
Convex Optimization and Extensions, with
a View Toward Large-Scale Problems

Wenbo Gao

Submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy
under the Executive Committee

of the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2020



© 2020

Wenbo Gao

All Rights Reserved



Abstract

Convex Optimization and Extensions, with a View Toward

Large-Scale Problems

Wenbo Gao

Machine learning is a major source of interesting optimization problems of current interest.

These problems tend to be challenging because of their enormous scale, which makes it difficult

to apply traditional optimization algorithms. We explore three avenues to designing algorithms

suited to handling these challenges, with a view toward large-scale ML tasks. The first is to

develop better general methods for unconstrained minimization. The second is to tailor methods

to the features of modern systems, namely the availability of distributed computing. The third is

to use specialized algorithms to exploit specific problem structure.

Chapters 2 and 3 focus on improving quasi-Newton methods, a mainstay of unconstrained

optimization. In Chapter 2, we analyze an extension of quasi-Newton methods wherein we use

block updates, which add curvature information to the Hessian approximation on a

higher-dimensional subspace. This defines a family of methods, Block BFGS, that form a

spectrum between the classical BFGS method and Newton’s method, in terms of the amount of

curvature information used. We show that by adding a correction step, the Block BFGS method

inherits the convergence guarantees of BFGS for deterministic problems, most notably a

Q-superlinear convergence rate for strongly convex problems. To explore the tradeoff between



reduced iterations and greater work per iteration of block methods, we present a set of numerical

experiments.

In Chapter 3, we focus on the problem of step size determination. To obviate the need for line

searches, and for pre-computing fixed step sizes, we derive an analytic step size, which we call

curvature-adaptive, for self-concordant functions. This adaptive step size allows us to generalize

the damped Newton method of Nesterov to other iterative methods, including gradient descent

and quasi-Newton methods. We provide simple proofs of convergence, including superlinear

convergence for adaptive BFGS, allowing us to obtain superlinear convergence without line

searches.

In Chapter 4, we move from general algorithms to hardware-influenced algorithms. We consider a

form of distributed stochastic gradient descent that we call Leader SGD, which is inspired by the

Elastic Averaging SGD method. These methods are intended for distributed settings where

communication between machines may be expensive, making it important to set their consensus

mechanism. We show that LSGD avoids an issue with spurious stationary points that affects

EASGD, and provide a convergence analysis of LSGD. In the stochastic strongly convex setting,

LSGD converges at the rate O( 1
k
) with diminishing step sizes, matching other distributed

methods. We also analyze the impact of varying communication delays, stochasticity in the

selection of the leader points, and under what conditions LSGD may produce better search

directions than the gradient alone.

In Chapter 5, we switch again to focus on algorithms to exploit problem structure. Specifically,

we consider problems where variables satisfy multiaffine constraints, which motivates us to apply

the Alternating Direction Method of Multipliers (ADMM). Problems that can be formulated with

such a structure include representation learning (e.g with dictionaries) and deep learning. We

show that ADMM can be applied directly to multiaffine problems. By extending the theory of

nonconvex ADMM, we prove that ADMM is convergent on multiaffine problems satisfying

certain assumptions, and more broadly, analyze the theoretical properties of ADMM for general

problems, investigating the effect of different types of structure.
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Chapter 1: Introduction

The field of optimization has progressed enormously in the past century. The advent of elec-

tronic computers, and the subsequent rapid growth in computing power, made mathematical mod-

eling and optimization applicable to a vast number of new problems. Though modern methods

are based on the same fundamental principles that date back to the invention of calculus, many

new challenges have arisen as the scale and complexity of optimization problems grows, with ever

more ambitious problems entering the realm of tractability over time. This calls for new advances

in optimization methods, in parallel with improvements in computer hardware.

The predecessors of modern optimization methods have a long history, and arose in the con-

text of solving systems of equations in physics, rather than optimization per se. Gradient descent,

which is now ubiquitous and perhaps the most fundamental method, was described (in an early

form) by Cauchy in his 1847 paper [5] on computing orbits of astronomical bodies. The method

now known as Newton’s method, or the Newton-Raphson method, was developed by Viète [6],

Newton [7, 8] and Raphson [9] as an algorithm for solving nonlinear systems of equations, mo-

tivated again by astronomy (in Newton’s case). Simpson [10] was perhaps the first to explicitly

identify that Newton’s method could be used for function maximization by solving the system

f ′(x) = 0. A detailed survey of the history of Newton’s method is available in [11].

Both gradient descent and Newton’s method continue to be powerful and useful methods. How-

ever, using the basic version of these algorithms on modern problems is often impractical. In recent

years, many optimization problems of interest have originated in machine learning. Without delv-

ing deeply into the statistical origins of machine learning, which is beyond the scope of this thesis,

these problems can often be formulated as:

min
x
f(x) = Eξ`(x; ξ)

2



where x ∈ Rn is the decision variable, ξ is a random variable that typically represents different

members of an underlying population, and `(x; ξ) is a loss function measuring the performance of

the parameters x on the instance ξ. In practice, the population distribution of ξ is not available, and

we instead perform empirical risk minimization (ERM), minimizing the empirical loss:

min
x∈Rn

f(x) =
1

N

N∑
i=1

`(x; ξi)

where {ξ1, . . . , ξN} is a set of data points.

The number of parameters (n) is often extremely large. Indeed, the most successful class of ma-

chine learning algorithms, deep learning, make use of heavily over-parameterized models. Break-

throughs in computer vision [12] and natural language processing [13] have used increasingly large

models; the Resnet-1202 network [12] has 19.4 million parameters, and BERT-LARGE [13] has

340 million parameters. Recent experiments show that deep learning often exhibits a ‘double de-

scent’ curve [14], which defies the classical tradeoff between bias and variance. Instead, a new

regime exists when the number of model parameters exceeds the ‘interpolation threshold’; below

the threshold, generalization performance follows the classical U-shaped curve, but then descends

again as the model size grows further. Practitioners often favor larger models, especially in natural

language processing, where state-of-the-art models may have sizes in the range of one to ten billion

parameters (e.g. [15]).

Another challenge arises because the number of data points N is often large, and indeed, must

be for machine learning to be effective. This makes it prohibitively time-consuming to evaluate

the full average 1
N

∑N
i=1 `(x; ξi) over all N points, or the average of the gradients. Instead, it

is standard to use a stochastic method, which at each iteration subsamples a minibatch of the

data points and estimates the function or gradient over the minibatch. This algorithm, stochastic

gradient descent (SGD), is the underlying tool that enables machine learning [16, 17]. The use of

minibatches opens up new avenues, from exploiting hardware to most efficiently parallelize over

data, to adapting algorithms to mitigate the additional stochasticity from subsampling.

3



The problems arising from machine learning often have several features which makes it difficult

to directly apply classical optimization algorithms.

1. When the number of parmameters is large, it is impossible to use any implementation of

Newton’s method which stores a dense Hessian matrix. A model with 108 parameters has

roughly 1
2
· 1016 entries1 which requires 10 quadrillion bytes of memory if each entry is

stored as a half-precision floating point number.

2. Loss functions induced by ERM are often highly nonconvex, and even when convex, can

be very ill-conditioned. Gradient descent is known to converge extremely slowly on such

problems.

In this thesis, we focus on three different approaches to enhancing and extending optimization

methods to handle the challenges of large-scale problems. We first introduce the approaches here

and provide a brief summary. In the following sections, we describe each approach in greater

detail, which also serves as an overview of the chapters of this thesis.

Enhanced General Algorithms Gradient descent, BFGS, and Newton’s method are all instances

of general methods for unconstrained optimization problems. That is, they apply to any

problem of the form

min
x∈Rn

f(x)

where f is assumed only to be smooth to a sufficient order. Under certain conditions, such

as (strong) convexity, it can be shown that these methods are convergent, and at a particular

rate. In Section 1.1, we focus on quasi-Newton methods, and describe techniques for better

general-purpose quasi-Newton algorithms. The two main aspects we consider are increasing

the use of curvature and better step size selection.

Distributed Computing The performance of sequential algorithms is inherently bounded by phys-

ical limitations on processor speed, which may be approaching [18]. To surpass these limits,

1Assuming we store only the upper triangle of the Hessian.
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there has been an increased focus on the use of parallel and distributed computing to make

use of widely available computers, which individually may not be very powerful. The strat-

egy of using distributed commodity hardware instead of expensive specialized systems is

often efficient and more practical [19]. However, parallel and distributed algorithms are also

inherently more complicated than sequential algorithms, with the new mechanic of commu-

nication. While there is a straightforward way to parallelize Stochastic Gradient Descent for

machine learning using the data-parallel paradigm, this technique incurs high communica-

tion costs which is ill-suited for computers distributed over a network. In Section 1.2, we

discuss a new distributed SGD method with multiple independent copies of the parameters,

allowing for reduced communication costs.

Structured Problems Problems often belong to classes which have additional structure beyond

the general problem min f(x). An important example is linear programming (LP), where

the objective and constraints consist of linear functions. Extremely efficient specialized algo-

rithms exist for LP which take advantage of the linear structure. The class of ERM problems

can also be considered as a structured class, with algorithms specifically designed to exploit

the finite-sum nature of the objective function to obtain speedups over batch gradient descent

[20, 21, 22].

In Section 1.3, we consider a different class of structured problems, namely those with a sep-

arable structure amenable to the alternating direction method of multipliers (ADMM). Our

interest is in generalizing ADMM to problems where variables are coupled in a multiaffine

fashion, which arises when learning representations from data.

1.1 Improving General Optimization Methods

General optimization methods are those which do not rely on any special properties of the

problem to be solved. As mentioned above, two of the most important examples, which are closely

linked with the history of optimization, are gradient descent and Newton’s method.

5



These methods can be viewed as part of a larger spectrum. Gradient descent is a first-order

method in that it assumes the objective function to be differentiable, and uses only the value of the

objective function (the zero-th order) and the gradient. Newton’s method is a second-order method

which assumes the objective function to be twice differentiable, and uses both the gradient and

the Hessian. Neither method is unambiguously superior to the other across all problems. A trade-

off exists between the convergence rate and the computational expense per step. While gradient

descent can achieve only a sublinear or linear rate of convergence, each step is typically fast to

compute, whereas Newton’s method can achieve (local) quadratic convergence at the expense of

computing the Hessian and solving the Newton system.

Quasi-Newton (QN) methods exist between these two extremes. A QN method maintains an

approximation Bk of the Hessian and generates steps by solving the Newton system using its

Hessian approximation, i.e

xk+1 = xk − λkB−1
k ∇f(xk)

The most successful quasi-Newton method is BFGS [23, 24, 25, 26], which uses a particular

updating scheme for the matrices Bk. BFGS itself is part of a spectrum of QN methods known as

the Broyden class [27], which includes BFGS as one endpoint and the DFP method [28, 29] as the

other2. The methods of the Broyden class aim to incorporate information about the true Hessian

action along one dimension into the approximation Bk, using a rank-two update matrix.

There are two main ingredients to improving quasi-Newton methods:

• How can we best make use of curvature information in the matrix Bk?

• How do we select the step sizes λk?

1.1.1 Curvature in Quasi-Newton methods

The idea of increasing the amount of curvature information stored in the Hessian approximation

dates back to Schnabel [30], who considered systems of secant equations. However, this approach

2The DFP method is the first known quasi-Newton method.
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had technical limitations and received little attention until it was revisited for machine learning

problems in [31]. A major point of divergence in [31], which overcame the technical issues of

[30], was the use of the true Hessian action ∇2f(xk) · sk on the vector sk as opposed to the

gradient difference ∇f(xk + sk) − ∇f(xk). This was proposed in an earlier work on stochastic

L-BFGS for machine learning [32], who noted that using a subsampled stochastic Hessian action

produced better results than differencing subsampled stochastic gradients. It was also noted that

in many machine learning problems, the (subsampled) Hessian-vector product ∇̃2f(xk) · dk could

be computed in roughly the same time as the subsampled gradient, making it practical to use even

for problems with a large number of parameters. This led to the Stochastic Block L-BFGS method

of [31], which proposed performing BFGS updates with higher-dimensional systems BkDk =

∇̃2f(xk)Dk, where Dk = [d1 . . . dq] is a column matrix of q directions.

This leads to a new spectrum of QN methods, which we call Block BFGS, with varying amounts

of curvature information, depending on the number q of directions in the update. For q = 1, we

recover a rank-two update similar to the classical BFGS method, whereas q = n is equivalent to

Newton’s method. Intermediate values of q allow us to trade off between using more second-order

information, and having to compute more Hessian-vector products.

While the q = n case is generally equivalent to Newton’s method (it holds if the Hessian andDk

are both nonsingular), the q = 1 case is not equivalent to BFGS. In the original BFGS method, the

gradient difference∇f(xk + dk)−∇f(xk) is guaranteed to have certain useful properties because

of the Armijo-Wolfe line search used to find λk. Replacing it by the Hessian action ∇2f(xk) · dk

does not guarantee the same properties hold. This leaves unanswered the question of whether

Block BFGS, even with q = 1, is convergent, and at what rates.

This is the topic addressed in Chapter 2. We show that with a minor modification to detect de-

generacy of Dk, the Block BFGS method is globally convergent on convex problems, and recovers

the Q-superlinear convergence of BFGS for strongly convex problems. We also perform several

experiments to compare different methods in the Block BFGS family, and explore the tradeoff

between using more curvature, and computational time.
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1.1.2 Step Sizes for Self-Concordant Functions

Selecting the step size λk is crucial for good performance. Two common strategies are line

searches and constant step sizes. A line search is an algorithm which returns a step λk guaranteed

to satisfy certain conditions; a commonly used type is Armijo-Wolfe line search which has two

conditions (2.2.1) and (2.2.2). In contrast, the constant step size strategy selects a single λ and

fixes λk = λ for all steps.

Both strategies have advantages and drawbacks. Line search is adaptive to the local region

of the objective function, and can take larger steps to speed up convergence when appropriate.

However, it requires additional computation at each step, including multiple evaluations of the

objective function and its gradient at various candidate points. For large-scale problems in machine

learning (large N ), even the evaluations of the loss function are generally too costly, making line

search impractical.

The constant step size approach requires no additional computation during the running of the

algorithm, but instead offloads the effort to the meta-problem of setting the hyperparameter λ.

Moreover, using a constant λ may be inefficient, since the iterates may move between regions of

high and low curvature, for which vastly different step sizes are appropriate. This may result in

convergence speed being degraded.

Our goal is to find an analytic step size which is both computationally efficient and has useful

convergence guarantees. This is the question addressed in Chapter 3. We take a cue from the

damped Newton method of Nesterov [33], which is a globally convergent Newton method for the

class of self-concordant functions. Note that the original Newton method uses λk = 1 and is only

locally convergent, even for strongly convex functions [34]. We extend the step size of the damped

Newton method to a curvature-adaptive step size which can be applied to any iterative optimization

method, including gradient descent and BFGS in particular. Our curvature-adaptive step size has

a simple analytic expression, and requires only a single Hessian-vector product to evaluate. We

show that gradient descent and BFGS retain their convergence guarantees with this step size, and

compare it against other schemes in both the deterministic and stochastic settings.
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1.2 Making use of Distributed Computing

Making effective use of hardware is essential for good performance. Part of the recent success

of machine learning can be attributed to the rise of hardware acceleration, such as using GPUs [35,

36]. Though originally designed for other applications, these accelerators are optimized for fast

numerical linear algebra, which is also the core operation of deep learning.

The same algorithm may be implemented in different ways, with dramatic differences in real

computing time. Consider for example the basic SGD algorithm, which uses the gradient of the

loss function on a random minibatch of size m. The gradient ∇`(x; ξi) for a particular sample ξi

is independent of that for any other sample ξj , and hence can be parallelized. For systems which

support it, computing the gradients of the samples in parallel yields an almostm-fold speedup over

sequentially computing the gradients. On a device such as a GPU, parallelism exists at multiple

levels, for both speeding up primitive operations such as matrix multiplication, and for parallelizing

over data samples.

This strategy of parallelizing calculations over samples is known as data parallelism, and is

supported by almost all major deep learning frameworks [36]. However, its scalability in terms

of the number of machines is ultimately limited by factors such as the communication cost, and

the reduced generalization of large minibatches, which must be mitigated by other techniques

[37]. Instead, we may consider algorithms which allow for different machines (or workers) to

keep independent copies of the model parameters, and perform local training. Our starting point

for such algorithms is Elastic Averaging SGD (EASGD) [38], which solves a global variable

consensus problem:

min
x(1),...,x(p),x̃

1

p

p∑
i=1

Eξ`(x(i); ξ) +
ρ

2
‖x(i) − x̃‖2. (1.2.1)

Each of the p workers has its own set of the parameters x(i), and are coupled by the penalty

function ‖x(i) − x̃‖2. A central machine (or coordinator) maintains x̃, the consensus variable,

which is responsible for maintaining consistency between the workers.

The EASGD method is powerful, but has several disadvantages in theory and practice which
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arise from its design. The consensus variable x̃ is a decision variable, which causes the global

objective function (1.2.1) to have spurious stationary points. This is especially apparent when the

underlying loss function f has many symmetries, and the workers are attracted to different local

minima.

In Chapter 4, we consider an alternate scheme called Leader SGD (LSGD), where the consen-

sus variable is no longer a decision variable, but rather is computed from the worker x(1), . . . , x(p)

by estimating the best parameters. We show that LSGD avoids certain pitfalls of EASGD, and

analyze the convergence of EASGD. We show that EASGD matches the convergence rate of other

distributed SGD algorithms, and study its properties under various levels of stochasticity and com-

munication delay.

1.3 Algorithms for Structured Problems

We are interested in problems which are amenable to ADMM. A motivating example is the

separable problem having the form minx∈Rn f(x)+g(x) where f, g are individually straightforward

to minimize, but their sum is not. An instance which arises often in machine learning is the use of

regularization; for instance, we may have

min
x∈Rn

1

N

N∑
i=1

`(x; ξ) + ‖x‖p.

This type of problem can be solved with the ADMM method, which is specialized for separable

objective functions with linearly constrained variables:


min
x,y∈Rn

f(x) + g(y)

s.t. x = y

A comprehensive survey of ADMM and its applications can be found in [39].

Existing work on ADMM has focused on the case of linear constraints. However, variables

are often coupled in more complex ways. When learning representations of data, it is often neces-
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sary to learn both the set of representatives as well as the actual representation of the given data

corresponding. This is typically a bilinear operation, such as convolution. For example, noisy ob-

servations B can be modeled as the result of applying a convolution A to an underlying signal X ,

and we aim to recover both the convolutional kernel and the signal given access to the observation.

The variables then satisfy the relation A ∗ X = Y , where ∗ denotes a convolution. While this

constraint alone makes it ill-posed to recover A and X , sparsity assumptions on X make this a

well-defined optimization problem. Observe that when A is fixed, the resulting equation becomes

linear in X , and likewise for A when X is fixed. This suggests that ADMM may be applicable to

solving this problem.

In Chapter 5, we investigate the properties of ADMM for problems where the constraints are

multiaffine. For such problems, ADMM can be applied in the same way as for linearly-constrained

problems, since the subproblems have the same structure when minimizing for each variable in

turn. We show that under similar assumptions as those used for the analysis of linearly-constrained

nonconvex ADMM, we obtain convergence of ADMM when applied to multiaffine problems, and

present examples of problems with a multiaffine structure.
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Chapter 2: Block BFGS Methods

2.1 Introduction

The classical BFGS method [23, 24, 26, 25] is perhaps the best known quasi-Newton method

for minimizing an unconstrained function f(x). These methods iteratively proceed along search

directions dk = −B−1
k ∇f(xk), where Bk is an approximation to the Hessian ∇2f(xk) at the

current iterate xk. Quasi-Newton methods differ primarily in the manner in which they update

the approximation Bk. The BFGS method constructs an update Bk+1 that is the nearest matrix to

Bk (in a variable metric) satisfying the secant equation Bk+1(xk+1 − xk) = ∇f(xk+1)−∇f(xk)

[23]. This can be interpreted as modifying Bk to act like∇2f(x) along the step xk+1 − xk, so that

successive updates induce Bk to resemble ∇2f(x) along the search directions.

A natural extension of the classical BFGS method is to incorporate information about ∇2f(x)

along multiple directions in each update. This further improves the accuracy of the local Hessian

approximation, allowing one to obtain better search directions. Early work in this area includes

the development by Schnabel [30] of quasi-Newton methods that satisfy multiple (say, q) secant

equations Bk+1s
(i)
k = ∇f(xk+1)−∇f(xk+1− s(i)

k ) for directions s(1)
k , . . . , s

(q)
k . This approach has

the disadvantage that the resulting update is generally not symmetric, and considerable modifica-

tions are required to ensure Bk remains positive definite. Consequently, there appears to have been

little interest in quasi-Newton methods with block updates in the years following Schnabel’s initial

report.

More recently, a stochastic quasi-Newton method with block updates was introduced by Gower,

Goldfarb, and Richtárik [31]. Their approach constructs an update which satisfies sketching equa-

tions of the form

Bk+1s
(i)
k = ∇2f(xk+1)s

(i)
k
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for multiple directions s(i)
k . By using sketching equations instead of secant equations, the update

is guaranteed to remain symmetric, and in the case where f(x) is convex, positive definite. The

sketching equations can be thought of as ‘tangent’ equations that requireBk+1 to incorporate infor-

mation about the Hessian∇2f(xk+1) at the most recent point xk+1, as opposed to information about

the average of∇2f(x) between two points, i.e, along a secant. Consequently, in terms of the infor-

mation used, the block updating formula is Newton-like rather than secant-like. A Hessian-vector

product ∇2f(xk+1)s
(i)
k can generally be computed much faster than the full Hessian ∇2f(xk+1),

and the operation of computing ∇2f(xk+1)s
(i)
k for multiple directions s(1)

k , . . . , s
(q)
k can be done in

parallel.

Computing the Hessian-vector products∇2f(xk+1)s
(i)
k , referred to as Hessian actions, involves

additional work beyond that of classical BFGS updates, where the gradients can be reused to com-

pute ∇f(xk+1)−∇f(xk). However, the increased cost of block updates may be justified in order

to obtain better search directions, for the same reason that Newton’s method often outperforms

gradient descent: the greater cost per iteration is compensated by convergence in fewer iterations,

in regions where the curvature can be used effectively. Our numerical experiments in Section 7

explored this trade-off, and we found that using block updates did result in performance gains on

many problems.

Other experiments indicate that quasi-Newton methods using Hessian actions and block up-

dates are promising for empirical risk minimization problems arising from machine learning.

Byrd, Hansen, Nocedal, and Yuan [32] proposed a stochastic limited-memory algorithm Stochas-

tic Quasi-Newton (SQN), in which the secant equation is replaced by a sub-sampled sketching

equation Bk+1sk = ∇̂2f(xk+1)sk (here ∇̂2f(x) denotes a sub-sampled Hessian). The authors

[32] remark that using the sub-sampled Hessian action avoids harmful effects from gradient dif-

ferencing in the stochastic setting. In [31], a stochastic limited-memory method Stochastic Block

L-BFGS, using block updates, outperformed other state-of-the-art methods when applied to large-

scale logistic regression problems.

In this paper, we introduce a deterministic quasi-Newton method Block BFGS. The key fea-
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ture of Block BFGS is the inclusion of information about ∇2f(x) along multiple directions, by

enforcing that Bk+1 satisfies the sketching equations for a subset of previous search directions. We

show that this method, performed with inexact Armijo-Wolfe line searches, has the same conver-

gence properties as the classical BFGS method. Namely, if f is twice differentiable, convex, and

bounded below, and the gradient of f is Lipschitz continuous, then Block BFGS converges. If,

in addition, f is strongly convex and the Hessian of f is Lipschitz continuous, then Block BFGS

achieves Q-superlinear convergence. Note that we use a slightly modified notion of Q-superlinear

convergence: we prove that the sequence of quotients ‖x(i+1)
k − x∗‖/‖x(i)

k − x∗‖, with possibly a

small number of terms removed, converges to 0. The precise statement of this result is given in

Theorem 2.5.1. We also note that our convergence results can easily be extended to block versions

of the restricted Broyden class of quasi-Newton methods as in [27].

These results fill a gap in the theory of quasi-Newton methods, as updates based on the Hessian

action have previously only been used within limited-memory methods, for which the analysis is

significantly simpler. Because of its limited-memory nature, the Stochastic Block L-BFGS method

in [31] is only proved to be R-linearly convergent (in expectation, when using a fixed step size).

For this method, as is the case for the deterministic L-BFGS method [40], the convergence rate

that is proved is worse than the rate for gradient descent (GD), even though in practice, L-BFGS

almost always converges far more rapidly than GD. We believe that our proof of the Q-superlinear

convergence of Block BFGS in this paper provides a rationale for the superior performance of the

Stochastic Block L-BFGS method, and behavior of deterministic limited-memory Block BFGS

methods as well.

Block BFGS can also be applied to non-convex functions. We show that if f has bounded

Hessian, then Block BFGS converges to a stationary point of f . Modified forms of the classical

BFGS method also have natural extensions to block updates, so modified block quasi-Newton

methods are applicable in the non-convex setting.

The paper is organized as follows. Section 2.2 contains preliminaries and describes Armijo-

Wolfe inexact line searches. In Section 2.3, we formally define the Block BFGS method and several
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variants. In Section 2.4 and Section 2.5 respectively, we show that Block BFGS converges, and

converges superlinearly, for f satisfying appropriate conditions. In Section 2.6, we show that Block

BFGS converges for suitable non-convex functions, and describe several other modifications to

adapt Block BFGS for non-convex optimization. In Section 2.7, we present the results of numerical

experiments for several classes of convex and non-convex problems.

2.2 Preliminaries

The following notation will be used. The objective function of n variables is denoted by f :

Rn → R. We write g(x) for the gradient∇f(x) and G(x) for the Hessian∇2f(x). For a sequence

{xk}, fk = f(xk) and gk = g(xk). However, we deliberately use Gk = G(xk+1) to simplify the

update formula.

The norm ‖ · ‖ denotes the L2 norm, or for matrices, the L2 operator norm. The Frobenius

norm will be explicitly indicated as ‖ · ‖F . Angle brackets 〈·, ·〉 denote the standard inner product

〈x, y〉 = yTx and the trace inner product 〈X, Y 〉 = Tr(Y TX). We use either notation 〈x, y〉 or yTx

as is convenient. The symbol Σn denotes the space of n × n symmetric matrices, and � denotes

the Löwner partial order; hence A � 0 means A is positive definite.

An LΣLT decomposition is a factorization of a positive definite matrix into a product LΣLT ,

where L is lower triangular with ones on the diagonal, and Σ = Diag(σ2
1, . . . , σ

2
n). This is com-

monly called an LDLT decomposition in the literature, but we write Σ in place of D as we use D

to denote a matrix whose columns are previous search directions.

In the pseudocode for our algorithm, size(A, 1) and size(A, 2) denote the number of rows

and columns of a matrix A respectively. The ij-entry of a matrix A will be denoted by Aij . We

use Col(A) to denote the linear space spanned by the columns of A. By convention, a sum over an

empty index set is equal to 0.

Our inexact line search selects step sizes λk satisfying the Armijo-Wolfe conditions: for param-
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eters α, β with 0 < α < 1
2

and α < β < 1, the step satisfies

f(xk + λkdk) ≤ f(xk) + αλk〈gk, dk〉 (2.2.1)

〈g(xk + λkdk), dk〉 ≥ β〈gk, dk〉. (2.2.2)

Furthermore, our line search always selects λk = 1 whenever this step size is admissible. This is

important in the analysis of superlinear convergence in Section 2.5.

2.3 Block quasi-Newton Methods

In this section, we introduce Block BFGS, a quasi-Newton method with block updates, and

several variants.

2.3.1 Block BFGS

Algorithm 1 Block BFGS

input: x(1)
1 , B1, q

1: for k = 1, 2, 3 . . . do
2: for i = 1, . . . , q do
3: d

(i)
k ← −B

−1
k g

(i)
k

4: λ
(i)
k ← LINESEARCH(x

(i)
k , d

(i)
k )

5: s
(i)
k ← λ

(i)
k d

(i)
k

6: x
(i+1)
k ← x

(i)
k + s

(i)
k

7: end for
8: Gk ← G(x

(q+1)
k )

9: Sk ← [s
(1)
k . . . s

(q)
k ]

10: Dk ← FILTERSTEPS(Sk, Gk)
11: if Dk is not empty then
12: Bk+1 ← Bk −BkDk(D

T
kBkDk)

−1DT
kBk +GkDk(D

T
kGkDk)

−1DT
kGk

13: else
14: Bk+1 ← Bk

15: end if
16: x

(1)
k+1 ← x

(q+1)
k

17: end for
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Algorithm 2 FILTERSTEPS

input: Sk, Gk output: Dk parameters: threshold τ > 0
1: Initialize Dk ← Sk, i← 1
2: while i ≤ size(Dk, 2) do
3: σ2

i ← [DT
kGkDk]ii −

∑i−1
j=1 L

2
ijΣjj

4: si ← column i of Dk

5: if σ2
i ≥ τ‖si‖2 then

6: Σii ← σ2
i

7: Lii ← 1
8: for j = i+ 1, . . . ,size(Dk, 2) do
9: Lji ← 1

Σii
([DT

kGkDk]ji −
∑i−1

k=1 LikLjkΣkk)
10: end for
11: i← i+ 1
12: else
13: Delete column i from Dk and row i from L
14: end if
15: end while

Block BFGS (Algorithm 1) takes q steps in each block, using a fixed Hessian approximation

Bk. We may also take a varying number of steps, bounded above by q, but we assume every

block contains q steps to simplify the presentation. We use a subscript k for the block index, and

superscripts (i) for the steps within each block. The k-th block contains the iterates x(1)
k , . . . , x

(q+1)
k ,

and x(1)
k+1 = x

(q+1)
k . At each point x(i)

k , the step direction is d(i)
k = −B−1

k g
(i)
k , and line search is

performed to obtain a step size λ(i)
k . We take a step s(i)

k = λ
(i)
k d

(i)
k . The angle between s(i)

k and−g(i)
k

is denoted θ(i)
k . As Bk is positive definite, θ(i)

k ∈ [0, π
2
).

After taking q steps, the matrix Bk is updated. Let Gk = G(x
(q+1)
k ) denote the Hessian at

the final iterate, and form the matrix Sk = [s
(1)
k . . . s

(q)
k ]. We apply the FILTERSTEPS procedure

(Algorithm 2) to Sk, which returns a subset Dk of the columns of Sk satisfying σ2
i ≥ τ‖si‖2,

where si is the i-th column of Dk and σ2
i is the i-th diagonal entry of the LΣLT decomposition

of DT
kGkDk. τ > 0 is a parameter which controls the strictness of the filtering; a small value of

τ permits Dk to contain steps that are closer to being linearly dependent, as well as steps with

smaller curvature. In essence, FILTERSTEPS iteratively computes the LΣLT decomposition of

STk GkSk and discards columns of Sk corresponding to small diagonal entries, with the remaining

columns forming Dk.
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Define qk to be the number of columns of Dk. If Dk is the empty matrix (all columns were

removed), then no update is performed and Bk+1 = Bk. If Dk is not empty, the matrix Bk is

updated to have the same action as the Hessian Gk on the column space of Dk, or equivalently,

Bk+1Dk = GkDk. (2.3.1)

Let D = Dk, G = Gk. The formula for the update is given by

Bk+1 = Bk −BkD(DTBkD)−1DTBk +GD(DTGD)−1DTG. (2.3.2)

This formula is invariant under a change of basis of Col(Dk), so we can choose Dk to be any

matrix with the same column space. To see this, observe that a change of basis is given by DkP

for an invertible q × q matrix P . The update (2.3.2) for the matrix DkP is given by

Bk+1 = Bk −BkDP (P TDTBkDP )−1P TDTBk +GDP (P TDTGDP )−1P TDTG

= Bk −BkD(DTBkD)−1DTBk +GD(DTGD)−1DTG.

On the other hand, the matrix Dk obtained from filtering Sk is not invariant under a change of

basis of Sk, and it is possible to control the number of columns removed by selecting an appro-

priate basis for Sk. We chose to take Sk = [s
(1)
k . . . s

(q)
k ] in order to retain control over the ratio

det(DT
kGkDk)/ det(DT

kBkDk), which is crucial for our theoretical analysis. We also note that in

[31], two other choices for the columns ofDk were studied for use in the Stochastic Block L-BFGS

method, and the results reported there showed that the choice Dk = [s
(1)
k . . . s

(q)
k ] worked best.

As is the case for standard quasi-Newton updates, there are many possible updates that satisfy

equation (2.3.1). The specific Block BFGS update (2.3.2) is derived as follows. Let Hk = B−1
k be

the approximation of the inverse Hessian. In contrast with the classical BFGS update, the update

(2.3.2) is chosen so that Hk+1 is the nearest matrix to Hk in a weighted norm, satisfying the system

of sketching equations Hk+1GkDk = Dk rather than a set of secant equations. That is, Hk+1 is the
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solution to the minimization problem

min
H̃∈Rn×n

‖H̃ −Hk‖Gk

s.t H̃ = H̃T , H̃GkDk = Dk

(2.3.3)

where ‖ · ‖Gk
is the norm ‖X‖Gk

= Tr(XGkX
TGk). This norm is induced by an inner product,

so Hk+1 is an orthogonal projection onto the subspace {H̃ ∈ Σn : H̃GkDk = Dk}. In analogy

with the classical BFGS update, Hk+1 has a simple formula in terms of block updates, which was

obtained in [30].

Theorem 2.3.1. The Block BFGS update of Hk is given by

Hk+1 = D(DTGD)−1DT + (I −D(DTGD)−1DTG)Hk(I −GD(DTGD)−1DT ). (2.3.4)

Taking the inverse yields formula (2.3.2). Moreover, as shown in [30], we have

Lemma 2.3.2. If Bk (Hk) and DT
kGkDk are positive definite, then the Block BFGS update (2.3.2)

for Bk+1 ((2.3.4) for Hk+1) is positive definite.

Proof. Our proof is adapted from Theorem 3.1 of [30]. Let z ∈ Rn, and define w = DT
k z, v =

z −GkDk(D
T
kGkDk)

−1w. Using formula (2.3.4), we find that

zTHk+1z = wT (DT
kGkDk)

−1w + vTHkv

so zTHk+1z ≥ 0. Furthermore, zTHk+1z = 0 only if both w = 0 and v = 0, in which case z = 0.

Hence Hk+1 is positive definite.

In Section 2.4, we show that Block BFGS converges even if Bk = Bk+1 = . . . is stationary. In

Section 2.5, we show that when f is strongly convex, the parameter τ can be naturally chosen so

an update is always performed, and the convergence is superlinear.

In theory, FILTERSTEPS is required to ensure that the update (2.3.2) exists. However, in prac-

tice, one is unlikely to encounter linearly dependent directions, or directions lying exactly in the
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null space of Gk. Thus, one may omit FILTERSTEPS unless there is reason to believe that Gk is

singular and problems will arise. However, filtering may improve numerical stability, by removing

nearly linearly dependent steps from Dk.

2.3.2 Rolling Block BFGS

Block BFGS uses the same matrix Bk throughout each block of q steps. We could also add

information from these steps immediately, at the cost of doing far more updates. This variant,

Rolling Block BFGS, performs a block update after every step, using a subset Dk of the previous

q steps. Dk is formed by adding sk as the first column of Dk−1, removing sk−q if present, and

filtering.

In general, one might consider schemes for interleaving standard BFGS updates with periodic

block updates, to capture additional second-order information.

2.4 Convergence of Block BFGS

In this section we prove that Block BFGS with inexact Armijo-Wolfe line searches converges

under the same conditions as does the classical BFGS method. These conditions are given in

Assumption 1.

Assumption 1

1. f is convex, twice differentiable, and bounded below.

2. For all x in the level set Ω = {x ∈ Rn : f(x) ≤ f(x1)}, the Hessian satisfies G(x) � MI ,

or equivalently, g(x) is Lipschitz continuous with Lipschitz constant M .

The main goal of this section is to prove the following theorem. The concept of our proof is

similar to the analysis given by Powell [41] for the classical BFGS method.

Theorem 2.4.1. Let f be a function satisfying Assumption 1, and let {xk}∞k=1 denote the sequence

of all iterates produced by Block BFGS. Then lim infk ‖gk‖ = 0.
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We begin by proving several lemmas. The first two are well known; see [27, 41].

Lemma 2.4.2.
∑∞

k=1〈−gk, sk〉 <∞, and therefore 〈−gk, sk〉 → 0.

Proof. From the Armijo condition (2.2.1), 〈−gk, sk〉 = λk〈−gk, dk〉 ≤ (1/α)(fk − fk+1). As f is

bounded below,

∞∑
k=1

〈−gk, sk〉 ≤ (1/α)
∞∑
k=1

(fk − fk+1) ≤ (1/α)(f1 − lim
k→∞

fk) <∞.

Lemma 2.4.3. If the gradient g(x) is Lipschitz continuous with constant M , then for c1 = 1−β
M

, we

have ‖sk‖ ≥ c1‖gk‖ cos θk.

Proof. Let yk = gk+1 − gk. From the Wolfe condition (2.2.2),

〈yk, sk〉 = 〈gk+1, sk〉 − 〈gk, sk〉 ≥ (1− β)〈−gk, sk〉.

By the Lipschitz continuity of the gradient, ‖yk‖ ≤M‖sk‖. Therefore

(1− β)‖gk‖‖sk‖ cos θk = (1− β)〈−gk, sk〉 ≤ 〈yk, sk〉 ≤M‖sk‖2

yielding ‖sk‖ ≥ c1‖gk‖ cos θk.

It is possible that Dk is empty for all k ≥ k0, and no further updates are made to Bk0 . This

may occur, for example, if G(x) has arbitrarily small eigenvalues and τ is chosen to be large. In

this case, Block BFGS is equivalent to a scaled gradient method xk+1 = xk − λkB−1
k0
gk with Bk0

a constant positive-definite matrix, for all k ≥ k0, which is well-known to converge to a stationary

point.

For the remainder of this section, we assume that there is an infinite sequence of updates.

In fact, we may further assume that an update is made for every k, as one can verify that the

propositions of this section continue to hold when we restrict our arguments to the subsequence
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of {Bk} for which updates are made. This simplifies the notation. Note, however, that the same

cannot simply be assumed in Section 2.5. The results in that section do not hold if updates are

skipped. However, in Section 2.5 we are able to choose τ so as to guarantee that an update is made

for every k.

Lemma 2.4.4. Let c3 = Tr(B1) + qM . Then for all k,

Tr(Bk) ≤ c3k and
k∑
j=1

Tr(DT
j B

2
jDj(D

T
j BjDj)

−1) ≤ c3k

Proof. Clearly Tr(B1) ≤ c3. Define Ej = G
1
2
j Dj , and let Pj = Ej(E

T
j Ej)

−1ET
j be the orthogonal

projection onto Col(Ej), so that GjDj(D
T
j GjDj)

−1DT
j Gj = G

1
2
j PjG

1
2
j . For k ≥ 1, we expand

Tr(Bk+1) using Equation (2.3.2):

0 < Tr(Bk+1) = Tr(B1) +
k∑
j=1

Tr(G
1
2
j PjG

1
2
j )−

k∑
j=1

Tr(DT
j B

2
jDj(D

T
j BjDj)

−1)

≤ Tr(B1) + k(qM)−
k∑
j=1

Tr(DT
j B

2
jDj(D

T
j BjDj)

−1)

where the first inequality follows from the positive definiteness of Bk+1 (Lemma 2.3.2) and the

second inequality follows since rank(Pj) ≤ q, and ‖G
1
2
j PjG

1
2
j ‖ ≤ ‖Gj‖‖Pj‖ ≤ M . This shows

Tr(Bk+1) ≤ c3(k + 1) and
∑k

j=1 Tr(DT
j B

2
jDj(D

T
j BjDj)

−1) ≤ c3k.

Lemma 2.4.5. Let s(i)
k be a step included in Dk. Then

λ
(i)
k ‖g

(i)
k ‖2

〈−g(i)
k , s

(i)
k 〉
≤ Tr(DT

kB
2
kDk(D

T
kBkDk)

−1)

Proof. By the Gram-Schmidt process applied to the columns of Dk, we can find a set of Bk-

conjugate vectors {v1, . . . , vqk} spanning Col(Dk) with v1 = s
(i)
k . Using the matrix [v1 . . . vqk ] for
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Dk, we have

DT
kBkDk = Diag(〈s(i)

k ,−λ
(i)
k g

(i)
k 〉, 〈v2, Bkv2〉, . . . , 〈vqk , Bkvqk〉)

and therefore

Tr(DT
kB

2
kDk(D

T
kBkDk)

−1) =

qk∑
`=1

[DT
kB

2
kDk]``[D

T
kBkDk]

−1
``

=
(λ

(i)
k ‖g

(i)
k ‖)2

λ
(i)
k 〈−g

(i)
k , s

(i)
k 〉

+

qk∑
`=2

‖Bkv`‖2

〈v`, Bkv`〉
≥ λ

(i)
k ‖g

(i)
k ‖2

〈−g(i)
k , s

(i)
k 〉

We may assume without loss of generality that Dk = [s
(1)
k . . . s

(qk)
k ].

Corollary 2.4.6.
k∏
j=1

qj∏
i=1

λ
(i)
j ‖g

(i)
j ‖2

〈−g(i)
j , s

(i)
j 〉
≤ (qc3)qk

Proof. Let q̂k =
∑k

j=1 qj , and note that k ≤ q̂k ≤ qk. Hence, from Lemmas 2.4.4 and 2.4.5,

1

q̂k

k∑
j=1

qj∑
i=1

λ
(i)
j ‖g

(i)
j ‖2

〈−g(i)
j , s

(i)
j 〉
≤ qk

q̂k
c3 ≤ qc3

Applying the arithmetic mean-geometric mean (AM-GM) inequality,

(
k∏
j=1

qj∏
i=1

λ
(i)
j ‖g

(i)
j ‖2

〈−g(i)
j , s

(i)
j 〉

)
≤ (qc3)q̂k ≤ (qc3)qk.

Lemma 2.4.7. det(Bk) ≤
(
c3k
n

)n
for all k.

Proof. By Lemma 2.4.4, Tr(Bk) ≤ c3k. Recall that the trace is equal to the sum of the eigenvalues,

and the determinant to the product. Applying the AM-GM inequality to the eigenvalues of Bk, we

obtain det(Bk) ≤
(
c3k
n

)n.

23



We will need the following two classical results from matrix theory; see [42].

Sylvester’s Determinant Identity Let A ∈ Rn×m, B ∈ Rm×n. Then

det(In + AB) = det(Im +BA)

Sherman-Morrison-Woodbury Formula Let A ∈ Rn×n and C ∈ Rk×k be invertible, and U ∈

Rn×k, V ∈ Rk×n. If A + UCV and C−1 + V A−1U are invertible, then (A + UCV )−1 = A−1 −

A−1U(C−1 + V A−1U)−1V A−1.

Lemma 2.4.8.

det(Bk+1) =
det(DT

kGkDk)

det(DT
kBkDk)

det(Bk)

Proof. Let B = Bk, B
+ = Bk+1, D = Dk, G = Gk. Then

det(B+) = det(B) det(I +B−
1
2GD(DTGD)−1DTGB−

1
2 −B

1
2D(DTBD)−1DTB

1
2 ).

Define X = B−
1
2GD(DTGD)−1DTGB−

1
2 and Y = DTGD +DTGB−1GD. Note that I +X is

invertible since X � 0 and I � 0, and Y is invertible since DTGD � 0. Thus, we can write

det(B+) = det(B) det(I +X) det(I − (I +X)−1B
1
2D(DTBD)−1DTB

1
2 ).

Applying Sylvester’s determinant identity to each term,

det(I +X) = det(I + (DTGB−
1
2 )(B−

1
2GD(DTGD)−1)) = det(Y ) det(DTGD)−1

det(I − (I +X)−1B
1
2D(DTBD)−1DTB

1
2 ) = det(I −DTB

1
2 (I +X)−1B

1
2D(DTBD)−1)

Applying the Sherman-Morrison-Woodbury formula to I+X withU = B−
1
2GD,C = (DTGD)−1, V =

DTGB−
1
2 , we obtain (I +X)−1 = I −B− 1

2GDY −1DTGB−
1
2 , so

det(I − (I +X)−1B
1
2D(DTBD)−1DTB

1
2 ) = det(DTGD)2 det(Y )−1 det(DTBD)−1.
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Thus det(B+) = det(B) det(DTGD) det(DTBD)−1 as desired.

Lemma 2.4.9.

det(Bk+1) ≥

(
qk∏
i=1

1

λi

)
(τc1)qk det(Bk)

Proof. Recall that the columns ofDk satisfy σ2
i ≥ τ‖s(i)

k ‖2, where σi is the i-th diagonal element of

the LΣLT decomposition of DT
kGkDk. We have det(DT

kGkDk) =
∏qk

i=1 σ
2
i and det(DT

kBkDk) ≤∏qk
i=1[DT

kBkDk]ii =
∏qk

i=1〈s
(i)
k ,−λ

(i)
k g

(i)
k 〉. By Lemma 2.4.8,

det(Bk+1) = det(Bk)
det(DT

kGkDk)

det(DT
kBkDk)

≥ det(Bk)

∏qk
i=1 τ‖s

(i)
k ‖2∏qk

i=1〈s
(i)
k ,−λ

(i)
k g

(i)
k 〉
≥ det(Bk)

qk∏
i=1

τ

λ
(i)
k

‖s(i)
k ‖

‖g(i)
k ‖ cos θ

(i)
k

.

By Lemma 2.4.3, ‖s(i)k ‖
‖g(i)k ‖ cos θ

(i)
k

≥ c1. Hence det(Bk+1) ≥
(

qk∏
i=1

1

λ
(i)
k

)
(τc1)qk det(Bk).

Corollary 2.4.10.

det(Bk+1) ≥ (τc1)qk det(B1)
k∏
j=1

qj∏
i=1

1

λ
(i)
j

Corollary 2.4.11. There exists a constant c4 such that for all k,

k∏
j=1

qj∏
i=1

‖g(i)
j ‖2

〈−g(i)
j , s

(i)
j 〉
≤ ck4

Proof. Multiplying the inequalities of Corollary 2.4.6 and Lemma 2.4.7, we obtain

(
k∏
j=1

qj∏
i=1

λ
(i)
j ‖g

(i)
j ‖2

〈−g(i)
j , s

(i)
j 〉

)(
det(Bk+1)

det(B1)

)
≤ (qc3)qk

(
(c3(k + 1)/n)n

det(B1)

)
≤ ρk1
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for some constant ρ1. Using the lower bound of Corollary 2.4.10, we also obtain

(
k∏
j=1

qj∏
i=1

λ
(i)
j ‖g

(i)
j ‖2

〈−g(i)
j , s

(i)
j 〉

)(
det(Bk+1)

det(B1)

)
≥

(
k∏
j=1

qj∏
i=1

λ
(i)
j ‖g

(i)
j ‖2

〈−g(i)
j , s

(i)
j 〉

)
· (τc1)qk

k∏
j=1

qj∏
i=1

1

λ
(i)
j

= (τc1)qk

(
k∏
j=1

qj∏
i=1

‖g(i)
j ‖2

〈−g(i)
j , s

(i)
j 〉

)

Take c4 = ρ1
(τc1)q

, whence
∏k

j=1

∏qj
i=1

‖g(i)j ‖
2

〈−g(i)j ,s
(i)
j 〉
≤ ck4.

Finally, we can establish our main result.

Proof. (of Theorem 2.4.1) Assume to the contrary that ‖g(i)
k ‖ is bounded away from zero. Lemma

2.4.2 implies that 〈g(i)
k ,−s

(i)
k 〉 → 0. Thus, there exists k0 such that for k ≥ k0, ‖g(i)k ‖

2

〈g(i)k ,−s(i)k 〉
>

c4 + 1. This contradicts Corollary 2.4.11, as
∏k

j=1

∏qj
i=1

‖g(i)j ‖
2

〈−g(i)j ,s
(i)
j 〉
≤ ck4 for all k. We conclude that

lim infk ‖gk‖ = 0.

A similar analysis shows that Rolling Block BFGS (Section 2.3.2) converges.

Theorem 2.4.12. Assume f satisfies Assumption 1. Then the sequence {gk}∞k=1 produced by

Rolling Block BFGS satisfies lim infk ‖gk‖ = 0.

Proof. By the calculations for Corollary 2.4.6, we have
∏k

j=1
λj‖gj‖2
〈−gj ,sj〉 ≤ ck3.

Dk is produced by adding column sk to Dk−1, removing sk−q if present, and then running

Algorithm 2. Without loss of generality, assume that Dk = [sk . . . sk−qk+1]. By definition, Bk

satisfies BkDk−1 = Gk−1Dk−1. Thus, we have

det(DT
kBkDk) ≤

qk−1∏
i=0

〈sk−i, Bksk−i〉 = 〈sk, Bksk〉
qk−1∏
i=1

〈sk−i, Gk−1sk−i〉

which gives an analogue of Lemma 2.4.9:

det(Bk+1) ≥
∏qk−1

i=0 τ‖sk−i‖2

〈sk,−λkgk〉
∏qk−1

i=1 〈sk−i, Gk−1sk−i〉
det(Bk) ≥

1

λk

c1τ
q

M q−1
det(Bk).
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Thus det(Bk+1) ≥
(
c1τq

Mq−1

)k
det(B1)

∏k
j=1

1
λk

. The remainder of the proof follows exactly as in

the proofs of Corollary 2.4.11 and Theorem 2.4.1.

2.5 Superlinear Convergence of Block BFGS

In this section we show that Block BFGS converges Q-superlinearly under the same conditions

as does BFGS, namely, that f is strongly convex in a neighborhood of its minimizer, and its Hessian

is Lipschitz continuous. We use the characterization of superlinear convergence given by Dennis

and Moré [43], and employ an argument similar to the analysis used by Griewank and Toint [44]

for partitioned quasi-Newton updates. The following conditions, which strengthen Assumption 1,

will apply to f throughout this section.

Assumption 2

1. f is convex and twice differentiable, with G(x) � MI on the level set {x ∈ Rn : f(x) ≤

f(x1)}.

2. f has a minimizer x∗ for which G(x∗) is non-singular. Note that this implies x∗ is unique.

3. G(x) is Lipschitz in a neighborhood of x∗, with Lipschitz constant µ.

Since Assumption 2 is stronger than Assumption 1, Theorem 2.4.1 implies that the iterates

produced by Block BFGS converge to the unique stationary point x∗. The continuity of G(x) and

the fact that G(x∗) is non-singular imply that f is strongly convex in a neighborhood S of x∗.

Superlinear convergence is an asymptotic property, so we may restrict our attention to the tail of

the sequence {xk}, contained in S. That is, we may assume without loss of generality that all

iterates {xk} lie in a region S on which f is strongly convex, with

mI � G(x) �MI ∀x ∈ S

for constants 0 < m ≤M .
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In this section, we assume τ ≤ m, where τ is the parameter in FILTERSTEPS. Since σ2
1 =

[STk GkSk]11 = 〈s(1)
k , Gks

(1)
k 〉 ≥ m‖s(1)

k ‖2, the first column of Dk is never removed by FILTER-

STEPS. This guarantees that an update is always performed. The choice of τ is important and

can impact superlinear convergence; we give a detailed discussion in the remarks concluding this

section.

Theorem 2.5.1. Let f be a function satisfying Assumption 2. Block BFGS convergesQ-superlinearly

along the subsequence of steps in Dk; that is,

lim
k→∞
i∈Dk

‖x(i+1)
k − x∗‖
‖x(i)

k − x∗‖
= 0.

To clarify the statement of this theorem, the quotients ‖x(i+1)
k − x∗‖/‖x(i)

k − x∗‖ in the subse-

quence are those for which s(i)
k is inDk. If every step is included inDk, then we haveQ-superlinear

convergence for the sequence of points {x(i)
k } in the usual sense. To give an example of the con-

trary, suppose the step s(2)
10 is removed by filtering; then the quotient ‖x(3)

10 −x∗‖/‖x
(2)
10 −x∗‖ is not

captured in the subsequence. In theory, one step is guaranteed per block Dk, but we note that in

practice, Dk contains all or nearly all steps for every k.

We begin by showing that Block BFGS converges R-linearly. The first three lemmas are well

known; see [27, 41]. These three lemmas apply to every step, and thus we write xk+1 for the iterate

immediately following xk, instead of using superscripts.

Lemma 2.5.2. For c1 = 1−β
M

and c2 = 2(1−α)
m

,

c1‖gk‖ cos θk ≤ ‖sk‖ ≤ c2‖gk‖ cos θk

Proof. By Taylor’s theorem, there exists a point x̃ on the line segment joining xk, xk+1 such that

f(xk+1) = f(xk) + 〈gk, sk〉 + 1
2
sTkG(x̃)sk. From (2.2.1), f(xk+1) − f(xk) ≤ α〈gk, sk〉, so (1 −

α)〈−gk, sk〉 ≥ 1
2
sTkG(x̃)sk ≥ 1

2
m‖sk‖2. Rearranging yields ‖sk‖ ≤ c2‖gk‖ cos θk. The lower

bound was shown in Lemma 2.4.3.
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This next lemma is known as the Polya-Łojasiewicz inequality and is standard [41]. We give

an alternate proof here.

Lemma 2.5.3. For any x ∈ S, ‖g(x)‖2 ≥ 2m(f(x)− f∗).

Proof. The result is immediate if x = x∗, so assume x 6= x∗. By Taylor’s theorem, there exists

a point x̃ on the line segment joining x, x∗ such that f(x∗) = f(x) + g(x)T (x∗ − x) + 1
2
(x∗ −

x)TG(x̃)(x∗ − x), in which case

g(x)T (x− x∗) = f(x)− f∗ +
1

2
(x∗ − x)TG(x̃)(x∗ − x) ≥ f(x)− f∗ +

1

2
m‖x− x∗‖2.

Using the Cauchy-Schwarz inequality, we find that ‖g(x)‖‖x− x∗‖ ≥ f(x)− f∗ + 1
2
m‖x− x∗‖2.

Applying the AM-GM inequality and squaring yields ‖g(x)‖2 ≥ 2m(f(x)− f∗).

Lemma 2.5.4.

fk+1 − f∗ ≤ (1− 2αmc1 cos2 θk)(fk − f∗)

Proof. The Armijo condition (2.2.1) and Lemma 2.5.2 imply that

fk+1 − fk ≤ α〈gk, sk〉 = −α‖gk‖‖sk‖ cos θk ≤ −αc1‖gk‖2 cos2 θk.

By Lemma 2.5.3, ‖gk‖2 ≥ 2m(fk − f∗). Hence fk+1 − f∗ ≤ (1− 2αmc1 cos2 θk) (fk − f∗).

Define rk = ‖x(q+1)
k − x∗‖. R-linear convergence implies that the errors rk diminish to zero

rapidly enough that
∑∞

k=1 rk <∞, a key property.

Theorem 2.5.5. There exists δ < 1 such that f(x
(q+1)
k )−f∗ ≤ δk(f(x

(1)
1 )−f∗), and thus

∑∞
k=1 rk <

∞.

Proof. From Lemma 2.4.11,
∏k

j=1

∏qj
i=1

‖g(i)j ‖

‖s(i)j ‖ cos θ
(i)
j

≤ ck4. Lemma 2.5.2 gives the upper bound

‖s(i)
j ‖ ≤ c2‖g(i)

j ‖ cos θ
(i)
j . Substituting, we find

k∏
j=1

qj∏
i=1

cos2 θ
(i)
j ≥

(
1

cq2c4

)k
.
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From this, we see that at least 1
2
k of the angles must satisfy cos2 θ

(i)
j ≥

(
1

cq2c4

)2

.

By Lemma 2.5.4, f(x
(i+1)
k )− f∗ ≤ (1− 2αmc1 cos2 θk)(f(x

(i)
k )− f∗). Using our bound on the

angles,

f(x
(q+1)
k )− f∗ ≤

(
1− 2αmc1

(
1

cq2c4

)2
) 1

2
k

(f(x
(1)
1 )− f∗).

Hence, we may take δ =
(

1− 2αmc1
c2q2 c24

)1/2

. The strong convexity of f implies that 1
2
m‖x− x∗‖2 ≤

f(x)−f∗ ≤ 1
2
M‖x−x∗‖2, so we have rk ≤ (

√
δ)k
√

M
m
‖x(1)

1 −x∗‖. Therefore
∑∞

k=1 rk <∞.

The classical BFGS method is invariant under a linear change of coordinates. It is easy to

verify that Block BFGS also has this invariance, so we may assume without loss of generality that

G(x∗) = I . This greatly simplifies the following calculations. Given that Theorem 2.4.1 implies

that Block BFGS converges, we will also assume that the iterates lie in the region around x∗ where

G(x) is Lipschitz continuous.

Lemma 2.5.6. For any v ∈ Rn, ‖(Gk − I)v‖ ≤ µrk‖v‖.

Proof. Since G(x∗) = I ,

‖(Gk − I)v‖ ≤ ‖G(x
(q+1)
k )−G(x∗)‖‖v‖ ≤ µ‖x(q+1)

k − x∗‖‖v‖ = µrk‖v‖.

The following notion is useful in our analysis. Define B̃k+1 to be the matrix obtained by

performing a Block BFGS update on Bk with Gk = G(x∗). Since we assumed G(x∗) = I , we

have the explicit formula

B̃k+1 = Bk −BkDk(D
T
kBkDk)

−1DT
kBk +Dk(D

T
kDk)

−1DT
k

and its inverse H̃k+1 is given by

H̃k+1 = Dk(D
T
kDk)

−1DT
k + (I −Dk(D

T
kDk)

−1DT
k )Hk(I −Dk(D

T
kDk)

−1DT
k ).
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Lemma 2.5.7. Let B = Bk, B̃ = B̃k+1, D = Dk. Define the following orthogonal projections:

1. P = B
1
2D(DTBD)−1DTB

1
2 , the projection onto Col(B

1
2D).

2. PD = D(DTD)−1DT , the projection onto Col(D).

3. PB = BD(DTB2D)−1DTB, the projection onto Col(BD).

Then

‖B − I‖2
F − ‖B̃ − I‖2

F = ‖PB −B
1
2PB

1
2‖2

F + 2 Tr(B(B
1
2PB

1
2 )− (B

1
2PB

1
2 )2)

Furthermore, Tr(B(B
1
2PB

1
2 )− (B

1
2PB

1
2 )2) ≥ 0, and thus ‖B̃ − I‖F ≤ ‖B − I‖F .

Proof. Expand the Frobenius norm and use the identity Tr(BPD) = Tr(B
1
2PB

1
2PD) to obtain

‖B − I‖2
F − ‖B̃ − I‖2

F = 2 Tr(B(B
1
2PB

1
2 ))− Tr((B

1
2PB

1
2 )2)− 2 Tr(B

1
2PB

1
2 )

− Tr(P 2
D) + 2 Tr(PD)

= 2 Tr(B(B
1
2PB

1
2 ))− 2 Tr((B

1
2PB

1
2 )2)

+ Tr((B
1
2PB

1
2 )2)− 2 Tr(B

1
2PB

1
2 ) + Tr(I)

− Tr(P 2
D) + 2 Tr(PD)− Tr(I)

Factoring the above equation produces

‖B − I‖2
F − ‖B̃ − I‖2

F = ‖I −B
1
2PB

1
2‖2

F − ‖I − PD‖2
F + 2 Tr(B(B

1
2PB

1
2 )− (B

1
2PB

1
2 )2).

Let P⊥B be the projection onto the orthogonal complement of Col(BD); hence I = PB + P⊥B .

Since 〈P⊥B , B
1
2PB

1
2 〉 = Tr(P⊥BBD(DTBD)−1DTB) = 0, we have ‖I − B 1

2PB
1
2‖2

F = ‖PB −

B
1
2PB

1
2‖2

F + ‖P⊥B ‖2
F . The Frobenius norm of an orthogonal projection is equal to the square root

of its rank, and thus

‖I −B
1
2PB

1
2‖2

F −‖I −PD‖2
F = ‖PB−B

1
2PB

1
2‖2

F + ‖P⊥B ‖2
F −‖I −PD‖2

F = ‖PB−B
1
2PB

1
2‖2

F
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This gives the desired equation. Now, observe that

Tr(B(B
1
2PB

1
2 )− (B

1
2PB

1
2 )2) = Tr(BPB(I − P ))

= Tr((I − P )BPB(I − P )) ≥ 0

where in the second equality we have used that I−P is the orthogonal projection onto Col(B
1
2D)⊥,

and is therefore idempotent. This proves ‖B̃ − I‖F ≤ ‖B − I‖F .

Intuitively, B̃k+1 and H̃k+1 should be closer approximations of I than Bk and Hk. This is made

precise in the next lemma.

Lemma 2.5.8. ‖B̃k+1 − I‖F ≤ ‖Bk − I‖F and ‖H̃k+1 − I‖F ≤ ‖Hk − I‖F .

Proof. That ‖B̃k+1 − I‖F ≤ ‖Bk − I‖F was shown in Lemma 2.5.7. Clearly ‖H̃k+1 − I‖F ≤

‖Hk − I‖F , as H̃k+1 is defined as the orthogonal projection of Hk onto the subspace of matrices

{H̃ ∈ Σn : H̃Dk = Dk}, which contains I (see (2.3.3)).

Lemma 2.5.9. There exists an index k0 and constants κ1, κ2 such that ‖Bk+1 − B̃k+1‖F ≤ κ1rk

and ‖Hk+1 − H̃k+1‖F ≤ (‖Hk − I‖F + 1)κ2rk for all k ≥ k0.

Proof. Define ∆k = (Gk − I)Dk. For brevity, let B̃ = B̃k+1, H̃ = H̃k+1, H = Hk, D =

Dk, G = Gk, and ∆ = ∆k. We may assume the columns of D are orthonormal, so DTD = I .

By Lemma 2.5.6, every column δi of ∆ satisfies ‖δi‖ ≤ µrk, which gives the useful bounds

‖∆‖, ‖∆T‖ ≤ µ
√
qrk. This stems from the fact that a matrix A of rank q satisfies ‖A‖ = ‖AT‖ ≤

‖A‖F ≤
√
q‖A‖, which we will use frequently.

To prove the first inequality, we write

‖Bk+1 − B̃‖F = ‖GD(DTGD)−1DTG−DDT‖F

= ‖GD(I +DT∆)−1DTG−DDT‖F .
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By the Sherman-Morrison-Woodbury formula, (I + DT∆)−1 = I − DT (I + ∆DT )−1∆. Let

X = I + ∆DT . Inserting this expression and using the triangle inequality, we have

‖GD(I +DT∆)−1DTG−DDT‖F = ‖GDDTG−DDT −GDDTX−1∆DTG‖F

≤ ‖GDDTG−DDT‖F + ‖GDDTX−1∆DTG‖F

By a routine calculation,

‖GDDTG−DDT‖F = ‖∆∆T + ∆DT +D∆T‖F ,

hence ‖GDDTG−DDT‖F ≤ ρ2rk for some constant ρ2.

To bound the Frobenius norm of the other term, we bound its operator norm. Since ∆k → 0 as

rk → 0, there exists an index k0 such that for k ≥ k0,

1. ‖X − I‖ ≤ 1
2
, so ‖X−1‖ ≤ 2, and

2. ‖G− I‖ ≤ 1, so ‖G‖ ≤ 2

in which case ‖GDDTX−1∆DTG‖ ≤ ρ3rk for some ρ3. Taking κ1 = ρ2 +
√
qρ3, we then have

‖Bk+1 − B̃‖F ≤ κ1rk for all k ≥ k0.

A similar analysis applies to ‖Hk+1 − H̃‖F . Using the triangle inequality,

‖Hk+1 − H̃‖F ≤ ‖D(DTGD)−1DT −DDT‖F

+ ‖(D(DTGD)−1DTG−DDT )H +H(GD(DTGD)−1DT −DDT )‖F

+ ‖D(DTGD)−1DTGHGD(DTGD)−1DT −DDTHDDT‖F

We bound each of the three terms. As before, (DTGD)−1 = I−DTX−1∆, so we have ‖D(DTGD)−1DT−

DDT‖F = ‖DDTX−1∆DT‖F . For k ≥ k0, ‖X−1‖ ≤ 2, so ‖D(DTGD)−1DT −DDT‖F ≤ ρ4rk

for some ρ4.
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For the second term, observe that

GD(DTGD)−1DT −DDT = ∆DT −DDTX−1∆DT −∆DX−1∆DT .

Hence, the norm of the second term is bounded above by ρ5rk‖H‖ for some ρ5.

Finally, we bound the operator norm of the third term. Factoring out D and DT on the left and

right, we can write the inside term as

DTGHGD −DTHD − (DTX−1∆DTGHGD +DTGHGDDTX−1∆)

+DTX−1∆DTGHGDDTX−1∆.

Since DTGHGD −DTHD = ∆THD + DTH∆ + ∆TH∆, the operator norm of the third term

is bounded above by ρ6rk‖H‖ for some ρ6. Adding together the three terms, there is a constant κ2

with ‖Hk+1 − H̃‖F ≤ (‖Hk − I‖F + 1)κ2rk.

Since superlinear convergence is an asymptotic property, we may assume k0 = 1 in Lemma 2.5.9.

We will also need the following technical result from [43].

Lemma 2.5.10 (3.3 of [43]). Let {νk} and {δk} be sequences of non-negative numbers such that

νk+1 ≤ (1 + δk)νk + δk and
∑∞

k=1 δk <∞. Then {νk} converges.

Corollary 2.5.11. {‖Bk − I‖F}∞k=1 and {‖Hk − I‖F}∞k=1 converge, and are therefore uniformly

bounded. As an immediate corollary, {‖Bk‖F}∞k=1 and {‖Hk‖F}∞k=1 are also uniformly bounded.

Proof. By Lemma 2.5.8 and Lemma 2.5.9, we have

‖Hk+1 − I‖F ≤ ‖Hk+1 − H̃k+1‖F + ‖H̃k+1 − I‖F ≤ (1 + κ2rk)‖Hk − I‖F + κ2rk

Set νk = ‖Hk − I‖F and δk = κ2rk in Lemma 2.5.10. Since
∑∞

k=1 rk < ∞, the sequence

{‖Hk − I‖F} converges. The same reasoning applies to {‖Bk − I‖F}.
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Lemma 2.5.12. Recall the notation introduced in Lemma 2.5.7: Pk is the orthogonal projection

onto Col(B
1
2
kDk), and PBk

the orthogonal projection onto Col(BkDk). Define the quantities ϕk, ψk

to be

ϕk = ‖PBk
−B

1
2
k PkB

1
2
k ‖

2
F

ψk = Tr(Bk(B
1
2
k PkB

1
2
k )− (B

1
2
k PkB

1
2
k )2)

Then lim
k→∞

ϕk = 0 and lim
k→∞

ψk = 0.

Proof. We first bound ‖B̃k+1−I‖2
F in terms of ‖Bk+1−I‖2

F . By Lemma 2.5.9, ‖Bk+1−B̃k+1‖F ≤

κ1rk. Let κ3 = 2κ1 max
k
{‖Bk−I‖F}; by Corollary 2.5.11, the maximum exists. Using the triangle

inequality, we have

‖B̃k+1 − I‖2
F ≥ (‖Bk+1 − I‖F − ‖Bk+1 − B̃k+1‖F )2

= ‖Bk+1 − I‖2
F − 2‖Bk+1 − I‖F‖Bk+1 − B̃k+1‖F + ‖Bk+1 − B̃k+1‖2

F

≥ ‖Bk+1 − I‖2
F − κ3rk.

By Lemma 2.5.7, ‖Bk − I‖2
F − ‖B̃k+1 − I‖2

F ≥ 0. Summing over k and telescoping, we find that

∞∑
k=1

(
‖Bk − I‖2

F − ‖B̃k+1 − I‖2
F

)
≤

∞∑
k=1

(
‖Bk − I‖2

F − ‖Bk+1 − I‖2
F

)
+ κ3rk+1

≤ ‖B1 − I‖2
F + κ3

∞∑
k=1

rk+1 <∞

from which we deduce that ‖Bk − I‖2
F − ‖B̃k+1 − I‖2

F → 0. Expressed in terms of ϕk and ψk,

Lemma 2.5.7 states that ‖Bk − I‖2
F − ‖B̃k+1 − I‖2

F = ϕk + 2ψk and ϕk, ψk ≥ 0. Hence ϕk, ψk

converge to 0.

Note that Lemma 2.5.12 does not imply that ‖Bk−I‖F → 0, since it is possible for lim sup ‖B̃k+1−

I‖F > 0. It is well-known that for the classical BFGS method, the Hessian approximation Bk

might not converge to the Hessian at the optimal solution.
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Lemma 2.5.13. For any wk ∈ Col(Dk),

(
1− wTkB

2
kwk

wTkBkwk

)2

≤ ϕk and 0 ≤ wTkB
3
kwk

wTkBkwk
−
(
wTkB

2
kwk

wTkBkwk

)2

≤ ϕk + ψk,

where ϕk, ψk are defined in Lemma 2.5.12. Consequently, for any sequence {wk}∞k=1 with wk ∈

Col(Dk), we have lim
k→∞

wT
k B

2
kwk

wT
k Bkwk

= 1 and lim
k→∞

wT
k B

3
kwk

wT
k Bkwk

= 1.

Proof. For a fixed k, let B = Bk, D = Dk, and let ∆ = (DTB2D)−1 − (DTBD)−1. Recall the

definitions of P, PB from Lemma 2.5.7. We can write

ϕk = ‖PB −B
1
2PB

1
2‖2

F = Tr((BD∆DTB)2) = Tr(DTB2D∆DTB2D∆)

= Tr((I −DTB2D(DTBD)−1)2)

Take a Bk-orthogonal basis {v1, . . . , vqk} for Col(Dk) with v1 = wk. The i-th diagonal entry of

(I −DTB2D(DTBD)−1)2 is then

(
1− vTi B

2vi
vTi Bvi

)2

+
∑
j 6=i

(vTi B
2vj)

2

vTi Bviv
T
j Bvj

Since every term is non-negative, we conclude that
(

1− wT
k B

2wk

wT
k Bwk

)2

≤ ϕk, which proves the first

statement. Also, notice that
∑qk

i=1

∑
j 6=i

(vTi B
2vj)2

vTi Bviv
T
j Bvj

≤ ϕk.

Next, write Tr(B(B
1
2PB

1
2 )) = Tr(DTB3D(DTBD)−1) and Tr((B

1
2PB

1
2 )2) = Tr((DTB2D(DTBD)−1)2).

Again taking a Bk−orthogonal basis {v1, . . . , vqk}, we have

Tr(DTB3D(DTBD)−1) =

qk∑
i=1

vTi B
3vi

vTi Bvi

Tr((DTB2D(DTBD)−1)2) =

qk∑
i=1

(
vTi B

2vi
vTi Bvi

)2

+

qk∑
i=1

∑
j 6=i

(vTi B
2vj)

2

vTi Bviv
T
j Bvj
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Thus

Tr(B(B
1
2PB

1
2 )− (B

1
2PB

1
2 )2) =

qk∑
i=1

(
vTi B

3vi
vTi Bvi

−
(
vTi B

2vi
vTi Bvi

)2
)
−

qk∑
i=1

∑
j 6=i

(vTi B
2vj)

2

vTi Bviv
T
j Bvj

≥
qk∑
i=1

(
vTi B

3vi
vTi Bvi

−
(
vTi B

2vi
vTi Bvi

)2
)
− ϕk

By the Cauchy-Schwarz inequality applied to vTB2v = 〈B 1
2v,B

3
2v〉, we have vTB3v

vTBv
≥
(
vTB2v
vTBv

)2

for every v ∈ Rn. Hence 0 ≤ wT
k B

3wk

wT
k Bwk

−
(
wT

k B
2wk

wT
k Bwk

)2

≤ ϕk + ψk. The limits then follow from

Lemma 2.5.12, since ϕk, ψk → 0.

Corollary 2.5.14. Given any wk ∈ Col(Dk),

‖(Bk − I)wk‖
‖wk‖

≤
√

2ϕk + ψk

Consequently, for any sequence {wk}∞k=1 with wk ∈ Col(Dk),

lim
k→∞

‖(Bk − I)wk‖
‖wk‖

= 0

Proof. By Lemma 2.5.13 and a routine calculation,

‖B
1
2
k (Bk − I)wk‖

‖B
1
2
k wk‖

=

√
wTkB

3
kwk

wTkBkwk
− 2

wTkB
2
kwk

wTkBkwk
+ 1

=

√
wTkB

3
kwk

wTkBkwk
−
(
wTkB

2
kwk

wTkBkwk

)2

+

(
1− wTkB

2
kwk

wTkBkwk

)2

≤
√

2ϕk + ψk

Since {‖Bk‖}, {‖Hk‖} are uniformly bounded by Corollary 2.5.11, the result follows.

Lemma 2.5.15. A step size of λk = 1 is eventually admissible for steps dk included in Dk.

Proof. We check that λk = 1 satisfies the Armijo-Wolfe conditions for all sufficiently large k. Let

α and β be the Armijo-Wolfe parameters and choose a constant γ such that 0 < γ <
1
2
−α

1−α . By
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Corollary 2.5.14, for all sufficiently large k, the steps dk ∈ Col(Dk) satisfy

‖(Bk − I)dk‖
‖dk‖

≤ γ (2.5.1)

in which case 〈gk, dk〉 = 〈gk + dk, dk〉 − ‖dk‖2 ≤ −(1− γ)‖dk‖2.

By Taylor’s theorem, there exists a point x̃k on the line segment joining xk, xk + dk with

f(xk + dk) = f(xk) + 〈gk, dk〉 + 1
2
dTkG(x̃k)dk. Since f(xk) ≤ f(x

(q+1)
k−1 ), the strong convexity of

f implies that ‖xk− x∗‖ ≤
√
M/m rk−1. Hence, taking ρ7 = µ

√
M/m, we have ‖G(x̃k)− I‖ ≤

µ‖x̃k − x∗‖ ≤ ρ7(rk−1 + ‖dk‖). For the step size λk = 1,

f(xk + dk)− f(xk) = α〈gk, dk〉+ (1− α)〈gk, dk〉+
1

2
dTkG(x̃)dk

≤ α〈gk, dk〉 − ((1− α)(1− γ)− 1/2− (ρ7/2)(rk−1 + ‖dk‖)) ‖dk‖2

Since (1− α)(1− γ)− 1/2 > 0 and rk−1 + ‖dk‖ → 0, a step size of λk = 1 satisfies the Armijo

condition (2.2.1) for all sufficiently large k.

Next, apply Taylor’s theorem to the function t 7→ 〈g(xk + tdk), dk〉 to obtain a point x̃k on the

line segment joining xk, xk+dk with 〈g(xk+dk), dk〉 = 〈gk, dk〉+dTkG(x̃k)dk. Choosing γ = β
2−β

in (2.5.1), Corollary 2.5.14 implies that for sufficiently large k, 〈−gk, dk〉 = 〈gk + dk,−dk〉 +

‖dk‖2 ≤ (1− 1
2
β)−1‖dk‖2. We can also take k large enough so that 1− ρ7(rk−1 + ‖dk‖) ≥ 0, and

we then have

〈g(xk + dk), dk〉 ≥ 〈gk, dk〉+ (1− ρ7(rk−1 + ‖dk‖))‖dk‖2

≥ (β/2 + (1− β/2)ρ7(rk−1 + ‖dk‖))〈gk, dk〉

Thus, the Wolfe condition (2.2.2) is satisfied for all sufficiently large k.

Lemma 2.5.15 applies only to steps dk included in Dk. However, since Block BFGS does not

prefer any particular step for inclusion in Dk, it is likely that eventually λk = 1 is admissible for

all steps. This issue reveals a subtle artifact of the proof method, and we return to discuss it in the
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remark after the following proof of Theorem 2.5.1.

Proof. (of Theorem 2.5.1) Let s(i)
k be any step included in Dk. To simplify the notation, we write

x = x
(i)
k , x

+ = x
(i+1)
k , g = g

(i)
k , g

+ = g
(i+1)
k , and d = d

(i)
k , s = s

(i)
k . By Lemma 2.5.15, eventually

λ = 1 is admissible for all steps in Dk, so s = d. From the triangle inequality, ‖d‖ ≤ ‖x− x∗‖+

‖x+ − x∗‖, so
‖g+‖
‖d‖

≥ m‖x+ − x∗‖
‖x− x∗‖+ ‖x+ − x∗‖

. (2.5.2)

Next, write

‖(Bk − I)d‖
‖d‖

=
‖g(x+ d)− g(x)−G(x∗)d− g(x+ d)‖

‖d‖

≥ ‖g(x+ d)‖
‖d‖

− ‖g(x+ d)− g(x)−G(x∗)d‖
‖d‖

.

By continuity of the Hessian, the second term converges to 0. Thus, Corollary 2.5.14 implies that

‖g+‖
‖d‖ = ‖g(x+d)‖

‖d‖ → 0. We deduce from (2.5.2) that

‖x+ − x∗‖
‖x− x∗‖

→ 0.

Hence, we have Q-superlinear convergence along the subsequence of steps in Dk.

The same argument, with minimal alteration, applies to Rolling Block BFGS.

Remarks

1. As we observed earlier, the choice to include s(1)
k in Dk is arbitrary. The proof of The-

orem 2.5.1 holds with any selection rule for Dk as long as it guarantees
∑∞

k=1 rk < ∞.

Therefore, it is likely that Theorem 2.5.1 and Lemma 2.5.15 apply to all steps. That is, even-

tually λk = 1 is admissible for all steps and ‖x
(i+1)
k −x∗‖
‖x(i)k −x∗‖

→ 0. In fact, by selecting Dk in a

particular way, we can ensure that eventually λk = 1 is admissible for all steps.

Corollary 2.5.16. Suppose that Dk is constructed to always contain a step for which λk = 1
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is not admissible, whenever such a step exists in the k-th block. Then λk = 1 is eventually

admissible for all steps.

Proof. When executing the k-th update, we specifically set the first column of Dk to a step

dk from the k-th block for which λk = 1 is not admissible, if any such step exists. If we

could find such a step dk for infinitely many k, then this process would produce an infinite

sequence of steps dk ∈ Col(Dk) for which λk = 1 is never eventually admissible. This

contradicts Lemma 2.5.15.

However, Corollary 2.5.16 does not show that in general, λk = 1 is eventually admissible for

all steps, as it only holds when we select steps in an adversarial manner. This example high-

lights an interesting dichotomy arising from our proof method. On one hand, Theorem 2.5.1

and Lemma 2.5.15 are retrospective and apply to any sequence {Dk} that we select. This

strongly suggests that they should hold for all steps. On the other hand, the method of proof

(based on analyzing the convergence of ‖Bk − I‖2
F − ‖B̃k+1 − I‖2

F ) makes use only of the

steps in Dk, and thus can only prove things about the steps in Dk.

2. The parameter τ has no equivalent in the classical BFGS method, and enforces a lower

bound on the curvature of steps used in the update. If τ is chosen to be too large, then it is

possible that Bk is not updated on some iterations; in this case, the convergence rate will not

be superlinear. A sufficient condition for Bk to be updated on every iteration, and hence for

superlinear convergence, is to take τ ≤ m, but this requires knowledge of a lower bound on

m, the least eigenvalue of the Hessian.

This issue can be avoided if f is strongly convex on the entire level set Ω = {x ∈ Rn :

f(x) ≤ f(x1)}, by using a slightly modified version of FILTERSTEPS. Instead of τ , the

user selects any τ ′ > 0. The first step s
(1)
k is unconditionally included in Dk, and then

subsequent steps s(2)
k , . . . , s

(q+1)
k are included only if the condition σ2

i > τ ′‖s(i)
k ‖2 holds.

Since σ2
1 = 〈s(1)

k , Gks
(1)
k 〉 ≥ m‖s(1)

k ‖2, every entry of Σ satisfies σi ≥ τ‖s(i)
k ‖2 for τ =
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min{τ ′,m} > 0, and thus the condition for convergence is satisfied. This guarantees Q-

superlinear convergence for any choice of τ ′, although larger τ ′ reduces the number of steps

in Dk (see Theorem 2.5.1).

2.6 Modified Block BFGS for Non-Convex Optimization

Convergence theory for the classical BFGS method does not extend to non-convex functions.

However, with minor modifications, BFGS performs well for non-convex optimization and can be

shown to converge in some cases. Modifications that have been studied include:

1. Cautious Updates (Li and Fukushima, [45])

A BFGS update is performed only if yTk sk
‖sk‖2

≥ ε‖gk‖α, where ε, α are parameters.

2. Modified Updates (Li and Fukushima, [46])

The secant equation is modified to Bk+1sk = zk, where zk = yk + rksk and the parameter rk

is chosen so that zTk sk ≥ ε‖sk‖2.

3. Damped BFGS (ell, [47])

The secant equation is modified to Bk+1sk = zk, where zk = θkyk + (1 − θk)Bksk, and for

0 < φ < 1, the damping constant θk is determined by

θk =

 1, if yTk sk ≥ φsTkBksk

(1−φ)sTkBksk
sTkBksk−yTk sk

, otherwise

This is perhaps the most widely used modified BFGS method. Unfortunately, no global

convergence proof is known for this method.

We show Block BFGS converges for non-convex functions, and describe analogous modifica-

tions for block updates. The next theorem provides a framework for proving convergence in the

non-convex setting.
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Theorem 2.6.1. Assume f is twice differentiable and −MI � G(x) �MI for all x in the convex

hull of the level set {x ∈ Rn : f(x) ≤ f(x1)}. Suppose that {G̃k}∞k=1 is a sequence of symmetric

matrices satisfying, for all k, the conditions

1. −MI � G̃k �MI

2. For some constant η > 0, the matrixDk produced by FILTERSTEPS(Sk, G̃k) satisfiesDT
k G̃kDk �

ηDT
kDk

Then we may perform Block BFGS using the updates

Bk+1 = Bk −BkDk(D
T
kBkDk)

−1DT
kBk + G̃kDk(D

T
k G̃kDk)

−1DT
k G̃k

and Block BFGS converges in the sense that lim infk ‖gk‖ = 0.

Proof. The proof follows that of Theorem 2.4.1, with several changes. First, note that Lemma 2.3.2

implies that Bk+1 remains positive definite, since FILTERSTEPS ensures that DT
k G̃kDk is positive

definite. Observe that Lemma 2.4.3 continues to hold, as the condition −MI � G(x) � MI for

all x in the convex hull of the level set implies that the gradient g is Lipschitz with constant M . In

Lemma 2.4.4, take the constant c3 to be c3 = Tr(B1) + qM2

η
and notice that

Tr(G̃jDj(D
T
j G̃jDj)

−1DT
j G̃j) ≤

1

η
Tr(G̃jDj(D

T
j Dj)

−1DT
j G̃j) ≤

qM2

η

where the last inequality follows becauseDj(D
T
j Dj)

−1DT
j is the orthogonal projection onto Col(Dj)

and has rank qj ≤ q, and ‖G̃jDj(D
T
j Dj)

−1DT
j G̃j‖ ≤ ‖G̃j‖2 = M2.

The remainder of the proof is similar to Theorem 2.4.1.

Lemma 2.6.2. Assume f is twice differentiable and −MI � G(x) �MI for all x in the level set

{x ∈ Rn : f(x) ≤ f(x1)}. If DT
kGkDk satisfies σ2

i ≥ τ‖si‖2, where σi is the i-th diagonal entry

of the LΣLT decomposition of DT
kGkDk, then DT

kGkDk � ηDT
kDk for η = τq

qqMq−1 .
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Proof. Let G = Gk, D = Dk. Without loss of generality, we may assume the columns of D have

norm 1, as otherwise we can normalizeD by right-multiplying by a positive diagonal matrix. Then

the diagonal entries σ2
i of the LΣLT decomposition of DTGD satisfy σ2

i ≥ τ .

Order the eigenvalues of DTGD as λ1 ≥ λ2 ≥ . . . ≥ λq > 0. We have

λq =
det(DTGD)∏q−1

i=1 λi
≥ τ q

(qM)q−1
.

Since every column of D has norm 1, the eigenvalues of DTD are bounded by Tr(DTD) = q.

Hence I � 1
q
DTD and so DTGD � τq

(qM)q−1 I � τq

qqMq−1D
TD.

Block BFGS (Algorithm 1) satisfies the conditions of Lemma 2.6.2 when we take G̃k = Gk

and apply FILTERSTEPS (Algorithm 2). Thus Theorem 2.6.1 shows that Block BFGS converges

globally for non-convex functions. The filtering procedure is analogous to the cautious update (1)

of Li and Fukushima, and hence, it is possible, although very unlikely, that filtering will produce

an empty Dk. Hessian modification and Powell’s damping method can also be extended to block

updates.

2.7 Numerical Experiments

We evaluate the performance of several block quasi-Newton methods by generating a perfor-

mance profile [48], which can be described as follows. Given a set of algorithms S and a set of

problems P , let ts,p be the cost for algorithm s to solve problem p. For each problem p, let mp

be the minimum cost to solve p of any algorithm. A performance profile is a plot comparing the

functions

ρs(r) =
|{p ∈ P : ts,p/mp ≤ r}|

|P|

for all s ∈ S . Observe that ρs(r) is the fraction of problems in P that algorithm s solved within

a factor r of the cost of the best algorithm for problem p. As reference points, we include the

classical BFGS method and gradient descent in S .
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For our inexact line search, we used the function WolfeLineSearch from minFunc [49], a

mature and widely used Matlab library for unconstrained optimization. The line search parameters

were α = 0.1 and β = 0.75, and WolfeLineSearchwas configured to use interpolation with an

initial step size λ = 1 (options LS_type = 1,LS_init = 0,LS_interp = 1,LS_multi =

0).

From preliminary experiments, we found that large values of q tend to increase numerical

errors, eventually leading to search directions dk that are not descent directions. This effect is par-

ticularly pronounced when q ≥
√
n. The experiments in [31] also obtained the best performance

when bn1/4c ≤ q ≤
√
n. In creating performance profiles, we opted for q = bn1/3c.

2.7.1 Convex Experiments

We compared the methods listed below.

1. BFGS

2. Block BFGS Variant 1, or B-BFGS1

Block BFGS (Algorithm 1). We store the full inverse Hessian approximation Hk and com-

pute dk = −Hkgk by a matrix-vector product. We do not perform FILTERSTEPS, so the

update (2.3.4) uses all steps.

3. Block BFGS Variant 2, or B-BFGS2

Block BFGS (Algorithm 1), with Algorithm 2 and τ = 10−3. As in B-BFGS1, the full

Hessian approximation Hk is stored. Hk is updated by (2.3.4) using the steps returned by

Algorithm 2.

4. Block BFGS with q = 1, or B-BFGS-q1

This compares the effect of using a single sketching equation as in Block BFGS updates

versus using the standard secant equation of BFGS updates.

5. Rolling Block BFGS, or RB-BFGS
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See Section 2.3.2. We take a smaller value q = min{3, bn1/3c} for this method, and omit

filtering.

6. Gradient Descent, or GD

Each algorithm is considered to have solved a problem when it reduces the objective value

to less than some threshold fstop. The thresholds fstop are pre-computed for each problem p by

minimizing p with minFunc to obtain a near-optimal solution f∗, and setting fstop = f∗+ 0.01|f∗|.

We measure the cost ts,p in two metrics: the number of steps, and the amount of CPU time.

Every step s(i)
k is counted once when measuring the number of steps.

Logistic Regression Tests

As in [31], we ran tests on logistic regression problems, a common classification technique in

statistics. For our purposes, it suffices to describe the objective function. Given a set of m data

points (yi, xi), where yi ∈ {0, 1} is the class, and xi ∈ Rn is the vector of features of the i-th data

point, we minimize, over all weights w ∈ Rn, the loss function

L(w) = − 1

m

m∑
i=1

log φ(yi, xi, w) +
1

2m
wTQw (2.7.1)

φ(yi, xi, w) =


1

1+exp(−xTi w)
if yi = 1

1− 1
1+exp(−xTi w)

if yi = 0

where Q � 0 in the ’regularization’ term. Figure 2.1 shows the performance profiles for this test.

See Appendix 2.9 for a list of the data sets and our choices for Q.

In Figure 2.1, we see that the block methods B-BFGS1, B-BFGS2, and RB-BFGS all outper-

form BFGS in terms of the number of steps to completion. Considering the amount of CPU time

used, B-BFGS1 is competitive with BFGS, while B-BFGS2 and RB-BFGS are more expensive

than BFGS. This suggests that the additional curvature information added in block updates allows

Block BFGS to find better search directions, but at the cost of the update operation being more
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Figure 2.1: Logistic Regression profiles (ρs(r))

expensive. B-BFGS-q1 and BFGS exhibit very similar performance when measured in steps, so

there appears to be little difference between using a single sketching equation and a secant equation

on this class of problems.

Interestingly, B-BFGS1 outperformed B-BFGS2, indicating that steps are being removed from

the update, which would improve the search directions. The most likely explanation is that τ =

10−3 is excessively large relative to the eigenvalues of G(x).

Log Barrier QP Tests

We tested problems of the form

min
y∈Rs

F (y) =
1

2
yTQy + cTy − 1000

n∑
i=1

log(b− Ay)i (2.7.2)

where Q � 0, c ∈ Rs, b ∈ Rn, and A ∈ Rn×s. Note that the objective value is +∞ if y

does not satisfy Ay < b. In Appendix 2.9, we explain how to derive a log barrier problem from

a QP in standard form. See Figure 2.2 for the performance profile. Note that problems with a

barrier structure are atypical in the context of unconstrained minimization, and are usually solved

with specific interior point methods. However, they are somewhat interesting as they can be quite

challenging to solve.

Since∇2F (y) = Q+ 1000A
T
SA where S is diagonal with entries (b−Ay)−2

i , these problems

46



cost: number of steps

1 2 3 4 5 6 7 8
0

0.5

1

BFGS B-BFGS1 B-BFGS2 B-BFGS-q1 RB-BFGS GD

cost: time

1 2 3 4 5 6 7 8
0

0.5

1

Figure 2.2: Log Barrier QP profiles (ρs(r))

are often extremely ill-conditioned. This leads to issues when using WolfeLineSearch, as the

line search can require many backtracking iterations, or even fail completely, when the current

point is near the boundary of the log barrier. This causes particular issues with block updates, as

∇2F (y) has small numerical rank when S has a small number of extremely large entries. Conse-

quently, we removed problems from the test set which were ill-conditioned to the extent that even

after performing step filtering, the line search failed at some step before reaching the optimal solu-

tion. Quasi-Newton methods, and those using block updates with large q in particular, are poorly

suited for these ill-conditioned problems. However, although the standard BFGS method also can

fail on these problems, it is more robust than block methods.

2.7.2 Non-Convex Experiments

Since non-convex functions often have multiple stationary points, more complex behavior is

possible than in the convex case. For instance, one algorithm may generally require more steps

to converge, but may be taking advantage of additional information to help avoid spurious local

minima.

Let fp denote the best objective value obtained for problem p by any algorithm. To evaluate

both the early and asymptotic performance of our algorithms, we generated performance profiles

comparing the cost for each algorithm to reach a solution with objective value less than fp + ε|fp|

for ε = 0.2, ε = 0.1, and ε = 0.01. When |fp| is very small (for instance, |fp| < 10−10), we
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essentially have fp = 0 and treat all solutions with objective value within 10−10 as being optimal.

We compared four different algorithms for non-convex minimization:

1. Damped BFGS, or D-BFGS

Damped BFGS with φ = 0.2 (see Section 2.6).

2. Block BFGS, or B-BFGS

Block BFGS (Algorithm 1) with q = bn1/3c and τ = 10−5.

3. Block BFGS with q = 1, or B-BFGS-q1

Block BFGS (Algorithm 1) with q = 1 and τ = 10−5.

4. Gradient Descent, or GD

Hyperbolic Tangent Loss Tests

This is also a classification technique; however, unlike the logistic regression problems in Sec-

tion 2.7.1, these problems are generally non-convex. Given a set of m data points (yi, xi) where

yi ∈ {0, 1} is the class, and xi ∈ Rn the features, we seek to minimize over w ∈ Rn the loss

function

L(w) =
1

m

m∑
i=1

(
1− tanh(yix

T
i w)

)
+

1

2m
‖w‖2

Figure 2.3 presents performance profiles for ε = 0.2, 0.1, 0.01, with cost measured in both steps

and CPU time. See Appendix 2.9 for a list of the data sets.

B-BFGS and gradient descent perform well at first, making rapid progress to within 0.2|fp| of

fp in the fewest number of steps. B-BFGS continues to converge quickly, generally requiring the

fewest steps to reach 0.1|fp| and 0.01|fp| of fp, while gradient descent is overtaken by BFGS and

B-BFGS-q1.

Surprisingly, all four algorithms used nearly the same amount of CPU time, with each algorithm

completing a majority of problems after using only 1% more time than the fastest algorithm.

48



cost: number of steps

1 2 3 4
0

0.5

1

cost: number of steps

1 2 3 4
0

0.5

1

cost: number of steps

1 2 3 4
0

0.5

1

cost: time

1 1.005 1.01
0

0.5

1

cost: time

1 1.005 1.01
0

0.5

1

cost: time

1 1.005 1.01
0

0.5

1

D-BFGS B-BFGS B-BFGS-q1 GD

ǫ = 0.2 ǫ = 0.1 ǫ = 0.01

ǫ = 0.2 ǫ = 0.1 ǫ = 0.01

Figure 2.3: Hyperbolic Tangent Loss profiles (ρs(r))

Standard Benchmark Tests

This test used 19 functions from the test collection of Andrei [50], many of which originate

from the CUTEst test set. The functions are listed below, with the number of variables n in paren-

theses:

arwhead (300), bdqrtic (200), cube (400), diag1 (250), dixonprice (200), edensch

(300), eg2 (400), explin2 (200), fletchcr (400), genhumps (250), indef (250), mccormick

(400), raydan1 (400), rosenbrock (300), sine (400), sinquad (400), tointgss (200),

trid (200), whiteholst (300).

The gradients and Hessians were computed using the automatic differentiation program ADi-

Gator [51].

For each of these functions, we generated 6 random starting points and tested the 4 algorithms

using each starting point, for a total of 114 problems. Figure 2.4 presents performance profiles for

ε = 0.2, 0.1, 0.01, with cost measured in steps. We see from Figure 2.4 that D-BFGS consistently

outperforms B-BFGS-q1, which suggests that Powell’s damping method is superior to cautious

updates.
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Figure 2.4: Standard Benchmark profiles (ρs(r))

2.8 Concluding Remarks

We have shown that Block BFGS provides the same theoretical rate of convergence as the

classical BFGS method. Further investigation is needed to determine how Block BFGS performs

on a wider range of real problems. In our experiments, we focused on a very basic implementation

of Block BFGS, but many simple heuristics for improving performance and numerical stability

are possible. In particular, it is important to select good values of q and τ based on insights from

the problem domain. We also briefly investigated the effect of using the action of the Hessian on

the previous step versus the change in gradient over the previous step (as in classical BFGS) in

constructing the update. Further study of the benefits and drawbacks of such an approach would

be of interest, as would study of parallel implementation. We hope that this work will serve as a

useful foundation for future research on quasi-Newton methods using block updates.

2.9 Supplementary: Details of Experiments

2.9.1 Logistic Regression Tests (2.7.1)

The following 18 data sets from LIBSVM [52] were used:

a1a, a2a, a3a, a4a, australian, colon-cancer, covtype, diabetes, duke, ionosphere-scale,

madelon, mushrooms, sonar-scale, splice, svmguide3, w1a, w2a, w3a.

Each data set was partitioned into 3 disjoint subsets with at most 2000 points. For each subset,

50



we have a problem of the form (2.7.1) with the standard L2 regularizer Q = I , producing 54

standard problems. An additional 96 problems with Q = I + Q′ were produced by adding a

randomly generated convex quadraticQ′ to one of the standard problems. Two such problems were

produced for each standard problem, except those from duke and colon-cancer (omitted for

problem size).

2.9.2 Log Barrier QP Tests (2.7.1)

Given a convex quadratic program min
x∈Rn
{1

2
xTQx + cTx | Ax = b, x ≥ 0}, we derive a log

barrier QP problem as follows. Taking a basis N for the null space of A (of dimension s), and a

solution Ax0 = b, x0 ≥ 0, the given QP is equivalent to min
y∈Rs
{1

2
yTQy + cTy | Ay ≤ b}, where

Q = NTQN, c = NT (c + Qx0), b = x0 and A = −N . Replacing the constraint by a log barrier

−µ
∑n

i=1 log(b− Ay)i (with µ = 1000), we obtain problem (2.7.2).

This test included 43 problems in total. There were 35 log barrier problems derived from the

QP test collection of Maros and Mészáros [53]:

cvxqp1_m, cvxqp1_s, cvxqp2_m, cvxqp2_s, cvxqp3_m, cvxqp3_s, dual1, dual2,

dual3, dual4, primal1, primal3, primal4, primalc1, primalc2, primalc5, primalc8,

q25fv47, qbeaconf, qgrow15, qgrow22, qgrow7, qisrael, qscagr7, qscfxm1, qscfxm2,

qscfxm3, qscorpio, qscrs8, qsctap1, qsctap3, qshare1b, qship08l, stadat1,

stadat2.

An additional 8 problems were derived from the following LP problems in the COAP collection

[54]: adlittle, agg, agg2, agg3, bnl1, brandy, fffff800, ganges.

2.9.3 Hyperbolic Tangent Loss Tests (2.7.2)

This test used the same data sets as the logistic regression test, with duke omitted because of

large problem size (n = 7130). As in the logistic regression test, each data set was partitioned into

3 subsets with at most 2000 points, producing 51 loss functions. For each loss function, we tried 4

random starting points, for a total of 204 problems.
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Chapter 3: Superlinear Convergence Without Line Searches for

Self-Concordant Functions

3.1 Introduction

We are concerned in this paper with iterative optimization algorithms, which at each step, first

select a direction dk and then determine a step size tk. Such algorithms, which are usually referred

to as line search algorithms, need to choose an appropriate step size tk to perform well, both in

theory and in practice.

Theoretical proofs of global convergence generally assume one of the following approaches

for selecting the step sizes:

1. The step sizes are obtained from line searches.

2. The step size is a constant, often chosen ‘sufficiently small’.

Inexact line searches, and in particular those that choose steps that satisfy the Armijo-Wolfe con-

ditions, or just the latter combined with backtracking, are usually performed and work well in

practice. However, they can be costly to perform, and are often prohibitively costly for many

common objective functions such as those that arise in machine learning, computer vision, and

natural language processing. Moreover, in stochastic optimization algorithms, line searches based

on stochastic function values and gradients, which are only estimates of the true quantities (see

Section 3.8), can be meaningless. In contrast, constant step sizes tk = t for all k require no addi-

tional computation beyond selecting t, but determining an appropriate constant t may be difficult.

The value of t required in the theoretical analysis is often too small for practical purposes, and

moreover, is impossible to compute without knowledge of unknown parameters (e.g. the Lips-

chitz constant of ∇f ). A single constant step size may also be highly suboptimal, as the iterates
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transition between regions with different curvature.

The basic idea for a step size determined by the local curvature of the objective function f

was developed by Nesterov, who introduced the damped Newton method [33]. This idea is closely

related to a well-behaved class of functions known as self-concordant functions [55], which we

define in Section 3.3. When applied to a self-concordant function f , the damped Newton method

is globally convergent and locally converges quadratically. These results were extended in recent

work.

1. Tran-Dinh et al. [56] propose a proximal framework for composite self-concordant min-

imization, which includes proximal damped Newton, proximal quasi-Newton, and proxi-

mal gradient descent. They establish that proximal damped Newton is globally convergent

and locally quadratically convergent, and that proximal damped gradient descent is globally

convergent and locally linearly convergent. However, they do not propose a proximal quasi-

Newton algorithm or prove global convergence for a generic version of such an algorithm.

2. Zhang and Xiao [57] propose a distributed method for self-concordant empirical loss func-

tions, based on the damped Newton method, and establish its convergence.

3. Lu [58] proposes a randomized block proximal damped Newton method for composite self-

concordant minimization, and establishes its convergence.

While the damped Newton method has been extensively studied, no comparable theory ex-

ists for quasi-Newton methods in the self-concordant setting. It is well known that for convex

functions, proving global convergence for the BFGS method [59, 25, 23, 26] with inexact line

searches is far more challenging than proving global convergence for scaled gradient methods,

and that a similar statement holds for the Q-superlinear convergence of the BFGS method applied

to strongly convex functions compared with, for example, proving Q-quadratic convergence of

Newton’s method. With regard to Q-superlinear convergence, it is well known [41] that if the the

largest eigenvalue of the Hessian of the objective is bounded above, and if the sum of the distances

of the iterates generated by the BFGS method from the global minimizer is finite, then the BFGS
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method converges Q-superlinearly. We note that Tran-Dinh et al. [56] give a proof of this local

result for their “pure"-proximal-BFGS method (i.e., one that uses a step size of 1 on every iteration

and starts from a point “close" to the global minimizer), but they do not prove that this method

generates iterates satisfying the required conditions. This leaves open the question of how to de-

sign a globally convergent “dampled” version of the BFGS method for self-concordant functions.

In particular, we wish to avoid assuming either the Dennis-Moré condition [43] or the summability

of the distances to the global minmizer, since these conditions are extremely strong, verging on

being tautological, as assumptions.

In this paper we extend the theory of self-concordant minimization developed by Nesterov and

Nemirovski [55] and further developed by Tran-Dinh et al. [56]. Our focus here is mainly on

filling the gap in this theory for quasi-Newton methods. To simplify the presentation, we consider

only quasi-Newton methods that use the BFGS update, although our results apply to all methods in

the Broyden class of quasi-Newton methods other than the DFP method [28, 29]. We introduce a

framework for non-composite optimization; i.e., we do not consider proximal methods as in [56].

The key feature of this framework is a step size that is optimal with respect to an upper bound on

the decrease in the objective value, which we call the curvature-adaptive step size. We use the term

curvature-adaptive, or simply adaptive, to refer to this step size choice or to methods that employ

it, so as not to confuse such methods with damped BFGS updating methods (e.g., see [60, §18.3]),

which are unrelated.

We first prove that scaled gradient methods that use the curvature-adaptive step size are glob-

ally R-linearly convergent on strongly convex self-concordant functions. We note that in [56],

this step size is also identified, but that the R-linear convergence is only proved locally. We then

prove our main result, on quasi-Newton methods: that the BFGS method, using this step size, is

globally convergent for functions that are self-concordant, bounded below, and have a bounded

Hessian, and furthermore, is Q-superlinearly convergent when the function is strongly convex and

self-concordant. For completeness, we then present several numerical experiments which shed in-

sight on the behavior of adaptive methods. These show that for deterministic optimization, using
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curvature-based step sizes in quasi-Newton methods is dominated by using inexact line searches,

whereas in stochastic settings, using curvature-based step sizes is very helpful compared to con-

stant step sizes.

Our paper is organized as follows. In Section 3.2, we introduce the notation and assump-

tions that we use throughout the paper. In Section 3.3, we define the class of self-concordant

functions and describe their essential properties. In Section 3.4, we introduce our framework for

self-concordant minimization and provide a derivation of what we call the curvature-adaptive step

size, which extends the curvature-based step size obtained in [56] for proximal gradient methods.

In Section 3.5, we apply our approach to scaled gradient methods, and give a simple proof that

these methods are globally R-linearly convergent on strongly convex self-concordant functions.

In Section 3.6, we present our main results. Specifically, we prove there that the BFGS method

with curvature-adaptive step sizes is globally and Q-superlinearly convergent. In Section 3.8, we

discuss stochastic extensions of adaptive methods. In Section 3.9.1, we present numerical ex-

periments testing our new methods on logistic regression problems in the deterministic setting.

In Section 3.9.2, we provide a numerical example of solving an online stochastic problem using

stochastic adaptive methods.

3.2 Preliminaries

We use f : Rn → R to denote the objective function, and g(·), G(·) denote the gradient ∇f(·)

and Hessian ∇2f(·), respectively. In the context of a sequence of points {xk}∞k=0, we write gk for

g(xk) and Gk for G(xk). Unless stated otherwise, the function f is assumed to have continuous

third derivatives (as f is generally assumed to be self-concordant), which we write as f ∈ C3.

The norm ‖ · ‖ denotes the 2-norm, and when applied to a matrix, the operator 2-norm.

3.3 Self-Concordant Functions

The notion of self-concordant functions was first introduced by Nesterov and Nemirovski [55]

for their analysis of Newton’s method in the context of interior-point methods. Nesterov [33]
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provides a clear exposition and motivates self-concordancy by observing that, while Newton’s

method is invariant under affine transformations, the convergence analysis makes use of norms

which are not invariant. To remedy this, Nesterov and Nemirovski replace the Euclidean norm by

an invariant local norm, and replace the assumption of Lipschitz continuity of the Hessian G(x) by

the self-concordancy of f .

Definition. Let f be a convex function. The local norm of h ∈ Rn at a point x where G(x) � 0 is

given by

‖h‖x =
√
hTG(x)h.

Definition. A closed convex function f : Rn → R is self-concordant if f ∈ C3 and there exists a

constant κ such that for every x ∈ Rn and every h ∈ Rn, we have

|∇3f(x)[h, h, h]| ≤ κ(∇2f(x)[h, h])3/2.

If κ = 2, f is standard self-concordant. Any self-concordant function can be scaled to be standard

self-concordant; the scaled function 1
4
κ2f is standard self-concordant. Hence, we assume all self-

concordant functions have κ = 2, unless stated otherwise.

There is also an equivalent definition which is frequently useful.

Theorem 3.3.1 (Lemma 4.1.2, [33]). A closed convex function f is self-concordant if and only if

for every x ∈ Rn and all u1, u2, u3 ∈ Rn, we have

|∇3f(x)[u1, u2, u3]| ≤ 2
3∏
i=1

‖ui‖x.

The next inequalities are fundamental for self-concordant functions. These results are well

known (see [33, §4.1.4]), but for completeness, we provide a proof.

Lemma 3.3.2. Let f be standard self-concordant and strictly convex, and let x ∈ Rn and 0 6= d ∈
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Rn. Let δ = ‖d‖x. Then for all t ≥ 0,

f(x+ td) ≥ f(x) + tg(x)Td+ δt− log(1 + δt) (3.3.1)

and

g(x+ td)Td ≥ g(x)Td+
δ2t

1 + δt
. (3.3.2)

For all 0 ≤ t < 1
δ
,

f(x+ td) ≤ f(x) + tg(x)Td− δt− log(1− δt) (3.3.3)

and

g(x+ td)Td ≤ g(x)Td+
δ2t

1− δt
. (3.3.4)

Proof. Define φ : R → R by φ(t) = dT∇2f(x + td)d. Since f has continuous third deriva-

tives, φ(t) is continuously differentiable and from the definition of self-concordancy, its derivative

satisfies

|φ′(t)| = |∇3f(x+ td)[d, d, d]| ≤ 2(∇2f(x+ td)[d, d])3/2 = 2φ(t)3/2. (3.3.5)

Moreover, since f is strictly convex and d 6= 0, φ(t) > 0 for all t. Therefore, from (3.3.5),

| d
dt
φ(t)−1/2| = 1

2
|φ(t)−3/2φ′(t)| ≤ 1.

Defining ψ(s) = d
dt
φ(t)−1/2

∣∣
t=s

, the above inequality is equivalent to |ψ(s)| ≤ 1. By Taylor’s

Theorem, there exists a point u ∈ (0, t) such that φ(t)−1/2 − φ(0)−1/2 = tψ(u). Since |ψ(u)| ≤ 1,

we deduce that

φ(0)−1/2 − t ≤ φ(t)−1/2 ≤ φ(0)−1/2 + t.

Note that δ = φ(0)1/2. Rearranging the upper bound, we find that for all t ≥ 0,

φ(t) ≥ δ2

(1 + δt)2
. (3.3.6)
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Similarly, we find that for 0 ≤ t < 1
δ
,

φ(t) ≤ δ2

(1− δt)2
. (3.3.7)

Integrating (3.3.6) yields the inequalities (3.3.1), (3.3.2), and integrating (3.3.7) produces (3.3.3),

(3.3.4).

3.4 Curvature-Adaptive Step Sizes

We define a general framework for an iterative method with step sizes determined by the local

curvature. At each step, we compute a descent direction dk = −Hkgk, where Hk is a positive

definite matrix, and a step size

tk =
ρk

(ρk + δk)δk
,

where

δk = ‖dk‖xk

and

ρk = gTkHkgk.

We then advance to the point xk+1 = xk + tkdk.

We will refer to the above step size tk as the curvature-adaptive step size, or simply the adaptive

step size. A method within our framework will be referred to as an adaptive method. A generic

method in this framework is specified in Algorithm 3.

Note that this framework encompasses several classical methods. When Hk = I for all k, the

resulting method is gradient descent. When Hk = G−1
k , we recover the damped Newton method

proposed by Nesterov. WhenHk is an approximation ofG−1
k obtained by applying a quasi-Newton

updating formula, the resulting method is a quasi-Newton method. In particular, we will focus on

the case where Hk evolves according to the BFGS update formula. We also note that in all variants

other than the damped Newton method, we do not access the full Hessian matrixGk at any step, but
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Algorithm 3 Adaptive Iterative Method
input: x0, H0, variant

1: for k = 0, 1, 2, . . . do
2: Set dk ← −Hkgk
3: Set ρk ← −gTk dk
4: Set δ2

k ← dTkGkdk
5: Set tk ← ρk

(ρk+δk)δk
6: Set xk+1 ← xk + tkdk
7: if variant (i): gradient descent then
8: Hk+1 ← I
9: end if

10: if variant (ii): Newton then
11: Hk+1 = G−1

k+1

12: end if
13: if variant (iii): BFGS then
14: Use standard BFGS formula (3.6.1) to compute Hk+1

15: end if
16: if variant (iv): L-BFGS then
17: Update L-BFGS curvature pairs
18: end if
19: end for

only the action of Gk on the direction dk, which typically requires a computational effort similar

to that required to compute the gradient gk.

Using the results of Section 3.3, we now show that the curvature-adaptive step size tk =

ρk
(ρk+δk)δk

in Algorithm 3 maximizes a lower bound on the decrease in f obtained by taking a

step in the direction dk.

Lemma 3.4.1. Suppose f is self-concordant and strictly convex. At iteration k of Algorithm 3,

taking the step tkdk, where dk = −Hkgk and tk = ρk
(ρk+δk)δk

, yields the point xk+1 = xk + tkdk at

which the objective function f(xk+1) satisfies

f(xk+1) ≤ f(xk)− ω(ηk) (3.4.1)

where

ηk =
ρk
δk
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and ω : R→ R is the function ω(z) = z − log(1 + z).

Moreover, the step size tk minimizes the upper bound (3.3.3) on f(xk+1) provided by Lemma 3.3.2.

Proof. We fix the index k and omit the subscripts for brevity. First, observe that

0 ≤ t =
ρ

(ρ+ δ)δ
<

1

δ
.

Therefore, we can apply inequality (3.3.3) to f(x + td). Noting that ρ = −gTd, (3.3.3) can be

written as f(x + td) ≤ f(x)−∆(t) where ∆(·) is defined to be the function ∆(τ) = (ρ + δ)τ +

log(1− δτ). For the curvature-adaptive step size t, it is easily verified that

∆(t) = ∆

(
ρ

(ρ+ δ)δ

)
=
ρ

δ
+ log

(
δ

ρ+ δ

)
=
ρ

δ
− log

(
1 +

ρ

δ

)
= ω(η).

Furthermore, for 0 ≤ τ < 1
δ
, d
dτ

∆(τ) = ρ + δ − δ
1−δτ and d2

dτ2
∆(τ) = − δ2

(1−δτ)2
. We find that

d
dτ

∆(t) = 0 and d2

dτ2
∆(t) ≤ 0, which implies that ∆ is maximized at τ = t = ρ

(ρ+δ)δ
.

Since ω(η) = η − log(1 + η) is positive for all η > 0, it follows that if lim supk ηk > 0, then

f(xk)→ −∞. This simple fact will be crucial in our convergence analysis.

Lemma 3.4.2. If, in addition to the assumptions in Lemma 3.4.1, f is bounded below, then ηk =

ρk
δk
→ 0 for any of the adaptive variants in Algorithm 3.

Proof. By Lemma 3.4.1, f(xk) satisfies f(xk) ≤ f(x0)−
∑k−1

j=0 ω(ηj). Suppose that lim supk ηk >

0. Since the function ω(η) is positive and monotonically increasing for η > 0, we have lim supk ω(ηk) =

ω(lim supk ηk) > 0. Hence f(xk)→ −∞, a contradiction.

In terms of gk, Hk, and Gk, the adaptive step size tk can be expressed as

tk =
gTkHkgk

gTkHkGkHkgk + gTkHkgk
√
gTkHkGkHkgk

.

This formula relates tk to the local curvature. When the curvature of f in the direction dk = −Hkgk

is relatively flat, the local norm ‖dk‖xk =
√
gTkHkGkHkgk is small, and the adaptive step size tk
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will be large. Conversely, when the curvature of f in the direction dk is steep, tk will be small.

Intuitively, this is precisely the desired behavior for a step size, since we wish to take larger steps

when the function changes slowly, and smaller steps when the function changes rapidly.

3.5 Scaled Gradient Methods

We first consider the class of methods where the matricesHk are positive definite and uniformly

bounded above and below. That is, there exist positive constants λ,Λ such that for every k ≥ 0,

λI � Hk � ΛI. (3.5.1)

The convergence analysis is rather straightforward, as seen in the proofs of the following two

theorems for these methods.

Theorem 3.5.1. If f is self-concordant, strictly convex, bounded below, and the Hessian satisfies

G(x) �MI on the level set Ω = {x : f(x) ≤ f(x0)}, then any adaptive method (Algorithm 3) for

which the matrices Hk satisfy equation (3.5.1) converges globally in the sense that lim
k→∞
‖gk‖ = 0.

Proof. Since Hk is positive definite, H1/2
k exists and we may define zk = H

1/2
k gk. Observe that

ηk =
gTkHkgk√

gTkHkGkHkgk
=

zTk zk√
zTk (H

1/2
k GkH

1/2
k )zk

≥ ‖zk‖√
ΛM

≥
√

λ

ΛM
‖gk‖ (3.5.2)

where we have used the fact that the maximum eigenvalue of H1/2
k GkH

1/2
k is bounded by ΛM . By

Lemma 3.4.2, ηk → 0. Therefore ‖gk‖ → 0.

If in addition, f is strongly convex with mI � G(x) for m > 0, then an adaptive method

satisfying equation (3.5.1) is globally R-linearly convergent. The proof uses the fact that strongly

convex functions satisfy the Polyak-Łojasiewicz inequality (Lemma 2.5.3).

We are now ready to prove the R-linear convergence of adaptive scaled gradient methods.
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Theorem 3.5.2. If f is self-concordant and strongly convex (so there exist constants 0 < m ≤ M

such that mI � G(x) � MI for all x ∈ Ω), then an adaptive method (Algorithm 3) for which

the matrices Hk satisfy equation (3.5.1) is globally R-linearly convergent. That is, there exists a

positive constant γ < 1 such that f(xk+1)− f(x∗) ≤ γ(f(xk)− f(x∗)) for all k.

Proof. Since ηk → 0 by Lemma 3.4.2, the sequence {ηk}∞k=0 is bounded. Let Γ = supk ηk < ∞,

and let c = 1
2(1+Γ)

. Observe that ω(z) = z − log(1 + z) ≥ cz2 for 0 ≤ z ≤ Γ, as ω(0) = 0 and

d
dz

(ω(z)− cz2) = z(1−2c−2cz)
1+z

, which is non-negative for 0 ≤ z ≤ Γ. Hence, since ηk ≤ Γ for all k,

we have

f(xk+1)− f(x∗) ≤ f(xk)− f(x∗)− ω(ηk) ≤ f(xk)− f(x∗)− cη2
k

≤ f(xk)− f(x∗)−
cλ

ΛM
‖g(xk)‖2

≤
(

1− λm

Λ(1 + Γ)M

)
(f(xk)− f(x∗))

where the first line follows from inequality (3.3.3), the second from inequality (3.5.2), and the third

from Lemma 2.5.3. Taking γ = 1− λm
Λ(1+Γ)M

, we obtain the desired R-linear convergence.

3.5.1 Adaptive Gradient Descent

When Hk = I for all k in Algorithm 3, the method corresponds to gradient descent with adap-

tive step sizes that incorporate second-order information. This strategy for selecting analytically

computable step sizes may have several advantages in practice. Using second-order information al-

lows a better local model of the objective function. The classical analysis of gradient descent with

a fixed step size also generally requires a sufficiently small step size in order to guarantee conver-

gence. This step size is a function of the Lipschitz constant for the gradient g(x), which is either

unknown or impractical to compute. The step size needed to ensure convergence in theory is also

often impractically tiny, leading to slow convergence in practice. For the class of self-concordant

functions, an adaptive step size can be easily computed without knowledge of any constants, and

still provides a theoretical guarantee of convergence, which is a significant advantage.
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A proximal gradient descent method with adaptive step sizes was studied by Tran-Dinh et al.

[56], who proved the method to be globally convergent for self-concordant functions, and locally

R-linearly convergent for strongly convex self-concordant functions. However, our convergence

analysis above employs different techniques from those in [56], and in particular, we obtain the

following theorem, which shows that the adaptive gradient descent method is globally R-linearly

convergent, as an immediate corollary of Theorem 3.5.1 and Theorem 3.5.2:

Theorem 3.5.3. Suppose that f is self-concordant, strictly convex, bounded below, and G(x) �

MI on the level set Ω = {x ∈ Rn : f(x) ≤ f(x0)}. Then the adaptive gradient descent method

converges in the sense that limk→∞ ‖gk‖ = 0. Furthermore, if f is strongly convex on Ω, then the

adaptive gradient descent method is globally R-linearly convergent.

3.5.2 Adaptive L-BFGS

The limited-memory BFGS algorithm (L-BFGS, [40]) stores a fixed number of previous cur-

vature pairs (sk, yk), where sk = xk+1 − xk and yk = gk+1 − gk, and computes dk = −Hkgk

from the curvature pairs using a two-loop recursion [61]. It is well known that L-BFGS satisfies

equation (3.5.1). In [31], the following bounds are obtained.

Theorem 3.5.4 (Lemma 1, [31]). Suppose that f is strongly convex, with mI ≤ G(x) ≤ MI . Let

` be the number of curvature pairs stored by the L-BFGS method. Then the matrices Hk satisfy

λI � Hk � ΛI,

where λ = (1 + `M)−1 and Λ = (1 +
√
κ)2`

(
1 + 1

m(2
√
κ+κ)

)
for κ = M/m.

Hence, it follows immediately from Theorem 3.5.1 and Theorem 3.5.2 that:

Theorem 3.5.5. Suppose that f is self-concordant, strongly convex, andmI � G(x) �MI on the

level set Ω = {x ∈ Rn : f(x) ≤ f(x0)}. Then the adaptive L-BFGS method is globally R-linearly

convergent.
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We note that, as with gradient descent, it is well known that the L-BFGS method converges

if inexact Armijo-Wolfe line searches are performed, or a sufficiently small fixed step size, that

depends on the Lipschitz constant of g(x), is used.

3.6 Adaptive BFGS

IfHk is chosen to approximate (∇2f(xk))
−1, then we obtain quasi-Newton methods with adap-

tive step sizes. In particular, we may iteratively update Hk using the BFGS update formula, which

we briefly describe. Let sk = xk+1 − xk and yk = gk+1 − gk. The BFGS update sets Hk+1 to be

the nearest matrix to Hk (in a variable metric) satisfying the secant equation Hk+1yk = sk[23]. It

is well known that Hk+1 has the following expression in terms of Hk, sk and yk:

Hk+1 =
sks

T
k

yTk sk
+

(
I − sky

T
k

yTk sk

)
Hk

(
I − yks

T
k

yTk sk

)
. (3.6.1)

3.6.1 Superlinear Convergence of Adaptive BFGS

The convergence analysis of the classical BFGS method [41, 27] assumes that the method uses

inexact line searches satisfying the Armijo-Wolfe conditions: for constants c1, c2 ∈ (0, 1) with

c1 <
1
2

and c1 < c2, the step size tk should satisfy

f(xk + tkdk) ≤ f(xk) + c1tkg
T
k dk (Armijo condition) (3.6.2)

and

g(xk + tkdk)
Tdk ≥ c2g

T
k dk. (Wolfe condition) (3.6.3)

Under the assumption of Armijo-Wolfe line searches, Powell [41] proves the following global

convergence theorem for BFGS.

Theorem 3.6.1 (Lemma 1, [41]). If the BFGS algorithm with Armijo-Wolfe inexact line search is

applied to a convex function f(x) that is bounded below, if x0 is any starting vector and H0 is any
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positive definite matrix, and if the Hessian G(x) satisfies G(x) � MI for all x in the level set

Ω = {x : f(x) ≤ f(x0)}, then the limit

lim inf
k→∞

‖gk‖ = 0 (3.6.4)

is obtained.

In our setting, f is a self-concordant and strictly convex function that is bounded below and

satisfies G(x) � MI . In order to prove that adaptive BFGS is convergent in the sense of the

limit (3.6.4), it suffices to show that the adaptive step sizes tk satisfy the Armijo condition for

any c1 <
1
2
, and eventually satisfy the Wolfe condition for any c2 < 1 (i.e. there exists some k0

such that the Wolfe condition is satisfied for all k ≥ k0). Specifically, we prove the following two

theorems that apply to every adaptive method described by Algorithm 3.

Theorem 3.6.2. Let f be self-concordant and strictly convex. The curvature-adaptive step size

tk = ρk
(ρk+δk)δk

satisfies the Armijo condition for any c1 ≤ 1
2
.

Proof. Let c1 ≤ 1
2
. We aim to prove that f(xk+1) ≤ f(xk) + c1tkg

T
k dk. By Lemma 3.4.1,

f(xk+1) ≤ f(xk)− ω(ηk). Therefore, it suffices to prove that

ω(ηk) ≥ −
1

2
tkg

T
k dk.

For brevity, we omit the index k. Notice that

−tgTd = tgTHg = tρ =
ρ2

(ρ+ δ)δ
=

ρ2/δ2

ρ/δ + 1
=

η2

1 + η
.

Therefore, we must prove that for η ≥ 0,

ω(η) = η − log(1 + η) ≥ 1

2

η2

1 + η
.
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Define ζ(z) = z − log(1 + z)− 1
2
z2

1+z
. Observe that ζ(0) = 0 and

d

dz
ζ(z) = 1− 1

1 + z
− 1

2

z2 + 2z

(1 + z)2
=

1

2

z2

(1 + z)2
.

Since d
dz
ζ(z) ≥ 0 for all z ≥ 0, we conclude that ω(η) ≥ 1

2
η2

1+η
for all η ≥ 0. This completes the

proof.

Theorem 3.6.3. Let f be self-concordant, strictly convex, and bounded below. Suppose that

{xk}∞k=0 is a sequence of iterates generated by Algorithm 3. For any 0 < c2 < 1, there exists

an index k0 such that for all k ≥ k0, the curvature-adaptive step size tk satisfies the Wolfe condi-

tion.

Proof. We aim to prove that gTk+1dk ≥ c2g
T
k dk. This is equivalent to g(xk+tkdk)

Tdk−g(xk)
Tdk ≥

−(1− c2)g(xk)
Tdk = (1− c2)ρk. By inequality (3.3.2) with δ = δk and t = tk, we have

g(xk + tkdk)
Tdk − g(xk)

Tdk ≥
δ2
ktk

1 + δktk
=

δkρk
2ρk + δk

=
1

1 + 2ηk
ρk. (3.6.5)

Since f is bounded below, Lemma 3.4.2 implies that η → 0, and hence there exists some k0 such

that 1
1+2ηk

≥ 1− c2 for all k ≥ k0.

Note that the assumption of strict convexity also implies that yTk sk > 0, so the BFGS update is

well-defined.

We can now immediately apply Theorem 3.6.1 to deduce that adaptive BFGS is convergent.

Since there always exists an index k0 such that the Armijo-Wolfe conditions are satisfied for all

k ≥ k0, we can consider the subsequent iterates {xk}∞k=k0
as arising from the classical BFGS

method with initial matrix Hk0 .

Theorem 3.6.4. Let f be self-concordant, strictly convex, bounded below, whose Hessian satisfies

G(x) �MI for all x ∈ Ω. Then for the adaptive BFGS method, lim infk→∞ ‖gk‖ = 0.

It is also possible to directly prove Theorem 3.6.4 by analyzing the evolution of the trace and
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determinant of Hk, but the resulting proof, which is quite long, does not provide clarity on the

essential properties of the adaptive step size.

It is well known that if the objective function f is strongly convex, then the classical BFGS

method converges Q-superlinearly. Let us now assume that f is strongly convex, so there exist

constants 0 < m ≤M with mI � G(x) �MI for all x ∈ Ω. Let x∗ denote the unique minimizer

of f .

Theorem 3.6.5 (Lemma 4, [41]). Let f be strongly convex, and let {xk}∞k=0 be the sequence of

iterates generated by the BFGS method with inexact Armijo-Wolfe line searches. Then
∑∞

k=0 ‖xk−

x∗‖ <∞.

Since the adaptive step size tk eventually satisfies the Armijo-Wolfe conditions, the same holds

for BFGS with adaptive step sizes.

Theorem 3.6.6. Let f be self-concordant and strongly convex. The sequence of iterates {xk}∞k=0

produced by adaptive BFGS satisfies
∑∞

k=0 ‖xk − x∗‖ <∞.

In the proof of superlinear convergence for the classical BFGS method, it is assumed that the

Hessian G(x) is Lipschitz continuous. However, it is unnecessary to make this assumption in our

setting, as G(x) is necessarily Lipschitz when f is self-concordant and G(x) is bounded above.

This fact is not difficult to establish, but we provide a proof for completeness.

Theorem 3.6.7. If f is self-concordant and satisfies G(x) � MI for all x ∈ Ω, then G(x) is

Lipschitz continuous on Ω, with constant 2M3/2.

Proof. Let x, y ∈ Ω, and let e = x− y. Let v ∈ Rn be any unit vector. By Taylor’s Theorem, we

have

vTG(x)v = vTG(y)v +

∫ 1

0

∇3f(y + τe)[v, v, e]dτ.

67



Hence, by Theorem 3.3.1,

|vT (G(x)−G(y))v| ≤
∫ 1

0

|∇3f(y + τe)[v, v, e]|dτ

≤ 2

∫ 1

0

vTG(y + τe)v
√
eTG(y + τe)edτ

≤ 2

∫ 1

0

M3/2‖e‖dτ = 2M3/2‖x− y‖.

Therefore, the eigenvalues of G(x)−G(y) are bounded in norm by 2M3/2‖x− y‖. It follows that

‖G(x)−G(y)‖ ≤ 2M3/2‖x− y‖, so G(x) is Lipschitz continuous.

It is well known that the BFGS method is invariant under an affine change of coordinates, so

we may assume without loss of generality that G(x∗) = I . This corresponds to considering the

function f̃(x̃) = f(G(x∗)
−1/2x̃) and performing a change of coordinates x̃ = G(x∗)

1/2x. By [33,

Theorem 4.1.2], the function f̃ is also self-concordant, with the same κ as for f .

To complete the proof of superlinear convergence, we use results established by Dennis and

Moré [43] and Griewank and Toint [44]. In [44, §4], Griewank and Toint prove that, given Theo-

rem 3.6.6 and Lipschitz continuity of G(x) (Theorem 3.6.7), the following limit holds:

lim
k→∞

‖(Bk − I)dk‖
‖dk‖

= 0 (3.6.6)

Furthermore, the argument in [44] shows that both {‖Bk‖}∞k=0 and {‖Hk‖}∞k=0 are bounded. Writ-

ing Bkdk = −gk and −dk = Hkgk, and using the fact that ‖dk‖ ≤ ‖Hk‖‖gk‖ ≤ Γ‖gk‖, where Γ is

an upper bound on the sequence of norms {‖Hk‖}∞k=0, we have an equivalent limit

lim
k→∞

‖Hkgk − gk‖
‖gk‖

= 0 (3.6.7)

This enables us to prove that the adaptive step sizes tk converge to 1, which is necessary for

superlinear convergence.

Theorem 3.6.8. The curvature-adaptive step sizes tk in the adaptive BFGS method converge to 1.
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Proof. We omit the index k for brevity, and define u = Hg − g. Since t can be expressed as

t = η/δ
1+η

, and we have from Lemma 3.4.2 that η → 0, it suffices to show that η
δ

converges to 1.

η

δ
=

ρ

δ2
=

gTHg

gTHGHg

=
gTg + gTu

gTGg + 2gTGu+ uTGu

=
1 + gTu

gT g

gTGg
gT g

+ 2g
TGu
gT g

+ uTGu
gT g

The limit (3.6.7) implies that ‖u‖‖g‖ → 0. Hence, the Cauchy-Schwarz inequality and the upper

bound G(x) �MI imply that g
Tu
gT g

, g
TGu
gT g

, u
TGu
gT g

converge to 0. Since G = G(xk) and xk → x∗, we

have G→ I , and therefore gTGg
gT g
→ 1. It follows that η

δ
, and therefore t, converges to 1.

We now make a slight modification to the Dennis-Moré characterization of superlinear conver-

gence. Using the triangle inequality twice and the fact that G(x∗) = I , we obtain

‖(Bk − I)sk)‖
‖sk‖

=
‖tkgk+1 − tkgk −G(x∗)sk − tkgk+1‖

‖sk‖

≥ tk
‖gk+1‖
‖sk‖

− ‖tkgk+1 − tkgk − tkG(x∗)sk − (1− tk)G(x∗)sk‖
‖sk‖

≥ tk
‖gk+1‖
‖sk‖

−
tk‖
∫ 1

0
(G(xk + τsk)−G(x∗))skdτ‖

‖sk‖
− |1− tk|

‖G(x∗)sk‖
‖sk‖

.

Rearranging, and applying Theorem 3.6.7,

‖gk+1‖
‖sk‖

≤ 1

tk

‖(Bk − I)sk)‖
‖sk‖

+ 2M3/2 max{‖xk − x∗‖, ‖xk+1 − x∗‖}+
|1− tk|
tk

M. (3.6.8)

Since xk → x∗ by Theorem 3.6.4 and tk → 1 by Theorem 3.6.8, both of the latter terms con-

verge to 0. Finally, equation (3.6.6) implies that ‖(Bk−I)sk‖
‖sk‖

converges to 0, so it follows from

equation (3.6.8) that ‖gk+1‖
‖sk‖

converges to 0.
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Since f is strongly convex, ‖g(x)‖ ≥ m‖x− x∗‖. Hence, we find that

‖gk+1‖
‖sk‖

≥ m‖xk+1 − x∗‖
‖xk+1 − x∗‖+ ‖xk − x∗‖

,

which implies that ‖xk+1−x∗‖
‖xk−x∗‖

→ 0. Thus, we have the following:

Theorem 3.6.9. Suppose that f is self-concordant, and strongly convex on Ω = {x ∈ Rn : f(x) ≤

f(x0)}. Then the adaptive BFGS method converges Q-superlinearly.

By the same reasoning, the results in [27] and [44] imply that these convergence theorems also

hold for the adaptive versions of the quasi-Newton methods in Broyden’s convex class, with the

exception of the DFP method. The adaptive versions of the Block BFGS methods proposed in [1]

can also be shown to be Q-superlinearly convergent.

3.7 Hybrid Step Selection

Consider the damped Newton method of Nesterov, which is obtained by setting Hk = G−1
k .

This yields ρk = gTkG
−1
k gk and δk =

√
gkG

−1
k GkG

−1
k gk =

√
ρ, whence η = ρ/δ = δ. The

curvature-adaptive step size t then reduces to

t =
η/δ

1 + η
=

1

1 + δ
.

When δ is large (for example, if the initial point x0 is chosen poorly), then the curvature-adaptive

step size may be very small, even when the inverse Hessian approximation Hk is good. This

conservatism is the price of the curvature-adaptive step size guaranteeing global convergence (in

contrast to Newton’s method, which is not globally convergent, and to gradient descent, which

may diverge if the step size is too large). A small step tkdk is likely to result in tk+1 also being

small1. Thus, when the initial δ is large, a method using adaptive step sizes may produce a long

succession of small steps. This suggests the following heuristic for selecting step sizes:

1. Select a set Tk of candidate step sizes for tk.
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2. At step k, test the elements of Tk in order until a candidate step size is found which satisfies

the Armijo condition (3.6.2).

3. If no element of Tk satisfies the Armijo condition, then set tk to be the adaptive step size.

For instance, in our numerical experiments reported in Section 3.9, we take Tk to be (1, 1
4
, 1

16
) for

all k. This allows the method to take steps of size tk = 1 when 1 satisfies the Armijo condition,

which is desirable for reducing the number of iterations needed before superlinear convergence

kicks in.

We refer to this scheme as hybrid step selection. For a proper choice of Tk, hybrid step selection

avoids the disadvantage of exclusively using adaptive step sizes, where the step size may be small

for many iterations. It will also generally be more efficient to compute than a full line search, since

no more than |Tk| candidate step sizes are tested before switching to the adaptive step size.

3.8 Application to Stochastic Optimization

The adaptive step size can readily be extended to stochastic optimization methods. Consider a

problem of the form

L(w) =
1

N

N∑
i=1

fi(w) + h(w). (3.8.1)

If N is extremely large, as is often the case in machine learning, simply evaluating L(w) is an

expensive operation, and line search is entirely impractical. To solve problems of the form (3.8.1),

stochastic algorithms such as Stochastic Gradient Descent (SGD, [16]) select a random subset Sk

of {f1, . . . , fN} at step k and compute the gradient for the subsampled problem

L(Sk)(w) =
1

|Sk|
∑
fi∈Sk

fi(w) + h(w) (3.8.2)

1As an illustrative example, consider applying the damped Newton method to the quadratic function f(x) =
1
2‖x‖

2. Since dk = −xk and δk = ‖xk‖, we have tk = 1
1+‖xk‖ and xk+1 = ‖xk‖

1+‖xk‖xk. If ‖x0‖ is large, then it
is clear that the damped Newton method will take many tiny steps until ‖xk‖ is sufficiently reduced. This is in stark
contrast to Newton’s method, which reaches the minimizer after a single step.
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as an approximation to the gradient of the loss function (3.8.1), and take a step using an empirically

determined small and decreasing step size. In variance-reduced versions of SGD such as SVRG

[20], it is common to use a constant step size, determined through experimentation. The curvature-

adaptive step size has two desirable properties in this setting: it eliminates the need to select a

step size through ad-hoc experimentation, and it incorporates second-order information, which is

currently not exploited by most stochastic algorithms.

A detailed discussion of the theory of curvature-adaptive step sizes in the stochastic setting is

beyond our current scope, as it depends heavily on the theory of empirical processes. A conver-

gence analysis of stochastic gradient descent and stochastic BFGS with our adaptive step size can

be found in [62].

There is currently also little work on algorithms exploiting the finite sum structure (3.8.1),

which can provably attain superlinear convergence. Aside from [62], we are only aware of the

Newton Incremental Method (NIM) of Rodomanov and Kropotov [63], and the DiSCO method

of Zhang and Xiao [57], both of which are based on Newton’s method. These methods require

additional memory of the order O(N), which is often substantial.

3.9 Numerical Experiments

3.9.1 Deterministic Methods

To compare our adaptive methods to classical algorithms, we solve several binary classification

problems using logistic regression. In these problems, the objective function to be minimized has

the form

L(w) =
1

N

N∑
i=1

log(1 + exp(−yixTi w)) +
1

2N
‖w‖2

2. (3.9.1)

where the training data {(x1, y1), . . . , (xN , yN)} consists of feature vectors xi ∈ Rn and classifica-

tions yi ∈ {−1,+1}. Zhang and Xiao [57] showed that the logistic regression objective function

L(w) is self-concordant.

Theorem 3.9.1 (Lemma 1, [57]). Let B = maxi ‖xi‖. The scaled function B2N
4
L(w) is standard
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self-concordant.

In our tests, we compared seven algorithms:

1. BFGS with adaptive step sizes (BFGS-A).

2. BFGS with Armijo-Wolfe line search (BFGS-LS).

3. BFGS with hybrid step selection (BFGS-H), using Tk = (1, 1
4
, 1

16
).

4. L-BFGS with adaptive step sizes (LBFGS-A), using the past ` = min{n
2
, 20} curvature

pairs.

5. L-BFGS with Armijo-Wolfe line search (LBFGS-LS), using the past ` = min{n
2
, 20} curva-

ture pairs.

6. Gradient descent with adaptive step sizes (GD-A).

7. Gradient descent with Armijo-Wolfe line search (GD-LS).

An initial Hessian approximation H0 must be provided for the BFGS and L-BFGS methods.

It is easy, but not necessarily effective, to simply take H0 = I . Another common strategy for

initializing H0, described in [60], that is often quite effective, is to take H0 = I on the first step,

and then, before performing the first BFGS update (3.6.1), scale H0:

H0 ←
yT0 s0

yT0 y0

I. (3.9.2)

It is easy to verify that the scaling factor yT0 s0/y
T
0 y0 lies between the smallest and largest eigenval-

ues of the inverse of the average Hessian G =
∫ 1

0
G(x0 + τs0)dτ along the initial step.

Similarly, for the L-BFGS method, the initial matrix used at step k+1 in the two-loop recursion

is chosen as:

H0 ←
yTk sk
yTk yk

I.

We refer to this as identity scaling.
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Data set n N
covtype.libsvm.binary.scale 55 581012
ijcnn1.tr 23 35000
leu 7130 38
rcv1_train.binary 47237 20242
real-sim 20959 72309
w8a 301 49749

Table 3.1: Data sets used in Section 3.9

The line search used the WolfeLineSearch routine from the minFunc software package

[49]. The Armijo-Wolfe parameters were c1 = 0.1, c2 = 0.75, and the line search was configured to

use an initial step size t = 1 and perform quadratic interpolation (LS_interp = 1, LS_multi

= 0).

We chose six data sets from LIBSVM [52] with a variety of dimensions, which are listed in

Table 3.1. We plot the progress of each algorithm as a function of CPU time used. The progress is

measured by the log gap log10(f(w)− f(w∗)), where w∗ is a pre-computed optimal solution. The

starting point was always set to w0 = 0. All algorithms were terminated when either the gradient

reached the threshold ‖g(x)‖ < 10−7, or after 480 seconds of CPU time. A brief summary of

the results can be found in Table 3.2, which lists the number of iterations taken by the BFGS-type

methods for convergence.

Our algorithms were implemented in Matlab 2017a and run on an Intel i5-6200U processor.

While the CPU time is clearly platform-dependent, we sought to minimize implementation differ-

ences between the algorithms to make the test results as comparable as possible.

In Figure 3.1, we plot the results for the data sets covtype.libsvm.binary.scale,

ijcnn1.tr, and w8a. On these problems, we implemented BFGS with a dense Hessian; that is,

the matrices Hk were stored explicitly and updated using the formula (3.6.1). In Table 3.2, we list

the number of iterations used by the BFGS-type methods.

In Figure 3.2, we plot the results for the data sets leu, rcv1_train.binary, and real-sim.

These problems had a large number of variables (n > 7000), which made it infeasible to store Hk

explicitly. On these problems, BFGS was implemented using the two-loop recursion with unlim-
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Data set n Identity Scaling
Number of iterations

BFGS-A BFGS-LS BFGS-H

covtype.libsvm.binary.scale 55
No 844 80 126
Yes 1532 458 479

ijcnn1.tr 23
No 286 36 66
Yes 434 142 162

w8a 301
No 2254 240 637
Yes 2506 398 653

leu 7130
No 1197 95 293
Yes 909 177 251

rcv1_train.binary 47237
No 161 31 35
Yes 284 217 232

real-sim 20959
No 356 44 55
Yes 592 247 317

Table 3.2: The number of iterations until convergence of the BFGS methods.
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Figure 3.1: Experiments on problems with small n. The log gap is defined as log10(f(w)−f(w∗)).
The loss functions are scaled to be standard self-concordant. All BFGS and L-BFGS plots on the
left take H0 = I , and those on the right use identity scaling.
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Figure 3.2: Experiments on problems with large n. The log gap is defined as log10(f(w)−f(w∗)).
The loss functions are scaled to be standard self-concordant. All BFGS and L-BFGS plots on the
left take H0 = I , and those on the right use identity scaling.

ited memory, and H0 was kept fixed throughout the iteration process. If the number of iterations

exceeds roughly n/4, then this approach would in fact require more memory than storing Hk ex-

plicitly. However, this never occurred in our tests, as shown in Table 3.2.

In our tests, we found that BFGS-A required more time than BFGS-LS. Although the cost

of a single step was initially lower for BFGS-A than BFGS-LS, BFGS-A often took numerous

small steps in succession, making very slow progress. This situation was exactly our motivation

for devising the hybrid step selection described in Section 3.7, and unfortunately, appears to occur

often. However, BFGS-H achieved comparable speed to that of BFGS-LS with T = (1, 1
4
, 1

16
),

which suggests that always trying t = 1 first is an excellent heuristic. These results also provide

evidence of the effectiveness of performing inexact line searches, in settings where it is practical

to do so. In Table 3.3, the number of steps needed until we consistently have tk ≈ 1 is shown.

Since computing tk also requires a Hessian-vector product, the cost comparison between the
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Data set n Identity Scaling
Number of iterations

BFGS-A BFGS-LS BFGS-H

covtype.libsvm.binary.scale 55
No 797 57 62
Yes 1378 2 2

ijcnn1.tr 23
No 270 25 26
Yes 369 3 2

w8a 301
No 2056 - 289
Yes 2250 5 2

leu 7130
No - - 42
Yes 818 2 2

rcv1_train.binary 47237
No 132 15 4
Yes 205 3 4

real-sim 20959
No 294 18 17
Yes 490 2 2

Table 3.3: The number of iterations until tk = 1 was consistently accepted by BFGS-LS and
BFGS-H, and, for BFGS-A, the number of iterations until tk ≥ 0.9 for at least 80% of the remain-
ing iterations. A dash ‘-’ indicates that the condition was not met before the stopping criterion was
satisfied.

adaptive step size and inexact line search reverses when the algorithm nears convergence. Initially,

a Hessian-vector product is faster than performing multiple backtracking iterations and repeatedly

testing for the Armijo-Wolfe conditions; however, the line search (and the hybrid step selection)

will eventually accept the step size tk = 1 immediately, becoming essentially free, whereas com-

puting the adaptive step size continues to require a Hessian-vector product on every step.

Curiously, L-BFGS was far more effective on the problems with large n (Figure 3.2) than on

those with small n (Figure 3.1). Both LBFGS-A and LBFGS-LS were ineffective on the problems

with small n, which suggests that the problem lies with the step directions computed by L-BFGS,

rather than the step sizes. Identity scaling was also beneficial for L-BFGS on problems with large

n, substantially reducing the convergence time in some cases. We note that we did not experiment

comprehensively with varying `, the number of curvature pairs stored in L-BFGS, and used a

standard choice of ` = min{n
2
, 20}. Other choices of ` might lead to very different results on the

problems in our test set.

On the other hand, identity scaling appeared to be detrimental for the BFGS-type methods on

most problems, which can be seen from the plots in Figure 3.1 and Figure 3.2 by comparing the
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CPU time needed for convergence. For instance, on the data set covtype.libsvm.binary.scale,

the time to convergence for BFGS-A increased from 120s to 225s, and from 25s to 50s for BFGS-

LS and BFGS-H. In fact, identity scaling was beneficial for the BFGS-A method only on the data

set leu. The data set leu appears to be quite different from the other problems tested. The num-

ber of training samples for leu was m = 38, while for all other problems, m was at least 20,000.

Moreover, gradient descent with Armijo-Wolfe line search (GD-LS) was among the fastest meth-

ods on leu, while on the other test problems it was significantly outperformed by BFGS. The

iteration counts shown in Table 3.2 and Table 3.3 also indicate that identity scaling worsened

the performance of the BFGS methods on every problem except leu. Curiously, performing

identity scaling led to BFGS-H accepting tk = 1 at a much earlier iteration on all problems,

yet the total CPU time used by BFGS-H was longer for covtype.libsvm.binary.scale,

rcv1.train.binary, and real-sim.

GD-A was surprisingly effective, outperforming GD-LS on every problem except for leu.

This is somewhat surprising (in light of the performance of BFGS-A and BFGS-LS), and suggests

that the curvature-adaptive step size may be useful for selecting hyperparameters for first-order

methods.

3.9.2 Stochastic Methods

The experiments presented here are derived from the experiments in [62, §4]. Several stochastic

algorithms are tested on an online least-squares problem of the form

min
w

E(Y −XTw)2 +
1

2
λ‖w‖2.

Online refers to the method of sampling: we can only access (X, Y ) by calling an oracle at each

iteration k, which returns |Sk| i.i.d instances of (X, Y ). The model for (X, Y ) has the following

specification:

• X has a multivariate normal distribution N(0,Σ), where Σ is the covariance matrix of the
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w8a data set (see Table 3.1).

• Y = XTβ+ ε, where β is deterministic and sparse (80% sparsity) and ε ∼ N(0, 1) is a noise

component.

Since our model is based on the w8a data set, the dimension ofw is p = 300, and the regularizer

is set to λ = 1
p
.

We compare the following algorithms. For a deterministic method M , the corresponding

stochastic M method takes the step of the underlying M method, but computed from the em-

pirical objective function (3.8.2) sampled at each iteration. The convergence of these methods2 is

analyzed in [62]. In summary, the stochastic adaptive gradient descent method returns an ε-optimal

solution in expectation afterO(log(ε−1)) iterations when |Sk| is chosen as a constant (depending on

ε), and stochastic adaptive BFGS convergesR-superlinearly with probability 1 when |Sk| increases

superlinearly.

SBFGS-A The stochastic adaptive BFGS method. At each iteration, an adaptive BFGS step is

computed from the empirical objective function (3.8.2). The BFGS update is computed

from the pair (dk, Gkdk) which is more stable than using the pair (sk, yk) with the difference

yk of sampled gradients (see [32, 31]).

SBFGS-1 The stochastic BFGS method with constant step size α1. The step size α1 is given in

Table 3.4.

SN-A Nesterov’s stochastic damped Newton method [33].

SN-1 The stochastic Newton method with constant step size α1.

SGD-A Stochastic adaptive gradient descent.

SGD-i Stochastic gradient descent with constant step size αi for i = 1, . . . , 4 (Table 3.4).

2Note: the stochastic adaptive BFGS analyzed in [62] is slightly different, as it incorporates an additional Wolfe
condition test.
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Value
α1

1
140,000

≈ 7.14e-6

α2 5e-6
α3 2e-6
α4 1e-6

Table 3.4: Constant step sizes.

The theory [62] suggests taking an increasing number of samples for stochastic adaptive meth-

ods. For SBFGS-A, SBFGS-1, SN-A, SN-1, and SGD-A, we use |Sk| = 1
2
p · (1.05)b

k
50
c. That is,

the number of samples starts at 1
2
p = 150 and increases by 5% every 50 iterations. For SGD-i

methods, we test three different constant batch sizes: a small batch of |Sk| = 1
2
p, a medium batch

of |Sk| = p, and a large batch of |Sk| = 4p.

The results of the experiments are shown in Figure 3.3. As before, the log gap is log10(f(xk)−

f(x∗)), where x∗ is the true minimizer (x∗ can be computed explicitly given Σ and β). The plots

in the first column shows the trajectory of each method in 60 seconds of CPU time; the second and

third columns show the final 10 seconds (from 50s to 60s) in greater detail. The starting point in

all trials was w = 0.

Both SBFGS-A and SN-A exhibit superlinear convergence once they approach the minimizer.

Curiously, SBFGS-A attains greater accuracy than SN-A using the same sample sizes (see sec-

ond column of Figure 3.3); we suspect that the noisiness of sampling Gk damages SN-A. These

methods greatly outperform SGD, even with well-tuned step sizes. We note that SGD is quite sen-

sitive to the choice of step size. A constant step size cannot be made much larger than α1; using

1
130,000

≈ 7.69e-6 causes SGD (even with large batches) to immediately diverge. In fact, we

can check that the largest eigenvalue of Σ is approximately 1.32e5. Furthermore, the superior

performance of SBFGS-A and SN-A depends at least partially on the curvature-adaptive step size.

The methods SBFGS-1 and SN-1, which use the constant step size α1, converge extremely slowly3,

so the success of SBFGS-A and SN-A is not solely due to the second-order information in Hk.

3It is possible to use even larger step sizes with these methods. We observed that stochastic BFGS and stochastic
Newton can tolerate much larger constant step sizes than α1 without diverging wildly as SGD does. However, for
stochastic BFGS, the performance is not better, and is usually much worse than using α1, as the algorithm escapes to
a worse region before beginning to decrease slowly.
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Figure 3.3: Performance of the stochastic algorithms. In the top row, the SGD methods SGD-1,
SGD-2, SGD-3, SGD-4 use small batches (|Sk| = 1

2
p). Likewise, the second and third row use

medium and large batches, respectively. The first column shows the performance of each method
in 60s of CPU time, and the second and third columns show a close-up of the last 10s (50s-60s).
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SGD-A was slower than SGD with tuned step sizes. We found that the initial adaptive step

size was 1e-8, which explains the relatively slow convergence of SGD-A. It is also worth noting

that even with a small initial sample, SGD-A never produced an overly large step size causing it to

diverge or oscillate, something which is not strictly guaranteed by the theory.

We have not touched on the subject of variance reduction, which is generally crucial, though

not particularly relevant when considering the results in Figure 3.3. Good variance reduction tech-

niques will be important for designing an effective, general-purpose solver based on SBFGS-A,

SN-A, or indeed, any other of the stochastic algorithms tested.
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Chapter 4: Distributed Optimization: The Leader Stochastic Gradient

Descent Algorithm

4.1 Introduction

The advent of increasingly large data and models has led to the use of parallel and distributed

computing for machine learning [36, 64]. A number of algorithms [65, 38, 66, 67] and systems

(DOWNPOUR, Horovod) [68, 69] have been proposed for specifically taking advantage of paral-

lelism. Consider again the loss function encountered in a typical supervised learning problem:

min
x
f(x) =

1

N

N∑
i=1

`(x; ξi)

where bothN , the size of the training data {ξ1, . . . , ξN}, as well as the dimension d of the model pa-

rameters x, may be large. A straightforward way to parallelize the standard Stochastic Gradient De-

scent (SGD) algorithm is data parallelism: given p parallel workers, the minibatch B at each step

is partitioned into p sets B1, . . . , Bp, and each worker computes the gradient gj =
∑
ξi∈Bj

∇`(x; ξi).

A central coordinator then aggregates the gradients and computes the stochastic gradient
∑p

j=1 gj

for SGD, performing an update and communicating new parameters x+ to the workers.

The data-parallel strategy is simple and easy to implement. However, it has two notable draw-

backs. The first is that it quickly encounters limits to parallelism. The limiting factor is the size

of the minibatch: a well-known empirical phenomenon is that generalization is often poor when

using SGD with large minibatches [70, 71]. This is not entirely understood, and is often attributed

to the flat minima theory, which hypothesizes that local minima belonging to ‘flatter’ regions of

the loss landscape result in better generalization. Algorithms have been proposed to modify SGD

to converge to such ‘flat’ minima [72, 73]. Another common strategy is to increase the step size
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when using large minibatches [74, 37].

The second drawback of data parallelism is the frequency of communication. At every step,

each worker must communicate the gradient of its assigned subset to the central coordinator, and

the coordinator then must communicate updated parameters to every worker. Though these op-

erations have efficient implementations and are specifically supported by computing frameworks

such as MPI (via the reduce and scatter operations), requiring synchronization between all work-

ers and the coordinator can lead to significant and unpredictable communication delays in practice.

Allowing less strict synchronization leads to ‘asynchronous’ algorithms which have convergence

guarantees under various assumptions on the delay [75, 76], it is still often unclear whether such

delay models are realistic or whether good performance is obtained in practice.

In a data-parallel algorithm, there is a single set of model parameters shared by all the work-

ers at each step. Another paradigm for distributed optimization allows for multiple independent

instances of the parameters being separately optimized. Unlike data-parallel algorithms, these

algorithms can allow for reduced communication, because we do not require that the separate in-

stances of the model share weights at every point in time. A key algorithm of this type is Elastic

Averaging SGD [38, 77], which uses an L2-penalty to enforce a ‘soft’ consensus between the mod-

els on separate workers. To specify this algorithm, assume that we have p independent workers,

each having its own copy x(i) of the parameters, and let f(·) denote the common objective func-

tion. In the machine learning context, note that f denotes the total loss f(x) = 1
N

∑N
i=1 `(x; ξi) –

we assume each worker to have access to the same training dataset {ξ1, . . . , ξN}. Finally, let x̃ be

another decision variable, which we call the consensus variable. Each worker performs the update

x
(i)
k+1 = x

(i)
k − η(∇f(x

(i)
k ) + λ(x

(i)
k − x̃k)).

It is not hard to see that this corresponds to performing a gradient descent step with respect to x(i)

for the loss function

f(x) +
λ

2
‖x− x̃‖2.
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In the stochastic case (for SGD instead of GD), the gradient ∇f(x(i)) is replaced by a stochastic

gradient estimate. In parallel to the workers updating their parameters x(i)
k , the consensus variable

in EASGD is updated by a moving average of the model parameters:

x̃k+1 = (1− β)x̃k + β

(
1

p

p∑
i=1

x
(i)
k

)

In practice, we can reduce communication by performing multiple gradient steps for each set

of parameters x(i), and either holding the consensus variable x̃k fixed to its value at step k, or

including the consensus term λ(x
(i)
k − x̃k) only for the very first step. Since each worker can

perform SGD independently for f(x(i)), the only communication is a periodic gather operation to

average the worker parameters. This variant is called the Asynchronous EASGD.

EASGD has been successfully applied to deep learning [38], and is widely used in industry1.

It is interesting that EASGD has proven to be effective for deep learning, a problem domain where

the loss function is typically highly nonconvex, while the known convergence analysis only applies

to convex problems. In fact, we can show that for nonconvex problems, EASGD has stationary

points which are “spurious” in the sense of not corresponding to stationary points of the underlying

objective function f .

Proposition 4.1.1. Let p = 2. There exists a Lipschitz differentiable function f : R→ R such that

for every 0 < λ ≤ 1, there exists a point (xλ, yλ, 0) which is a stationary point of EASGD with

parameter λ, but none of {xλ, yλ, 0} is a stationary point of f .

We prove this proposition in the next section.

To see how this can theoretical pitfall can impact convergence, observe that on nonconvex

problems, the workers x(i) may converge towards different local minima, causing the consensus

variable (which converges to the average of the worker parameters) to pull the workers in the

wrong direction. In particular, when the objective landscape is symmetric, the consensus variable

can become permanently trapped at a local maximum in between the local minima. Symmetry

1Personal communication.
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is a common feature in problems involving representation learning [78, 79, 80, 81] and in deep

learning [82, 83].

We propose a simple modification of EASGD that eliminates this pitfall (see Proposition 4.8.2).

Consider the global loss function (summed over workers) with the consensus term:

min
x
L(x(1), . . . , x(p), x̃) =

1

p

p∑
i=1

f(x(i)) +
λ

2
‖x(i) − x̃‖2

In EASGD, the consensus variable x̃ is a decision variable which is updated using a moving

average.

Instead, we set

x̃ = argmin{f(x(1)), f(x(2)), . . . , f(x(p))}

so that x̃ induces a pulling towards the parameters which had the best objective value. The resulting

gradient step then takes the form

x
(i)
k+1 = x

(i)
k − η(∇f(x

(i)
k ) + λ(x

(i)
k − x̃k)) = (1− ηλ)x

(i)
k + ηλx̃k − η∇f(x

(i)
k )

which is identical to that of EASGD except for the definition of x̃k. We call this method Leader

(Stochastic) Gradient Descent (L(S)GD), and refer to the consensus variable x̃ defined using

argmin as the leader or guiding point.

To make this method into a practical algorithm for large-scale problems, there are several

relaxations which must be made. First, rather than using the exact gradient ∇f(x(i)), we typically

prefer a stochastic gradient descent, so we instead have an estimator ∇̃f(x(i)). The leader variable

x̃ may not be exact, but can contain error from two sources:

• To reduce communication, the leader x̃ may be held fixed for multiple steps, so it will not

necessarily satisfy f(x̃) ≤ f(x
(i)
k ) at every time k. The delay in communication might be an

explicit choice in the algorithm, or can be caused by unpredictable slowness in the workers

or network.
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• We may use noisy estimates f̃(x(1)), . . . , f̃(x(p)) of the function values, so x̃ will be set to a

worker’s parameters other than the true minimizer with some probability.

In our theoretical analysis, we address these scenarios. We first consider an ‘ideal’ LSGD

where the leader is guaranteed to satisfy f(x̃) ≤ f(x
(i)
k ) at every step. We obtain the convergence

rate of this algorithm in the standard setting for SGD, namely strongly convex stochastic optimiza-

tion (Section 4.5). We then proceed to analyze the effects of relaxing the leader point: allowing for

delays in communication (Section 4.6) and stochastic leader selection (Section 4.7). We then turn

to consider nonconvex optimization, and show that the deterministic LGD has strong guarantees

(Section 4.8).

We also investigate other properties of L(S)GD. In Section 4.9, we define a notion of improving

the search direction, and for the positive definite quadratic model, show that a large subset of the

possible leader points result in improvement. In Section 4.10, we give a negative result: unlike

EASGD, LSGD is not able to implicitly reduce the limiting variance by increasing the number of

workers.

4.2 Motivating Example: Matrix Factorization

Before proceeding to the theoretical analysis, we give a practical demonstration of how symme-

try and Proposition 4.1.1 can result in poor convergence of EASGD. Consider the low-rank matrix

factorization problem, which is a nonconvex learning problem whose landscape exhibits numer-

ous symmetries. It is known that every local minimum is global [67]. We consider the positive

semidefinite case, where the objective is to find a low-rank matrix minimizing

min
X

{
f(X) =

1

4
‖M −XXT‖2

F : X ∈ Rd×r
}
.

We compare the (deterministic) EAGD and LGD algorithms. It is routine to calculate that
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Figure 4.1: Low-rank matrix factorization problems solved with EAGD and LGD. The dimension
d = 1000 and four ranks r ∈ {1, 10, 50, 100} are used. The reported value for each algorithm is
the value of the best worker (8 workers are used in total) at each step.
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∇F (X) = (XXT −M)X . The EASGD and LSGD updates for X can be expressed as

X+ = (1− ηλ)X + ηλZ − η∇F (X).

For EASGD, Z = X̃ , and X̃ is updated by

X̃+ = (1− pηλ)X̃ + pηλ

(
1

p

p∑
i=1

X i

)
.

For LSGD, Z = argmin{F (X1), . . . , F (Xp)}, and is updated at the beginning of every step.

For four choices of the rank r, we generated 10 random instances of the matrix completion

problem, and solved each with EAGD and LGD, initialized from the same starting points (we use

8 workers). For each algorithm, we report the progress of the best objective value at each iteration,

over all workers. Figure 4.1 shows the results across 10 random experiments for each rank.

It is clear that EAGD slows down significantly as it approaches a minimizer. Typically, the

center X̃ of EAGD is close to the average of the workers, which is a poor solution for the matrix

completion problem when the workers are approaching different local minimizers, even though all

local minimizers are globally optimal. This induces a pull on each node away from the minimizers,

which makes it extremely difficult for EAGD to attain a solution of high accuracy. In comparison,

LGD does not have this issue.

4.3 Definitions and Preliminaries

Throughout our proofs in this section, we will often consider a more general form of the al-

gorithm where the consensus variable is replaced by an arbitrary point z. That is, we optimize

L(x(1), . . . , x(p)) =
1

p

p∑
i=1

f(x(i)) +
λ

2
‖x(i) − z‖2 (4.3.1)

where z may be given by weaker properties.

A L(S)GD step (with respect to a given z) is a (stochastic) gradient step applied to L: writing
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z = x̃ at a particular (x(1), . . . , x(p)), the step in the variable x(i) is

η(∇̃f(x(i)) + λ(x(i) − z)).

The deterministic LGD algorithm uses the exact gradient ∇̃f(x(i)) = ∇f(x(i)), and the stochastic

LSGD algorithm samples an unbiased estimator with E[∇̃f(x(i))] = ∇f(x(i)). This estimator is

assumed to satisfy standard growth conditions on its variance, which are given in the analysis.

Observe that if z is defined as the standard LSGD point argmin{f(x(1), . . . , x(p)}, then for the

index i such that z = x(i), the step for x(i) reduces to a gradient step.

To reduce communication costs in the distributed setting, we may choose to infrequently update

the leader. For each time k, the variable x(i) will take bi(k) L(S)GD steps, using the same leader

fixed from the beginning (alternately, we compare the leader with the function value of x(i) only).

This number bi(k) is the communication period. Typically, bi(k) is constant for all workers i and

all steps k, and we simply write τ for the communication period.

After each variable takes its bi(k) steps, the function values are computed and the next leader

is detremined. Let x̃(k) denote the leader for the k-th period, and let x(i)
k,j denote the value of the

variable x(i) after taking j steps in the period k.

In practice, we may use multiple leaders to increase locality and reduce communication costs,

such as in the group method described in [3]. This arises because of natural clustering in the

hardware, and heterogeneity in communication costs. For example, a standard setup consists of

multiple machines for which communication is expensive, but with each machine having multiple

GPUs internally for which data transfer is fast between GPUs. For our theory, it suffices to consider

having only one leader. The formulation with multiple leaders (for one variable) is given by

min
x
f(x) +

λ1

2
‖x− z1‖2 + . . .+

λc
2
‖x− zc‖2

However, this is equivalent to minimizing f(x) + Λ
2
‖x − z̃‖2, where Λ =

∑c
i=1 λi and z̃ =

1
Λ

∑c
i=1 λizi. Thus, for our theoretical analysis, we may reduce to the case of a single leader.
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4.4 Stationary Points of EASGD

We first prove Proposition 4.1.1, which shows that EASGD can converge to spurious stationary

points when the objective function is nonconvex.

Proposition. Let p = 2. There exists a Lipschitz differentiable function f : R → R such that

for every 0 < λ ≤ 1, there exists a point (xλ, yλ, 0) which is a stationary point of EASGD with

parameter λ, but none of {xλ, yλ, 0} is a stationary point of f .

Proof. Define f(x) by

f(x) =


ex+1 if x < −1

q(x) if − 1 ≤ x ≤ 1

e−x+1 if x > 1

where q(x) = a6x
6 + . . . + a1x + a0 is a sixth-degree polynomial. For f to be Lipschitz dif-

ferentiable, we will select q(x) to make f twice continuously differentiable, with bounded sec-

ond derivative. To make f twice continuously differentiable, we must have q(1) = 1, q′(1) =

−1, q′′(1) = 1 and q(−1) = −1, q′(−1) = 1, q′′(−1) = −1. Since we aim to have f ′(0) 6= 0, we

also will require f ′(0) = q′(0) = 1. The existence of q is equivalent to the solvability of the linear

system 

1 1 1 1 1 1 1

1 −1 1 −1 1 −1 1

6 5 4 3 2 1 0

6 −5 4 −3 2 −1 0

30 20 12 6 2 0 0

30 −20 12 −6 2 0 0

0 0 0 0 0 0 1





a6

a5

a4

a3

a2

a1

a0



=



1

−1

−1

1

1

−1

1


which is easily seen to be solvable. Thus, we deduce that such a function f exists.

Suppose that we have two workers, and write x = x(1), y = x(2). Assume also that we have

exact gradients (so the problem is deterministic). It remains to show that for any 0 < λ ≤ 1,
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there exists a stationary point (x, y, 0) of EASGD. When the consensus variable satisfies x̃ = 0,

the first-order condition for x yields f ′(x) + λx = 0. Since λ ≤ 1, we have λ(1) + f ′(1) ≤ 0.

For x ≥ 1, f ′(x) = −e−x+1 is an increasing function, so f ′(x) + λx is increasing, and we deduce

that there exists a solution yλ ≥ 1 with λyλ + f ′(yλ) = 0. By symmetry, −yλ ≤ −1 satisfies

f ′(−yλ) + λ(−yλ) = 0, since f ′(x) = ex+1 for x ≤ −1.

Since xλ = −yλ, the EASGD update of the consensus variable yields

x̃+ = (1− β)x̃+
β

2
(xλ + yλ)

= (1− β)x̃ = 0

Hence, (−yλ, yλ, 0) is a stationary point of EASGD, but none of {−yλ, yλ, 0} are stationary

points of f .

4.5 Convergence Rates for Stochastic Convex Optimization

Our key technical result is that LSGD satisfies a similar one-step descent in expectation as

SGD, with an additional term corresponding to the pull of the leader. To provide a unified analysis

of ‘pure’ LSGD as well as more practical variants where the leader is updated infrequently or with

errors, we consider a general iteration x+ = x−η(g̃(x)+λ(x−z)), where z is an arbitrary guiding

point; that is, z may not be the minimizer of x(1), . . . , x(p), nor even satisfy f(z) ≤ f(x(i)). Since

the nodes operate independently except when updating z, we may analyze LSGD steps for each

node individually, and we write x = x(i) for brevity.

Assumption 1 f is M -Lipschitz-differentiable and m-strongly convex, which is to say, the gradi-

ent ∇f satisfies ‖∇f(x)−∇f(y)‖ ≤M‖x− y‖, and f satisfies

f(y) ≥ f(x) +∇f(x)T (y − x) +
m

2
‖y − x‖2.

We write x∗ for the unique minimizer of f , and κ := M
m

for the condition number of f .
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Lemma 4.5.1 (One-Step Descent). Let f satisfy Assumption 1, and let g̃(x) be an unbiased esti-

mator for∇f(x) with variance Var(g̃(x)) ≤ σ2 + ν‖∇f(x)‖2.

Fix an initial point x, and let z be another point, with δ := x− z. We take a LSGD step

x+ = x− η(g̃(x) + λ(x− z)).

Then each step of LSGD satisfies:

Ef(x+) ≤ f(x)− η

2
(1− ηM(ν + 1))‖∇f(x)‖2 (4.5.1)

− η

4
λ(m− 2ηMλ)‖δ‖2

− η
√
λ√
2

(
√
m− ηM

√
2λ)‖∇f(x)‖‖δ‖

− ηλ(f(x)− f(z)) +
η2

2
Mσ2

Hence, for sufficiently small η, λ with η ≤ (2M(ν + 1))−1 and ηλ ≤ (2κ)−1, η
√
λ ≤ (κ

√
2m)−1,

we have

Ef(x+)− f(x∗) ≤ (1−mη)(f(x)− f(x∗))− ηλ(f(x)− f(z)) +
η2M

2
σ2 (4.5.2)

Proof. The proof is similar to the convergence analysis of SGD. We take a Taylor expansion at the

point x:

f(x+) = f(x)− η∇f(x)T (g̃(x) + λδ) +
η2

2
(g̃(x) + λδ)TG(g̃(x) + λδ)

whereG = ∇2f(x′) for some x′ between x, x+. Taking the expectation and using Eg̃(x) = ∇f(x),

Ef(x+) = f(x)− η‖∇f(x)‖2 − ηλ∇f(x)T δ +
η2λ2

2
δTGδ + η2λ∇f(x)TGδ +

η2

2
E[g̃(x)TGg̃(x)]
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Taking another Taylor expansion along the direction −δ, observe that

f(z) = f(x)−∇f(x)T δ +
1

2
δT G̃δ ≥ f(x)−∇f(x)T δ +

m

2
‖δ‖2

from which we deduce that −∇f(x)T δ ≤ −(f(x)− f(z) + m
2
‖δ‖2). Substituting this above, and

splitting both the terms η‖∇f(x)‖2, η
2
mλ‖δ‖2 in half, we obtain

Ef(x+) = f(x)− η

2
‖∇f(x)‖2 +

η2

2
E[g̃(x)TGg̃(x)]

− η

4
mλ‖δ‖2 +

η2

2
λ2δTGδ

− η

2
‖∇f(x)‖2 − η

4
mλ‖δ‖2 + η2λ∇f(x)TGδ

− ηλ(f(x)− f(z))

We proceed to bound each line. For the first line, the standard bias-variance decomposition

yields

E[g̃(x)TGg̃(x)] ≤ME‖g̃(x)‖2 ≤M((ν + 1)‖∇f(x)‖2 + σ2)

and so

−η
2
‖∇f(x)‖2 +

η2

2
E[g̃(x)TGg̃(x)] ≤ −η

2
(1− ηM(ν + 1))‖∇f(x)‖2 +

η2

2
Mσ2

For the second line, using G �MI again, we have η2

2
λ2δTGδ ≤ η2M

2
λ2‖δ‖2. Hence,

−η
4
mλ‖δ‖2 +

η2

2
λ2δTGδ ≤ −η

4
λ(m− 2ηMλ)‖δ‖2

For the third line, we apply the inequality a2 + b2 ≥ 2ab to obtain

η

2
‖∇f(x)‖2 +

η

4
mλ‖δ‖2 ≥ η√

2

√
mλ‖∇f(x)‖‖δ‖

On the other hand, the Cauchy-Schwarz inequality yields ∇f(x)TGδ = (G1/2∇f(x))T (G1/2δ) ≤
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M‖∇f(x)‖‖δ‖. Hence

−η
2
‖∇f(x)‖2 − η

4
mλ‖δ‖2 + η2λ∇f(x)TGδ ≤ −η

√
λ√
2

(
√
m− ηM

√
2λ)‖∇f(x)‖‖δ‖

Combining these inequalities yields the desired result.

From this result, we can then demonstrate a sublinear convergence rate for LSGD, which holds

whenever the leader is chosen so that its value is lower than the other workers.

Theorem 4.5.2. Let f satisfy Assumption 1. Suppose that the leader zk is always chosen so that

f(zk) ≤ f(xk). If η, λ are fixed so that η ≤ (2M(ν+ 1))−1 and ηλ ≤ (2κ)−1, η
√
λ ≤ (κ

√
2m)−1,

then

lim sup
k→∞

Ef(xk)− f(x∗) ≤ 1

2
ηκσ2.

If η decreases at the rate ηk = Θ( 1
k
), then Ef(xk)− f(x∗) = O( 1

k
).

Proof. This result follows (4.5.2) and Theorems 4.6 and 4.7 of [17].

The O( 1
k
) rate of LSGD matches that of comparable distributed methods. Both Hogwild [65]

and EASGD achieve a rate of O( 1
k
) on strongly convex objective functions. We note that conver-

gence rates have not been analyzed for many distributed algorithms (including DOWNPOUR [68]

and Parle [66]).

One may ask whether LSGD may surpass the 1
k

sublinear convergence rate on strongly concex

functions. However, the Ω( 1
k
) lower bound obtained in [84] also applies to LSGD, since we may

view each LSGD iteration as making p calls to a stochastic first-order oracle.

4.6 Stochastic Convex Optimization with Communication Delay

In practice, communication between distributed machines is costly. The LSGD algorithm has a

communication period τ for which the leader is only updated every τ iterations, so each node can

run independently during that period. This τ is allowed to differ between nodes, and over time,
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which captures the asynchronous and multi-leader variants of LSGD. We write xk,j for the j-th step

during the k-th period. It may occur that f(z) > f(xk,j) for some k, j, that is, the current solution

xk,j is now better than the last selected leader. In this case, the leader term λ(x− z) may no longer

be beneficial, and instead simply pulls x toward z. There is no general way to determine how many

steps are taken before this event. However, once f(x) ≤ f(z), we can show that subsequent LSGD

steps will not make the solution worse than the stale leader z, up to gradient noise. This is captured

by the following corollary:

Corollary 4.6.1. If f(x) ≤ f(z), then

Ef(x+) ≤ f(z) +
η2

2
Mσ2

− η

2
(1− ηM(ν + 1))‖∇f(x)‖2 − η

4
λ(m− 2ηMλ)‖δ‖2

− η
√
λ√
2

(
√
m− ηM

√
2λ)‖∇f(x)‖‖δ‖

Proof. Follows from Lemma 4.5.1.

Corollary 4.6.2. In the deterministic case, once we reach a point with f(x) ≤ f(z), then f(x+) ≤

f(z) as well.

Suppose we simply continue to run the LSGD algorithm with fixed z. As τ goes to infinity,

LSGD converges to the minimizer of ψ(x) = f(x) + λ
2
‖x− z‖2, which is quantifiably better than

z as captured in Lemma 4.6.3. Together, these facts show that LSGD is safe to use with long

communication periods as long as the original leader is good.

Lemma 4.6.3. Let f be twice differentiable and strongly convex, with mI � ∇2f(x) for m > 0,

and let x∗ be the minimizer of f . Fix a constant λ and any point z, and define the function ψ(x) =

f(x) + λ
2
‖x − z‖2. Since ψ is strongly convex, it has a unique minimizer w. The minimizer w

satisfies2

f(w)− f(x∗) ≤ λ

m+ λ
(f(z)− f(x∗)) (4.6.1)

2If we also assume that f is Lipschitz differentiable (that is,∇2f(x) �MI), then we can obtain a similar inequality
to the second directly from the first, but this is generally weaker than the bound given here.
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and

‖w − x∗‖2 ≤ λ2

m(m+ λ)
‖z − x∗‖2 (4.6.2)

Proof. The first-order condition for w implies that ∇f(w) + λ(w − z) = 0, so λ2‖w − z‖2 =

‖∇f(w)‖2. Combining this with the Polyak-Łojasiewicz inequality, we obtain

λ

2
‖w − z‖2 =

1

2λ
‖∇f(w)‖2 ≥ m

λ
(f(w)− f(x∗))

We have ψ(w) ≤ ψ(z) = f(z), so f(w) − f(x∗) ≤ f(z) − f(x∗) − λ
2
‖w − z‖2. Substituting,

f(w)− f(x∗) ≤ f(z)− f(x∗)− m
λ

(f(w)− f(x∗)), which yields the first inequality.

We also have ψ(w) = f(w) + λ
2
‖w − z‖2 ≤ ψ(x∗) = f(x∗) + λ

2
‖x∗ − z‖2, whence f(w) −

f(x∗) ≤ λ
2
(‖x∗ − z‖2 − ‖w − z‖2). Hence, we have

f(w)− f(x∗) ≤ λ

2
(‖x∗ − z‖2 − ‖w − z‖2)

≤ λ

2
‖z − x∗‖2 − m

λ
(f(w)− f(x∗))

so f(w) − f(x∗) ≤ λ2

2(m+λ)
‖z − x∗‖2. Finally, f(w) − f(x∗) ≥ m

2
‖w − x∗‖2, which yields the

result.

The theoretical results here and in Section 4.5 address two fundamental instances of the LSGD

algorithm: the ‘synchronous’ case where communication occurs each round, and the ‘infinitely

asynchronous’ case where communication periods are arbitrarily long. For unknown periods τ >

1, it is difficult to demonstrate general quantifiable improvements beyond Corollary 4.6.1.

4.7 Stochastic Leader Selection

We analyze the impact of selecting the leader with errors. In practice, it is often costly to

evaluate f(x), as in deep learning. Instead, we estimate the values f(x(i)), and then select z as the

variable having the smallest estimate.

Formally, suppose that we have an unbiased estimator f̃(x) of f(x), with uniformly bounded
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variance. At each step, a single sample y1, . . . , yp is drawn from each estimator f̃(x(1)), . . . , f̃(x(p)),

and then z = {x(i) : yi = min{y1, . . . , yp}}. We refer to this as stochastic leader selection.

We first bound the probability of selecting an incorrect leader. The result rests on the following

technical lemma. We state it in terms of general random variables; in the context of LSGD leaders,

we have µi = f(x
(i)
k ) and Yi = f̃(x

(i)
k ), and select the leader z = µ̃.

Lemma 4.7.1. Let µ1 ≤ µ2 ≤ . . . ≤ µp. Suppose that Y1, . . . , Yp is a collection of independent

random variables with EYi = µi and Var(Yi) ≤ σ2. Let µ̃ = µm where m = argmin{Y1, . . . , Yp}.

Then

Pr(µ̃ ≥ µk) ≤ 4σ2

p∑
i=k

1

(µi − µ1)2

Therefore, for any a ≥ 0,

Pr(µ̃ ≥ µ1 + a) ≤ 4σ2 p

a2
.

Proof. In order for µm ≥ µk, we must have Yj ≤ Y1 for some j ≥ k. Thus, {µ̃ ≥ µk} is a subset

of the event {Y1 ≥ min{Yk, . . . , Yp}}. Taking the union bound,

Pr(Y1 ≥ min{Yk, . . . , Yp}) ≤
p∑
i=k

Pr(Y1 ≥ Yi)

Applying Chebyshev’s inequality to Y1 − Yi, and noting that Var(Y1 − Yi) ≤ 4σ2, we have

Pr(Y1 − Yi ≥ 0) ≤ Pr(|Y1 − Yi − (µi − µ1)| ≥ µi − µ1) ≤ 4σ2

(µi − µ1)2

Using this, we can obtain a bound on Eµ̃.

Lemma 4.7.2. Let µ̃ be defined as in Lemma 4.7.1. Then

Eµ̃− µ1 ≤ 4
√
pσ

Proof. Recall that the expected value of a nonnegative random variable Z can be expressed as
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EZ =
∫∞

0
Pr(Z ≥ t)dt. We apply this to the variable µ̃− µ1. Using Lemma 4.7.1, we obtain, for

any a > 0,

Eµ̃− µ1 =

∫ ∞
0

Pr(µ̃− µ1 ≥ t)dt =

∫ a

0

Pr(µ̃− µ1 ≥ t)dt+

∫ ∞
a

Pr(µ∗ − µ1 ≥ t)dt

≤ a+

∫ ∞
a

Pr(µ̃− µ1 ≥ t)dt

≤ a+

∫ ∞
a

4σ2 p

t2
dt = a+ 4σ2 p

a

The AM-GM inequality implies that a+ 4σ2 p
a
≥ 4
√
pσ, with equality when a = 2

√
pσ.

Corollary 4.7.3. Assume without loss of generality that f(x(1)) ≤ . . . ≤ f(x(p)). Suppose that we

have unbiased estimators f̃(x(1)), . . . , f̃(x(p)) for the true function values, with uniformly bounded

variance Var(f̃(x(i)) ≤ σ2
f . Then the stochastic leader satisfies

Ef(z) ≤ f(x(1)) + 4
√
pσf .

As a corollary of Corollary 4.7.3, we can show that stochastic leader selection has the effect of

increasing the limiting variance of LSGD.

Proposition 4.7.4. Suppose that LSGD has a gradient estimator with Var(g̃(x)) ≤ σ2+ν‖∇f(x)‖2

and function estimator with supx Var(f̃(x)) ≤ σ2
f . Then, taking the expectation with respect to the

gradient estimator and the approximate leader, we have

Ef(x+) ≤ f(x) + 4ηλ
√
pσf +

η2

2
Mσ2

− η

2
(1− ηM(ν + 1))‖∇f(x)‖2 − η

4
λ(m− 2ηMλ)‖δ‖2

− η
√
λ√
2

(
√
m− ηM

√
2λ)‖∇f(x)‖‖δ‖
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Proof. From Lemma 4.5.1, we obtain

Ef(x+) ≤ f(x)− η

2
(1− ηM(ν + 1))‖∇f(x)‖2

− η

4
λ(m− 2ηMλ)‖δ‖2

− η
√
λ√
2

(
√
m− ηM

√
2λ)‖∇f(x)‖‖δ‖

− ηλ(f(x)− Ef(z)) +
η2

2
Mσ2

Note that in the last line, we have Ef(z) because z is now stochastic. By Corollary 4.7.3, Ef(z) ≤

µ1 + 4
√
pσf , where µ1 ≤ f(x). Hence f(x)− Ef(z) ≥ f(x)− µ1 − 4

√
pσf ≥ −4

√
pσf , and so

−ηλ(f(x)− Ef(z)) ≤ 4ηλ
√
pσf .

Observe that the effect of the stochastic leader is an increase of 4ηλ
√
pσf in the constant error

term. Since the new additive error is of order η rather than η2, we cannot guarantee convergence

with ηk = Θ( 1
k
), unless λk is also decreasing3. By a similar analysis as Theorem 4.5.2, we obtain

the following for LSGD with stochastic leader selection:

Theorem 4.7.5. Let f satisfy Assumption 1. Suppose that LSGD has a gradient estimator with

Var(g̃(x)) ≤ σ2 + ν‖∇f(x)‖2 and function estimator with supx Var(f̃(x)) ≤ σ2
f .

If η, λ are fixed so that η ≤ (2M(ν + 1))−1 and ηλ ≤ (2κ)−1, η
√
λ ≤ (κ

√
2m)−1, then

lim sup
k→∞

Ef(xk)− f(x∗) ≤ 1

2
ηκσ2 +

4

m
λ
√
pσf .

If η, λ decrease at the rate ηk = Θ( 1
k
), λk = Θ( 1

k
), then Ef(xk)− f(x∗) = O( 1

k
).

Proof. Interpret the term 4ηλ
√
pσf as additive noise. Note that if ηk, λk = Θ( 1

k
), then ηλ = Θ( 1

k2
).

The proof is then similar to Theorem 4.5.2 and follows from Theorems 4.6 and 4.7 of [17].

An unfortunate fact is that the error is of order O(
√
p), which grows as the number of workers

increases. Interestingly, it turns out that error of order Ω(
√
p) is tight for the problem of selecting

3For intuition, note that
∑∞

n=1
1
n is divergent.
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a minimizer from a single estimation of random variables (Lemma 4.7.2).

Proposition 4.7.6. For each p ≥ 2 and all σ > 0, there exists µ1 ≤ µ2 ≤ . . . ≤ µp and unbiased

estimators Yi of µi with Var(Yi) ≤ σ2 such that

Eµ̃− µ1 ≥ (1− exp(−1/12))
√
pσ

Proof. Let µ1 = 0 and µ2 = . . . = µp =
√
pσ. Let Y1 = 0 with probability 1 and Y2, . . . , Yp i.i.d

with the following 3-point distribution:


−σ with probability 1

6p

√
pσ with probability 1− 1

3p

2
√
pσ + σ with probability 1

6p

It is easy to verify that EYi =
√
pσ and Var(Yi) = σ2

3p
(
√
p+ 1)2 ≤ σ2 (when p ≥ 2).

We have µ̃ =
√
pσ if any of Y2, . . . , Yp takes the value −σ. Considering the complement, we

have

Pr(Y2, . . . , Yp ≥
√
pσ) =

(
1− 1

6p

)p−1

≤ exp

(
− 1

6p
(p− 1)

)
≤ exp(−1/12)

Thus, Pr(µ̃ =
√
pσ) ≥ 1− exp(−1/12) and we obtain Eµ̃− µ1 ≥ (1− exp(−1/12))

√
pσ.

We note that this lower bound is only effective when
√
pσ is smaller than the largest difference

µp − µ1. In particular, the construction of the counterexample no longer holds if we require that

µp ≤ B uniformly for all p. This may occur for stochastic leader selection if it is known a priori

that the objective function is bounded, e.g. |f(x)| ≤ B for all x ∈ Rn. Clearly we then have

upper bounds on the possible values of the estimator Yi = f̃(x(i)) which take precedence when
√
pσf ≥ B.
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4.8 Nonconvex Optimization

In this section, we consider nonconvex optimization with the deterministic LGD. We first show

that LGD avoids the ‘spurious’ local minimizer problem that affects EASGD. This is formalized

in Proposition 4.8.2.

For each i, let Ωi = {x ∈ Rn : f(x(i)) < min f(x(j)) : j 6= i}}. That is, Ωi is the set of points

on which x(i) is the unique minimizer. Define Ω =
⋃p
i=1 Ωi.

Proposition 4.8.1. Ωi is open.

Proof. This follows immediately from the continuity of f .

Proposition 4.8.2. Let x∗ = (w(1), . . . , w(p)) ∈ Ωi be a stationary point of the LGD objective

function. Then∇f (i)(w(i)) = 0.

Proof. This follows from the fact that on Ωi, ∂
∂x(i)
L
∣∣
w(i) = ∇f (i)(w(i)).

Next, we consider the deterministic version of the algorithm and its properties for nonconvex

functions. It can be shown that for the deterministic algorithm LGD with any choice of finite

communication periods, there will always be some variable x(i) such that lim inf ‖∇f(x
(i)
k )‖ = 0.

Lemma 4.8.3. Let f be Lipschitz differentiable, with Lipschitz constant M . If the gradient descent

stepsize η < 2
M

, then ‖∇f(x)‖2 ≤ α(f(x)− f(x+)), where α = 2
η(2−ηM)

.

Proof. By Taylor expansion,

f(x+) = f(x)− η∇f(x)T∇f(x) +
η2

2
∇f(x)T G̃∇f(x)

≤ f(x)− η‖∇f(x)‖2 +
η2

2
M‖∇f(x)‖2

= f(x)− η

2
(2− ηM)‖∇f(x)‖2

Rearranging yields the desired result.
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Lemma 4.8.4. Let x̃k denote the leader at the end of the k-th period. If the LGD stepsize is chosen

so that ηi < Mi, then f(x̃k) ≤ f(x̃k−1).

Proof. Assume that x̃k−1 = x
(1)
k−1. Since x(1) is the leader during the k-th period, the LGD steps

for x(1) are gradient descent steps. By Lemma 4.8.3, η1 has been chosen so that gradient descent

on f (1) is monotonically decreasing, so we know that f (1)(x
(1)
k ) ≤ f (1)(x

(1)
k−1). Hence f(x̃k) ≤

f (1)(x
(1)
k ) ≤ f (1)(x

(1)
k−1) = f(x̃k−1).

Proposition 4.8.5. Assume that f is bounded below and M -Lipschitz differentiable. If the LGD

step sizes are selected so that ηi < 2
Mi

, then for every i such that x(i) is the leader infinitely often,

lim infk ‖∇f(x
(i)
k )‖ = 0.

Proof. Without loss of generality, we assume it to be x(1). Let τ(1), τ(2), . . . denote the periods

where x(1) is the leader, with b(k) steps in the period τ(k). By Lemma 4.8.4, f(x
(1)
τ(k+1)) ≤ f(x

(1)
τ(k)),

since the objective value of the leaders is monotonically decreasing. Now, by Lemma 4.8.3, we

have
∑b(k)−1

i=0 ‖∇f(x
(1)
τ(k),i)‖2 ≤ α(f(x

(1)
τ(k),0)−f(x

(1)
τ(k),b(k))) = α(f(x

(1)
τ(k))−f(x

(1)
τ(k+1))). Since f is

bounded below, and the sequence {f(x
(1)
τ(k))} is monotonically decreasing, we must have f(x

(1)
τ(k))−

f(x
(1)
τ(k+1))→ 0. Therefore, we must have ‖∇f(x

(1)
τ(k),i)‖ → 0.

Note that there necessarily exists an index i such that x(i) is the leader infinitely often.

It follows that the deterministic LGD algorithm is convergent in the following sense:

min
1≤i≤p

lim inf
k→∞

‖∇f(x
(i)
k )‖ = 0.

Interestingly, while we proved this result under the assumption of exact gradients and exact leaders,

it holds under arbitrary finite communication delays.

4.9 Quantifiable Improvements of LGD

In this section, we discuss how LGD can obtain better search directions than gradient descent.

In general, it is difficult to determine when the LGD step will satisfy f(x−η(∇f(x)+λ(x−z))) ≤
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f(x − η∇f(x)), since this depends on the precise combination of f, x, z, η, λ, and moreover, the

maximum allowable value of η is different for LGD and gradient descent. Instead, we measure the

goodness of a search direction by the angle it forms with the Newton direction

dN(x) = −(∇2f(x))−1∇f(x).

The Newton method is locally quadratically convergent around local minimizers with non-singular

Hessian, and converges in a single step for quadratic functions if η = 1. Hence, we consider it

desirable to have search directions that are close to dN .

Let θ(u, v) denote the angle between u, v, which is the angle θ ∈ [0, π] such that cos(θ(u, v)) =

uT v
‖u‖‖v‖ . Let dz = −(∇f(x)+λ(x−z)) be the LGD direction4 with leader z, and dG(x) = −∇f(x).

The angle improvement set is the set of leaders

Iθ(x, λ) = {z : f(z) ≤ f(x), θ(dz, dN(x)) ≤ θ(dG(x), dN(x))}

for which the angle between dz and dN is smaller than the angle between the gradient and dN . The

set of all candidate leaders is E = {z : f(z) ≤ f(x)}. We aim to show that a large subset of

leaders in E belong to Iθ(x, λ).

In this section, we consider the positive definite quadratic f(x) = 1
2
xTAx with condition

number κ and dG(x) = −Ax, dN(x) = −x. We use the n-dimensional volume Vol(·) to measure

the relative size of sets: an ellipsoid E given by E = {x : xTAx ≤ 1} has volume Vol(E) =

det(A)−1/2 Vol(Sn), where Sn is the unit ball. We show that Vol(Iθ(x, λ)) ≥ 1
2

Vol(E) in two

settings: where λ is small, and where A is ill-conditioned.

First, we analyze Iθ(x, λ) with small λ, for arbitrary convex A. Define the cone with center d

and angle θc is defined to be

cone(d, θc) = {x : xTd ≥ 0, θ(x, d) ≤ θc}.
4Note that we use η = 1 in the LGD step dz since we may equivalently rescale λ when measuring angles.
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We record the following facts about cones which will be useful.

Proposition 4.9.1. Let C ⊆ cone(d, θc). If y is a point such that sy ∈ C for some s ≥ 0, then

y ∈ cone(d, θc).

Proof. This follows immediately from the fact that θ(y, d) = θ(sy, d) for all s ≥ 0.

Proposition 4.9.2. Let C = cone(d, θc) with θc > 0. The outward normal vector at the point

x ∈ ∂C is given by Nx = x − ‖x‖
cos(θc)‖d‖d. Moreover, if v satisfies NT

x v < 0, then for sufficiently

small positive λ, x+ λv ∈ cone(d, θc).

Proof. The first statement follows from the second, by the supporting hyperplane theorem.

Write γ = cos(θc). LetNx = x− ‖x‖
γ‖d‖d, and let v be a unit vector withNT

x v = xTv− ‖x‖
γ‖d‖d

Tv <

0. The angle satisfies

cos(θ(x+ λv, d)) =
dT (x+ λv)

‖d‖‖x+ λv‖
=

dTx+ λdTv

‖d‖
√
‖x‖2 + λ2‖v‖2 + 2λxTv

Differentiating, the numerator g(λ) of ∂
∂λ

cos(θ(x+ λv, d)) is given by

g(λ) = ‖x‖2vTd− xTvxTd+ λ · (2vTdxTd+ ‖v‖2(λv − x)Td− λ‖v‖2vTd− xTvvTd)

Evaluating at λ = 0 and using xTv − ‖x‖
γ‖d‖d

Tv < 0, we obtain

g(0) = ‖x‖2vTd− xTvxTd = ‖x‖2vTd− xTv(γ‖x‖‖d‖)

= ‖x‖(‖x‖vTd− γ‖d‖xTv) > 0.

Therefore, for small positive λ, we have cos(θ(x + λv, d)) > cos(θ(x, d)) = γ, so x + θv ∈

cone(d, θc).

We show that as λ→ 0, at least half of the level set {f(z) ≤ f(x)} belongs to Iθ(x, λ).
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Proposition 4.9.3. Let x be any point such that θx = θ(dG(x), dN(x)) > 0, and let E = {z :

f(z) ≤ f(x)}. Let C = cone(−x, θx), and let Nx be the outward normal −∇f(x) + ‖∇f(x)‖
cos(θx)‖x‖x of

the cone C at the point −∇f(x). Then

⋃
λ>0

Iθ(x, λ) ⊇ E ∩ {z : NT
x z < NT

x x} (4.9.1)

and consequently, limλ→0 Vol(Iθ(x, λ)) ≥ 1
2

Vol(E).

Proof. First, note that if λ2 ≤ λ1, then for all z with−∇f(x) +λ1z ∈ C, we also have−∇f(x) +

λ2z ∈ C by the convexity of C. Therefore Iθ(x, λ2) ⊇ Iθ(x, λ1), so limλ→0 Vol(Iθ(x, λ)) exists.

We first prove the second statement. For any normal vector h and β > 0, Vol(E ∩ {z : hT z <

β}) ≥ 1
2

Vol(E), since the center 0 ∈ {z : hT z < β}. The result follows because NT
x x > 0.

To prove (4.9.1), observe that z ∈ Iθ(x, λ) if equivalent to−∇f(x)+λ(z−x) ∈ cone(−x, θc).

By Proposition 4.9.2, there exists λ > 0 with−∇f(x)+λ(z−x) ∈ cone(−x, θc) ifNT
x (z−x) < 0.

Hence, it follows that every point in E ∩ {z : NT z < NTx} is contained in Iθ(x, λ) for some

λ > 0.

Proposition 4.9.3 implies that many leaders z improve the angle of the step direction when λ

is small. The case where we do not allow λ to shrink is more difficult to analyze. However, for

points where the gradient direction is close to orthogonal to the Newton direction, we can show

that the entire half-space E ∩{z : xT z ≤ 0} ⊆ Iθ(x, λ) for any λ. These points where the gradient

and Newton direction are ‘near-orthogonal’ are also precisely those points where using the leader

direction dz may be most useful. WhenA is well-conditioned and the gradient is already very close

to the Newton direction5, there is little benefit to using dz. Hence, we consider ill-conditioned A.

For r ≥ 2, define

Sr =

{
x : cos(θ(dG(x), dN(x))) =

r√
κ

}
5In particular, if A = αI , we have dG(x) = dN (x) at every point and no improvement is possible.
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or equivalently,

Sr =

{
x : tan(θ(dG(x), dN(x))) =

√
κ

r2
− 1

}
.6

The set Sr comprises the directions x where the angle between the gradient and Newton steps is

large. The next proposition shows that Sr is nontrivial.

Proposition 4.9.4. There exists a direction x such that cos(θ(dG(x), dN(x))) = 2(
√
κ+
√
κ−1)−1.

Thus, for all r ≥ 2, there exists a direction x with cos(θ(dG(x), dN(x))) ≤ r√
κ

.

Proof. Take x =
√

αn

α1+αn
e1 +

√
α1

α1+αn
en. It is easy to verify that cos(θ(dG, dN)) = 2(

√
κ +

√
κ−1)−1.

Proposition 4.9.5. For any x, let θx = θ(dG(x), dN(x)). We have

max{‖z‖2 : f(z) ≤ f(x), zTx = 0} ≤ κ cos(θx)‖x‖2

Proof. Form the maximization problem


max
z

zT z

zTAz ≤ xTAx

zTx = 0

The KKT conditions for this problem imply that the solution satisfies z − µ1Az − µ2x = 0, for

Lagrange multipliers µ1 ≥ 0, µ2. Since zTx = 0, we obtain zT z = µ1z
TAz, and thus 1

M
≤ µ1 ≤

1
m

. Since f(z) ≤ f(x), we find that zT z ≤ 1
m
xTAx. Using cos(θx) = xTAx

‖x‖‖Ax‖ , we obtain

zT z ≤ 1

m
cos(θx)‖x‖‖Ax‖ ≤ κ cos(θx)‖x‖2.

We are now ready to prove that Iθ(x, λ) is large for particular Sr.

6Note that increasing r corresponds to decreasing angles.
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Proposition 4.9.6. LetRκ = {r : r√
κ
+ r3/2

κ1/4
≤ 1}. Consider f(x) = 1

2
xTAxwith condition number

κ. Let x ∈ Sr for r ∈ Rκ, and let E = {y : f(y) ≤ f(x)}, E2 = {z ∈ E : zTx ≤ 0}, θx =

θ(dG(x), dN(x)). Then for all z ∈ E2 and any λ ≥ 0, the LGD direction dz = −(∇f(x)+λ(x−z))

satisfies θ(dz, dN(x)) ≤ θx. Thus, E2 ⊆ Iθ(x, λ), and therefore Vol(Iθ(x, λ)) ≥ Vol(E2) =

1
2

Vol(E).

Proof. Define D2 = {z − x : z ∈ E2}7. The set of possible LGD directions with z ∈ E2 is given

by D3 = {−∇f(x) + λδ : δ ∈ D2, λ ≥ 0}. Since dN(x) = −x, our desired result is equivalent to

D3 ⊆ cone(−x, θx).

Define the subsetD′2 = {z−x : z ∈ E2, x
T z = 0}. We claim that it suffices to prove thatD′2 ⊆

cone(−x, θx). To see this, consider any λδ for λ ≥ 0 and δ ∈ D2. We have xT (λδ) = λxT (z−x) ≤

−λxTx < 0, so there exists a scalar s with xT (sλδ) = −xTx, whence sλδ ∈ D′2 ⊆ cone(−x, θx).

By Proposition 4.9.1, λδ ∈ cone(−x, θx). Since −∇f(x) ∈ cone(−x, θx), convexity implies that

−∇f(x)λδ ∈ cone(−x, θx). Thus, D′2 ⊆ cone(−x, θx) implies that D3 ⊆ cone(−x, θx).

To complete the proof, let δ = z − x ∈ D′2 and observe that cos(θ(δ, dN(x))) = xT (x−z)
‖x‖‖x−z‖ . By

Proposition 4.9.5 and the definition of Sr,

max{‖z‖ : z ∈ E2, z
Tx = 0} ≤

√
κ
√

cos(θx)‖x‖ =
√
rκ1/4‖x‖

We compute that

xT (x− z)− r√
κ
‖x‖‖x− z‖ ≥ ‖x‖2 − r√

κ
(‖x‖2 + ‖x‖‖z‖)

≥ ‖x‖2 − r√
κ
‖x‖2 − r√

κ
‖x‖(
√
rκ1/4‖x‖)

≥
(

1− r√
κ
− r3/2

κ1/4

)
‖x‖2 ≥ 0

By the definition of Rκ, this is nonnegative, and thus θ(δ, dN(x)) ≤ θx. This completes the proof.

7Note the sign change from x− z to z − x here.
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Note that Propositions 4.9.3 and 4.9.6 apply only to convex functions, or in the neighborhoods

of local minimizers where the objective function is locally convex. In nonconvex landscapes,

the Newton direction may point towards saddle points [85], which is undesirable; however, since

Propositions 4.9.3 and 4.9.6 do not apply in this situation, these results do not imply that LSGD

has harmful behavior. For nonconvex problems, our intuition is that many candidate leaders lie in

directions of negative curvature, which would actually lead away from saddle points, but this is

significantly harder to analyze since the set of candidates is unbounded a priori.

4.10 A Drawback of LSGD: Implicit Variance Reduction

Elastic Averaging SGD implicitly yields variance reduction when the number of workers p

increases. One example of this is [77, Corollary 3.1.1], which shows that when applied to a one-

dimensional quadratic function, the EASGD consensus variable x̃ has limiting mean-squared error

of order O(1
p
).

This is perhaps to be expected, since x̃ is updated towards the average of the worker variables.

We do not expect LSGD to have the same property, and indeed, we can construct a counterexample

which shows that it does not. In Proposition 4.10.1, we show that when the algorithm hyperparam-

eters η, λ are fixed, there exists ε > 0 such that a LSGD update x+ = x − η∇f(x) − ηλ(x − z)

never brings x+ into the interval (−ε, ε). It follows that regardless of the number of workers p, none

of the worker parameters will enter a fixed interval around the minimizer, and hence the limiting

variance is independent of the number of workers.

Proposition 4.10.1. Let f(x) = 1
2
x2. For any suitable choice of hyperparameters η, λ8, there

exists a gradient estimator g̃(x) and ε > 0 such that |x(i)
k | ≥ ε for every worker i and all iterations

k. In particular, ε is independent of the number of workers.

Proof. Our strategy will be to exhibit an estimator g̃(x) and a threshold ε > 0 with the property that

for any point x and leader z with f(z) ≤ f(x), the updated point x+ satisfies |x+| ≥ ε. It follows

8In particular, when η, λ are small.
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that if we define f0 = min{|x(1)
0 |, . . . , |x

(p)
0 |}9, then taking ε = min{f0, ε}, we have |x(i)

k | ≥ ε for

all workers i and all iterations k.

We define the estimator g̃(x) by

g̃(x) =

 {∇f(x)− σ,∇f(x) + σ} with equal probability, if |x| ≤ α

∇f(x) if |x| > α

To define ε and α, we assume that η + 2ηλ < 1. Choose ε so that

0 < ε ≤ σ

2

η(1− η − 2ηλ)

1− η − ηλ

and then take α = ε
1−η−2ηλ

. These values are chosen so that the inequalities ε + (1 − η)α ≤ ησ

and ε+ ηλα ≤ ησ hold.

Suppose first that x > α. Since z ≥ −x, the update satisfies

x+ = x− η(x+ λ(x− z)) ≥ (1− η − ηλ)x+ ηλ(−x)

> (1− η − 2ηλ)α = ε

Similarly, if x < −α, we obtain x+ < −ε.

Next, suppose that 0 ≤ x ≤ α. By definition of g̃, either g̃(x) = x+ σ or g̃(x) = x− σ. When

g̃(x) = x+ σ, using that z ≤ x, we have

x+ = x− η(x+ σ + λ(x− z)) ≤ (1− η − ηλ)x− ησ + ηλx

≤ (1− η)α− ησ ≤ −ε

9Assume that x(i)0 6= 0 for the initial points, i.e. we do not pick the minimizer as an initial point.

110



When g̃(x) = x− σ, using z ≥ −x ≥ −α, we have

x+ = x− η(x− σ + λ(x− z)) = (1− η − ηλ)x+ ησ + ηλz

≥ ησ − ηλα ≥ ε

Similarly, if−α ≤ x ≤ 0, we obtain x+ ≤ −ε when g̃(x) = x+σ and x+ ≥ ε when g̃(x) = x−σ.

This completes the proof.

Note that [77, Corollary 3.1.1] requires that λ → 0 as p → ∞ (expressed in our notation), in

order to maintain the convergence of x̃. To see that the counterexample in Proposition 4.10.1 still

holds when λ → 0, observe that the constructed estimator g̃(x) for λ0 yields the same bounds if

the LSGD update is made with any λ ≤ λ0.
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Chapter 5: Solving Structured Problems with Multiaffine ADMM

5.1 Introduction

The alternating direction method of multipliers (ADMM) is an iterative method which, in

its original form, solves linearly-constrained separable optimization problems with the following

structure:

(P0)


inf
x,y

f(x) + g(y)

Ax+By − b = 0.

The augmented Lagrangian L of the problem (P0), for some penalty parameter ρ > 0, is defined

to be

L(x, y, w) = f(x) + g(y) + 〈w,Ax+By − b〉+
ρ

2
‖Ax+By − b‖2.

In iteration k, with the iterate (x(k), y(k), w(k)), ADMM takes the following steps:

1. Minimize L(x, y(k), w(k)) with respect to x to obtain x(k+1).

2. Minimize L(x(k+1), y, w(k)) with respect to y to obtain y(k+1).

3. Set w(k+1) ← w(k) + ρ(Ax(k+1) +By(k+1) − b).

ADMM was first proposed [86, 87] for solving variational problems, and was subsequently

applied to convex optimization problems with two blocks as in (P0). Several techniques can be

used to analyze this case, including an operator-splitting approach [88, 89, 90]. The survey arti-

cles [91, 39] provide convergence proofs from several viewpoints, and discuss numerous applica-

tions of ADMM. More recently, there has been considerable interest in extending ADMM conver-

gence guarantees when solving problems with multiple blocks and nonconvex objective functions.
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ADMM directly extends to the problem

(P1)


inf

x1,x2,...,xn
f1(x1) + f2(x2) + . . .+ fn(xn)

A1x1 + A2x2 + . . .+ Anxn − b = 0

by minimizing L(x1, . . . , xn, w) with respect to x1, x2, . . . , xn successively. The multiblock prob-

lem turns out to be significantly different from the classical 2-block problem, even when the objec-

tive function is convex; for example, [92] exhibits an example with n = 3 blocks and f1, f2, f3 ≡ 0

for which ADMM diverges for any value of ρ. Under certain conditions, the unmodified 3-block

ADMM does converge. In [93], it is shown that if f3 is strongly convex with condition num-

ber κ ∈ [1, 1.0798) (among other assumptions), then 3-block ADMM is globally convergent. If

f1, . . . , fn are all strongly convex, and ρ > 0 is sufficiently small, then [94] shows that multiblock

ADMM is convergent. Other works along these lines include [95, 96, 97].

In the absence of strong convexity, modified versions of ADMM have been proposed that can

accommodate multiple blocks. In [98] a new type of 3-operator splitting is introduced that yields

a convergent 3-block ADMM (see also [99] for a proof that a ‘lifting-free’ 3-operator extension of

Douglas-Rachford splitting does not exist). Convergence guarantees for multiblock ADMM can

also be achieved through variants such as proximal ADMM, majorized ADMM, linearized ADMM

[100, 101, 102, 103, 104, 105], and proximal Jacobi ADMM [102, 106, 107].

ADMM has also been extended to problems with nonconvex objective functions. In [108],

it is proved that ADMM converges when the problem (P1) is either a nonconvex consensus or

sharing problem, and [109] proves convergence under more general conditions on f1, . . . , fn and

A1, . . . , An. Proximal ADMM schemes for nonconvex, nonsmooth problems are considered in

[110, 111, 112, 105]. More references on nonconvex ADMM, and comparisons of the assumptions

used, can be found in [109].

In all of the work mentioned above, the system of constraints C(x1, . . . , xn) = 0 is assumed to

be linear. Consequently, when all variables other than xi have fixed values, C(x1, . . . , xn) becomes

an affine function of xi. However, this holds for more general constraints C(·) in the much larger
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class of multiaffine maps (see Section 5.2). Thus, it seems reasonable to expect that ADMM would

behave similarly when the constraints C(x1, . . . , xn) = 0 are permitted to be multiaffine. To be

precise, consider a more general problem than (P1) of the form

(P2)


inf

x1,x2,...,xn
f(x1, . . . , xn)

C(x1, . . . , xn) = 0.

The augmented Lagrangian for (P2) is

L(x1, . . . , xn, w) = f(x1, . . . , xn) + 〈w,C(x1, . . . , xn)〉+
ρ

2
‖C(x1, . . . , xn)‖2,

and ADMM for solving this problem is specified in Algorithm 4.

Algorithm 4 ADMM

Input: (x0
1, . . . , x

0
n), w0, ρ

for k = 0, 1, 2, . . . do
for i = 1, . . . , n do

Compute x(k+1)
i ∈ argminxi L(x

(k+1)
1 , . . . , x

(k+1)
i−1 , xi, x

(k)
i+1, . . . , x

(k)
n , w(k))

end for
w(k+1) ← w(k) + ρC(x

(k+1)
1 , . . . , x

(k+1)
n )

end for

While many problems can be modeled with multiaffine constraints, existing work on ADMM

for solving multiaffine constrained problems appears to be limited. Boyd et al. [39] propose solving

the nonnegative matrix factorization problem formulated as a problem with biaffine constraints,

i.e.,

(NMF1)


inf
Z,X,Y

1
2
‖Z −B‖2

Z = XY,X ≥ 0, Y ≥ 0,

by applying ADMM with alternating minimization on the blocks Y and (X,Z). The convergence

of ADMM employed to solve the (NMF1) problem appears to have been an open question until a

proof was given in [113]1. A method derived from ADMM has also been proposed for optimizing
1[113] shows that every limit point of ADMM for the problem (NMF) is a constrained stationary point, but does

not show that such limit points necessarily exist.
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a biaffine model for training deep neural networks [114]. For general nonlinear constraints, a

framework for “monitored” Lagrangian-based multiplier methods was studied in [115].

In this paper, we establish the convergence of ADMM for a broad class of problems with

multiaffine constraints. Our assumptions are similar to those used in [109] for nonconvex ADMM;

in particular, we do not make any assumption about the iterates generated by the algorithm. Hence,

these results extend the applicability of ADMM to a larger class of problems which naturally

have multiaffine constraints. Moreover, we prove several results about ADMM in Section 5.6 that

hold in even more generality, and thus may be useful for analyzing ADMM beyond the setting

considered here.

5.1.1 Organization of this paper

In Section 5.2, we define multilinear and multiaffine maps, and specify the precise structure

of the problems that we consider. In Section 5.3, we provide several examples of problems that

can be formulated with multiaffine constraints. In Section 5.4, we state our assumptions and main

results (i.e., Theorems 5.4.1, 5.4.3 and 5.4.5). In Section 5.5, we present a collection of necessary

technical material. In Section 5.6, we prove several results about ADMM that hold under weak

conditions on the objective function and constraints. Finally, in Section 5.7, we complete the proof

of our main convergence theorems (Theorems 5.4.1, 5.4.3 and 5.4.5), by applying the general

techniques developed in Section 5.6. ?? contains proofs of technical lemmas. Section 5.8 presents

an alternative biaffine formulation for deep neural network training. Section 5.9 presents additional

formulations of problems where all ADMM subproblems have closed-form solutions.

5.1.2 Notation and Definitions

We consider only finite-dimensional real vector spaces. The symbols E,E1, . . . ,En denote

finite-dimensional Hilbert spaces, equipped with inner products 〈·, ·〉. By default, we use the stan-

dard inner product on Rn and the trace inner product 〈X, Y 〉 = Tr(Y TX) on the matrix space.

Unless otherwise specified, the norm ‖ · ‖ is always the induced norm of the inner product. When
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A is a matrix or linear map, ‖A‖op denotes the L2 operator norm, and ‖A‖∗ denotes the nuclear

norm (the sum of the singular values of A). Fixed bases are assumed, so we freely use various

properties of a linear map A that depend on its representation (such as ‖A‖op), and view A as a

matrix as required.

For f : Rn → R ∪ {∞}, the effective domain dom(f) is the set {x : f(x) < ∞}. The image

of a function f is denoted by Im(f). Similarly, when A is a linear map represented by a matrix,

Im(A) is the column space of A. We use Null(A) to denote the null space of A. The orthogonal

complement of a linear subspace U is denoted U⊥.

To distinguish the derivatives of smooth (i.e., continuously differentiable) functions from sub-

gradients, we use the notation ∇X for partial differentiation with respect to X , and reserve the

symbol ∂ for the set of general subgradients (Section 5.5.1); hence, the use of ∇f serves as a re-

minder that f is assumed to be smooth. A function f is Lipschitz differentiable if it is differentiable

and its gradient is Lipschitz continuous.

When X is a tuple of variables X = (X0, . . . , Xn), we write X 6=` for (Xi : i 6= `). Similarly,

X>` and X<` represent (Xi : i > `) and (Xi : i < `) respectively.

We use the term constrained stationary point for a point satisfying necessary first-order opti-

mality conditions; this is a generalization of the Karush-Kuhn-Tucker (KKT) necessary conditions

to nonsmooth problems. For the problem minx{f(x) : C(x) = 0}, where C is smooth and f

possesses general subgradients, x∗ is a constrained stationary point if C(x∗) = 0 and there exists

w∗ with 0 ∈ ∂f(x∗) +∇C(x∗)Tw∗.

5.2 Multiaffine Constrained Problems

The central objects of this paper are multilinear and multiaffine maps, which generalize linear

and affine maps.

Definition 5.2.1. A mapM : E1 ⊕ . . . ⊕ En → E is multilinear if, for all i ≤ n and all points
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(X1, . . . , X i−1, X i+1, . . . , Xn) ∈
⊕

j 6=iEj , the mapMi : Ei → E given by

Xi 7→ M(X1, . . . , X i−1, Xi, X i+1, . . . , Xn)

is linear. Similarly,M is multiaffine if the mapMi is affine for all i and all points of
⊕

j 6=i Ej . In

particular, when n = 2, we say thatM is bilinear/biaffine.

We consider the convergence of ADMM for problems of the form:

(P )


inf
X ,Z

φ(X ,Z)

A(X , Z0) +Q(Z>) = 0,

where X = (X0, . . . , Xn), Z = (Z0,Z>), Z> = (Z1, Z2),

φ(X ,Z) = f(X ) + ψ(Z)

and A(X , Z0) +Q(Z>) =

A1(X , Z0) +Q1(Z1)

A2(X ) +Q2(Z2)


with A1 and A2 being multiaffine maps and Q1 and Q2 being linear maps. The augmented La-

grangian L(X ,Z,W), with penalty parameter ρ > 0, is given by

L(X ,Z,W) = φ(X ,Z) + 〈W , A(X , Z0) +Q(Z>)〉+
ρ

2
‖A(X , Z0) +Q(Z>)‖2,

whereW = (W1,W2) are Lagrange multipliers.

We prove that Algorithm 4 converges to a constrained stationary point under certain assump-

tions on φ,A, and Q, which are described in Section 5.4. Moreover, since the constraints are

nonlinear, there is a question of constraint qualifications, which we address in Lemma 5.5.4.

We adopt the following notation in the context of ADMM. The variables in the k-th iteration

are denotedX (k),Z(k),W(k) (withX(k)
i , Z

(k)
i ,W

(k)
i for the i-th variable in each component). When

analyzing a single iteration, the index k is omitted, and we write X = X(k) and X+ = X(k+1).
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Similarly, we write L(k) = L(X (k),Z(k),W(k)) and will refer to L = L(k) and L+ = L(k+1) for

values within a single iteration.

5.3 Examples of Applications

In this section, we describe several problems with multiaffine constraints, and show how they

can be formulated and solved by ADMM. Many important applications of ADMM involve intro-

ducing auxiliary variables so that all subproblems have closed-form solutions; we describe several

such reformulations in section 5.9 that have this property.

5.3.1 Representation Learning

Given a matrix B of data, it is often desirable to represent B in the form B = X ∗Y , where ∗ is

a bilinear map and the matrices X, Y have some desirable properties. Two important applications

follow:

1. Nonnegative matrix factorization (NMF) [116, 117] expressesB as a product of nonnegative

matrices X ≥ 0, Y ≥ 0.

2. Inexact dictionary learning (DL) [118] expresses every element ofB as a sparse combination

of atoms from a dictionary X . It is typically formulated as

(DL)

{
inf
X,Y

ιS(X) + ‖Y ‖1 + µ
2
‖XY −B‖2,

where ιS is the indicator function for the set S of matrices whose columns have unit L2 norm,

and here ‖Y ‖1 is the entrywise 1-norm
∑

i,j |Yij|. The parameter µ is an input that sets the

balance between trying to recover B with high fidelity versus finding Y with high sparsity.

Problems of this type can be modeled with bilinear constraints. As already mentioned in Sec-

tion 5.1, [39, 113] propose the bilinear formulation (NMF1) for nonnegative matrix factorization.
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The inexact dictionary learning problem can similarly be formulated as:

(DL1)


inf
Z,X,Y

ιS(X) + ‖Y ‖1 + 1
2
‖Z −B‖2

Z = XY.

Other variants of dictionary learning such as convolutional dictionary learning (CDL), that

cannot readily be handled by the method in [118], have a biaffine formulation which is nearly

identical to (DL1), and can be solved using ADMM. For more information on dictionary learning,

see [119, 78, 79, 118, 120].

5.3.2 Non-Convex Reformulations of Convex Problems

Recently, various low-rank matrix and tensor recovery problems have been shown to be effi-

ciently solvable by applying first-order methods to nonconvex reformulations of them. For exam-

ple, the convex Robust Principal Component Analysis (RPCA) [121, 122] problem

(RPCA1)


inf
L,S
‖L‖∗ + λ‖S‖1

L+ S = B

can be reformulated as the biaffine problem

(RPCA2)


inf
U,V,S

1
2
(‖U‖2

F + ‖V ‖2
F ) + λ‖S‖1

UV T + S = B

U ∈ Rm×k, V ∈ Rn×n, S ∈ Rm×n

as long as k ≥ rank(L∗), where L∗ is an optimal solution of (RPCA1). See [123] for a proof

of this, and applications of the factorization UV T to other problems. This is also related to the

Burer-Monteiro approach [124] for semidefinite programming. We remark that (RPCA2) does not

satisfy all the assumptions needed for the convergence of ADMM (see A 1.3 and Section 5.4.2),

so slack variables must be added.
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5.3.3 Max-Cut

Given a graph G = (V,E) and edge weights w ∈ RE , the (weighted) maximum cut problem is

to find a subset U ⊆ V so that
∑

u∈U,v/∈U
wuv is maximized. This problem is well-known to be NP-

hard [125]. An approximation algorithm using semidefinite programming can be shown to achieve

an approximation ratio of roughly 0.878 [126]. Applying the Burer-Monteiro approach [124] to the

max-cut semidefinite program [126] with a rank-one constraint, and introducing a slack variable

(see A 1.2), we obtain the problem

(MC1)


sup
Z,x,y,s

1
2

∑
uv∈E

wuv(1− Zuv) + µ1
2

∑
u∈V

(Zuu − 1)2 + µ2
2
‖s‖2

Z = xyT , x− y = s.

It is easy to verify that all subproblems have very simple closed-form solutions.

5.3.4 Risk Parity Portfolio Selection

Given assets indexed by {1, . . . , n}, the goal of risk parity portfolio selection is to construct a

portfolio weighting x ∈ Rn in which every asset contributes an equal amount of risk. This can be

formulated with quadratic constraints; see [127] for details. The feasibility problem in [127] is

(RP)

 xi(Σx)i = xj(Σx)j ∀i, j

a ≤ x ≤ b, x1 + . . .+ xn = 1

where Σ is the (positive semidefinite) covariance matrix of the asset returns, and a and b con-

tain lower and upper bounds on the weights, respectively. The authors in [127] introduce a vari-

able y = x and solve (RP) using ADMM by replacing the quadratic risk-parity constraint by a

fourth-order penalty function f(x, y, θ) =
∑n

i=1(xi(Σy)i − θ)2. To rewrite this problem with a

bilinear constraint, let ◦ denote the Hadamard product (x ◦ y)i = xiyi and let P be the matrix 0 0

en−1 −In−1

, where en is the all-ones vector of length n. Let X be the set of permissible
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portfolio weights X = {x ∈ Rn : a ≤ x ≤ b} ∩ {x ∈ Rn : eTnx = 1}, and let ιX be its indicator

function. Then we obtain the problem

(RP1)


inf
x,y,z,s

ιX(x) + µ
2
(‖z‖2 + ‖s‖2)

P (x ◦ y) = z

y − Σx = s

where we have introduced a slack variable s (see A 1.2).

5.3.5 Training Neural Networks

An alternating minimization approach is proposed in [114] for training deep neural networks.

By decoupling the linear and nonlinear elements of the network, the backpropagation required to

compute the gradient of the network is replaced by a series of subproblems which are easy to solve

and readily parallelized. For a network with L layers, let X` be the matrix of edge weights for

1 ≤ ` ≤ L, and let a` be the output of the `-th layer for 0 ≤ ` ≤ L− 1. Deep neural networks are

defined by the structure a` = h(X`a`−1), where h(·) is an activation function, which is often taken

to be the rectified linear unit (ReLU) h(z) = max{z, 0}. The splitting used in [114] introduces

new variables z` for 1 ≤ ` ≤ L so that the network layers are no longer directly connected, but are

instead coupled through the relations z` = X`a`−1 and a` = h(z`).

Let E(·, ·) be an error function, and R a regularization function on the weights. Given a matrix

of labeled training data (a0, y), the learning problem is

(DNN1)


inf

{X`},{a`},{z`}
E(zL, y) +R(X1, . . . , XL)

z` −X`a`−1 = 0 for 1 ≤ ` ≤ L

a` − h(z`) = 0 for 1 ≤ ` ≤ L− 1.

The algorithm proposed in [114] does not include any regularization R(·), and replaces both

sets of constraints by quadratic penalty terms in the objective, while maintaining Lagrange multi-
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pliers only for the final constraint zL = WLaL−1. However, since all of the equations z` = X`a`−1

are biaffine, we can include them in a biaffine formulation of the problem:

(DNN2)


inf

{X`},{a`},{z`}
E(zL, y) +R(X1, . . . , XL) + µ

2

L−1∑̀
=1

(a` − h(z`))
2

z` −X`a`−1 = 0 for 1 ≤ ` ≤ L.

To adhere to our convergence theory, it would be necessary to apply smoothing (such as Nes-

terov’s technique [128]) when h(z) is nonsmooth, as is the ReLU. Alternatively, the ReLU can be

replaced by an approximation using nonnegativity constraints (see Section 5.8). In practice [114,

§7], using the ReLU directly yields simple closed-form solutions, and appears to perform well

experimentally. However, no proof of the convergence of the algorithm in [114] is provided.

5.4 Main Results

In this section, we state our assumptions and main results. We will show that ADMM (Algo-

rithm 5) applied to solve a multiaffine constrained problem of the form (P ) (refer to page 117)

produces a bounded sequence {(X(k),Z(k))}∞k=0, and that every limit point (X ∗,Z∗) is a con-

strained stationary point. While there are fairly general conditions under which Z∗ satisfies first-

order optimality conditions (see Assumption 1 and the corresponding discussion in Section 5.4.2

of tightness), the situation with X ∗ is more complicated because of the many possible structures of

multiaffine maps. Accordingly, we divide the convergence proof into two results. Under one broad

set of assumptions, we prove that limit points exist, are feasible, and that Z∗ is a blockwise con-

strained stationary point for the problem with X fixed at X ∗ (Theorem 5.4.1). Then, we present

a set of easily-verifiable conditions under which (X ∗,Z∗) is also a constrained stationary point

(Theorem 5.4.3). If the augmented Lagrangian has additional geometric properties (namely, the

Kurdyka-Łojasiewicz property (Section 5.5.5)), then {(X(k),Z(k))}∞k=0 converges to a single limit

point (X ∗,Z∗) (Theorem 5.4.5).
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Algorithm 5 ADMM

Input: (X
(0)
0 , . . . , X

(0)
n ), (Z

(0)
0 , Z

(0)
1 , Z

(0)
2 ), (W

(0)
1 ,W

(0)
2 ), ρ

for k = 0, 1, 2, . . . do
for i = 0, . . . , n do

Compute X(k+1)
i ∈ argminXi

L(X
(k+1)
0 , . . . , X

(k+1)
i−1 , Xi, X

(k)
i+1, . . . , X

(k)
n ,Z(k),W(k))

end for
Compute Z(k+1) ∈ argminZ L(X (k+1),Z,W(k))
W(k+1) ←W(k) + ρ(A(X (k+1), Z0

(k+1)) +Q(Z>(k+1)))
end for

5.4.1 Assumptions and Main Results

We consider two sets of assumption for our analysis. We provide intuition and further discus-

sion of them in Section 5.4.2. (See Section 5.5 for definitions related to convexity and differentia-

bility.)

Assumption 1. Solving problem (P ) (refer to page 117), the following hold.

A 1.1. For sufficiently large ρ, every ADMM subproblem attains its optimal value.

A 1.2. Im(Q) ⊇ Im(A).

A 1.3. The following statements regarding the objective function φ and Q2 hold:

1. φ is coercive on the feasible region Ω = {(X ,Z) : A(X , Z0) +Q(Z>) = 0}.

2. ψ(Z) can be written in the form

ψ(Z) = h(Z0) + g1(ZS) + g2(Z2)

where

(a) h is proper, convex, and lower semicontinuous.

(b) ZS represents either Z1 or (Z0, Z1) and g1 is (m1,M1)-strongly convex. That is, either

g1(Z1) is a strongly convex function of Z1 or g1(Z0, Z1) is a strongly convex function

of (Z0, Z1).
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(c) g2 is M2-Lipschitz differentiable.

3. Q2 is injective.

While Assumption 1 may appear to be complicated, it is no stronger than the conditions used

in analyzing nonconvex, linearly-constrained ADMM. A detailed comparison is given in Sec-

tion 5.4.2.

Under Assumption 1, Algorithm 5 produces a sequence which has limit points, and every limit

point (X (∗),Z(∗)) is feasible with Z(∗) a constrained stationary point for problem (P ) with X fixed

to X ∗.

Theorem 5.4.1. Suppose that Assumption 1 holds. For sufficiently large ρ, the sequence {(X (k),Z(k),W(k))}∞k=0

produced by ADMM is bounded, and therefore has limit points. Every limit point (X ∗,Z∗,W∗)

satisfies A(X ∗, Z∗0)+Q(Z∗>) = 0. There exists a sequence v(k) ∈ ∂ZL(X (k),Z(k),W(k)) such that

v(k) → 0, and thus

0 ∈ ∂Zψ(Z∗) + CT
X ∗W∗ (5.4.1)

where CX ∗ is the linear map Z 7→ A(X ∗, Z0) + Q(Z>) and CT
X ∗ is its adjoint. That is, Z∗ is a

constrained stationary point for the problem

min
Z
{ψ(Z) : A(X ∗, Z0) +Q(Z>) = 0}.

Remark 5.4.2. Let σ := λmin(QT
2Q2) 2 and κ1 := M1

m1
. One can check that it suffices to choose ρ

so that

σρ

2
− M2

2

σρ
>
M2

2
and ρ > max

{
2M1κ1

λ++(QT
1Q1)

,
1

2
(M1 +M2) max

{
σ−1,

(1 + 2κ1)2

λ++(QT
1Q1)

}}
.

(5.4.2)

Note that Assumption 1 makes very few assumptions about f(X ) and the map A as a function

of X , other than that A is multiaffine. In Section 5.6, we develop general techniques for prov-

2See Section 5.5.4 for the definition of λmin and λ++.
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ing that (X ∗,Z∗) is a constrained stationary point. We now present an easily checkable set of

conditions, that ensure that the requirements for those techniques are satisfied.

Assumption 2. Solving problem (P ), Assumption 1 and the following hold.

A 2.1. The function f(X ) splits into

f(X ) = F (X0, . . . , Xn) +
n∑
i=0

fi(Xi)

where F is MF -Lipschitz differentiable, the functions f0, f1, . . ., and fn are proper and lower

semicontinuous, and each fi is continuous on dom(fi).

A 2.2. For each 1 ≤ ` ≤ n,3 at least one of the following two conditions4 holds:

1. (a) F (X0, . . . , Xn) is independent of X`.

(b) f`(X`) satisfies a strengthened convexity condition (Definition 5.5.15).

2. (a) Viewing A(X , Z0)+Q(Z>) = 0 as a system of constraints 5 , there exists an index r(`)

such that in the r(`)-th constraint,

Ar(`)(X , Z0) = R`(X`) + A′`(X 6=`, Z0)

for an injective linear map R` and a multiaffine map A′`. In other words, the only term

in Ar(`) that involves X` is an injective linear map R`(X`).

(b) f` is either convex or M`-Lipschitz differentiable.

A 2.3. At least one of the following holds for Z0:

3Note that we have deliberately excluded ` = 0. A 2.2 is not required to hold for X0.
4That is, either (1a) and (1b) hold, or (2a) and (2b) hold.
5As an illustrative example, a problem may be formulated with constraints X0X1+Z1 = 0, X0+P1(X1)+Z2 =

0, X0X2 + Z3 = 0, P2(X2) + Z4 = 0, where P1, P2 are injective linear maps. The notation A(X , Z0) + Q(Z>)
denotes the concatenation of these equations, which can also be seen naturally as a system of four constraints. In this
case, the indices r(`) ∈ {1, 2, 3, 4}, and A 2.2(2a) is satisfied by the second constraint X0 +P1(X1)+Z2 = 0 for the
variables X0, X1 (i.e. r(0) = r(1) = 2 and R0 = I,R1 = P1), and by the fourth constraint P2(X2)+Z4 = 0 for X2.
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1. h(Z0) satisfies a strengthened convexity condition (Definition 5.5.15).

2. Z0 ∈ ZS , so g1(ZS) is a strongly convex function of Z0 and Z1.

3. Viewing A(X , Z0) + Q(Z>) = 0 as a system of constraints, there exists an index r(0) such

that Ar(0)(X , Z0) = R0(Z0) + A′0(X ) for an injective linear map R0 and multiaffine map

A′0.

With these additional assumptions on f and A, we have that every limit point (X ∗,Z∗) is a

constrained stationary point of problem (P ).

Theorem 5.4.3. Suppose that Assumption 2 holds (and hence, Assumption 1 and Theorem 5.4.1).

Then for sufficiently large ρ, there exists a sequence v(k) ∈ ∂L(X (k),Z(k),W(k)) with v(k) → 0,

and thus every limit point (X ∗,Z∗) is a constrained stationary point of problem (P ). Thus, in

addition to (5.4.1), X ∗ satisfies, for each 0 ≤ i ≤ n,

0 ∈ ∇Xi
F (X ∗) + ∂Xi

fi(X
∗
i ) + ATXi,(X ∗6=i,Z

∗
0 )W∗ (5.4.3)

where AXi,(X ∗6=i,Z
∗
0 ) is the Xi-linear term of X 7→ A(X , Z0) evaluated at (X ∗6=i, Z∗0) (see Defini-

tion 5.5.6) and ATXi,(X ∗6=i,Z
∗
0 ) is its adjoint. That is, for each 0 ≤ i ≤ n, X∗i is a constrained

stationary point for the problem

min
Xi

{F (X ∗6=i, Xi) + fi(Xi) : A(X ∗6=i, Xi, Z
∗
0) +Q(Z∗>) = 0}.

Remark 5.4.4. One can check that it suffices to choose ρ so that, in addition to (5.4.2), we have

ρ > max{λ−1
min(RT

` R`)(µ` + MF )}, where the maximum is taken over all ` for which A 2.2(2)

holds, and

µ` =

 0 if f` convex

M` if f` nonconvex, Lipschitz differentiable.

It is well-known that when the augmented Lagrangian has a geometric property known as the

Kurdyka-Łojasiewicz (K-Ł) property (see Section 5.5.5), which is the case for many optimization
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problems that occur in practice, then results such as Theorem 5.4.3 can typically be strengthened

because the limit point is unique.

Theorem 5.4.5. Suppose that L(X ,Z,W) is a K-Ł function. Suppose that Assumption 2 holds,

and furthermore, that A 2.2(2) holds for all X0, X1, . . . , Xn
6, and A 2.3(2) holds. Then for suffi-

ciently large ρ, the sequence {(X (k),Z(k),W(k))}∞k=0 produced by ADMM converges to a unique

constrained stationary point (X ∗,Z∗,W∗).

In Section 5.6, we develop general properties of ADMM that hold without relying on Assump-

tion 1 or Assumption 2. In Section 5.7, the general results are combined with Assumption 1 and

then with Assumption 2 to prove Theorem 5.4.1 and Theorem 5.4.3, respectively. Finally, we

prove Theorem 5.4.5 assuming that the augmented Lagrangian is a K-Ł function. The results of

Section 5.6 may also be useful for analyzing ADMM, since the assumptions required are weak.

5.4.2 Discussion of Assumptions

Assumptions 1 and 2 are admittedly long and somewhat involved. In this section, we will dis-

cuss them in detail and explore the extent to which they are tight. Again, we wish to emphasize that

despite the additional complexity of multiaffine constraints, the basic content of these assumptions

is fundamentally the same as in the linear case. There is also a relation between Assumption 2

and proximal ADMM, by which A 2.2(2) can be viewed as introducing a proximal term. This is

described in Section 5.4.2.

Assumption 1.1

This assumption is necessary for ADMM (Algorithm 5) to be well-defined. We note that this

can fail in surprising ways; for instance, the conditions used in [39] are insufficient to guarantee

that the ADMM subproblems have solutions. In [129], an example is constructed which satisfies

the conditions in [39], and yet the ADMM subproblem fails to attain its (finite) optimal value.

6Note that X0 is included here, unlike in Assumption 2.
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Assumption 1.2

The condition that Im(Q) ⊇ Im(A) plays a crucial role at multiple points in our analysis be-

cause Z>, a subset of the final block of variables, has a close relation to the dual variables W .

It would greatly broaden the scope of ADMM, and simplify modeling, if this condition could

be relaxed, but unfortunately this condition is tight for general problems. The following exam-

ple demonstrates that ADMM is not globally convergent when A 1.2 does not hold, even if the

objective function is strongly convex.

Theorem 5.4.6. Consider the problem

min
x,y
{x2 + y2 : xy = 1}.

If the initial point is (x(0), 0, w(0)), or if w(k) = ρ for some k, then the ADMM sequence satisfies

(x(k), y(k))→ (0, 0) and w(k) → −∞.

Proof. The augmented Lagrangian of this problem isL(x, y, w) = x2+y2+w(xy−1)+ ρ
2
(xy−1)2,

and thus ∂
∂x
L(x, y, w) = x(2 + ρy2) + y(w − ρ). If y = 0 or w = ρ, the minimizer of the x-

subproblem is x+ = 0. Likewise, if x = 0, then y+ = 0. Hence, if either y(k) = 0 or w(k) = ρ,

we have (x(j), y(j)) = (0, 0) for all j > k. The multiplier update is then w+ = w − ρ, so

w(k) → −∞.

Even for linearly-constrained, convex, multiblock problems, this condition7 is close to indis-

pensable. When all the other assumptions except A 1.2 are satisfied, ADMM can still diverge if

Im(Q) 6⊇ Im(A). In fact, [92, Thm 3.1] exhibits a simple 3-block convex problem with objective

function φ ≡ 0 on which ADMM diverges for any ρ. This condition is used explicitly [109, 110,

112] and implicitly [108] in other analyses of multiblock (nonconvex) ADMM.

7For linear constraints A1x1 + . . .+Anxn = b, the equivalent statement is that Im(An) ⊇
⋃n−1

i=1 Im(Ai).
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Assumption 1.3

This assumption posits that the entire objective function φ is coercive on the feasible region,

and imposes several conditions on the term ψ(Z) for the final block Z .

Let us first consider the conditions on ψ. The block Z is composed of three sub-blocks

Z0, Z1, Z2, and ψ(Z) decomposes as h(Z0) + g1(ZS) + g2(Z2), where ZS represents either Z1

or (Z0, Z1). There is a distinction between Z0 and Z> = (Z1, Z2): namely, Z0 may be coupled

with the other variables X in the nonlinear function A, whereas Z> appears only in the linear

function Q(Z>) which satisfies Im(Q) ⊇ Im(A).

To understand the purpose of this assumption, consider the following ‘abstracted’ assumptions,

which are implied by A 1.3:

M1 The objective is Lipschitz differentiable with respect to a ‘suitable’ subset of Z .

M2 ADMM yields sufficient decrease [130] when updating Z . That is, for some ‘suitable’ subset

Z̃ of Z and some ε > 0, we have L(X+,Z,W)− L(X+,Z+,W) ≥ ε‖Z̃ − Z̃+‖2.

A ‘suitable’ subset of Z is one whose associated images in the constraints satisfies A 1.2. By

design, our formulation (P ) uses the subset Z> = (Z1, Z2) in this role. M1 follows from the fact

that g1, g2 are Lipschitz differentiable, and the other conditions in A 1.3 are intended to ensure that

M2 holds. For instance, the strong convexity assumption in A 1.3(2) ensures that M2 holds with

respect to Z1 regardless of the properties of Q1. The concept of sufficient decrease for descent

methods is discussed in [130].

To connect this to the classical linearly-constrained problem, observe that an assumption cor-

responding to M1 is:

AL For the problem (P1) (see page 113), fn(xn) is Lipschitz differentiable.

Thus, in this sense Z> alone corresponds to the final block in the linearly-constrained case. In the

multiaffine setting, we can add a sub-block Z0 to the final block Z , a nonsmooth term h(Z0) to the
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objective function and a coupled constraint A1(X , Z0), but only to a limited extent: the interaction

of the final block Z with these elements is limited to the variables Z0.

As with A 1.2, it would expand the scope of ADMM if AL, or the corresponding M1, could

be relaxed. However, we find that for nonconvex problems, AL cannot readily be relaxed even in

the linearly-constrained case, where AL is a standard assumption [109, 110, 112]. Furthermore,

an example is given in [109, 36(a)] of a 2-block problem in which the function f2(x2) = ‖x2‖1

is nonsmooth, and it is shown that ADMM diverges for any ρ when initialized at a given point.

Thus, we suspect that AL/M1 is tight for general problems, though it may be possible to prove

convergence for specific structured problems not satisfying M1.

M1 often has implications for modeling. When a constraintC(X ) = 0 fails to have the required

structure, one can introduce a new slack variable Z, and replace that constraint by C(X ) − Z =

0, and add a term g(Z) to the objective function to penalize Z. Because of M1, exact penalty

functions such as λ‖Z‖1 or the indicator function of {0} fail to satisfy A 1.3, so this reformulation

is not exact. Based on the above discussion, this may be a limitation inherent to ADMM (as

opposed to merely an artifact of existing proof techniques).

We turn now to M2. Note that AL corresponds only to M1, which is why A 1.3 is more

complicated than AL. There are two main sub-assumptions within A 1.3 that ensure M2: that g1 is

strongly convex in Z1, and the mapQ2 is injective. These assumptions are not tight8 since M2 may

hold under alternative hypotheses. On the other hand, we are not aware of other assumptions that

are as comparably simple and apply with the generality of A 1.3; hence we have chosen to adopt

the latter. For example, if we restrict the problem structure by assuming that the sub-block Z0 is

not present, then the condition that g1 is strongly convex can be relaxed to the weaker condition

that∇2g1(Z1)+ρQT
1Q1 � mI for m > 0. However, even in the absence of A 1.3, one might show

that specific problems, or classes of structured problems, satisfy the sufficient decrease property,

using the general principles of ADMM outlined in Section 5.6.

Property M2 often arises implicitly when analyzing ADMM. In some cases, such as [108,

8in the sense that this exact assumption is always necessary and cannot be replaced.
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131], it follows either from strong convexity of the objective function, or because An = I (and

is thus injective). Proximal and majorized versions of ADMM are considered in [112, 110] and

add quadratic terms which force M2 to be satisfied. The approach in [109], by contrast, takes a

different approach and uses an abstract assumption which relates ‖Ak(x+
k − xk)‖2 to ‖x+

k − xk‖2;

in our experience, it is difficult to verify this abstract assumption in general, except when other

properties such as strong convexity or injectivity of Ak hold.

Finally, we remark on the coercivity of φ over the feasible region. It is common to assume

coercivity (see, e.g. [110, 109]) to ensure that the sequence of iterates is bounded, which implies

that limit points exist. In many applications, such as (DL) (Section 5.3.1), φ is independent of some

of the variables. However, φ can still be coercive over the feasible region. For the variable-splitting

formulation (DL3), this holds because of the constraints X = X ′ + X ′′ and Y = Y ′ + Y ′′. The

objective function is coercive in X ′, X ′′, Y ′, and Y ′′, and therefore X and Y cannot diverge on the

feasible region.

Assumption 2.1

The key element of this assumption is that X0, . . . , Xn may only be coupled by a Lipschitz

differentiable function F (X0, . . . , Xn), and the (possibly nonsmooth) terms f0(X0), . . . , fn(Xn)

must be separable. This type of assumption is also used in previous works such as [132, 112, 109].

Assumption 2.2, 2.3

We have grouped A 2.2, A 2.3 together here because their motivation is the same. Our goal is to

obtain conditions under which the convergence of the function differencesL(X+
<`, X`,X>`,Z,W)−

L(X+
<`, X

+
` ,X>`,Z,W) implies that ‖X`−X+

` ‖ → 0 (and likewise for Z0). This can be viewed as

a much weaker analogue of the sufficient decrease property M2. In A 2.2 and A 2.3, we have pre-

sented several alternatives under which this holds. Under A 2.2(1) and A 2.3(1), the strengthened
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convexity condition (Definition 5.5.15), it is straightforward to show that

L(X+
<`, X`,X>`,Z,W)− L(X+

<`, X
+
` ,X>`,Z,W) ≥ ∆(‖X` −X+

` ‖) (5.4.4)

(and likewise for Z0), where ∆(t) is the 0-forcing function arising from strengthened convexity.

For A 2.2(2) and A 2.3(2), the inequality (5.4.4) holds with ∆(t) = at2, which is the sufficient

decrease condition of [130]. Note that having ∆(t) ∈ O(t2) is important for proving convergence

in the K-Ł setting, hence the additional hypotheses in Theorem 5.4.5.

As with A 1.3, the assumptions in A 2.2 and A 2.3 are not tight, because (5.4.4) may occur un-

der different conditions. We have chosen to use this particular set of assumptions because they are

easily verifiable, and fairly general. The general results of Section 5.6 may be useful in analyzing

ADMM for structured problems when the particular conditions of A 2.2 are not satisfied.

Connection with proximal ADMM

When modeling, one may always ensure that A 2.2(2a) is satisfied for X` by introducing a

new variable Z3 and a new constraint X` = Z3. This may appear to be a trivial reformulation

of the problem, but it in fact promotes regularity of the ADMM subproblem in the same way as

introducing a positive semidefinite proximal term.

Generalizing this trick, let S be positive semidefinite, with square root S1/2. Consider the con-

straint
√

2
ρ
S1/2(X` − Z3) = 0. The term of the augmented Lagrangian induced by this constraint

is ‖X` − Z3‖2
S , where ‖ · ‖S is the seminorm ‖X‖2

S = 〈X,SX〉 induced by S. To see this, let W0

be the Lagrange multiplier corresponding to this constraint.

Lemma 5.4.7. If W 0
3 is initialized to 0, then for all k ≥ 1, Zk

3 = Xk
` and W k

3 = 0. Consequently,

the constraint
√

2
ρ
S1/2(X` − Z3) = 0 is equivalent to adding a proximal term ‖X` −Xk

` ‖2
S to the

minimization problem for X`.

Proof. We proceed by induction. Since Z3 is part of the final block and W k
3 = 0, the minimization

problem for Zk+1
3 is minZ3 ‖S1/2(Z3 −Xk+1

` )‖2, for which Zk+1
3 = Xk+1

` is an optimal solution.
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The update for W k+1
3 is then W k+1

3 = ρ(Xk+1
` − Zk+1

3 ) = 0.

Note that proximal ADMM is often preferable to ADMM in practice [133, 134]. ADMM sub-

problems, which may have no closed-form solution because of the linear mapping in the quadratic

penalty term, can often be transformed into a pure proximal mapping with a closed-form solution,

by adding a suitable proximal term. Several applications of this approach are developed in [134].

Furthermore, for proximal ADMM, the conditions on fi in A 2.2(2b) can be slightly weakened, by

modifying Lemma 5.6.9 and Corollary 5.7.3 (see Remark 5.6.11) to account for the proximal term

as in [112].

5.5 Preliminaries

This section is a collection of definitions, terminology, and technical results which are not

specific to ADMM. Proofs of the results in this section can be found in ??, or in the provided

references. The reader may wish to proceed directly to Section 5.6 and return here for details as

needed.

5.5.1 General Subgradients and First-Order Conditions

In order to unify our treatment of first-order conditions, we use the notion of general subgradi-

ents, which generalize gradients and subgradients. When f is smooth or convex, the set of general

subgradients consists of the ordinary gradient or subgradients, respectively. Moreover, some useful

functions that are neither smooth nor convex such as the indicator function of certain nonconvex

sets possess general subgradients.

Definition 5.5.1. Let G be a closed and convex set. The tangent cone TG(x) of G at the point

x ∈ G is the set of directions TG(x) = cl({y − x : y ∈ G}). The normal cone NG(x) is the set

NG(x) = {v : 〈v, y − x〉 ≤ 0 ∀y ∈ G}.

Definition 5.5.2 ([135], 8.3). Let f : Rn → R ∪ {∞} and x ∈ dom(f). A vector v is a regular

subgradient of f at x, indicated by v ∈ ∂̂f(x), if f(y) ≥ f(x) + 〈v, y − x〉 + o(‖y − x‖) for
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all y ∈ Rn. A vector v is a general subgradient, indicated by v ∈ ∂f(x), if there exist sequences

xn → x and vn → v with f(xn) → f(x) and vn ∈ ∂̂f(xn). A vector v is a horizon subgradient,

indicated by v ∈ ∂∞f(x), if there exist sequences xn → x, λn → 0, and vn ∈ ∂̂f(xn) with

f(xn)→ f(x) and λnvn → v.

The properties of the general subgradient can be found in [135, §8].

Under the assumption that the objective function is proper and lower semicontinuous, the

ADMM subproblems will satisfy a necessary first-order condition.

Lemma 5.5.3 ([135], 8.15). Let f : Rn → R ∪ {∞} be proper and lower semicontinuous over a

closed setG ⊆ Rn. Let x ∈ G be a point at which the following constraint qualification is fulfilled:

the set ∂∞f(x) of horizon subgradients contains no vector v 6= 0 such that −v ∈ NG(x). Then,

for x to be a local optimum of f over G, it is necessary that 0 ∈ ∂f(x) +NG(x).

For our purposes, it suffices to note that when G = Rn, the constraint qualification is trivially

satisfied because NG(x) = {0}. In the context of ADMM, this implies that the solution of each

ADMM subproblem satisfies the first-order condition 0 ∈ ∂L.

Problem (P ) has nonlinear constraints, and thus it is not guaranteed a priori that its minimizers

satisfy first-order necessary conditions, unless a constraint qualification holds. However, Assump-

tion 1 implies that the constant rank constraint qualification (CRCQ) [136, 137] is satisfied by

(P ), and minimizers of (P ) will therefore satisfy first-order necessary conditions as long as the

objective function is suitably regular. This follows immediately from A 1.2 and the following

lemma.

Lemma 5.5.4. Let C(x, z) = A(x) + Qz, where A(x) is smooth and Q is a linear map with

Im(Q) ⊇ Im(A). Then for any points x, z, and any vector w, (∇C(x, z))Tw = 0 if and only if

QTw = 0.

Proof. Observe that ∇C(x, z) =

(
∇A(x) Q

)
. The condition Im(Q) ⊇ Im(A) implies that

for every x, Im(Q) ⊇ Im(∇A(x)), and thus Null(QT ) ⊆ Null((∇A(x))T ). The result follows

immediately.

134



5.5.2 Multiaffine Maps

Every multiaffine map can be expressed as a sum of multilinear maps and a constant. This

provides a useful concrete representation.

Lemma 5.5.5. Let M(X1, . . . , Xn) be a multiaffine map. Then, M can be written in the form

M(X1, . . . , Xn) = B +
∑m

j=1Mj(Dj) where B is a constant, and eachMj(Dj) is a multilinear

map of a subset Dj ⊆ (X1, . . . , Xn).

Proof. We proceed by induction on n. When n = 1, a multiaffine map is an affine map, so

M(X1) = A(X1) + B as desired. Suppose now that the desired result holds for any multiaffine

map of n− 1 variables. Given a subset S ⊆ {1, . . . , n}, let XS denote the point with (XS)j = Xj

for j ∈ S, and (XS)j = 0 for j /∈ S. That is, the variables not in S are set to 0 in XS . Consider the

multiaffine map N given by

N (X1, . . . , Xn) =M(X1, . . . , Xn) +
∑
|S|≤n−1

(−1)n−|S|M(XS)

where the sum runs over all subsets S ⊆ {1, . . . , n} with |S| ≤ n − 1. Since XS 7→ M(XS) is a

multiaffine map of |S| variables, the induction hypothesis implies thatM(XS) can be written as a

sum of multilinear maps. Hence, it suffices to show that N (X1, . . . , Xn) is multilinear, in which

caseM(X1, . . . , Xn) = N (X1, . . . , Xn)−
∑

S(−1)n−|S|M(XS) is a sum of multilinear maps.

We verify the condition of multilinearity. Take k ∈ {1, . . . , n}, and write U = (Xj : j 6= k).

Since M is multiaffine, there exists a linear map AU(Xk) such that M(U,Xk) = AU(Xk) +

M(U, 0). Hence, we can write

M(U,Xk + λYk) =M(U,Xk) + λM(U, Yk)− λM(U, 0). (5.5.1)
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By the definition of N , N (U,Xk + λYk) is equal to

M(U,Xk + λYk) +
∑
k∈S

(−1)n−|S|M(US\k, Xk + λYk) +
∑
k/∈S

(−1)n−|S|M(US, 0)

where the sum runs over S with |S| ≤ n − 1. Making the substitution (5.5.1) for every S with

k ∈ S, we find that N (U,Xk + λYk) is equal to

M(U,Xk) + λM(U, Yk)− λM(U, 0) (5.5.2)

+
∑
k∈S

(−1)n−|S|(M(US\k, Xk) + λM(US\k, Yk)− λM(US\k, 0))

+
∑
k/∈S

(−1)n−|S|M(US, 0)

Our goal is to show that N (U,Xk + λYk) = N (U,Xk) + λN (U, Yk). Since

N (U, Yk) =M(U, Yk) +
∑
k∈S

(−1)n−|S|M(US\k, Yk) +
∑
k/∈S

(−1)n−|S|M(US, 0)

we add and subtract λ
∑

k/∈S(−1)n−|S|M(US, 0) in (5.5.2) to obtain the desired expressionN (U,Xk)+

λN (U, Yk), minus a residual term

λ

(
M(U, 0) +

∑
k∈S

(−1)n−|S|M(US\k, 0) +
∑
k/∈S

(−1)n−|S|M(US, 0)

)

It suffices to show the term in parentheses is 0.

There is exactly one set S with k /∈ S with |S| = n − 1, and for this set, US = U . For this S,

the termsM(U, 0) and (−1)n−(n−1)M(US, 0) cancel out. The remaining terms are

∑
k∈S,|S|≤n−1

(−1)n−|S|M(US\k, 0) +
∑

k/∈S,|S|≤n−2

(−1)n−|S|M(US, 0) (5.5.3)

There is a bijective correspondence between {S : k /∈ S, |S| ≤ n−2} and {S : k ∈ S, |S| ≤ n−1}
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given by S ↔ S ∪ {k}. Since |S ∪ {k}| = |S|+ 1, (5.5.3) becomes

∑
k/∈S,|S|≤n−2

((−1)n−|S|−1 + (−1)n−|S|)M(US, 0) = 0

which completes the proof.

Let M(X1, . . . , Xn, Y ) be multiaffine, with Y a particular variable of interest, and X =

(X1, . . . , Xn) the other variables. By Lemma 5.5.5, grouping the multilinear termsMj depending

on whether Y is one of the arguments ofMj , we have

M(X1, . . . , Xn, Y ) = B +

m1∑
j=1

Mj(Dj, Y ) +
m∑

j=m1+1

Mj(Dj) (5.5.4)

where each Dj ⊆ (X1, . . . , Xn).

Definition 5.5.6. LetM(X1, . . . , Xn, Y ) have the structure (5.5.4). Let FY be the space of func-

tions from Y → Im(M). Let θj : Dj → FY be the map9 given by (θj(X))(Y ) = Mj(Dj, Y ).

Here, we use the notation θj(X) for θj(Dj), with Dj taking the values in X . Finally, letMY,X =∑m1

j=1 θj(X).

We callMY,X the Y -linear term ofM (evaluated at X).

To motivate this definition, observe that whenX is fixed, the map Y 7→ M(X, Y ) is affine, with

the linear component given byMY,X and the constant term given byBX = B+
∑m

j=m1+1Mj(Dj).

When analyzing the ADMM subproblem in Y , a multiaffine constraint M(X, Y ) = 0 becomes

the linear constraintMY,X(Y ) = −BX .

The definition of multilinearity immediately shows the following.

Lemma 5.5.7. θj is a multilinear map of Dj . For every X , θj(X) is a linear map of Y , and thus

MY,X is a linear map of Y .

Example. ConsiderM(X1, X2, X3, X4) = X1X2X3+X2X3X4+X2+B = 0 for square matrices

X1, X2, X3, X4. Taking Y = X3 as the variable of focus, and X = (X1, X2, X4), we have
9When j > m1, θj(X) is a constant map of Y .
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(θ1(X))(Y ) = X1X2Y , (θ2(X))(Y ) = X2Y X4, (θ3(X))(Y ) = X2, (θ4(X))(Y ) = B, and thus

MY,X is the linear map Y 7→ X1X2Y +X2Y X4.

Our general results in Section 5.6 require smooth constraints, which holds for multiaffine maps.

Lemma 5.5.8. Multiaffine maps are smooth, and in particular, biaffine maps are Lipschitz differ-

entiable.

Proof. We prove two auxiliary lemmas, from which Lemma 5.5.8 follows as a corollary.

Lemma 5.5.9. LetM be a multilinear map. There exists a constant σM such that ‖M(X1, . . . , Xn)‖ ≤

σM
∏
‖Xi‖.

Proof. We proceed by induction on n. When n = 1,M is linear. Suppose it holds for any multilin-

ear map of up to n− 1 blocks. Given U = (X1, . . . , Xn−1), letMU be the linear mapMU(Xn) =

M(U,Xn), and let F be the family of linear maps F = {MU : ‖X1‖ = 1, . . . , ‖Xn−1‖ = 1}.

Now, given Xn, let MXn be the multilinear map MXn(U) = M(U,Xn). By induction, there

exists some σXn forMXn . For every Xn, we see that

sup
F
‖MU(Xn)‖ = sup{‖M(X1, . . . , Xn)‖ : ‖X1‖ = 1, . . . , ‖Xn−1‖ = 1}

= sup
‖X1‖=1,...,‖Xn−1‖=1

‖MXn(U)‖ ≤ σXn <∞

Thus, the uniform boundedness principle [138] implies that

σM := sup
F
‖MU‖op = sup

‖X1‖=1,...,‖Xn‖=1

‖M(X1, . . . , Xn)‖ <∞

Given any {X1, . . . , Xn}, we then have ‖M(X1, . . . , Xn)‖ ≤ σM
∏
‖Xi‖.

Lemma 5.5.10. Let M(X1, . . . , Xn) be a multilinear map with X = (X1, . . . , Xn) and X ′ =

(X ′1, . . . , X
′
n) being two points with the property that, for all i, ‖Xi‖ ≤ d, ‖X ′i‖ ≤ d, and ‖Xi −

X ′i‖ ≤ ε. Then ‖M(X)−M(X ′)‖ ≤ nσMd
n−1ε, where σM is from Lemma 5.5.9.
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Proof. For each 0 ≤ k ≤ n, let X ′′k = (X1, . . . , Xk, X
′
k+1, . . . , X

′
n). By Lemma 5.5.9, ‖M(X ′′k )−

M(X ′′k−1)‖ = ‖M(X1, . . . , Xk−1, Xk−X ′k, X ′k+1, . . . , X
′
n)‖ is bounded by σMdn−1‖Xk−X ′k‖ ≤

σMd
n−1ε. Observe that M(X) − M(X ′) =

∑n
k=1M(X ′′k ) − M(X ′′k−1), and thus we obtain

‖M(X)−M(X ′)‖ ≤ nσMd
n−1ε.

5.5.3 Smoothness, Convexity, and Coercivity

Definition 5.5.11. A function g is M -Lipschitz differentiable if g is differentiable and its gradient

is Lipschitz continuous with modulus M , i.e. ‖∇g(x)−∇g(y)‖ ≤M‖x− y‖ for all x, y.

A function g is (m,M)-strongly convex if g is convex, M -Lipschitz differentiable, and satisfies

g(y) ≥ g(x) + 〈∇g(x), y−x〉+ m
2
‖y−x‖2 for all x and y. The condition number of g is κ := M

m
.

Lemma 5.5.12. If g isM -Lipschitz differentiable, then |g(y)−g(x)−〈∇g(x), y−x〉| ≤ M
2
‖y−x‖2.

Lemma 5.5.13. If g(·, ·) is M -Lipschitz differentiable, then for any fixed y, the function hy(·) =

g(·, y) is M -Lipschitz differentiable. If g(·, ·) is (m,M)-strongly convex, then hy(·) is (m,M)-

strongly convex.

Definition 5.5.14. A function φ is said to be coercive on the set Ω if for every sequence {xk}∞k=1 ⊆

Ω with ‖xk‖ → ∞, then φ(xk)→∞.

Definition 5.5.15. A function ∆ : R → R is 0-forcing if ∆ ≥ 0, and any sequence {tk} has

∆(tk) → 0 only if tk → 0. A function f is said to satisfy a strengthened convexity condition if

there exists a 0-forcing function ∆ such that for any x, y, and any v ∈ ∂f(x), f satisfies

f(y)− f(x)− 〈v, y − x〉 ≥ ∆(‖y − x‖). (5.5.5)

Remark 5.5.16. The strengthened convexity condition is stronger than convexity, but weaker than

strong convexity. An example is given by higher-order polynomials of degree d composed with the

Euclidean norm, which are not strongly convex for d > 2. An example is the function f(x) = ‖x‖3
2,
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which is not strongly convex but does satisfy the strengthened convexity condition. This function

appears in the context of the cubic-regularized Newton method [139]. We note that ADMM can be

applied to solve the nonconvex cubic-regularized Newton subproblem

min
x

1

2
xTAx+ bTx+

µ

3
‖x‖3

2

by performing the splitting min
x,y

q(x) + h(y) for q(x) = 1
2
xTAx+ bTx and h(y) = µ

3
‖x‖3

2.

Since we will subsequently show (Theorem 5.4.1) that the sequence of ADMM iterates is

bounded, the strengthened convexity condition can be relaxed. It would be sufficient to assume

that for every compact set G, a 0-forcing function ∆G exists so that (5.5.5) holds with ∆G when-

ever x, y ∈ G.

5.5.4 Distances and Translations

Definition 5.5.17. For a symmetric matrix S, let λmin(S) be the minimum eigenvalue of S, and let

λ++(S) be the minimum positive eigenvalue of S.

Lemma 5.5.18. Let R be a matrix and y ∈ Im(R). Then ‖y‖2 ≤ λ−1
++(RTR)‖RTy‖2.

Proof. Let y = Rs, so the desired inequality is ‖RTRs‖2 = (Rs)TRRT (Rs) ≥ λ++(RTR)‖Rs‖2.

Since RRT and RTR have the same positive eigenvalues, it suffices to show that Rs is orthogonal

to Null(RRT ). This is immediate, since Null(RRT ) = Null(RT ) = Col(R)⊥.

Lemma 5.5.19. Let A be a matrix, and b, c ∈ Im(A). There exists a constant αA with dist({x :

Ax = b}, {x : Ax = c}) ≤ αA‖b− c‖. Furthermore, we may take αA ≤
√
λ−1

++(AAT ).

Proof. Let Ar be a submatrix of A obtained by taking a maximal linearly independent subset of

rows, so Ar has full row rank and ATr (ArA
T
r )−1 exists. Let br, cr be the submatrices of b, c having

rows corresponding toAr. It is easy to verify thatA(ATr (ArA
T
r )−1br) = b andA(ATr (ArA

T
r )−1cr) =

c. Let ∆ = br−cr, and note that ‖∆‖ ≤ ‖b−c‖. Then dist(U1,U2)2 ≤ 〈ATr (ArA
T
r )−1∆, ATr (ArA

T
r )−1∆〉 =

〈∆, (ArATr )−1∆〉 ≤ ‖(ArATr )−1‖op‖b− c‖2. Hence we may take α =
√
‖(ArATr )−1‖op.
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Lemma 5.5.20. Let g be a (m,M)-strongly convex function with condition number κ = M
m

, let

C be a closed and convex set with C1 = a + C and C2 = b + C being two translations of C, let

δ = ‖b − a‖, and let x∗ = argmin{g(x) : x ∈ C1} and y∗ = argmin{g(y) : y ∈ C2}. Then,

‖x∗ − y∗‖ ≤ (1 + 2κ)δ.

Proof. Let d = b − a, and define δ = ‖d‖. Define x′ = y∗ − d ∈ C1, y′ = x∗ + d ∈ C2, and

s = x′ − x∗ ∈ TC1(x∗). Let σ = g(y′) − g(x∗). We can express σ as σ =
∫ 1

0
∇g(x∗ + td)Td dt.

Since∇g is Lipschitz continuous with constant M , we have

g(y∗)− g(x′) =

∫ 1

0

∇g(x′ + td)Td dt

= σ +

∫ 1

0

(∇g(x′ + td)−∇g(x∗ + td))Td dt

and thus |g(y∗) − g(x′) − σ| ≤
∫ 1

0
‖∇g(x′ + td) −∇g(x∗ + td)‖‖d‖ dt ≤ M‖s‖δ, by Lipschitz

continuity of∇g. Therefore g(y∗) ≥ g(x′) +σ−M‖s‖δ. Since g is differentiable and C1 is closed

and convex, x∗ satisfies the first-order condition∇g(x∗) ∈ −NC1(x∗). Hence, since s ∈ TC1(x∗) =

NC1(x
∗)◦, we have g(x′) ≥ g(x∗) + 〈∇g(x∗), s〉 + m

2
‖s‖2 ≥ g(x∗) + m

2
‖s‖2. Combining these

inequalities, we have g(y∗) ≥ g(x∗) + σ + m
2
‖s‖2 −M‖s‖δ. Since y∗ attains the minimum of g

over C2, g(y′) ≥ g(y∗). Thus

g(y′) = g(x∗) + σ ≥ g(y∗) ≥ g(x∗) + σ +
m

2
‖s‖2 −M‖s‖δ

We deduce that m
2
‖s‖2−M‖s‖δ ≤ 0, so ‖s‖ ≤ 2κδ. Since y∗−x∗ = s+ d, we have ‖x∗− y∗‖ ≤

‖s‖+ ‖d‖ ≤ δ + 2κδ = (1 + 2κ)δ.

Lemma 5.5.21. Let h be a (m,M)-strongly convex function, A a linear map of x, and C a closed

and convex set. Let b1, b2 ∈ Im(A), and consider the sets U1 = {x : Ax + b1 ∈ C} and U2 =

{x : Ax + b2 ∈ C}, which we assume to be nonempty. Let x∗ = argmin{h(x) : x ∈ U1}

and y∗ = argmin{h(y) : y ∈ U2}. Then, there exists a constant γ, depending on κ and A but

independent of C, such that ‖x∗ − y∗‖ ≤ γ‖b2 − b1‖.

141



Proof. Note that x ∈ U1 is equivalent to Ax ∈ −b1 + C, and thus U1 = A−1(−b1 + C), where

A−1(S) = {x : Ax ∈ S} is the preimage of a set S underA. Since U1 is the preimage of the closed,

convex set −b1 + C under a linear map, U1 is closed and convex. Similarly, U2 = A−1(−b2 + C) is

closed and convex.

We claim that U1,U2 are translates. Since b1, b2 ∈ Col(A), we can find d such thatAd = b1−b2.

Given x ∈ U1, A(x + d) ∈ −b2 + C, so x + d ∈ U2, and thus U1 + d ⊆ U2. Conversely, given

y ∈ U2, A(y − d) ∈ −b1 + C, so y − d ∈ U1 and U1 + d ⊇ U2. Hence U2 = U1 + d. Applying

Lemma 5.5.20 to U1,U2, we find that ‖x∗− y∗‖ ≤ (1 + 2κ)‖d‖. We may choose d to be a solution

of minimum norm satisfying Ad = b1 − b2; applying Lemma 5.5.19 to the spaces {x : Ax = 0}

and {x : Ax = b1 − b2}, we see that ‖d‖ ≤ α‖b1 − b2‖, where α depends only on A. Hence

‖x∗ − y∗‖ ≤ (1 + 2κ)α‖b2 − b1‖.

5.5.5 K-Ł Functions

Definition 5.5.22. Let f be proper and lower semicontinuous. The domain dom(∂f) of the general

subgradient mapping is the set {x : ∂f(x) 6= ∅}.

Definition 5.5.23 ([130], 2.4). A function f : Rn → R ∪ {∞} is said to have the Kurdyka-

Łojasiewicz (K-Ł) property at x ∈ dom(∂f) if there exist η ∈ (0,∞], a neighborhood U of x, and

a continuous concave function ϕ : [0, η)→ R such that:

1. ϕ(0) = 0

2. ϕ is smooth on (0, η)

3. For all s ∈ (0, η), ϕ′(s) > 0

4. For all y ∈ U ∩ {w : f(x) < f(w) < f(x) + η}, the Kurdyka-Łojasiewicz inequality holds:

ϕ′(f(y)− f(x)) dist(0, ∂f(x)) ≥ 1
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A proper, lower semicontinuous function f that satisfies the K-Ł property at every point of dom(∂f)

is called a K-Ł function.

A large class of K-L functions is provided by the semialgebraic functions, which include many

functions of importance in optimization.

Definition 5.5.24 ([130], 2.1). A subset S of Rn is (real) semialgebraic if there exists a finite

number of real polynomial functions Pij, Qij : Rn → R such that

S =

p⋃
j=1

q⋂
i=1

{x ∈ Rn : Pij(x) = 0, Qij(x) < 0}.

A function f : Rn → Rm is semialgebraic if its graph {(x, y) ∈ Rn+m : f(x) = y} is a real

semialgebraic subset of Rn+m.

The set of semialgebraic functions is closed under taking finite sums and products, scalar prod-

ucts, and composition. The indicator function of a semialgebraic set is a semialgebraic function,

as is the generalized inverse of a semialgebraic function. More examples can be found in [140].

The key property of K-Ł functions is that if a sequence {xk}∞k=0 is a ‘descent sequence’ with

respect to a K-Ł function, then limit points of {xk} are necessarily unique. This is formalized by

the following;

Theorem 5.5.25 ([130], 2.9). Let f : Rn → R be a proper and lower semicontinuous function.

Consider a sequence {xk}∞k=0 satisfying the properties:

H1 There exists a > 0 such that for each k, f(xk+1)− f(xk) ≤ −a‖xk+1 − xk‖2.

H2 There exists b > 0 such that for each k, there existswk+1 ∈ ∂f(xk+1) with ‖wk+1‖ ≤ b‖xk+1−

xk‖.

If f is a K-Ł function, and x∗ is a limit point of {xk} with f(xk)→ f(x∗), then xk → x∗.
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5.6 General Properties of ADMM

In this section, we will derive results that are inherent properties of ADMM, and require

minimal conditions on the structure of the problem. We first work in the most general setting

where C in the constraint C(U0, . . . , Un) = 0 may be any smooth function, the objective function

f(U0, . . . , Un) is proper and lower semicontinuous, and the variables {U0, . . . , Un} may be cou-

pled. We then specialize to the case where the constraint C(U0, . . . , Un) is multiaffine, which al-

lows us to quantify the changes in the augmented Lagrangian using the subgradients of f . Finally,

we specialize to the case where the objective function splits into F (U0, . . . , Un) +
∑n

i=0 gi(Ui)

for a smooth coupling function F , which allows finer quantification using the subgradients of the

augmented Lagrangian.

The results given in this section hold under very weak conditions; hence, these results may be

of independent interest, as tools for analyzing ADMM in other settings.

5.6.1 General Objective and Constraints

In this section, we consider


inf

U0,...,Un

f(U0, . . . , Un)

C(U0, . . . , Un) = 0.

The augmented Lagrangian is given by

L(U0, . . . , Un,W ) = f(U0, . . . , Un) + 〈W,C(U0, . . . , Un)〉+
ρ

2
‖C(U0, . . . , Un)‖2

and ADMM performs the updates as in Algorithm 4. We assume only the following.

Assumption 3. The following hold.

A 3.1. For sufficiently large ρ, every ADMM subproblem attains its optimal value.

A 3.2. C(U0, . . . , Un) is smooth.
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A 3.3. f(U0, . . . , Un) is proper and lower semicontinuous.

This assumption ensures that the argmin in Algorithm 4 is well-defined, and that the first-order

condition in Lemma 5.5.3 holds at the optimal point. The results in this section are extensions

of similar results for ADMM in the classical setting (linear constraints, separable objective func-

tion), so it is interesting that the ADMM algorithm retains many of the same properties under the

generality of Assumption 3.

Lemma 5.6.1. Let U = (U0, . . . , Un) denote the set of all variables. The ADMM update of the

dual variable W increases the augmented Lagrangian such that L(U+,W+) − L(U+,W ) =

ρ‖C(U+)‖2 = 1
ρ
‖W − W+‖2. If ‖W − W+‖ → 0, then ∇WL(U (k),W (k)) → 0 and every

limit point U∗ of {U (k)}∞k=0 satisfies C(U∗) = 0.

Proof. The dual update is given by W+ = W + ρC(U+). Thus, we have

L(U+,W+)− L(U+,W ) = 〈W+ −W,C(U+)〉 = ρ‖C(U+)‖2 =
1

ρ
‖W −W+‖2.

For the second statement, observe that ∇WL(U ,W ) = C(U). From the dual update, we have

W+−W = ρC(U+). Hence ‖C(U+)‖ = 1
ρ
‖W −W+‖ → 0. It follows that∇WL(U (k),W (k))→

0 and, by continuity of C, any limit point U∗ of {U (k)}∞k=0 satisfies C(U∗) = 0.

Consider the ADMM update of the primal variables. ADMM minimizes L(U0, . . . , Un,W )

with respect to each of the variables U0, . . . , Un in succession. Let Y = Uj be a particular variable

of focus, and let U = U 6=j = (Ui : i 6= j) denote the other variables. For fixed U , let fU(Y ) =

f(U, Y ). When Y is given, we let U< denote the variables that are updated before Y , and U> the

variables that are updated after Y . The ADMM subproblem for Y is

min
Y
L(U, Y,W ) = min

Y
fU(Y ) + 〈W,C(U, Y )〉+

ρ

2
‖C(U, Y )‖2.
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Lemma 5.6.2. The general subgradient of L(U, Y,W ) with respect to Y is given by

∂YL(U, Y,W ) = ∂fU(Y ) + (∇YC(U, Y ))TW + ρ(∇YC(U, Y ))TC(U, Y )

where ∇YC(U, Y ) is the Jacobian of Y 7→ C(U, Y ) and (∇YC(U, Y ))T is its adjoint.

Defining V (U, Y,W ) = (∇YC(U, Y ))TW+ρ(∇YC(U, Y ))TC(U, Y ), the function V (U, Y,W )

is continuous, and ∂YL(U, Y,W ) = ∂fU(Y ) + V (U, Y,W ). The first-order condition satisfied by

Y + is therefore

0 ∈ ∂fU+
< ,U>

(Y +) + (∇YC(U+
< , Y

+, U>))TW + ρ(∇YC(U+
< , Y

+, U>))TC(U+
< , Y

+, U>)

= ∂fU+
< ,U>

(Y +) + V (U+
< , Y

+, U>,W ).

Proof. Since 〈W,C(U, Y )〉+ ρ
2
‖C(U, Y )‖2 is smooth, [135, 8.8(c)] implies that

∂YL(U, Y,W ) = ∂fU(Y ) +∇Y 〈W,C(U, Y )〉+∇Y

(ρ
2
‖C(U, Y )‖2

)
= ∂fU(Y ) + (∇YC(U, Y ))TW + ρ(∇YC(U, Y ))TC(U, Y ).

For the next results, we add the following assumption.

Assumption 4. The function f has the form f(U0, . . . , Un) = F (U0, . . . , Un)+
∑n

i=0 gi(Ui), where

F is smooth and each gi is continuous on dom(gi).

Lemma 5.6.3. Suppose that Assumptions 3 and 4 hold. The general subgradient ∂YL(U (k+1), Y (k+1),W (k+1))

contains

V (U
(k+1)
< , Y (k+1), U

(k+1)
> ,W (k+1))− V (U

(k+1)
< , Y (k+1), U

(k)
> ,W (k))

+∇Y F (U
(k+1)
< , Y (k+1), U

(k+1)
> )−∇Y F (U

(k+1)
< , Y (k+1), U

(k)
> ).
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Proof. Let gy denote the separable term in Y (that is, if Y = Uj , then gy = gj). By Lemma 5.6.2,

0 ∈ ∂fUk+1
< ,Uk

>
(Y k+1) + V (Uk+1

< , Y k+1, Uk
>,W

k)

= ∇Y F (U
(k+1)
< , Y (k+1), U

(k)
> ) + ∂gy(Y

(k+1)) + V (Uk+1
< , Y k+1, Uk

>,W
k).

Hence,

−(∇Y F (U
(k+1)
< , Y (k+1), U

(k)
> ) + V (Uk+1

< , Y k+1, Uk
>,W

k)) ∈ ∂gy(Y (k+1)). (5.6.1)

In addition, by Lemma 5.6.2,

∂YL(U (k+1), Y (k+1),W (k+1))

= ∂gy(Y
(k+1)) +∇Y F (U

(k+1)
< , Y (k+1), U

(k+1)
> ) + V (U

(k+1)
< , Y (k+1), U (k+1),W (k+1)).

Combining this with (5.6.1) implies the desired result.

Applying this to ∂YL(U (k(s)), Y (k(s)),W (k(s))), we obtain the subgradient

v(s) := V (U
(k(s))
< , Y (k(s)), U

(k(s))
> ,W (k(s)))− V (U

(k(s))
< , Y (k(s)), U

(k(s)−1)
> ,W (k(s)−1))

+∇Y F (U
(k(s))
< , Y (k(s)), U

(k(s))
> )−∇Y F (U

(k(s))
< , Y (k(s)), U

(k(s)−1)
> ).

Since {(U (k(s)), Y (k(s)),W (k(s)))}∞s=0 converges, and ‖U (k+1)
> −U (k)

> ‖ → 0 and ‖W (k+1)−W (k)‖ →

0 by assumption, there exists a compact setB containing the points {U (k(s))
< , U

(k(s)−1)
> , Y (k(s),),W (k(s)),W (k(s)−1)}∞s=0.

V and ∇Y F are continuous, so it follows that V and ∇Y F are uniformly continuous over B. It

follows that when s is sufficiently large,

V (U
(k(s))
< , Y (k(s)), U

(k(s))
> ,W (k(s)))− V (U

(k(s))
< , Y (k(s)), U

(k(s)−1)
> ,W (k(s)−1))

and

∇Y F (U
(k(s))
< , Y (k(s)), U

(k(s))
> )−∇Y F (U

(k(s))
< , Y (k(s)), U

(k(s)−1)
> )
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can be made arbitrarily small. This completes the proof.

Consider any limit point (U∗, Y ∗,W ∗) of ADMM. If ‖W+ −W‖ → 0 and ‖U+
> − U>‖ → 0,

then for any subsequence {(U (k(s)), Y (k(s)),W (k(s)))}∞s=0 converging to (U∗, Y ∗,W ∗), there exists

a sequence v(s) ∈ ∂YL(U (k(s)), Y (k(s)),W (k(s))) with v(s) → 0.

Lemma 5.6.4. Suppose that Assumptions 3 and 4 hold. Let (U∗, Y ∗,W ∗) be a feasible limit

point. By passing to a subsequence converging to the limit point, let {(U (s), Y (s),W (s))} be a

subsequence of the ADMM iterates with (U (s), Y (s),W (s)) → (U∗, Y ∗,W ∗). Suppose that there

exists a sequence {vs} such that v(s) ∈ ∂YL(U (s), Y (s),W (s)) for all s and v(s) → 0. Then

0 ∈ ∂gy(Y ∗)+∇Y F (U∗, Y ∗)+(∇YC(U∗, Y ∗))TW ∗, so (U∗, Y ∗,W ∗) is a constrained stationary

point.

Proof. We require the following simple fact.

Lemma 5.6.5. Let f : Rn → R∪{∞}. Suppose that we have sequences xk → x and vk ∈ ∂f(xk)

such that f(xk)→ f(x) and vk → v. Then v ∈ ∂f(x).

This result would follow by definition if vk ∈ ∂̂f(xk), but instead we have vk ∈ ∂f(xk).

However, for each k, there exists sequences xj,k → xk and vj,k ∈ ∂̂f(xj,k) with f(xj,k) → f(xk)

and vj,k → vk. By a simple approximation, we can select subsequences ys → x, zs ∈ ∂̂f(ys) with

f(ys)→ f(x), zs → v.

Proof (of Lemma 5.6.4). By Lemma 5.6.2, ∂YL(U (s), Y (s),W (s)) = ∂gy(Y
(s))+∇Y F (U (s), Y (s))+

V (U (s), Y (s),W (s)). Since V is continuous, the sequence {V (U (s), Y (s),W (s))} converges to

V (U∗, Y ∗,W ∗), which is equal to (∇YC(U∗, Y ∗))TW ∗ because (U∗, Y ∗,W ∗) is feasible. Like-

wise, {∇Y F (U (s), Y (s))} converges to∇Y F (U∗, Y ∗).

Since v(s) ∈ ∂YL(U (s), Y (s),W (s)) for all s and v(s) → 0, we deduce that there exists a se-

quence {v(s)
y } such that v(s)

y ∈ ∂gy(Y (s)) for all s and v(s)
y → −(∇Y F (U∗, Y ∗)+(∇YC(U∗, Y ∗))TW ∗).

Hence, by Lemma 5.6.510 applied to gy and the sequences {Y (s)} and {v(s)
y }, we find−(∇Y F (U∗, Y ∗)+

10The assumption that each gi is continuous on dom(gi) was introduced in Assumption 4 to ensure that gy(Y s)→
gy(Y

∗), which is required to obtain the general subgradient ∂gy(Y ∗).
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(∇YC(U∗, Y ∗))TW ∗) ∈ ∂gy(Y ∗), as desired.

Corollary 5.6.6. If Assumptions 3 and 4 hold, and ‖U (k+1)
` −U (k)

` ‖ → 0 for ` ≥ 1, and ‖W (k+1)−

W (k)‖ → 0, then every limit point is a constrained stationary point.

Proof. If ‖W (k+1) − W (k)‖ → 0 and ‖U (k+1)
` − U

(k)
` ‖ → 0 for all ` ≥ 1, then the conditions

of Lemma 5.6.3 are satisfied for all blocks U0, . . . , Un. Thus, Lemma 5.6.1 implies that U∗ is

feasible, and by Lemma 5.6.4, (U∗,W ∗) satisfies the first-order conditions. Note that we do not

need to assume ‖U (k+1)
0 − U (k)

0 ‖ → 0 because U0 is not part of U> for any block.

Remark 5.6.7. The assumption that the successive differences Ui − U+
i converge to 0 is used in

analyses of nonconvex ADMM such as [141, 142]. Corollary 5.6.6 shows that this is a very strong

assumption: it alone implies that every limit point of ADMM is a constrained stationary point,

even when f and C only satisfy Assumptions 3 and 4.

5.6.2 General Objective and Multiaffine Constraints

In this section, we assume that f satisfies Assumption 3 and that C is multiaffine. Note that we

do not use Assumption 4 in this section.

As in Section 5.6.1, let Y be a particular variable of focus, and U the remaining variables.

We let fU(Y ) = f(U, Y ). Since C(U, Y ) is multiaffine, the resulting function of Y when U is

fixed is an affine function of Y . Therefore, we have C(U, Y ) = CU(Y ) − bU for a linear map

CU and a constant bU . The Jacobian of the constraints is then ∇YC(U, Y ) = CU with adjoint

(∇YC(U, Y ))T = CT
U such that the relation 〈W,CU(Y )〉 = 〈CT

UW,Y 〉 holds.

Corollary 5.6.8. Taking ∇YC(U, Y ) = CU in Lemma 5.6.2, the general subgradient of Y 7→

L(U, Y,W ) is given by ∂YL(U, Y,W ) = ∂fU(Y )+CT
UW+ρCT

U (CU(Y )−bU). Thus, the first-order

condition for Y 7→ L(U, Y,W ) at Y + is given by 0 ∈ ∂fU(Y +) + CT
UW + ρCT

U (CU(Y +)− bU).

Using this corollary, we can prove the following.
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Lemma 5.6.9. The change in the augmented Lagrangian when the primal variable Y is updated

to Y + is given by

L(U, Y,W )− L(U, Y +,W ) = fU(Y )− fU(Y +)− 〈v, Y − Y +〉+
ρ

2
‖CU(Y )− CU(Y +)‖2

for some v ∈ ∂fU(Y +).

Proof. Expanding L(U, Y,W )− L(U, Y +,W ), the change is equal to

fU(Y )− fU(Y +) + 〈W,CU(Y )− CU(Y +)〉+
ρ

2
(‖CU(Y )− bU‖2 − ‖CU(Y +)− bU‖2)

= fU(Y )− fU(Y +) + 〈W,CU(Y )− CU(Y +)〉 (5.6.2)

+ ρ〈CU(Y )− CU(Y +), CU(Y +)− bU〉+
ρ

2
‖CU(Y )− CU(Y +)‖2.

To derive (5.6.2), we use the identity ‖Q − P‖2 − ‖R − P‖2 = ‖Q − R‖2 + 2〈Q − R,R − P 〉

which holds for any elements P,Q,R of an inner product space. Next, observe that

〈W,CU(Y )− CU(Y +)〉+ ρ〈CU(Y )− CU(Y +), CU(Y +)− bU〉

= 〈CU(Y )− CU(Y +),W + ρ(CU(Y +)− bU)〉

= 〈Y − Y +, CT
U (W + ρ(CU(Y +)− bU))〉

From Corollary 5.6.8, v = CT
UW + ρCT

U (CU(Y +)− bU)) ∈ −∂fU(Y +). Hence

L(U, Y,W )− L(U, Y +,W ) = f(Y )− f(Y +)− 〈v, Y − Y +〉+
ρ

2
‖CU(Y )− CU(Y +)‖2.

Remark 5.6.10. The proof of Lemma 5.6.9 provides a hint as to why ADMM can be extended

naturally to multiaffine constraints, but not to arbitrary nonlinear constraints. When C(U, Y ) = 0

is a general nonlinear system, we cannot manipulate the difference of squares (5.6.2) to arrive at

the first-order condition for Y +, which uses the crucial fact∇YC(U, Y ) = CU .
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Remark 5.6.11. If we introduce a proximal term ‖Y − Y k‖2
S , the change in the augmented La-

grangian satisfies L(U, Y,W ) − L(U, Y +,W ) ≥ ‖Y − Y +‖2
S , regardless of the properties of f

and C11. This is usually stronger than Lemma 5.6.9. Hence, one can generally obtain convergence

of proximal ADMM under weaker assumptions than ADMM.

Our next lemma shows a useful characterization of Y +.

Lemma 5.6.12. It holds that Y + = argminY {fU(Y ) : CU(Y ) = CU(Y +)}.

Proof. For any two points Y1 and Y2 with CU(Y1) = CU(Y2), it follows that L(U, Y1,W ) −

L(U, Y2,W ) = fU(Y1) − fU(Y2). Hence Y +, the minimizer of Y 7→ L(U, Y,W ) with U and

W fixed, must satisfy fU(Y +) ≤ fU(Y ) for all Y with CU(Y ) = CU(Y +). That is, Y + =

argminY {fU(Y ) : CU(Y ) = CU(Y +)}.

We now show conditions under which the sequence of computed augmented Lagrangian values

is bounded below.

Lemma 5.6.13. Suppose that Y represents the final block of primal variables updated in an ADMM

iteration and that f is bounded below on the feasible region. Consider the following condition:

Condition 5.6.14. The following two statements hold true.

1. Y can be partitioned12 into sub-blocks Y = (Y0, Y1) such that there exists a constant MY

such that, for any U , Y0, Y1, Y ′1 , and v ∈ ∂fU(Y0, Y1),

fU(Y0, Y
′

1)− fU(Y0, Y1)− 〈v, (Y0, Y
′

1)− (Y0, Y1)〉 ≤ MY

2
‖Y ′1 − Y1‖2.

11To see this, define the prox-Lagrangian LP (U, Y,W,O) = L(U, Y,W )+‖Y −O‖2S . By definition, Y + decreases
the prox-Lagrangian, so LP (U, Y +,W, Y k) ≤ LP (U, Y k,W, Y k) = L(U, Y,W ) and the desired result follows.

12To motivate the sub-blocks (Y0, Y1) in Condition 5.6.14, one should look to the decomposition of ψ(Z) in As-
sumption 1, where we can take Y0 = {Z0} and Y1 = Z>. Intuitively, Y1 is a sub-block such that ψ is a smooth
function of Y1, and which is ‘absorbing’ in the sense that for any U+ and Y +

0 , there exists Y1 making the solution
feasible.
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2. There exists a constant ζ such that for every U+ and Y + produced by ADMM13, we can find

a solution

Ŷ1 ∈ argminY1{fU+(Y +
0 , Y1) : CU+(Y +

0 , Y1) = bU+}14

satisfying ‖Ŷ1 − Y +
1 ‖2 ≤ ζ‖CU+(Y +)− bU+‖2.

If Condition 5.6.14 holds, then there exists ρ sufficiently large such that the sequence {L(k)}∞k=0

is bounded below.

Proof. Suppose that Condition 5.6.14 holds. We proceed to bound the value of L+ by relating

Y + to the solution (Y +
0 , Ŷ1). Since f is bounded below on the feasible region and (U+, Y +

0 , Ŷ1)

is feasible by construction, it follows that f(U+, Y +
0 , Ŷ1) ≥ ν for some ν > −∞. Subtracting

0 = 〈W+, CU+(Y +
0 , Ŷ1)− bU+〉 from L+ yields

L+ = fU+(Y +) + 〈W+, CU+(Y + − (Y +
0 , Ŷ1))〉+

ρ

2
‖CU+(Y +)− bU+‖2. (5.6.3)

Since Y is the final block before updating W , all other variables have been updated to U+, and

Corollary 5.6.8 implies that the first-order condition satisfied by Y + is

0 ∈ ∂fU+(Y +) + CT
U+W + ρCT

U+(CU+(Y +)− bU+) = ∂fU+(Y +) + CT
U+W+.

Hence v = CT
U+W+ ∈ −∂fU+(Y +). Substituting this into (5.6.3), we have

L+ = fU+(Y +) + 〈v, Y + − (Y +
0 , Ŷ1)〉+

ρ

2
‖CU+(Y +)− bU+‖2.

132 is assumed to hold for the iterates U+ and Y + generated by ADMM as the minimal required condition, but
one should not, in general, think of this property as being specifically related to the iterates of the algorithm. In the
cases we consider, it will be a property of the function f and the constraint C that for any point (Ũ , Ỹ ), there exists
Ŷ1 ∈ argminY1

{fŨ (Ỹ0, Y1) : CŨ (Ỹ0, Y1) = bŨ} such that ‖Ŷ1 − Ỹ1‖2 ≤ ζ‖CŨ (Y
+)− bŨ‖

2.
14To clarify the definition of Ŷ1, the sub-block for Y0 is fixed to the value of Y +

0 on the given iteration, and then Ŷ1
is obtained by minimizing fU+(Y +

0 , Y1) for the Y1 sub-block over the feasible region CU+(Y +
0 , Y1) = bU+ .
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Adding and subtracting fU+(Y +
0 , Ŷ1) yields

L+ = fU+(Y +
0 , Ŷ1) +

ρ

2
‖CU+(Y +)− bU+‖2

− (fU+(Y +
0 , Ŷ1)− fU+(Y +)− 〈−v, (Y +

0 , Ŷ1)− Y +〉).

Since Y + = (Y +
0 , Y

+
1 ) and −v ∈ ∂fU+(Y +), Condition 5.6.14 implies that

fU+(Y +
0 , Ŷ1)− fU+(Y +)− 〈−v, (Y +

0 , Ŷ1)− Y +〉 ≤ MY

2
‖Ŷ1 − Y +

1 ‖2.

Hence, we have

L(+) ≥ fU+(Y +
0 , Ŷ1) +

ρ

2
‖CU+(Y +)− bU+‖2 − MY

2
‖Ŷ1 − Y +

1 ‖2

≥ fU+(Y +
0 , Ŷ1) +

(
ρ−MY ζ

2

)
‖CU+(Y +)− bU+‖2. (5.6.4)

It follows that if ρ ≥MY ζ , then L(k) ≥ ν for all k ≥ 1.

The following useful corollary is an immediate consequence of the final inequalities in the

proof of the previous lemma.

Corollary 5.6.15. Recall the notation from Lemma 5.6.13. Suppose that f(U, Y ) is coercive on the

feasible region, Condition 5.6.14 holds, and ρ is chosen sufficiently large so that {L(k)} is bounded

above and below. Then {U (k)} and {Y (k)} are bounded.

Proof. Under the given conditions, {L(k)} is monotonically decreasing and it can be seen from

(5.6.4) that {f(U (k), Y
(k)

0 , Ŷ
(k)

1 )} and {‖CU(k)(Y (k)) − bU(k)‖2} are bounded above. Since f is

coercive on the feasible region, and (U (k), Y
(k)

0 , Ŷ
(k)

1 ) is feasible by construction, this implies that

{U (k)}, {Y (k)
0 }, and {Ŷ (k)

1 } are bounded. It only remains to show that the ‘true’ sub-block {Y (k)
1 }

is bounded. From Condition 5.6.14, there exists ζ with ‖Ŷ (k)
1 −Y (k)

1 ‖2 ≤ ζ‖CU(k)(Y (k))− bU(k)‖2.

(5.6.4) also implies that {‖CU(k)(Y (k))− bU(k)‖2} is bounded. Hence {Y (k)
1 } is also bounded.
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5.6.3 Separable Objective and Multiaffine Constraints

Now, in addition to Assumption 3, we require that C(U0, . . . , Un) is multiaffine, and that As-

sumption 4 holds. Most of the results in this section can be obtained from the corresponding results

in Section 5.6.1; however, since we will extensively use these results in Section 5.7, it is useful to

see their specific form when C is multiaffine.

Again, let Y = Uj be a particular variable of focus, and U the remaining variables. Since f

is separable, minimizing fU(Y ) is equivalent to minimizing fj(Y ). Hence, writing fy for fj , we

have

∂YL(U, Y,W ) = ∂fy(Y ) +∇Y F (U, Y ) + CT
UW + ρCT

U (CU(Y )− bU)

and Y + satisfies the first-order condition 0 ∈ ∂fy(Y +)+∇Y F (U, Y +)+CT
UW +ρCT

U (CU(Y +)−

bU). The crucial property is that ∂fy(Y ) depends only on Y .

Corollary 5.6.16. Suppose that Y is a block of variables in ADMM, and letU<, U> be the variables

that are updated before and after Y , respectively. During an iteration of ADMM, let C<(Y ) = b<

denote the constraint C(U+
< , Y, U>) = b< as a linear function of Y , after updating the variables

U<, and let C>(Y ) = b> denote the constraint C(U+
< , Y, U

+
> ) = b>. Then the general subgradient

∂YL(U+
< , Y

+, U+
> ,W

+) at the final point contains

(CT
> − CT

<)W+ + CT
<(W+ −W ) + ρ(CT

> − CT
<)(C>(Y +)− b>)

+ ρCT
<(C>(Y +)− b> − (C<(Y +)− b<))

+∇Y F (U+
< , Y

+, U+
> )−∇Y F (U+

< , Y
+, U>)

In particular, if Y is the final block, then CT
<(W+ −W ) ∈ ∂YL(U+

< , Y
+,W+).

Proof. This is an application of Lemma 5.6.3. Since we will use this special case extensively in

Section 5.7, we also show the calculation. By Corollary 5.6.8

∂YL(U+
< , Y

+, U+
> ,W

+) = ∂fy(Y
+) +∇Y F (U+

< , Y
+, U+

> ) + CT
>W

+ + ρCT
>(C>(Y +)− b>)
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By Corollary 5.6.8, −(∇Y F (U+
< , Y

+, U>) +CT
<W + ρCT

<(C<(Y +)− b<)) ∈ ∂fy(Y +). To obtain

the result, write CT
>W

+ − CT
<W = (CT

> − CT
<)W+ + CT

<(W+ −W ) and

CT
>(C>(Y +)− b>)− CT

<(C<(Y +)− b<) = (CT
> − CT

<)(C>(Y +)− b>)

+ CT
<(C>(Y +)− b> − (C<(Y +)− b<)).

Lemma 5.6.17. Recall the notation from Corollary 5.6.16. Suppose that

1. ‖W −W+‖ → 0,

2. ‖C> − C<‖ → 0,

3. ‖b> − b<‖ → 0, and

4. {W (k)}, {Y (k)}, {C(k)
< }, {C

(k)
> (Y +)− b>} are bounded, and

5. ‖U+
> − U>‖ → 0.

Then there exists a sequence v(k) ∈ ∂YL(k) with v(k) → 0. In particular, if Y is the final block,

then only condition 1 and the boundedness of {C(k)
< } are needed.

Proof. If the given conditions hold, then the triangle inequality and the continuity of ∇Y F show

that the subgradients identified in Corollary 5.6.16 converge to 0.

The previous results have focused on a single block Y , and the resulting equations CU(Y ) =

bU . Let us now relate CU , bU to the full constraints. Suppose that we have variables U0, . . . , Un, Y

(not necessarily listed in update order), and the constraint C(U0, . . . , Un, Y ) = 0 is multiaffine.

Using the decomposition (5.5.4) and the notation θj(U) from Definition 5.5.6, we express CU and

bU as

CU =

m1∑
j=1

θj(U), bU = −(B +
m∑

j=m1+1

θj(U)). (5.6.5)
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This allows us to verify the conditions of Lemma 5.6.17 when certain variables are known to

converge.

Lemma 5.6.18. Adopting the notation from Corollary 5.6.16, assume that {U (k)
< }, {Y (k)}, {U (k)

> }

are bounded, and that ‖U+
> − U>‖ → 0. Then ‖C> − C<‖ → 0 and ‖b> − b<‖ → 0.

Proof. Unpacking our definitions, C< corresponds to the system of constraints C(U+
< , Y, U>) = b,

and C> corresponds to C(U+
< , Y, U

+
> ) = b. Let U = (U+

< , U>) and U ′ = (U+
< , U

+
> ). By (5.6.5),

we have C> − C< =
∑m1

j=1 θj(U
′)− θj(U). From Lemma 5.5.8, each θj is smooth, and therefore

uniformly continuous over a compact set containing {U (k)
< , Y (k), U

(k)
> }∞k=0. Thus, ‖U+

> −U>‖ → 0

implies that ‖C> − C<‖ → 0. The same applies to b> − b<.

5.7 Convergence Analysis of Multiaffine ADMM

We now apply the results from Section 5.6 to multiaffine problems of the form (P ) that satisfy

Assumptions 1 and 2.

5.7.1 Proof of Theorem 5.4.1

Under Assumption 1, we prove Theorem 5.4.1. The proof appears at the end of this subsection

after we prove a few intermediate results.

Corollary 5.7.1. The general subgradients ∂ZL(X ,Z,W) are given by

∂Z0L(X , Z0, Z1, Z2,W) = ∂Z0ψ(Z) + ATZ0,XW + ρATZ0,X (A(X , Z0) +Q(Z>)) and

∇Zi
L(X , Z0, Z1, Z2,W) = ∇Zi

ψ(Z) +QT
i Wi + ρQT

i (Ai(X , Z0) +Qi(Zi)) for i ∈ {1, 2}.

Proof. This follows from Corollary 5.6.8. Recall that AZ0,X is the Z0-linear term of Z0 7→

A(X , Z0) (see Definition 5.5.6).

Corollary 5.7.2. For all k ≥ 1,

−∇Zi
ψ(Z(k)) = QT

i W
(k)
i for i ∈ {1, 2}. (5.7.1)
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Proof. This follows from Corollaries 5.6.8 and 5.7.1, and the updating formula forW+ in Algo-

rithm 5. Note that g1 and g2 are smooth, so the first-order conditions for each variable simplifies

to

−∇Zi
ψ(Z+) = QT

i (Wi + ρ(Ai(X+, Z+
0 ) +Qi(Z

+
i ))) = QT

i W
+
i .

Hence, (5.7.1) immediately follows.

Next, we quantify the decrease in the augmented Lagrangian using properties of h, g1, g2, and

Q2.

Corollary 5.7.3. The change in the augmented Lagrangian after updating the final block Z is

bounded below by
m1

2
‖ZS − Z+

S ‖
2 +

(
ρσ −M2

2

)
‖Z2 − Z+

2 ‖2, (5.7.2)

where σ = λmin(QT
2Q2) > 0.

Proof. We apply Lemma 5.6.9 to Z . Recall that ψ = h(Z0) + g1(Z1) + g2(Z2). The decrease in

the augmented Lagrangian is given, for some v ∈ ∂h(Z+
0 ), by

h(Z0)− h(Z+
0 )− 〈v, Z0 − Z+

0 〉+ g1(ZS)− g1(Z+
S )− 〈∇g1(Z+

S ), ZS − Z+
S 〉 (5.7.3)

+ g2(Z2)− g2(Z+
2 )− 〈∇g2(Z+

2 ), Z2 − Z+
2 〉

+
ρ

2
‖A1(X+, Z0 − Z+

0 ) +Q1(Z1 − Z+
1 )‖2 +

ρ

2
‖Q2(Z2 − Z+

2 )‖2.

By A 1.3, we can show the following bounds for the components of (5.7.3):

1. h is convex, so h(Z0)− h(Z+
0 )− 〈v, Z0 − Z+

0 〉 ≥ 0.

2. g1 is (m1,M1)-strongly convex, so g1(ZS) − g1(Z+
S ) − 〈∇g1(Z+

S ), ZS − Z+
S 〉 ≥ m1

2
‖ZS −

Z+
S ‖2.

3. g2 is M2-Lipschitz differentiable, so g2(Z2)− g2(Z+
2 )−〈∇g2(Z+

2 ), Z2−Z+
2 〉 ≥ −M2

2
‖Z2−

Z+
2 ‖2.
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Since Q2 is injective, QT
2Q2 is positive definite. It follows that with σ = λmin(QT

2Q2) > 0,

ρ
2
‖Q2(Z2−Z+

2 )‖2 ≥ ρ
2
σ‖Z2−Z+

2 ‖2. Since ρ
2
‖A1(X+, Z0−Z+

0 )+Q1(Z1−Z+
1 )‖2 ≥ 0, summing

the inequalities establishes the lower bound (5.7.2) on the decrease in L.

We now bound the change in the Lagrange multipliers by the changes in the variables in Z .

Lemma 5.7.4. We have ‖W−W+‖2 ≤ β1‖ZS−Z+
S ‖2+β2‖Z2−Z+

2 ‖2, where β1 = M2
1λ
−1
++(QT

1Q1)

and β2 = M2
2λ
−1
++(QT

2Q2) = M2
2σ
−1.

Proof. From Corollary 5.7.2, we have QT
i Wi = −∇Zi

ψ(Z) and QT
i W

+
i = −∇Zi

ψ(Z+) for

i ∈ {1, 2}. By definition of the dual update, W+
i −Wi = ρ(Ai(X+, Z+

0 )+Qi(Z
+
i )). Since Im(Qi)

contains the image of Ai, we have W+
i −Wi ∈ Im(Qi). Lemma 5.5.18 applied to R = Qi and

y = W+
i −Wi then implies that

‖Wi −W+
i ‖2 ≤ λ−1

++(QT
i Qi)‖QT

i Wi −QT
i W

+
i ‖2 = λ−1

++(QT
i Qi)‖∇Zi

ψ(Z)−∇Zi
ψ(Z+)‖2.

Since ψ(Z) = h(Z0) + g1(ZS) + g2(Z2), we have, for Z1, the bound

‖∇Z1ψ(Z)−∇Z1ψ(Z+)‖2 = ‖∇Z1g1(ZS)−∇Zi
g1(Z+

S )‖2

≤ ‖∇g1(ZS)−∇g1(Z+
S )‖2 ≤M2

1‖ZS − Z+
S ‖

2

and thus ‖W1 −W+
1 ‖2 ≤ M2

1λ
−1
++(QT

1Q1)‖ZS − Z+
S ‖2 = β1‖ZS − Z+

S ‖2. A similar calculation

applies to W2. Summing over i ∈ {1, 2}, we have the desired result.

Lemma 5.7.5. For sufficiently large ρ, L(X+,Z,W) − L(X+,Z+,W+) ≥ 0, and therefore

{L(k)}∞k=1 is monotonically decreasing. Moreover, for sufficiently small ε > 0, we may choose

ρ so that L − L+ ≥ ε(‖ZS − Z+
S ‖2 + ‖Z2 − Z+

2 ‖2).

Proof. Since the ADMM algorithm involves successively minimizing the augmented Lagrangian

over sets of primal variables, it follows that the augmented Lagrangian does not increase after each

block of primal variables is updated. In particular, since it does not increase after the update from

158



X to X+, one finds

L − L+ = L(X ,Z,W)− L(X+,Z,W) + L(X+,Z,W)− L(X+,Z+,W)

+ L(X+,Z+,W)− L(X+,Z+,W+)

≥ L(X+,Z,W)− L(X+,Z+,W) + L(X+,Z+,W)− L(X+,Z+,W+).

The only step which increases the augmented Lagrangian is updatingW . It suffices to show that

the size of L(X+,Z,W)−L(X+,Z+,W) exceeds the size of L(X+,Z+,W)−L(X+,Z+,W+)

by at least ε(‖ZS − Z+
S ‖2 + ‖Z2 − Z+

2 ‖2).

By Lemma 5.6.1, L(X+,Z+,W)−L(X+,Z+,W+) = −1
ρ
‖W−W+‖2. Using Lemma 5.7.4,

this is bounded by−1
ρ
(β1‖ZS−Z+

S ‖2 +β2‖Z2−Z+
2 ‖2). On the other hand, eq. equation (5.7.2) of

Corollary 5.7.3 implies that L(X+,Z,W)−L(X+,Z+,W) ≥ m1

2
‖ZS −Z+

S ‖2 +
(
ρσ−M2

2

)
‖Z2−

Z+
2 ‖2. Hence, for any 0 < ε < m1

2
, we may choose ρ sufficiently large so that m1

2
≥ β1

ρ
+ ε and

ρσ−M2

2
≥ β2

ρ
+ ε.

We next show that L(k) is bounded below.

Lemma 5.7.6. For sufficiently large ρ, the sequence {L(k)} is bounded below, and thus with

Lemma 5.7.5, the sequence {L(k)} is convergent.

Proof. We will apply Lemma 5.6.13. By A 1.3, φ is coercive on the feasible region. Thus, it

suffices to show that Condition 5.6.14 holds for the objective function φ and constraintA(X , Z0)+

Q(Z>) = 0, with final block Z .

In the notation of Lemma 5.6.13, we take Y0 = {Z0}, Y1 = Z> = (Z1, Z2). We first verify

that Condition 5.6.14(1) holds. Recall that ψ = h(Z0) + g1(ZS) + g2(Z2) with g1 and g2 Lipschitz
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differentiable. Fix any Z0. For any v ∈ ∂ψ(Z0,Z>), we have

ψ(Z0,Z ′>)− ψ(Z0,Z>)− 〈v, (Z0,Z ′>)− (Z0,Z>)〉

= g1(Z0, Z
′
1)− g1(Z0, Z1)− 〈∇g1(Z0, Z1), (Z0, Z

′
1)− (Z0, Z1)〉

+ g2(Z ′2)− g2(Z2)− 〈∇g2(Z2), Z ′2 − Z2〉

≤ M1

2
‖Z ′1 − Z1‖2 +

M2

2
‖Z ′2 − Z2‖2

Thus, Condition 5.6.14(1) is satisfied with Mψ = 1
2
(M1 +M2).

Next, we construct Ẑ>, a minimizer of ψ(Z+
0 ,Z>) over the feasible region with X+ and Z+

0

fixed, and find a value of ζ satisfying Condition 5.6.14(2). There is a unique solution Ẑ2 which is

feasible for A2(X+) +Q2(Z2) = 0, so we take Ẑ2 = −Q−1
2 A2(X+). We find that ‖Ẑ2 − Z+

2 ‖2 ≤

λ−1
min(QT

2Q2)‖Q2(Z+
2 − Ẑ2)‖2 = λ−1

min(QT
2Q2)‖A2(X+) + Q2(Z+

2 )‖2. Thus, if ζ ≥ λ−1
min(QT

2Q2),

then ‖Ẑ2 − Z+
2 ‖2 ≤ ζ‖A2(X+) +Q2(Z+

2 )‖2.

To construct Ẑ1, consider the spaces U1 = {Z1 : Q1(Z1) = −A1(X+, Z+
0 )} and U2 = {Z1 :

Q1(Z1) = Q1(Z+
1 )}. From Lemma 5.6.12, (Z+

0 , Z
+
1 ) is the minimizer of h(Z0) + g1(Z0, Z1) over

the subspace

U3 = {(Z0, Z1) : A1(X+, Z0) +Q1(Z1) = A1(X+, Z+
0 ) +Q1(Z+

1 )}.

Consider the function g0 given by g0(Z1) = g1(Z+
0 , Z1). It must be the case that Z+

1 is the min-

imizer of g0 over U2, as any other Z ′1 with Q1(Z ′1) = Q1(Z+
1 ) also satisfies (Z+

0 , Z
′
1) ∈ U3. By

Lemma 5.5.13, g0 inherits the (m1,M1)-strong convexity of g1. Let

Ẑ1 = argminZ1
{g0(Z1) : Z1 ∈ U1}.

Notice that we can express the subspaces U1,U2 as U1 = {Z1|Q1(Z1) + A1(X+, Z+
0 ) ∈ C} and

U2 = {Z1|Q1(Z1)−Q1(Z+
1 ) ∈ C} for the closed convex set C = {0}. Since Z+

1 is the minimizer
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of g0 over U2, Lemma 5.5.21 with h = g0, and the subspaces U1 and U2, implies that

‖Ẑ1 − Z+
1 ‖ ≤ γ‖A1(X+, Z+

0 ) +Q1(Z+
1 )‖

where γ is dependent only on κ = M1

m1
and Q1. Hence, taking ζ = max{γ2, λ−1

min(QT
2Q2)},

‖Ẑ> −Z+
>‖2 = ‖Ẑ2 − Z+

2 ‖2 + ‖Ẑ1 − Z+
1 ‖2

≤ ζ(‖A2(X+) +Q2(Z+
2 )‖2 + ‖A1(X+, Z+

0 ) +Q1(Z+
1 )‖2).

Overall, we have shown that Condition 5.6.14 is satisfied. Having verified the conditions of

Lemma 5.6.13, we conclude that for sufficiently large ρ, {L(k)} is bounded below.

Corollary 5.7.7. For sufficiently large ρ, the sequence {(X (k),Z(k),W(k))}∞k=0 is bounded.

Proof. In Lemma 5.7.6, we showed that Condition 5.6.14 holds. By assumption, φ is coercive on

the feasible region. Thus, the conditions for Corollary 5.6.15 are satisfied, so {X (k)} and {Z(k)}

are bounded.

To show that {W(k)} is bounded, recall thatW+ −W ∈ Im(Q) by A 1.2, and that QTW+ =

−∇(Z1,Z2)ψ(Z+) by Corollary 5.7.2. Taking an orthogonal decomposition of W(0) for the sub-

spaces Im(Q) and Im(Q)⊥, we expressW(0) = W(0)
Q +W(0)

P , whereW(0)
Q ∈ Im(Q) andW(0)

P ∈

Im(Q)⊥. Since W+ − W ∈ Im(Q), it follows that if we decompose W(k) = W(k)
Q + W(k)

P

with W(k)
P ∈ Im(Q)⊥, then we have W(k)

P = W(0)
P for every k. Thus, ‖W(k)‖2 = ‖W(k)

Q ‖2 +

‖W(0)
P ‖2 for every k. Hence, it suffices to bound ‖W(k)

Q ‖. Observe that QTW(k) = QTW(0)
P +

QTW(k)
Q = QTW(k)

Q , becauseW(0)
P ∈ Im(Q)⊥ = Null(QT ). Thus, by Corollary 5.7.2, QTW(k)

Q =

−∇(Z1,Z2)ψ(Z(k)). Since {Z(k)} is bounded and g1 and g2 are Lipschitz differentiable, we de-

duce that {‖QTW(k)
Q ‖} is bounded. By Lemma 5.5.18, ‖W(k)

Q ‖2 ≤ λ−1
++(QTQ)‖QTW(k)

Q ‖2, and

so {‖W(k)
Q ‖} is bounded. Hence {W(k)} is bounded, completing the proof.

Corollary 5.7.8. For sufficiently large ρ, we have ‖ZS − Z+
S ‖ → 0 and ‖Z2 − Z+

2 ‖ → 0. Conse-

quently, ‖W −W+‖ → 0 and every limit point is feasible.
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Proof. From Lemma 5.7.5, we may choose ρ so that the augmented Lagrangian decreases by

at least ε(‖ZS − Z+
S ‖2 + ‖Z2 − Z+

2 ‖2) for some ε > 0 in each iteration. Summing over k,

ε
∑∞

k=0 ‖Z
(k)
S − Z

(k+1)
S ‖2 + ‖Z(k)

2 − Z
(k+1)
2 ‖2 ≤ L(0) − limk L(k), which is finite by Lemma 5.7.6;

hence, ‖ZS − Z+
S ‖ → 0 and ‖Z2 − Z+

2 ‖ → 0.

Using Lemma 5.7.4, ‖W −W+‖2 ≤ β1‖ZS −Z+
S ‖2 + β2‖Z2−Z+

2 ‖2, so ‖W −W+‖ → 0 as

well. Lemma 5.6.1 then implies that every limit point is feasible.

Finally, we are prepared to prove the main theorems.

Proof (of Theorem 5.4.1). Corollary 5.7.7 implies that limit points of {(X (k),Z(k),W(k))} exist.

From Corollary 5.7.8, every limit point is feasible.

We check the conditions of Lemma 5.6.17. Since Z is the final block, it suffices to verify

that ‖W − W+‖ → 0, and that the maps {C(k)
< } are uniformly bounded. That ‖W − W+‖ →

0 follows from Corollary 5.7.8. Recall from Corollary 5.6.16 that C(k)
< is the Z-linear term

of Z 7→ A(X (k), Z0) + Q(Z>); since A is multiaffine, Lemma 5.5.8 and the boundedness of

{X (k)}∞k=0 (Corollary 5.7.7) imply that indeed, {C(k)
< } is uniformly bounded in operator norm.

Thus, the conditions of Lemma 5.6.17 are satisfied. This exhibits the desired sequence v(k) ∈

∂ZL(X (k),Z(k),W(k)) with v(k) → 0 of Theorem 5.4.1. Lemma 5.6.4 then completes the proof.

5.7.2 Proof of Theorem 5.4.3

Under Assumption 2, we proceed to prove Theorem 5.4.3. For brevity, we introduce the nota-

tion X<i for the variables (X0, . . . , Xi−1) and X>i for (Xi+1, . . . , Xn).

Lemma 5.7.9. For sufficiently large ρ, we have ‖X` − X+
` ‖ → 0 for each 1 ≤ ` ≤ n, and

‖Z0 − Z+
0 ‖ → 0.

Proof. First, we consider X` for 1 ≤ ` ≤ n. Let AX(X`) = bX denote the linear system of

constraints when updating X`. Recall that under Assumption 2, f(X ) = F (X ) +
∑n

i=0 fi(Xi),
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where F is a smooth function. By Lemma 5.6.9, the change in the augmented Lagrangian after

updating X` is given (for some v ∈ ∂f`(X`)) by

f`(X`)− f`(X+
` )− 〈v,X` −X+

` 〉+
ρ

2
‖AX(X`)− AX(X+

` )‖2 (5.7.4)

+ F (X+
<`, X`,X>`)− F (X+

<`, X
+
` ,X>`)− 〈∇X`

F (X+
<`, X

+
` ,X>`), X` −X+

` 〉.

By Lemma 5.7.5, the change in the augmented Lagrangian from updating W is less than the

change from updating Z . Since (5.7.4) is nonnegative for every `, it follows that the change in

the augmented Lagrangian in each iteration is greater than the sum of the change from updating

eachX`, and therefore greater than (5.7.4) for each `. By Lemma 5.7.6, the augmented Lagrangian

converges, so the expression (5.7.4) must converge to 0. We will show that this implies the desired

result for both cases of A 2.2.

1 F (X0, . . . , Xn) is independent of X` and there exists a 0-forcing function ∆` such that for any

v ∈ ∂f`(X+
` ), f`(X`) − f`(X+

` ) − 〈v,X` − X+
` 〉 ≥ ∆`(‖X+

` − X`‖). In this case, (5.7.4)

is bounded below by ∆`(‖X+
` −X`‖). Since (5.7.4) converges to 0, ∆`(‖X+

` −X`‖)→ 0,

which implies that ‖X` −X+
` ‖ → 0.

2 There exists an index r(`) such that Ar(`)(X , Z0) can be decomposed into the sum of a multi-

affine map of X 6=`, Z0, and an injective linear map R`(X`). Since AX = ∇X`
A(X , Z0), the

r(`)-th component ofAX is equal toR`. Thus, the r(`)-th component ofAX(X`)−AX(X+
` )

is R`(X` −X+
` ).

Let µ` = M` if f` is M`-Lipschitz differentiable, and µ` = 0 if f` is convex and nonsmooth.
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We then have

L(X+
<`, X`,X>`,Z,W)− L(X+

<`, X
+
` ,X>`,Z,W)

= f`(X`)− f`(X+
` )− 〈v,X` −X+

` 〉+
ρ

2
‖AX(X`)− AX(X+

` )‖2

+ F (X+
<`, X`,X>`)− F (X+

<`, X
+
` ,X>`)− 〈∇X`

F (X+
<`, X

+
` ,X>`), X` −X+

` 〉

≥ −(µ` +MF )

2
‖X` −X+

` ‖
2 +

ρ

2
‖R`(X` −X+

` )‖2

≥ 1

2

(
ρλmin(RT

` R`)− µ` −MF

)
‖X` −X+

` ‖
2. (5.7.5)

Taking ρ ≥ λ−1
min(RT

` R`)(µ` +MF ), we see that ‖X` −X+
` ‖ → 0.

It remains to show that ‖Z0 − Z+
0 ‖ → 0 in all three cases of A 2.3. Two cases are immediate.

If Z0 ∈ ZS , then ‖Z0 − Z+
0 ‖ → 0 is implied by Corollary 5.7.8, because ‖ZS − Z+

S ‖ → 0. If

h(Z0) satisfies a strengthened convexity condition, then by inspecting the terms of equation (5.7.3),

we see that the same argument for X` applies to Z0. Thus, we assume that A 2.3(3) holds. Let

AX(Z) = bX denote the system of constraints when updating Z . The third condition of A 2.3

implies that for r = r(0), the r-th component of the system of constraintsA1(X , Z0)+Q1(Z1) = 0

is equal to A′0(X ) +R0(Z0) +Qr(Z1) = 0 for the corresponding submatrix Qr of Q1. Hence, the

r-th component of AX(Z) is equal to R0(Z0) + Qr(Z1). Inspecting the terms of equation (5.7.3),

we see that

L(X+,Z,W)− L(X+,Z+,W) ≥ ρ

2
‖R0(Z0) +Qr(Z1)− (R0(Z+

0 ) +Qr(Z
+
1 ))‖2

Since L(k) converges, and the increases of L(k) are bounded by 1
ρ
‖W −W+‖ → 0, we must also

have L(X+,Z,W)− L(X+,Z+,W)→ 0, or else the updates of Z would decrease L(k) to −∞.

By Corollary 5.7.8, ‖Z1 − Z+
1 ‖ → 0, since Z1 is always part of ZS . Hence ‖R0(Z0 − Z+

0 )‖ → 0,

and the injectivity ofR0 implies that ‖Z0−Z+
0 ‖ → 0. Combined with Corollary 5.7.8, we conclude

that ‖Z − Z+‖ → 0.

Proof (of Theorem 5.4.3). We first confirm that the conditions of Lemma 5.6.17 hold for {X0, . . . , Xn}.
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Corollaries 5.7.7 and 5.7.8 together show that all variables and constraints are bounded, and that

‖W − W+‖ → 0. Since ‖X` − X+
` ‖ → 0 for all ` ≥ 1, and ‖Z − Z+‖ → 0, we have

‖U+
> − U>‖ → 0, and the conditions ‖C> − C<‖ → 0 and ‖b> − b<‖ → 0 follow from

Lemma 5.6.18. Note that X0 is not part of X> for any `, which is why we need only that {X(k)
0 }

is bounded, and ‖X` −X+
` ‖ → 0 for ` ≥ 1. Thus, Lemma 5.6.17 implies that we can find v(k)

x ∈

∂XL(X (k),Z(k),W(k)) with v(k)
x → 0; combined with the subgradients in ∂ZL(X (k),Z(k),W(k))

converging to 0 (Theorem 5.4.1) and the fact that∇WL(X (k),Z(k),W(k))→ 0 (Lemma 5.6.1), we

obtain a sequence v(k) ∈ ∂L(X (k),Z(k),W(k)) with v(k) → 0.

Having verified the conditions for Lemma 5.6.17, Lemma 5.6.4 then shows that all limit points

are constrained stationary points. Part of this theorem (that every limit point is a constrained

stationary point) can also be deduced directly from Corollary 5.6.6 and Lemma 5.7.9.

5.7.3 Proof of Theorem 5.4.5

Proof. We will apply Theorem 5.5.25 to L(X ,Z,W). First, for H2, observe that the desired

subgradient wk+1 is provided by Lemma 5.6.3. Since the functions V and∇F are continuous, and

all variables are bounded by Corollary 5.7.7, V and ∇F are uniformly continuous on a compact

set containing {(X (k),Z(k),W(k))}∞k=0. Hence, we can find b for which H2 is satisfied.

Together, Lemma 5.7.4 and Lemma 5.7.5 imply that H1 holds for W and Z>. Using the

hypothesis that A 2.2(2) holds for X0, X1, . . . , Xn, the inequality (5.7.5) implies that property H1

in Theorem 5.5.25 holds for X0, X1, . . . , Xn. Lastly, A 2.3(2) holds, so ZS = (Z0, Z1) and thus g1

is a strongly convex function of Z0, so Corollary 5.7.3 implies that H1 also holds for Z0. Thus, we

see that H1 is satisfied for all variables. Finally, Assumption 2 implies that φ, and therefore L, is

continuous on its domain, so Theorem 5.5.25 applies and completes the proof.

5.8 Supplementary: Alternate Deep Neural Net Formulation

When h(z) = max{z, 0}, we can approximate the constraint a` − h(z`) = 0 by introducing a

variable a′` ≥ 0, and minimizing a combination of ‖a′`−z`‖2, ‖a′`−a`‖2. This leads to the following
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biaffine formulation, which satisfies Assumptions 1 and 2, for the deep learning problem:



inf E(zL, y) +
∑L−1

`=1 ι(a
′
`) + µ

2

∑L−1
`=1 [‖â`‖2 + ‖s`‖2] +R(X1, . . . , XL)

XLaL−1 − zL = 0
X`a`−1

a′`

a′` − a`

−

I 0 0

I I 0

0 0 I



z`

s`

â`

 = 0 for 1 ≤ ` ≤ L− 1.

.

5.9 Supplementary: Formulations with Closed-Form Subproblems

5.9.1 Representation Learning

Observe that in (NMF1), the ADMM subproblems forX and Y , which have quadratic objective

functions and nonnegativity constraints, do not have closed-form solutions. To update X and Y ,

[113] proposes using ADMM to approximately solve the subproblems. This difficulty can be

removed through variable splitting. Specifically, by introducing auxiliary variables X ′ and Y ′, one

obtains the equivalent problem:

(NMF2)


inf

X,X′,Y,Y ′,Z
ι(X ′) + ι(Y ′) + 1

2
‖Z −B‖2

Z = XY, X = X ′, Y = Y ′,

where ι is the indicator function for the nonnegative orthant; i.e., ι(X) = 0 ifX ≥ 0 and ι(X) =∞

otherwise. One can now apply ADMM, updating the variables in the order Y , Y ′, X ′, then (Z,X).

Notice that the subproblems for Y and (Z,X) now merely involve minimizing quadratic functions

(with no constraints). The solution to the subproblem for Y ′,

inf
Y ′≥0
〈W,−Y ′〉+

ρ

2
‖Y − Y ′‖2 = inf

Y ′≥0

∥∥∥∥Y ′ − (Y +
1

ρ
W )

∥∥∥∥2

, (5.9.1)

is obtained by setting the negative entries of Y + 1
ρ
W to 0. An analogous statement holds for X ′.

Unfortunately, while this splitting and order of variable updates yields easy subproblems, it
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does not satisfy all the assumptions we require in A 1.3 (see also Section 5.4.2). One reformulation

which keeps all the subproblems easy and satisfies our assumptions involves introducing slacksX ′′

and Y ′′ and penalizing them by a smooth function, as in

(NMF3)


inf

X,X′,X′′,Y,Y ′,Y ′′,Z
ι(X ′) + ι(Y ′) + 1

2
‖Z −B‖2 + µ

2
‖X ′′‖2 + µ

2
‖Y ′′‖2

Z = XY, X = X ′ +X ′′, Y = Y ′ + Y ′′.

The variables can be updated in the order Y , Y ′, X , X ′, then (Z,X ′′, Y ′′). It is straightforward to

verify that the ADMM subproblems either involve minimizing a quadratic (with no constraints) or

projecting onto the nonnegative orthant, as in (5.9.1).

Next, we consider (DL). In [118], a block coordinate descent (BCD) method is proposed for

solving (DL), which requires an iterative subroutine for the Lasso [143] problem (L1-regularized

least squares regression). To obtain easy subproblems, we can formulate (DL) as

(DL2)


inf

X,Y,Z,X′,Y ′
ιS(X ′) + ‖Y ′‖1 + µ

2
‖Z −B‖2

2

Z = XY, Y = Y ′, X = X ′.

Notice that the Lasso has been replaced by soft thresholding, which has a closed-form solution.

As with (NMF2), not all assumptions in Assumption 1 are satisfied, so to retain easy subproblems

and satisfy all assumptions, we introduce slack variables to obtain the problem

(DL3)


inf

X,X′,X′′,Y,Y ′,Y ′′,Z
ιS(X ′) + ‖Y ′‖1 + µZ

2
‖Z −B‖2

2 + µX
2
‖X ′′‖2 + µY

2
‖Y ′′‖2

2

Z = XY, Y = Y ′ + Y ′′, X = X ′ +X ′′.

5.9.2 Risk Parity Portfolio Selection

As before, we can split the variables in a biaffine model to make each subproblem easy to solve.

The projection onto the set of permissible weights X has no closed-form solution, so let XB be the
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box {x ∈ Rn : a ≤ x ≤ b}, and ιXB
its indicator function. One can then solve:

(RP2)


inf

x,x′,y,z,z′,z′′,z′′′
ιXB

(x′) + µ
2
(‖z‖2 + ‖z′‖2 + ‖z′′‖2 + ‖z′′′‖2)

P (x ◦ y) = z, y = Σx+ z′

x = x′ + z′′, eTnx = 1 + z′′′.

The variables can be updated in the order x, x′, y, (z, z′, z′′, z′′′). It is easy to see that every

subproblem involves minimizing a quadratic function with no constraints, except for the update of

x′, which consists of projection onto the box XB and can be evaluated in closed-form.
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