 

(Table 4.1). Figure 4.1 shows the N-TREND temperature reconstruction between 1100-2011 

C.E. along with markers for these volcanic eruptions. For reference, we also include markers for 

9 northern hemisphere extratropical volcanic eruptions between 30°N-90°N (Table 4.1) with 

northern hemisphere AOD > 0.08 from Toohey and Sigl [2017]. Following Trouet et al. [2010], 

we categorised a year as a fire-year when at least 10 percent of samples are scarred in a 

minimum of two trees, resulting in a total of 98 candidate fire key years between 1342-1952 C.E. 
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2Table 4.1 Tropical volcanic eruptions key years used for Superposed Epoch Analysis (SEA) 
and Northern Hemisphere marker years highlighted in Figure 1. Dates are derived from 

Toohey and Sigl [2017]. Names are mentioned only for identified eruptions. 

Tropical volcanic eruptions Northern Hemisphere Extratropical eruptions 
1107  1182 
1170 1200 
1229 1210 
1257 Rinjani, Samalas, Indonesia 1329 
1285 1477 Bárðarbunga, Veiðivötn, Veidivatnahraun, Iceland 
1344 1667 Shikotsu, Tarumai, Japan 
1452 1729 
1457 1783 Grimsvötn, Lakagígar, Laki, Iceland 
1585 Colima, Mexico 1912 Novarupta, Katmai, Alaska, USA 
1600 Huaynaputina, Peru  
1694  
1640 Parker, Philippines   
1808  
1815 Tambora, Indonesia  
1831 Babuyan Claro, Philippines  
1835 Cosigüina, Nicaragua  
1883 Krakatau, Indonesia  
1902 Santa Maria, Guatemala  
1982 El Chichón, Mexico  
1991 Pinatubo, Philippines   

 

The record for the western US used to evaluate drought conditions during fire-event 

epochs comes from an area-weighted spatial average of the Living Blended Drought Atlas 

(LBDA) [Cook et al., 2004; Cook et al., 2010b] between 124°W to 109°W and 35°N to 50°N, 

covering all four regional composite fire scar series used in Trouet et al. [2010]. The LBDA is a 

gridded spatial reconstruction of mean June through August (JJA) Palmer Drought Severity 

Index (PDSI - [Palmer, 1965]. Figure 4.2a shows the percentage of all the western US sites 

within the Trouet et al. [2010] dataset that records a fire for each year between 1300-2000 C.E. 

along with the total number of sites. The lower panel Figure 4.2b is a timeseries of the area-
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weighted PDSI for the western US, with negative and positive values indicating dry and wet 

conditions respectively. 

  

20Figure 4.1 A temporal subset of the Northern Hemisphere May-August summer 
temperature reconstruction between 1100-2011 C.E. from Wilson et al. [2016]. Red * symbols 

indicate tropical volcanic eruption key years (see Data) used in our Superposed Epoch 
Analysis (SEA) to evaluate the Northern Hemisphere summer temperature response to 
volcanism. Blue * symbols indicate large extratropical Northern Hemisphere eruptions. 

Tropical volcanic key years are shifted by +1 years to better align with the cooling response 
(see Results). Y-axis is the anomaly in °C with respect to temperatures between 1961-1990. 
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21Figure 4.2 Fire event and drought history for the western US between 1300-2005 
C.E. (a) Percentage of trees from the Trouet et al. [2010] western US compilation that 

record a fire in a given year (vertical black bars) along with the total number of recording 
trees (in blue). Red triangles are the final set of 98 candidate fire event key years chosen 

using a cut-off of at least 10% of scarred samples with a minimum of 2 recording trees. (b) 
Area-weighted spatial average of mean June-August Palmer Drought Severity Index (JJA 
PDSI) for the western US (124°W-109°W an 35°N-50°N) from the Living Blended Drought 

Atlas [Cook et al., 2010b]. The 98 red triangle symbols are the same fire event key years 
from part (a). 
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4.3 Methods 

The first step of SEA analysis is to develop a composite matrix of event responses. In 

traditional SEA, rows of the composite matrix each correspond to a key or event year, while 

columns contain are the data from the time series prior to, during, and following each event 

[Haurwitz and Brier, 1981]. The number of columns depends on the window length of interest. 

In both examples we chose a window length of 21 years, spanning from 5 years pre-event to 15 

years post-event. Year 0, the sixth column in the matrix, therefore corresponds to either a 

volcanic event year or a fire year. However, unlike conventional SEA, where only one composite 

matrix is developed for all key year responses, we developed 1,000 unique versions of composite 

matrices by drawing unique subsets of key years at random without replacement from the key 

year list.  

We draw unique subsets without replacement for two reasons. The first is to avoid 

biasing each iteration of the composite matrix by drawing the same year multiple times within 

one draw, and the second is to avoid biasing the final epochal mean probability distribution by 

making multiple draws with the same combination of key years. The total number of volcanic 

key years is 20, and the total number of fire key years is 98. For the volcanic forcing SEA 

experiment, we made 1,000 composite matrices using unique random combinations of 10 

volcanic key years without replacement, while for the fire-event drought SEA we made 1,000 

unique composite matrices drawing of 50 random fire key years without replacement. While the 

choice of 10 volcanic and 50 fire year years is relatively arbitrary, these numbers represent 

approximately half the total number of key events in the dataset, thus giving us reasonable 

estimates of spread in the response. 
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We normalised the rows of each composite matrix by subtracting the five-year pre-event 

mean. This subtraction reduces the impact low-frequency climate variability has on the final 

epochal mean, and the likelihood that one large event leverages and biases the overall epochal 

mean of the composite matrix [Adams et al., 2003]. Other approaches to normalization include, i. 

calculating the epochal response as z-scores reflecting scaled deviations as done within the R [R 

Core Team, 2017] package ‘dplR’ [Bunn, 2008], and ii. calculating the departures of the climate 

series from average climate conditions as done in the R package ‘burnr’ [Malevich et al., 2018]. 

Finally, for each for the 1,000 unique composite matrices we calculated the epochal mean by 

averaging across each lag, and calculated the final response as the 5th percentile, median, and 95th 

percentile of the 1,000 epochal mean responses. 

We determined the statistical response of the 5th percentile, median, and 95th percentile 

epochal mean responses using both random bootstrapping and block reshuffling [Adams et al., 

2003; Davi et al., 2015]. In both methods, we generated 10,000 iterations of pseudo-composite 

matrices. For the random bootstrap this was done by drawing sets of pseudo key-years sampled 

over the entire timeseries. To be consistent with how the final epochal response was calculated, 

the pseudo- composite matrices were generated by drawing 10 and 50 pseudo key years at 

random from the Wilson et al. [2016] temperature and Cook et al. [2010b] PDSI reconstructions 

respectively. Each set of block reshuffling surrogate matrices was generated by first drawing one 

of the 1,000 composite matrices at random and then randomly reshuffling blocks of the chosen 

matrix. The length of each block was determined as twice the e-folding distance of the first-order 

auto-correlation (AR1) of the temperature and PDSI reconstructions, calculated as -2/ln(r); 

where r is the value of the AR1 coefficient [Adams et al., 2003]. 
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These pseudo composite matrices were normalised in the same fashion as the actual 

composite matrices by subtracting the five-year pre-event mean. Finally, the 1st, 5th, 10th, 90th, 

95th, and 99th percentiles of the epochal means of the pseudo composite matrix were calculated as 

the significance thresholds needed to be exceeded for the SEA response to be deemed 

statistically significant. 

 

4.4 Results and Discussion 

Our SEA on the northern hemisphere May-August temperature reconstruction shows 

strong and significant (p<0.01) cooling in the years following a volcanic eruption and lasting up 

to 6 years post-eruption [Figure 4.3 and Wilson et al., 2016]. This result is consistent regardless 

of whether we use the random bootstrap or block reshuffling methods to test for significance. 

The strongest cooling response of ~0.47°C, relative to the five-year pre-event mean, occurs one-

year post-eruption (i.e. year t+1). The bootstrapped 5th and 95th percentile confidence intervals of 

the response also show significant cooling (p<0.01). The 5th and 95th percentile response 

represents the degree of variability in the volcanic response based on choices of 1,000 unique 

sets of 10 key years from a total of 20 potential key years. That the 95th percentile response in 

year t+1 also shows significant cooling (p<0.01) indicates that even the warmest responses in the 

post-volcanic period are cooler than what would be expected by random variability. 

SEA on the Trouet et al. [2010] western US fire event dataset shows that fire-events are 

coincident with anomalously dry years [Figure 4.4 and Trouet et al., 2010]. Median JJA PDSI in 

fire years is ~ -0.7 units lower than the five-year pre-event mean PDSI. The 95th percentile of 

PDSI conditions in fire years, which represents a choice of ‘wetter’ fire-event responses, 

calculated by drawing 1,000 sets of 50 unique fire key years at random without replacement from 
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the total list of 98 possible fire years is significant at p<0.05 while the median and 5th percentile 

response are significant at p<0.001. In both examples the block bootstrapping and block 

reshuffling methods produces similarly wide confidence intervals (Figure 4.3 & 4.4). This 

suggests that, at least in these two cases scrambling the composite matrix to destroy temporal 

ordering generates similar variability as sampling from the entire timeseries.  

 

22Figure 4.3 Superposed Epoch Analysis (SEA) showing May-August northern hemisphere 
temperature cooling response to tropical volcanism between 1100-2011 C.E. Uncertainty 

intervals are 5th and 95th percentiles of the temperature response, while the horizontal lines 
indicate the threshold required for epochal anomalies to be statistically significant using 

random bootstrapping (a) and block bootstrapping (b). 

Our choice of drawing the 1,000 unique composite matrices from 10 unique volcanic key 

years at random out of a possible 20 years, and 50 fire key years at random from a total of 98 

was based on a choice to keep the number of event years in each unique draw small enough to be 

able to sample the variability in the response, but at the same time large enough that the epochal 

mean of each composite matrix can still serve as a high-frequency filter to separate common 

signal from noise. However, we do note that this choice of the number of key years in each draw 

(10 eruptions out of 20; 50 fire years out of 98), does impart an additional source of uncertainty 

the SEA procedure, as the width of the shaded uncertainty intervals in Figure 4.3 and errorbars in 

Figure 4.4 are functions of the sample size chosen in the bootstrap. While we use the median 
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response to evaluate statistical significance, the presented shaded uncertainty intervals and 

errorbars provide a better estimate of variability in the response as is inherent in the data than is 

provided in conventional SEA. For example, by calculating the variability in the post-volcanic 

climate response (Figure 4.3), and evaluating the variability in drought conditions coincident 

with fire years (Figure 4.4), we more effectively account for the fact that not all volcanic events 

produce the same climate response, and that the magnitude of drought conditions coincident with 

fire events can be quite variable. Conventional SEA omits this variability by presenting the final 

response as the simple average of the normalised composite matrix or as symmetric error bars 

around the mean, which might not be representative of the actual variability, or skewness in the 

event response distribution. 

 

23Figure 4.4 SEA showing that western US fire-events are coincident with dry June-August 
PDSI conditions as reconstructed by the Cook et al. (2010) Living Blended Drought Atlas in 

year t+0. Similar to Figure 4.3, uncertainty intervals are 5th and 95th percentiles of the 
drought conditions during fire events, while the horizontal lines indicate the threshold 

required for epochal anomalies to be statistically significant using random bootstrapping (a) 
and block bootstrapping (b). 

This variability in response is also evident when evaluating the temperature 

reconstruction in Figure 4.41 and the JJA PDSI reconstruction in Figure 4.2. For example, warm 

temperatures are reconstructed by Wilson et al. (2016) in 1586 following the eruption of Colima 
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in 1585. The reasons for the variability in the volcanic response likely include the location of the 

volcano, stratospheric ejection height, the physical characteristics and spatial distribution of 

sulphate aerosols,  the background climate state, the seasonality of the eruption, and the 

possibility that the timing of peak forcing might not coincide with the climate-sensitivity of the 

climate-proxy used [Guillet et al., 2017; Pausata et al., 2016; Zanchettin et al., 2019]. The 

variability in drought conditions during fire event years is even more evident. The error bars 

around PDSI conditions coincident with fire-events in year t+0 is negatively skewed. This can be 

explained by the number of fire events that take place during dry versus wet years (Figure 4.2). 

Of the 98 fire events, 65 occur when PDSI is less than 0 while 33 events occurred when PDSI is 

greater than 0. Evaluating fire events during more extreme PDSI values, 17 fire events occur 

when PDSI is less than -2, while only 3 fire events occur when PDSI is greater than 2. Reasons 

for variability in drought conditions during fire-event years include the influence of fuel 

availability and ignition sources on wildfire occurrence [Abatzoglou and Williams, 2016; Bessie 

and Johnson, 1995; Gedalof et al., 2005; Littell et al., 2009; Littell et al., 2016a; Trouet et al., 

2010; Westerling et al., 2003] uncertainties in the underlying drought reconstruction [Cook et al. 

2010], and any uncertainties in defining wildfire event years based on the existing fire scar 

network [Falk et al., 2011]. All of these observations highlight the contingent and variable nature 

of event-climate associations. 

Our double-bootstrap SEA makes multiple draws of subsets from the key year list and 

thus presents SEA results in a way that attempts to explicitly account for the influence of these 

processes during key years. Additionally, by treating key years as random variables we more 

formally acknowledge that the key year dates for volcanic eruptions might be uncertain [Toohey 

and Sigl, 2017], and that the definition of event years as used here (eruptions with a peak 
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northern hemisphere AOD > 0.08; at least 10% scarred trees with a minimum of 2 samples) is 

somewhat arbitrary. While in this study we conducted SEA on two selected timeseries, it is 

possible to expand this to evaluate SEA responses within a spatial context as well. For example, 

in Rao et al. [2017] we applied this double-bootstrap approach to evaluate the post-volcanic 

drought response and associated variability over Europe and northern Africa. An additional 

benefit is that our SEA approach allows us to place additional constraints on the calculation of 

the epochal mean to avoid the selection of closely spaced volcanic eruptions such as, 1452/1457 

and 1808/1815, and fire-years in each unique draw. This reduces bias in the final estimated 

epochal response by minimising the number of overlapping windows. In the end, even though 

SEA is only a statistical test of association between the event list and the variable of interest 

[Haurwitz and Brier, 1981], our implementation of a bootstrapped resampling of the key year list 

provides a statistical framework to explicitly quantify the variability in this association while 

explicitly acknowledging the uniqueness of each event.  
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Conclusions 

Summary of findings 

The overall goal of this dissertation is to reconstruct and better describe hydroclimate 

variability in several regions of Eurasia including South Asia, Europe, and the Mediterranean. In 

the first half of the dissertation in Chapters 1 and 2 we developed two streamflow reconstructions 

in South Asia for the Indus and Brahmaputra rivers respectively. In the second half of the 

dissertation in Chapter 3 and 4 we evaluated the response of European and Mediterranean 

hydroclimate to tropical volcanism and described a modified version of Superposed Epoch 

Analysis to test the statistical significance of the volcanic response. 

More specifically, in Chapter 1 we reconstructed past discharge in the UIB at four 

streamflow gauges (Partab-Bridge, Doyian, Gilgit, and Kachora) between 1394-2008 C.E. We 

found that streamflow in the UIB is primarily controlled by JFM winter precipitation (as 

snowfall) and MJJAS summer temperature that influence the rate of snow and glacial melt. We 

also found that two different statistical methods of reconstructing past streamflow using tree 

rings (PCR and HBR) produced similar results. Thus, past reconstructions of streamflow are not 

dependent on the type of methodology used. The sensitivity of streamflow to summer 

temperature, and projections of continued regional warming, suggest that future streamflow in 

the UIB may increase in the short-term as long as there remains sufficient snow and glacial mass 

balance to support increased flow. However, streamflow will likely decrease in the UIB after this 

point. 

In Chapter 2 we reconstructed mean JAS streamflow of the Brahmaputra River at the 

Bahadurabad gauging station in Bangladesh between 1309-2004 C.E. We found that JAS 

discharge is most sensitive to upper basin precipitation that falls in the JAS monsoon season. We 
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found that the instrumental observations are on average much drier than the past seven centuries 

of streamflow discharge. High discharge years in the Brahmaputra are often associated with 

flooding. We found that despite major floods in the observed record of discharge, instrumental 

observations of discharge rank among the driest of the past six centuries. Additionally, CMIP5 

projections of runoff suggest large increases relative to instrumental observations by the end of 

the twenty-first century due to an intensification of the South Asian Summer Monsoon. Based on 

these, we found that instrumental observations likely underestimate the occurrence of high 

discharge that is associated with flood hazard both in the context of natural variability and 

climate change. 

In Chapter 3 we used the Old World Drought Atlas (OWDA) and ice core records of 

volcanism for the past millennium to show that volcanic eruptions can cause dry conditions over 

Western Europe and the British Isles and wet conditions over the Western Mediterranean. This 

pattern of wet-dry anomalies following volcanic eruptions resembles a negative phase of the East 

Atlantic Patter (EAP). We evaluated the post-volcanic hydroclimate response using a modified 

double bootstrapped SEA. In Chapter 4 we described our modified SEA procedure in more 

detail. Our modified SEA generates multiple unique draws of the key years, and therefore unlike 

traditional SEA it evaluates the sign, magnitude, and significance of the relationship between the 

event (e.g. volcanic eruptions) and response variable (e.g. cooling) within a probabilistic 

framework. 

 

Large scale controls on the Brahmaputra River discharge 

A remarkable finding of the reconstruction of Brahmaputra River discharge presented in 

Figure 2.3b is the exceptionally dry period in the mid 20th century and the much wetter mean 
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state conditions prior to that. In this section we briefly discuss potential mechanisms for this 

apparent shift in the regional hydroclimate regime. 

A dominant feature of the tropical climate system that controls the intensity and 

magnitude of monsoon precipitation is the location and strength of the Intertropical Convergence 

Zone (ITCZ). The ITCZ is typically defined as a region of intense deep convective clouds that is 

closely linked to the region of the tropics that receives the highest precipitation rates [Schneider 

et al., 2014]. During the monsoon season in June-September the mean position of the ITCZ in 

Northeastern South Asia is located over the Brahmaputra watershed [figure S2b in Griffiths et 

al., 2016] resulting the high precipitation rates observed in this region (Figure 0.1). A recent 

study by Tan et al. [2019] reconstructs an ITCZ shift index for the past two millennia using 

speleothem records from the Klang Cave, Thailand and the Liang Luar Cave in eastern 

Indonesia. The Klang Cave receives a majority of its precipitation from the eastern branch of the 

South Asian Summer Monsoon similar to the Brahmaputra River watershed [Tan et al., 2019]. 

The Liang Luar cave on the other hand receives most of its rainfall from the Australian-

Indonesian Summer Monsoon [Griffiths et al., 2016].  

Tan et al. [2019] find an overall southward shift in the ITCZ in the central Indo-Pacific 

region in the 20th century and during the Medieval Warm Period (MWP, 950-1300 C.E.) and a 

northward shift during the Little Ice Age (LIA, 1400-1850 C.E.). They associate this southward 

shift to enhanced El Niño conditions during the early MWP and in the 20th century. A northward 

shift in the location of the ITCZ in the central Indo-Pacific region during the LIA and a 

southward shift during the 20th century would suggest increased precipitation in the Brahmaputra 

River watershed during the LIA and decreased flows during the 20th century, consistent with the 

findings of our discharge reconstruction. 
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Correlations between the Tan et al. [2019] ITCZ Shift Index and our discharge 

reconstruction are however relatively low (r~=0.1, 1309-2004, our discharge reconstruction was 

smoothed with a 20-year running average to match the temporal resolution of the ITCZ 

reconstruction). However, the two reconstruction broadly agree regarding the current dry period, 

and overall wetter conditions prior to ~1900 C.E. (Figure 5.1). 

 

24Figure 5.1 Comparison between our Brahmaputra River discharge reconstruction 
presented in Figure 2.3 and a reconstruction of relative location of the Intertropical 

Convergence Zone (ITCZ) in the Central Indo-Pacific Ocean region by Tan et al. [2019]. The 
Brahmaputra discharge reconstruction is presented as a 20-year moving average to match the 

temporal resolution of the ITCZ index reconstruction. Also note that the Tan et al. [2019] 
reconstruction is a composite of multiple speleothem records that have different dating 
uncertainties. The ITCZ index is multiplied by -1, with positive (negative) values in this 

figure representing a northward (southward) displaced Central Indo-Pacific ITCZ, 
corresponding to a stronger (weaker) South Asian Summer Monsoon [Tan et al., 2019]. These 

modulations of rainfall due to changes in the position of the ITCZ over the central Indo-
Pacific ocean can likely influence discharge variability in the Brahmaputra River watershed. 
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This finding of the a dry 20th century and wet LIA in the Brahmaputra River watershed 

are also supported by lake level changes inferred from beach evidence at Lake Chenghai, 

Yunnan Province, China [Xu et al., 2019; Xu et al., 2016] located ~200 km east of the watershed 

boundary. In their two studies, Xu et al. also conclude that the LIA in this region of South Asia 

was wet, in contrast to dry hydroclimate conditions in Eastern Asia during the same period. 

 

Recommendations 

Most of the available tree ring data in South Asia region are from collections that date 

back to the late 1990s. Most collections end around or before 2010. Advancing the tree-ring 

network in Bangladesh, Bhutan, China, India, Myanmar, Nepal, and Pakistan, updating older 

collections, and sampling non-traditional species will aid in developing more skillful 

reconstructions of past streamflow and climate in the region. New collections and updates of 

older collections will also aid in better evaluating ecological and environmental change in the 

past few decades in light of ongoing regional climate change. 

Another limitation to developing hydroclimate reconstructions in South Asia is the lack 

of long term instrumental observations of river discharge [Dettinger and Diaz, 2000]. Due to the 

long history of human modification to streamflow regimes in the region [Grill et al., 2019], 

streamflow (and climate) reconstructions are also precluded by the lack of availability of ‘natural 

discharge’. However, the limitation placed by the absence of ‘natural’ discharge data may 

partially be resolved in the near future by the advances in river runoff reanalysis products such as 

ERA-5 (see Figure B.4), river discharge reanalysis such as the Global Flood Awareness System 

[Harrigan et al., 2020], and satellite altimetry products [Huang et al., 2020]. Thus, future studies 

could likely use similar datasets to better understand variability in streamflow in South Asia. 
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Additionally, more work on cross-proxy synthesis across different paleo-proxies such as 

speleothems [Myers et al., 2015; Ronay et al., 2019; Sinha et al., 2015], slackwater flood 

deposits and field stratigraphy [Ely et al., 1996; Kale et al., 1994; 1996; Thomas et al., 2007], 

and the inclusion of historical documentary evidence [Shi et al., 2018b] can help develop longer 

and more refined reconstructions of hydroclimate and extreme events for South Asia [Pages 

Hydro2k Consortium, 2017]. 

Improved constraints on the timing, identity, and magnitude of past volcanic eruptions 

are critical to better understand both the short-term (seasonal to annual) and long-term (decadal 

to centennial) timescale response of earth’s climate system volcanic eruptions. Advances have 

been made in this regard with improved ice-core dating using multiple ice-cores, better 

integration of multi-proxy evidence (e.g. tephra geochemistry and cosmogenic radiocarbon 

spikes in the tree-ring record) and earth system modelling [McConnell et al., 2020; Oppenheimer 

et al., 2017; Sigl et al., 2015; Toohey and Sigl, 2017]. These efforts along with further progress 

in global and regional paleo-proxy networks and improved statistical methods such as those 

described in Chapter 3 and 4 can help better resolve or at least better quantify the underlying 

uncertainties in the hydroclimate response to volcanism. Finally, one additional easily 

implementable modification to the SEA method presented in Chapter 3 and 4 in cases where the 

sample size (i.e. number of key years) is low could be to modify the bootstrap method to allow 

for resampling with replacement of key years. 
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Appendix A 

 

3Table A.1 Details of tree-ring sites and series. ABPI - Abies pindrow, JUEX - Juniperus 
excelsa, CDDE- Cedrus deodara, PCSM- Picea smithiana, PIGE- Pinus gerardiana, PIWA- 

Pinus wallichiana. Model I - series used are predictor for the Partab Bridge reconstruction 
(total – 15); Model II - series used as predictor for HBR reconstruction at Doyian, Kachora, 

and Gilgit (total 10). 

Site Species Start Stop Lat Lon Full Name Lag Model 

ASTABP ABPI 1505 2005 35.2 74.48 Astore-Rama t 0 I&II 

BUKCDD CDDE 1411 2006 35.41 71.38 Kalash Valley Bumburet t 0 I&II 
BUKPIG PIGE 1403 2006 35.41 71.38 Kalash Valley Bumburet t 0 I&II 
CGPCDD CDDE 1537 2006 35.54 71.44 Chitral-Gol NP t 0 I 
CHEPCS PCSM 1394 2005 35.02 74.35 Chera (Gilgit) t 0 I&II 
DskJUE JUEX 1290 2007 35.27 74.47 Dashkin 3150M t 0 I&II 
ISBCDD CDDE 1511 2006 35.50 74.30 Islam Baiky t 0 II 
JUTPCS PCSM 1523 2008 35.50 74.20 Jutial (Gilgit) 3250M t 0 I&II 
KARPCS PCSM 1574 2008 35.53 74.11 Kargah (Gilgit) t 0 I 
MSFCDD CDDE 1296 2007 35.30 74.05 Mushfar Gilgit t 0 I&II 
MUAABP ABPI 1678 2005 34.02 73.23 Muree-Ayube t+1 I 
MUSPIW PIWA 1730 2007 35.30 74.45 Mushkin t 0 I 
MUSPIG PIGE 1362 2007 35.30 74.45 Mushkin t 0 II 
NLTPCS PCSM 1387 2005 36.09 74.11 Naltar Gilgit t 0 I & II 
NLTPCS PCSM 1387 2005 36.09 74.11 Naltar Gilgit t+1 I 
TANCDD CDDE 1661 2008 35.39 73.32 Tangir, Diamer, 2329m t 0 I 
SHEPCS PCSM 1663 2006 35.02 71.32 Sheshan (Dangam District) 25 t 0 I 
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25Figure A.1 Standardized tree-ring series used in final predictor suite for the 
reconstruction models. Of these, MusPIW, MuaABP.t1, ShePCS, TanCDD, KarPCS, 

CgpCDD, NltPCS.t1 were used only for the reconstruction of May-September (MJJAS) flow 
at Partab Bridge (Model I) and not in the HBR model (Model II) IsbCDD was only used in 
the HBR model and not used for the Partab Bridge reconstruction. ‘.t1’ indicates a predictor 

used with a one-year lag. See Table 2 for more details; made using dplR (Bunn, 2010). 
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26Figure A.2 Correlation matrix of mean annual discharge at the four streamflow 
gauges. Cross-correlations are calculated for the time period of longest pairwise overlap. 

Streamflow at Gilgit between 1960-1972 is excluded from the cross-correlations. 
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27Figure A.3 Mean MJJAS reconstructed discharge (m3/s) between 1430-2004 C.E. at Partab 
Bridge using PCR (black) and BR (red). For PCR the uncertainty intervals are 5th and 95th 

percentile from n=300 MEBoot pseudo-reconstructions, while for BR the 5th and 95th 
credible intervals are computed from the posterior probability density of the reconstructed 

flow for each year. Credible intervals are low-pass filtered at 20 years. The two 
reconstructions correlate at r=0.91 over the 575 years. 
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28Figure A.4 Calibration and verification period statistics for PCR (black) and BR (red) 
reconstructions of MJJAS mean discharge at Partab Bridge. 

 



142 
 

 

29Figure A.5 Annual discharge (m3/s) at Doyian, Kachora, and Gilgit (black) along with the 
HBR model predicted discharge at each gauge (red) between 1960-2008. Note that the early 

portion of the Gilgit data between 1960-1972 was not used in the model calibration. 
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30Figure A.6 Calibration and verification period statistics for HBR reconstruction of annual 
streamflow for each nest between 1394-2004 C.E. at Doyian, Kachora, and Gilgit. 
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31Figure A.7 Same as Figure 1.7, but for a.) May-July (MJJ) mean discharge at Partab-Bridge 
(1962-2008), b.) August-September (AS) discharge at Partab-Bridge (1962-2008), c.) PC3 time 

series of the predictor suite of the first nest (1962-2004), and d.) PC4 time series of the 
predictor nest (1962-2004). 
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32Figure A.8 Same as figure 1.7, but for mean MJJAS discharge at a.) Doyian (1974-2008, 
n=35), b.) Gilgit (1980-2004, n=27) and c.) Kachora (1970-2008, n=38). 
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33Figure A.9 Calibration and verification period statistics for climate variable informed 
multiple regression model to predict MJJAS mean discharge at Partab Bridge. Climate 

variable used as predictors are January through March (JFM) mean precipitation and MJJAS 
mean temperature. 
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Appendix B 

34Figure B.1 Mean annual precipitation averaged between 2001 and 2015 as estimated by the 
TRMM dataset (mm/year) showing the high annual precipitation amounts in the 

Brahmaputra River watershed. The larger Ganga-Brahmaputra-Meghna watershed is 
demarcated as black dashed lines while the boundaries of the Brahmaputra watershed are 

demarcated using red dashed lines. The red star is the location of the Bahadurabad 
streamflow gauge in the Bangladesh. TRMM – Tropical Rainfall Monitoring Mission 

[Huffman et al., 2007]. 
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35Figure B.2 Same as Figure 2.1 except that the shading on the map represents the spatial 
field correlation between (a) July-August-September (JAS) discharge at the Bahadurabad  

gauge and mean JAS precipitation from the GPCC v2018 dataset[Schneider et al., 2017] 
between 1956-2011 C.E., and (b) the first principal component (PC1) of the 28 tree ring 

predictors (variance explained: 24.86%) and mean JAS GPCC precipitation (1956-1998 C.E.). 
These correlations are slightly weaker than those found in Figure 2.1 against CRU 

precipitation but are consistent with its both Brahmaputra JAS flow at Bahadurabad and our 
tree ring predictor network being sensitive to upper basin precipitation. The shading in the 
diamonds in a. represents the correlation of each tree-ring predictor series with mean JAS 

discharge at Bahadurabad between 1956-2011 C.E. These remain same as in Figure 2.1. Only 
correlations significant at p<0.05 using a 2-sided t-test are shown. Note that the locations of 

tree ring predictors are jittered for display. 
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36Figure B.3 Pearson correlation between mean JAS discharge at the Bahadurabad gauge, 
Bangladesh, and ERA-5 reanalysis modelled JAS runoff between 1981-2011 C.E. (31 years). 

Correlations are calculated using discharge and modelled runoff data (a & b), and using first-
differenced discharge and runoff data (c & d). For the timeseries comparisons in c and d 

ERA-5 modelled runoff was averaged in the grey shaded box shown in a and b spanning the 
upper basin. ERA-5 runoff is modelled as the sum of surface and sub-ground runoff and is 
driven primarily by precipitation, melting snow, and soil storage in the model formulation. 

The high correlations between discharge at Bahadurabad and independent estimates of 
runoff from a hydrologic model driven using climate variables validates the robustness of 
the discharge data and that lower basin discharge at Bahadurabad is driven by upper basin 

runoff (that is in turn controlled by upper basin precipitation - see Figure 1.1 and Figure B. 2). 
Only correlations significant at p<0.05 using a 2-sided t-test are shown. 
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37Figure B.4 Correlation response function plot for mean July-September (JAS) 
instrumental and reconstructed discharge of the Brahmaputra River at Bahadurabad, 

Bangladesh against upper basin (88.5-96.5°E and 27-30.5°N) monthly climate variables from 
the ERA-5 (parts a-b) CRU (parts c-d) datasets. This is the same region for which ERA-5 

simulated runoff was averaged in Supplementary Fig. S3 (grey box), to compare simulated 
upper basin runoff against observations of discharge at Bahadurabad, Bangladesh. The 

climate variables used from the ERA-5 dataset (parts a-b) include monthly simulated runoff, 
precipitation, 2m air temperature, and snow depth equivalent averaged over the upper basin. 
The climate variables from the CRU dataset include scPDSI, precipitation, temperature, and 

potential evapotranspiration (PET) also averaged over the upper basin. The left panels (a and 
c) are for instrumental observations between 1981-2011 and 1956-2011 respectively. The right 

panels (b and d) are for reconstructed discharge between 1981-2004 and 1956-2004 respectively. 
The six horizontal dashed lines in each plot indicate three different thresholds for each 

monthly correlation to be statistically significant using a 2-tailed t-test. The median 
correlation and the error bars around each correlation bar are computed from 1,000 

bootstrapped draws with replacement from the observed/reconstructed discharge series and 
the climate series. The last two columns of each subplot are the correlation between mean JAS 

observed/reconstructed discharge and mean upper basin climate averaged between July-
August (JJA) and JAS. 
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Both instrumental observations and the reconstruction of JAS discharge correlate 
significantly with upper basin precipitation in the months of June-August (JJA) and July-

September (JAS) for the ERA-5 and CRU climate datasets (p<0.01). However, these 
relationships are weaker for reconstructed discharge than for instrumental discharge (right 

vs left panels). scPDSI - self calibrating Palmer Drought Severity Index[van der Schrier et al., 
2013]. 
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38Figure B.5 Total number of days in JAS in which daily flows at Bahadurabad exceeded the 
95th percentile (top panel) and 50th percentile (lower panel) flow for the same day (1956-2011 

C.E.). The 95th and 50th percentile daily flows were calculated between 1956 and 2011 C.E. The 
horizontal lines at 5 days and 46 days on the upper and lower panels represent 5% and 50% 

of the total of 92 days between July and September, and are the average exceedance days 
expected by chance in any given year. Red filled in circles indicate known instrumental 

period flood years in 1966, 1987, 1988, 1998, 2007, and 2010 C.E. Note that in 1966 C.E. daily 
flow never exceeded the 95th percentile of daily flow. 
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39Figure B.6 Calibration and validation statistics of the mean JAS discharge reconstruction of 
the Brahmaputra River at Bahadurabad, Bangladesh along with the number of tree ring 
series used as predictors in each nest. The shaded uncertainties represent the range of 

variation in the statistic depending on the choice of correlation weight used in the Principal 
Components matrix weighting procedure (see Methods section). CRSQ - calibration period 

coefficient of multiple determination; VRSQ - validation period square of the Pearson 
correlation; VRE - validation period reduction of error; and VCE validation period coefficient 

of efficiency. VRE and VCE values consistently greater than 0 suggest reconstruction skill. 
The median value of each statistic are: i. CRSQ: 65.58%, ii. VRSQ: 45.61 %, iii. VRE: 0.41, and 

iv. VCE: 0.31. 
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40Figure B.7 Comparison between mean instrumental JAS Brahmaputra River 
discharge at 7 different time intervals (1956-1986; 1956-1998; 1956-2004; 1956-2011; 1987-1998; 
1987-2004; and 1987-2011) as filled blue dots against distributions of the mean reconstructed 

discharge in 10,000 random draws of blocks of same length from the reconstruction. The 
block length used in each draw is mentioned below each box plot. The two red horizontal 
lines indicate the threshold for mean discharge to be significantly drier than reconstructed 

discharge at p<0.05 and p<0.01. The plot suggests that the first 31 years of instrumental 
discharge between 1956-1986 were exceptionally dry (p<0.05) while discharge since 1987 C.E. 

aligns more closely with mean reconstructed discharge rates in the context of the past 7 
centuries. 
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41Figure B.8 A comparison between standardized versions of our JAS discharge 
reconstruction at Bahadurabad (in red) and a spatial average of the June-July-August (JJA) 

mean Palmer Drought Severity Index (PDSI) over the Brahmaputra watershed reconstructed 
by the Monsoon Asia Drought Atlas [MADA - Cook et al., 2010a] between 1309-2004 C.E. 

(Pearson r=0.27, n=696, p<0.001). While both datasets share many of the underlying 
predictors, they have different reconstruction target fields (Brahmaputra discharge vs 
gridded PDSI) and were produced using different reconstruction methods (Bayesian 

Regression vs spatial point-by-point regression). The lower panel compares 50-year low-pass 
filtered versions of both reconstruction highlighting that multi-decadal dry and wet periods 

over the basin suggested by our JAS reconstruction are also suggested by larger scale 
reconstructions of spatial drought variability. The 2 low-pass filtered series correlate at 0.52. 

While the low-pass filtered versions of the reconstructions show good visual 
correspondence, we note that this correlation is not ‘statistically significant’ at p<0.05 using a 
2-tailed t-test considering the small effective sample size of 13.9 years (calculated as 696/50). 

The correlation needed for a p<0.05 for a sample size of 13.9 is 0.5342. The wet and dry 
periods we observe here also largely consistent with those found by refs. [Chen et al., 2020; 

He et al., 2018; Shi et al., 2018a; Wang et al., 2020].  
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42Figure B.9 Superposed Epoch Analysis (SEA) for discharge in 12 historical flood years that 
occurred prior to the start of instrumental observations in 1956 C.E. The vertical lines on the 
response bars are the 5th, 50th, and 95th percentiles of mean flow across 495 unique draws of 
8 flood years at random out of 12. The horizontal dotted lines indicate the threshold required 

for epochal anomalies to be statistically significant using random bootstrapping at three 
different statistical thresholds. These thresholds were calculated by compositing 10,000 

draws of 8 years at random (or ‘pseudo-flood years’) from the reconstruction between 1780 
and 2004. The relationship between high discharge during flood years in much weaker than 

that for just the instrumental period flood years (Main Text, Fig. 2b) and for all 16 flood years 
(Main Text, Fig. 4a). The median response of the 495 unique draws of 8 flood years out of 12 

is not significant at p<0.05 when compared to 10,000 draws of 8 ‘pseudo-flood’ years at 
random. 
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43Figure B.10 Expected change in global mean annual surface temperature between 2050-2074 
C.E. and 2057-2099 C.E. relative to pre-industrial 1850-1880 C.E. mean conditions using CMIP-
5 RCP8.5 projections. The multi-model median warming for these two periods is projected to 

be 3.05°C and 4.30°C respectively. We used the same suite of 20 models and 42 ensemble 
members an in our modelled runoff calculations for this analysis. The full list of models and 

the respective ensemble members can be found in Table B.1. 
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Figure B.11 Recurrence interval (in years) of discharge greater than the 2007 flood year in 
three different time periods of the observed instrumental data, i. 1956-2011 C.E., ii. 1956-2004 

C.E., and iii. 1956-1998 C.E. The first period includes all instrumental observations, the 
second is the period of overlap between the instrumental observations and the 

reconstruction, and the third is the calibration-validation period for the reconstruction. The 
median recurrence interval is 4.35 for all three time periods, though there are slight 

differences in the range of variability across the 1,000 draws of 30-years with replacement. 
We note that the lack of difference in the median return interval could be in part due the 

short instrumental series. 
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44Figure B.12 Spatial correlation between mean JAS CRU Ts 4.01 precipitation and (a) mean 
JAS Oceanic Niño Index (ONI) and (b) mean JAS Indian Ocean Dipole (IOD) conditions 

based on the Dipole Mode Index (DMI) between 1950-2016 C.E. Over South Asia, 
correlations between JAS precipitation and ONI are the strongest over western India and 

Pakistan and are largely located outside the Brahmaputra basin. Correlations between DMI 
and regional precipitation are largely insignificant. Only correlations significant at p<0.05 

using a 2 tailed t-test are shown in (a) and (b). The two lower panel plots show standardised 
anomalies of mean JAS Brahmaputra discharge at Bahadurabad plotted against standardised 
anomalies (c) JAS ONI and (d) JAS DMI. Neither correlation is significant at p<0.05 using a 2-

tailed t-test, though we note that the relationship in c. may be non-stationarity. Note that 
ONI and DMI indices are multiplied by -1 in c and d. ONI data is available here: 

https://catalog.data.gov/dataset/climate-prediction-center-cpcoceanic-nino-index, and DMI data at this 
link: https://psl.noaa.gov/gcos_wgsp/Timeseries/DMI/. 
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45Figure B.13 Standardized anomalies of annual mean discharge of the Brahmaputra River at 
Bahadurabad, Bangladesh between 1956-1998 C.E. (in black) compared against standardized 

anomalies of annual runoff integrated over the Brahmaputra watershed upstream of 
Bahadurabad from the CMIP5 climate model suite between 1956-1998 C.E. from the 

‘historical’ simulation period (multi-model ensemble median in red) and 2050-2099 C.E. from 
the RCP8.5 simulation (multi-model ensemble median in blue). The shaded envelope 

represents the 10th and 90th percentiles across all 42 model simulations. 
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46Figure B.14 Spatial partitioning of the Brahmaputra watershed into an upper and 
lower section (in blue and green respectively) based on the number of days discharge at a 
given location would take to eventually make it to the Brahmaputra River at the gauging 

station Bahadurabad, Bangladesh (red star). The partitioning of the watershed was based on 
daily isochrone maps developed by refs. - [Jian et al., 2009; Webster et al., 2010] and converted 

to two sections to account for that CMIP 5 runoff data was only available at a monthly 
resolution, and therefore and discharge at Bahadurabad arriving from the upper section of 

the watershed is in fact runoff from the previous month. 
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4Table B.1. Tree-ring predictors used in mean JAS Brahmaputra discharge reconstruction. 
Pearson correlation between each predictor and JAS discharge, and predictor principal 

component (PC1 & PC2) loadings are calculated between 1956-1998. *Lag t+1 predictors. +The 
two chronologies from Myanmar are new series developed by co-authors. TRW - Tree Ring 

Width, LWW - Late Wood Width. 

No. Country Site Species Start 
Year 

End 
Year 

Lat (°) Lon (°) Pearson 
r 

PC1 
loading 

PC2 
loading 

Distance 
from 

watershed 
(km) 

Reference 

1+ Myanmar Chin Hills  Pinus kesiya, TRW 1695 2013 21.22 94.02 0.26 0.11 0.55 443 - 
2+ Myanmar Chin Hills Pinus kesiya, LWW 1695 2013 21.22 94.02 0.46 0.47 0.51 443 - 
3 Nepal Chardung Abies spectabilus  1689 1998 27.17 86.42 0.35 0.56 0.11 157 [Cook et al., 2003] 
4* China Xinlong Abies forrestii 1663 2007 30.87 100.28 0.49 0.44 0.5 329 [Cook et al., 2013a] 
5 Bhutan Ghasa Juniperus recurva 1660 2006 27.92 89.75 0.38 0.42 -0.3 within [Cook et al., 2010a] 

[Cook et al., 2011c] 
6 Bhutan Laya Larix griffithiana 1644 2006 27.98 89.75 0.33 0.63 -0.22 within [Cook et al., 2010a]; 

[Cook et al., 2011b] 
7 Bhutan Chele La Larix griffithiana 1620 2005 27.38 89.32 0.53 0.69 0.24 within [Cook et al., 2010a]; 

[Cook et al., 2011a] 
8 Nepal Lamite 

Bhajyung 
Abies spectabilus 1561 1999 27.48 87.90 0.47 0.58 0.09 16 [Krusic, 2005c] 

9* China Hebei Low Juniperus 
przewalskii 

1520 2002 34.78 100.82 0.53 0.89 -0.15 669 [Cook et al., 2013a] 

10 China Shangri La Abies forrestii 1516 2007 27.62 99.80 0.31 0.41 0.43 244 [Cook et al., 2010a]; 
[Wright et al., 2011] 

11 Nepal Eastern Nepal Abies spectabilus 1509 1999 27.73 87.20 0.38 0.44 0.09 85 [Krusic, 2005b] 
12* China Maxiong 

Valley 
Abies forrestii 1509 2006 29.15 99.93 0.34 0.09 0.71 229 [Li et al., 2017] 

13 Nepal Yalung Khola Tsuga dumosa 1500 1999 27.83 88.02 0.39 0.49 -0.02 14 [Krusic, 2005a] 
14* China Hebei High Juniperus 

przewalskii 
1500 2002 34.78 100.82 0.29 0.55 -0.32 669 [Cook et al., 2013a] 

15* Bhutan Dhur Juniperus recurva 1462 2014 27.72 90.68 -0.30 -0.45 0.1 within [Krusic et al., 2015] 
16 Nepal Dobini Danda Juniperus recurva 1445 1998 27.43 86.20 0.53 0.78 -0.12 161 [Cook et al., 2003] 
17 Nepal Bhule Pokari Juniperus recurva 1417 1998 27.42 86.27 0.42 0.59 -0.2 162 [Cook et al., 2003]; 

[Krusic and Cook, 
2002] 

18* China Maxiong 
Valley All 

Abies forrestii 1380 2007 29.15 100.00 0.29 0.14 0.82 235 [Li et al., 2017] 

19* China Hebei Median Juniperus 
przewalskii 

1310 2002 34.78 100.82 0.41 0.7 -0.22 669 [Cook et al., 2013a] 

20* China Zaduo Juniperus 
przewalskii 

1290 2006 32.67 95.72 0.40 0.48 -0.21 229 [Cook et al., 2013a] 

21* China ZD31 Juniperus spp. 1290 2006 32.67 95.72 0.40 0.48 -0.21 229 [Cook et al., 2013a] 
22* China QML-ZD31 Juniperus spp. 1290 2006 32.73 95.83 0.29 0.47 -0.41 238 [Cook et al., 2013a] 
23* China Central Tibet Juniperus tibetica 1285 2008 29.35 92.00 0.27 0.13 0.5 within [Cook et al., 2013a] 
24* Nepal Eastern Nepal Tsuga dumosa 1260 1999 27.45 87.00 -0.30 -0.2 -0.35 103 [Cook et al., 2013a] 
25* China TDC Juniperus 

przewalskii 
1130 2002 35.07 100.35 0.46 0.71 -0.3 665 [Cook et al., 2013a] 

26 China Maquina-A Juniperus 
przewalskii 

1082 2001 35.07 100.35 -0.32 -0.1 -0.47 665 [Gou et al., 2007] 
[Li et al., 2017] 

27 China Maquina-C Juniperus 
przewalskii 

1082 2001 35.07 100.35 -0.38 -0.33 -0.38 665 [Gou et al., 2007] 
[Li et al., 2017] 

28* China Qamdo Juniperus tibetica 449 2004 31.12 97.03 0.34 0.31 0.27 140 [Cook et al., 2013a] 
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5Table B.2 List of CMIP5 models[Taylor et al., 2012] used in Brahmaputra discharge 
simulations and in the estimates of global mean annual temperature change. We used model 
and its respective scenario run only if it extended through both the historical (1850-2005) and 

RCP8.5 (2006-2099) simulation period. For each model we first calculated the median 
discharge projection across ensemble members within each model, and only then calculated 
the median and interquartile range across models. We did this to ensure that each of the 20 

models are represented equally in the final multi-model ensemble estimate. 

 Model Name Scenarios Modelling Center 
1. ACCESS1-0 r1i1p1 Centre for Australian Weather and Climate 

Research (CAWCR) 2. ACCESS1-3 r1i1p1 
3. bcc-csm1-1 r1i1p1 Beijing Climate Center, China Meteorological 

Administration (CMA) 
4. CanESM2 r1i1p1; r2i1p1; r3i1p1; r4i1p1; 

r5i1p1 
Canadian Centre for Climate Modelling and 
Analysis 

5. CCSM4 r1i1p1; r2i1p1; r3i1p1; r4i1p1; 
r5i1p1; r6i1p1 

NCAR/UCAR Community Climate System 
Model 

6. CNRM-CM5 r1i1p1; r2i1p1; r4i1p1; r6i1p1 Centre National de Recherches 
Meteorologiques / Centre Europeen de 
Recherche et Formation Avancees en Calcul 
Scientifique (CNRM/CERFACS) 

7. FIO-ESM r2i1p1; r3i1p1; r2i1p1; r3i1p1 First Institute of Oceanography, State Oceanic 
Administration, China 

8. GFDL-ESM2G r1i1p1 NOAA Geophysical Fluid Dynamics 
Laboratory 9. GFDL-ESM2M r1i1p1 

10. GISS-E2-R r1i1p1 NASA Goddard Institute for Space Studies 
11. inmcm4 r1i1p1 Institute for Numerical Mathematics 
12. IPSL-CM5A-LR r1i1p1; r2i1p1; r3i1p1; r4i1p1 

Institut Pierre-Simon Laplace 13. IPSL-CM5A-MR r1i1p1 
14. IPSL-CM5B-LR r1i1p1 
15. MIROC-ESM r1i1p1 Atmosphere and Ocean Research Institute (The 

University of Tokyo), National Institute for 
Environmental Studies, and Japan Agency for 
Marine-Earth Science and Technology 

16. MIROC-ESM-CHEM r1i1p1 
17. MIROC5 r1i1p1. r2i1p1; r3i1p1 

18. MPI-ESM-LR r1i1p1; r2i1p1; r3i1p1 Max Planck Institute for Meteorology (MPI-M) 
19. MRI-CGCM3 r1i1p1 Meteorological Research Institute 
20. NorESM1-M r1i1p1 Norwegian Climate Centre (NorClim) 
  Total: 42   
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Appendix C 

Text C.1 

The Palmer Drought Severity Index (PDSI) is a metric of wet and dry conditions, with 

increasingly positive (negative) values representing wet (dry) conditions. The most important 

variables involved in its calculation are precipitation and evapotranspiration [Schrier et al., 

2006]. PDSI has high inherent autocorrelation, and values for a given month or season integrate 

precipitation and evapotranspiration anomalies over the preceding months [Dai, 2011]. Thus, 

while tree growth and climate relationships may reflect diverse seasonality [Fritts, 1976], the 

high month-to-month persistence of PDSI allows for the reconstruction of JJA season PDSI in 

the ‘drought atlas’ [see Cook et al., 1999a; Cook et al., 2015b]. Nevertheless, the original 

climate-growth seasonality remains embedded within the drought atlas [George et al., 2010]. 

Consequently, the JJA PDSI reconstruction in the OWDA reflects climate across multiple 

preceding seasons, that must be taken into account while analyzing the post-volcanic eruption 

response.  

To interpret the seasonality of climate embedded in the OWDA JJA PDSI reconstruction 

we calculate Pearson correlations between instrumental gridded climate (CRU temperature and 

precipitation) across multiple seasons (prior fall, winter, spring and summer) between 1901-

1978. Because the reconstructed PDSI in the pre-1979 period is estimated solely from tree rings 

[Cook et al., 2015b], we use the 1901-1978 time period for the correlation analysis. We also 

show the correlation between gridded instrumental precipitation and temperature to better 

understand how the two are related, as soil moisture-precipitation-temperature feedbacks play an 

important role in modulating drought impacts in the region [Fischer et al., 2007a; Seneviratne et 

al., 2006]. 
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The Pauling et al. [2006] precipitation reconstruction is largely independent (i.e. number 

of shared common predictors) to the OWDA, and is based on instrumental series, documentary 

series, and multi-proxy series (tree-rings, corals, and one speleothem). It reconstructs 

precipitation for four distinct seasons, namely winter (DJF – December through February), 

spring (MAM – March through May), summer (JJA – June through August), and fall (SON – 

September through November). The volcanic response in Pauling et al. [2006] has been 

presented in Fischer et al. [2007b], however, we document the response using an updated list of 

‘key years’ (see Table S1) that have become available more recently [Plummer et al., 2012; Sigl 

et al., 2013; Sigl et al., 2015]. Using the OWDA we can study the volcanically forced 

hydroclimate response over the past millennium, include an additional 7 eruptions, notably the 

two major eruptions of Samalas in 1257, and Kuwae in 1458 (Table S1), that otherwise is not 

possible with the Pauling et al. [2006] precipitation reconstruction. Possible key years for the 

OWDA and Luterbacher et al. [2016] temperature include eruptions between 1100-1991 C.E., 

and include eruptions between 1500-1991 C.E. for Pauling et al. [2006] precipitation. In our 

study we limit our analyses to large tropical volcanic eruptions, as the winter climate response 

over Europe may differ for tropical and northern hemisphere extratropical eruptions [Robock, 

2000] and might confound the spring and summer hydroclimate signal observed in the 

reconstructions due to integrative nature of soil-moisture. 
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Text C.2 

The National Oceanic and Atmospheric Administration – Climate Prediction Center 

(NOAA-CPC) teleconnection index data for North Atlantic Oscillation (NAO) and the East 

Atlantic Pattern (EAP) become available only after 1949. These indices are calculated by 

conducting rotated principal components analysis (RPCA) of standardized monthly 500 hPa 

geopotential heights (GPH) over the northern hemisphere [Barnston and Livezey, 1987]. Using 

the same procedure, we develop an estimate of the EAP extending back to 1766 C.E., by 

conducting varimax RPCA on a 500 hPa geopotential heights (GPH) reconstruction for Europe 

and the North Atlantic, based solely on long instrumental records of climate, developed by Casty 

et al. [2007]. To be consistent with the NOAA-CPC data, we perform the RPCA on the Casty et 

al. [2007] monthly 500 hPa GPH anomalies, standardized using January 1950 through December 

2000 base period monthly mean and standard deviations for each grid cell, and weight grid cell 

by the square root of the cosine of its latitude.  

The first rotated empirical orthogonal function (REOF) loadings that emerge from the 

RPCA shows a strong north-south, negative-positive, dipole between Iceland and Azores Islands. 

This pattern explains 28% of the variance in the dataset (Figure C.7). Its corresponding 

standardized Principal Component (PC) scores correlate significantly with the monthly NOAA-

CPC NAO index (r=0.75, p=0, N=636, N effective for autocorrelation (N’)=609, 2-sided 

Students’ t-test) between 1950 and 2002. The fourth EOF loading explains 26% of the total 

variance, shows a south-eastward displaced dipole compared to EOF1. Its corresponding 

standardized PC time-series correlates significantly with the monthly NOAA-CPC EAP index 

dataset (r=0.73, p=0, N=636, N’=614, 2-sided Student’s t-test) between 1950 and 2002.  
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Consequently, we interpret the first and fourth EOF modes and corresponding PC time-series to 

represent estimates of monthly NAO and EAP respectively back to 1766. 

The estimated mean April through July (AMJJ) EAP between 1800 to 2002 using 

standardized PC4 scores is shown in Figure 3.5b of the main text. This longer time-series allows 

us to study post-eruptive response of mean AMJJ EAP following large volcanic eruptions that 

occurred during the nineteenth century prior to 1950 (1809 – unknown, 1815 – Tambora, 

Babuyan – 1831, Cosiguina – 1835, and 1883 – Krakatau), the period for which the NOAA-CPC 

EAP index data are available. However, it should be noted that the number of pressure gauge 

stations in the Casty et al. [2007] 500 hPa GPH reconstruction decline rapidly prior to 1870 

(their Figure 1a), and thus our estimate of past EAP variability (main text Figure 3.5b) should be 

viewed with caution, considering the uncertainties regarding the spatio-temporal stationarity of 

past estimates of teleconnection variability [Raible et al., 2014]. 
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47Figure C.1 Same as Figure 3.1 but for (top panel) mean September through November 
(SON), and (lower panel) December through February (DJF) seasons. Correlations are for the 
time period 1901-1978. Only correlations significant at p<0.05 (two-sided, Student’s t-test) are 

shown. 
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48Figure C.2 Boxplot for CRU Ts 3.21 monthly precipitation between 1950-2012 averaged for 
the (a.) western Mediterranean (blue box in Figure 3.2) and (b.) northwestern Europe (red box 

in Figure 3.2). Note the different ordinate range. Based on the varying tree-growth climate 
response in different regions [Fritts, 1976], JJA OWDA PDSI primarily reflects MAM 
precipitation over western Mediterranean, and a combination of both MAM and JJA 

precipitation over northwestern Europe (Figure 3.1). 
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49Figure C.3 Same as Figure 3.2, but showing the 10th (upper panel) and 90th percentile 
(lower panel) response based on multiple resampling of (n1=1,000) non-repeating subsets of 

n2=10 key years from the master key event year list (Table S1) for years t+1 through t+3 to 
determine the uncertainty in the response and sensitivity to a choice of a different set of key 

event years. 
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50Figure C.4 Same as Figure 3.2 but median post-volcanic response for spring (MAM) 
precipitation in mm/month [Pauling et al., 2005] between 1500-2000 C.E. Significant (p<0.05 
one-sided) positive or wet epochal are observed in the western Mediterranean in Year t+1 

and t+2. Units are in mm/month. Shading in brown (green) indicated drying (wetting). 
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51Figure C.5 Same as Figure 3.2 but median post-volcanic response for summer (JJA) 
precipitation in mm/month [Pauling et al., 2005] between 1500-2000 C.E. Significant (p<0.05 
one-sided) negative or dry epochal are observed in northwestern Europe in Year t+3 and t+4. 

Units are in mm/month. Shading in brown (green) indicated drying (wetting). 
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52Figure 3.6 Same as Figure 2 showing median response for summer JJA temperature in 
[Luterbacher et al., 2016] for Years t+0 and t+1 for eruptions between 1100-2003 C.E. Units are 
in °C. Shading in blue (red) indicates cooling (warming). Widespread and significant (p<0.05 

one-sided epochal anomalies) cooling is observed across the entire region in both years. 
While cool conditions persist for up to a decade after the eruptions (not shown), cooling is 
strongest and statistically significant (p<0.05 one-sided epochal anomaly) for every gridbox 

in the domain only in Years t+0 and t+1. 
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53Figure C.7 Rotated Principal Components Analysis (RPCA) of Casty et al. [2007] monthly 
500 hPa geopotential heights reconstruction (1765-2003) showing a.) first and b.) fourth 

spatial Rotated Empirical Orthogonal Function (REOF) loadings and the variance explained 
by each, along with corresponding c. and d. standardized principal component (PCs) scores 

between 1950-2002 (in black). Red lines represent monthly c.) North Atlantic Oscillation 
(NAO) and d.) East Atlantic Pattern (EAP) index data from the NOAA-CPC dataset for the 

same time period. Pearson correlations between c.) NOAA-CPC monthly NAO and PC1 and 
d.) NOAA-CPC monthly EAP and PC4 are 0.75 and 0.73 respectively (p=0, N=636, 2-sided 

Student’s t-test). 
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6Table C.1 Volcanic event years used to create the master key year list. 

Study Volcanic event years (last millennium only) 

Sigl et al 2015 (n=12) 
Tropical events in Extended Data 
Table 4 global forcing >-9.4W/m2 

1108, 1171, 1230, 1258, 1286, 1345, 1458, 1601, 1641, 1695, 
1809, 1815 

Sigl et al 2013 (n=12) 
Deposition at ice cores WDC06A and 
NEEM S1 > 15kgSO4/km2 

1169, 1229, 1258, 1285, 1344, 1458, 1594, 1600, 1694, 1809, 
1815, 1991 

Plummer et al 2012 (n=12) 
Deposition at ice cores Law Dome and 
NGRIP > 15kgSO4/km2 

1168, 1229, 1257,1344, 1459, 1601, 1641, 1695, 1809, 1816, 
1836, 1884 

Gao + Crowley (n=11) 
Event years present in both Gao et al 
[2008] and Crowley and Unterman 
[2013] 

1227, 1258, 1284, 1459, 1584, 1600, 1641, 1809, 1815, 1831, 
1835 

 


