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Abstract. Effects of resuspension on the release of dissolved, redox sensitive elements (Fe,
Mn) was studied in cylindrical microcosms. Effects from changing water stirring velocity
in sediment pools were evaluated through measurements of pore water profiles of dissolved
Mn, Fe and redox potential. Mn was a good natural marker to follow such effects. At current
velocities below the threshold velocity for resuspension (37 cm s−1), Mn release rates to
overlying water were 100 times higher compared to steady-state values. Pulse increases in
Mn concentration were the result of convective currents inside flow chambers. These results
were strongly supported by measurements of Eh profiles in the sediment pore water. Further-
more, impacts from increasing stirring velocity were found down to 1.9 cm depth below the
resuspended layer of sediment.

Introduction

In modern sediments, the redox potential decreases with depth below the sedi-
ment surface as a result of bacterial degradation of organic matter. At a certain
depth, which depends on bottom-water composition (O2, NO3

−), carbon flux,
the composition and the accumulation rate of the sediment deposit, the redox
potential falls below values at which oxidized forms of Mn and Fe are stable,
and reductive dissolution of Mn and Fe-oxides takes place. The dissolution
increases the pore water concentrations of dissolved Mn, Fe (and associated
ions), resulting in concentration gradients which cause the ions to migrate
through the pore water towards the sediment surface. The flux of ions within
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the pore water and across the sediment-water interface can be calculated from
the magnitude of the concentration gradients. However, in many instances
the production of soluble ions takes place so close to the sediment surface,
that it is difficult to measure the gradients with a resolution sufficient for the
calculation of fluxes (Thamdrup et al. 1994; Davison et al. 1997; Brendel &
Luther 1995). It is then preferable to study reactions at the sediment-water
interface by measuring the fluxes directly, using either flux chambers which
are placed over the sediment surface, or by laboratory incubations of sediment
cores.

Aller (1980) observed that the fluxes of dissolved Mn and Fe from cores
incubated in the laboratory were variable. Sometimes longer incubation times
gave higher flux rates than shorter incubation times. He suggested that lower
levels of dissolved O2 were beginning to cause changes in pore water profiles
or reaction distributions in the sediment.

Sediment resuspension is an important process in coastal areas, for exam-
ple, it affects boundary layer structure (Gust & Walger 1976), re-distribution
of sediment (Amos & Mosher 1985), enrichment of the water column by dis-
solved and particulate nutrients (Wainright 1990). Work on physical aspects
of resuspension has been recently published (see Hydrobiologia, vol. 284
from 1994), and is abundant on metal release, however impact of resus-
pension in other sediment processes is still poorly understood (Vidal 1994;
Laima et al. 1994; Sloth et al. 1996; Christiansen et al. 1997). Most available
data on sediment-water fluxes concern exchanges through an undisturbed top
sediment layer, and are largely obtained at standard levels of water motion,
because of difficulties in reproducing environmental conditions. In stirred
chambers, attention has been given to solute release mechanisms (Huettel
& Gust 1992) and the redistribution of O2 following changes in the flow
velocity of the overlying water (Booij et al. 1991). These observations indi-
cate that O2 has an important effect on fluxes of redox-sensitive metals and
associated species. However, the response of the sediment column to these
flow changes has not been investigated in detail, and Eh potentials are rarely
reported (Smayda 1990; Moore & Reddy 1994).

In this study we describein vitro flow chamber experiments using stirring
conditions where both O2 and temperature are maintained close to the in situ
values. It is investigated if resuspension causes changes in the sediment below
the resuspended layers, measuring pore water concentrations of redox sensi-
tive elements Fe and Mn, as indicators for these changes. Complementary
redox potential measurements are used to indicate changes at the redox-
boundary during the experiments. Where appropriate, emphasis is given to
differentiate between natural variation effects and true resuspension effects.
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Figure 1. Horsens Fjord, Denmark. The cross indicates the sampling station.

Sampling and methods

Core sediment sampling

Sediments from Horsens Fjord, Denmark (55.52.437 N; 10.02.677 E) were
sampled in May 1996 at 3 m water depth, using a ‘Haps’ bottom corer (Kan-
neworff & Nicolaisen 1973). The sampling position was placed in a sheltered
bay in the northern part of Horsens Fjord (Figure 1). Resuspension at the
site is generally governed by surface waves as the dominating wind direction
in the area is southwest, giving a maximum fetch (Lund-Hansen & Eriksen
1998). Sediment was sandy with a mean grain diameter of 0.009 cm. In situ
O2 concentration in bottom water was 13.1 mg l−1 (107% of air saturation)
bottom salinity was 24.5 psu and temperature was 5◦C. Sediment samples
were taken with Plexiglass tubes (9.5 cm i.d., 50 cm long) and with smaller
coring tubes (5.4 cm i.d., 20 cm long). The sediment surface was covered by
a 0.2–0.3 cm thick benthic algae mat also including planktonic forms. Sed-
iments with visible macrofauna were discarded. Sediments and water were
transferred to the laboratory within a few hours after sampling and were kept
in a temperature controlled room (4◦C). Water content (105◦C, 24 h), poros-
ity and organic matter content (550◦C, 2.2 h) were determined in duplicate
(Table 1). All experiments described below were carried out in the cold room
at darkness.

Resuspension assays

The following experimental set-up was designed to study fluxes in undis-
turbed sediments and under different stirring velocities at circular flow motion
(Figure 2). Sediment cores with water collected at the station were prepared
in the following way: Sediment height was 15 cm and the water phase was
10 cm. A four bladed propeller was placed 6 cm above the sediment surface
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Table 1. Sediment characteristics (0–10 cm) for the sampling site (55.52.437 N;
10.02.677 E). All measurements were done in duplicate. Horsens Fjord, Denmark,
May 1996.

Depth H20 Density Org. matter Porosity

(cm) (ml g−1 wet wt) (g cm−3) (% dry wt) (vol vol−1)

0–1 0.65± 0.0 1.29± 0.0 7.23± 0.8 0.843

1–2 0.49± 0.0 1.45± 0.1 4.05± 0.4 0.702

2–3 0.47± 0.0 1.46± 0.1 4.27± 0.4 0.692

3–4 0.45± 0.0 1.47± 0.1 3.85± 0.0 0.657

4–5 0.45± 0.0 1.47± 0.1 3.94± 0.4 0.655

5–6 0.48± 0.0 1.50± 0.1 4.66± 0.0 0.728

6–7 0.48± 0.0 1.37± 0.1 4.63± 0.7 0.660

7–8 0.57± 0.0 1.25± 0.1 6.77± 0.7 0.712

8–9 0.53± 0.1 1.20± 0.1 5.71± 1.9 0.635

9–10 0.65± 0.0 1.30± 0.2 8.36± 0.7 0.839

and the rotation speed was controlled by an electric motor (Lund-Hansen et
al. 1995). Bottom water collected at the sampling site was pumped contin-
uously over the sediment and pumped out to obtain a residence time of 12
hours (flowrate 50 ml h−1). An O2 microelectrode was placed in a cell at
the chamber outlet and the electrode output signal was read through a com-
puter. Readings were done in clear water, thus avoiding possible changes in
electrode performance when measuring O2 in the different chambers. No dif-
ference in signal was observed in the water inflowing to the electrode cell and
in the chamber water. Sometimes, O2 was also measured manually (Winkler
method) in fresh outflow samples to check for electrode performance. During
the first hours of incubation, outlet water samples were collected intensively
until reaching a steady-state in dissolved Fe and Mn concentrations. In vitro
resuspension was simulated by step increases of blade rotation (0.5 volt step
during 30 minutes, range 0.5–3 volt), corresponding to stirring velocities of
2.3–13.8 cm s−1, which reached their maximum about 3.0 cm distance from
core edge measured 0.1 cm above sediment (Figure 3). Motor rotation was
then regulated to obtain symmetrical, step decreasing velocities. It was found
that the above velocity range did not cause resuspension of sediment. In assay
2, higher pulse increases were applied (1.0 volt during 30 min, range 1–8
volts), or 4.6–36.8 cm s−1 of maximum stirring velocity. Motor rotation was
then regulated to 1.1 cm s−1, which continued for some days. Control flow
chamber (Fc) was incubated with gentle stirring of overlying water (1.1 cm
s−1), to avoid anoxic stratification, and the O2 concentration in overlying
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Figure 2. Experimental set-up in the laboratory assays of resuspension. Using this set-up it
was possible for a range of stirring velocities in water, to collect water samples for mea-
surement of concentrations of solutes and to measure electrode based parameters in sediment
overlying water.

water was periodically checked. Sediment cores (n = 2) with no replacement
or stirring of overlying water, were incubated in parallel with flow chambers.

Sampling of chamber water and sediment pore water

Flow water from resuspension chambers was sampled using an automatic
Model 2700 Autosampler (ISCO inc., USA), otherwise water was manually
sampled from the outlet into 50 or 100 ml flasks. Flux water samples were
filtered through 0.45µm cellulose acetate filters, acidified with ultrapure
HCl to pH 2–3 and stored at 4◦C until analysis. At selected time intervals,
flow chambers and control cores were transferred into a N2-filled glove box,
and 1.0 cm sediment slices (0–10 cm) were scooped off. Sediment slices in
air tight containers were transferred to a Sorvall RC-5B refrigerated super-
speed centrifuge for pore water removal (5340× g, 30 min). Pore water
supernatants were filtered in the glove box, acidified with HCl to minimize
oxidation of Fe(II), and stored at 4◦C until analysis.

Analysis of water samples

Mn dissolved in pore water was measured using an air-acetylene AAS,
whereas Mn concentrations in flux samples were measured by Graphite

biog177.tex; 26/10/1998; 16:33; p.5



298

Figure 3. Distribution of water velocity inside resuspension flow chambers for 2.3, 4.6, 6.9
and 9.2 cm s−1 of near bottom velocity. Each velocity value is the average of 500 data points
as measured 1 mm above bottom with a laser Doppler anemometer.

Furnace AAS according to Slavin et al. (1982), using Mg(NO3)2 as matrix
modifier (Table 2). Concentrations were determined with a five-point calibra-
tion curve. Calibration standards were prepared from commercial standard of
Mn(II) in 0.5 M HNO3, diluted with artificial seawater to get the same salinity
as the water samples (25 psu). Each sample was run in duplicate or until a 3%
standard coefficient of variation was obtained. Dissolved Fe in pore water
was measured spectrophotometrically (Collins et al. 1959). Primary standard
for Fe was (NH4)2Fe(SO4)2·6H2O, the detection limit was 0.002 mM and
the relative standard deviation on replicates was below 1% (n = 3). The dis-
solved Fe pool is interpreted as Fe(II), because the solubility of Fe(III) is low
(< 10−8M) at natural conditions (6< pH< 8). Iron which had been oxidized
to Fe(III) during storage, was reduced to Fe(II) with HONH3Cl. Concentra-
tion data in outlet samples were corrected for possible adsorption effects onto
container walls, tubings and overlying water, as measured in a control system
without sediment. All materials used had been previously stored during 12
hours in a 0.02 M H2SO4-bath and all chemicals were of analytical grade.

Release rate of solutes at steady-state were calculated from the mass bal-
ance VdP/dt = JA – QP, where dP/dt is the change of solute concentration
with time, J is the solute flux to overlying water, V is the volume of overlying
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Table 2. Atomic Spectroscopy standard conditions used for analysis of dissolved Mn
(Perkin Elmer, Germany). Diluent used to obtain data was 0.2% HNO3. Detection limits
were determined using Mn standards in dilute aqueous solution, and were based on a 98%
confidence level (3 standard deviations).

Flamme- AAS GF- AAS

Model 5100 PC Model 4100 ZL

Wavelength, nm 279.5 279.5

Matrix modifier 0.005 mg Pd + 0.003 mg Mg(NO3)2
Pretreatment temp.,◦C 1300

Atomization temp.,◦C 1900

Atomization time, s 3

Detection limits, mg/L 0.0015 0.00009

Sensitivity check, mg/L 2.5–25.0 0.01

water, Q is the water flow rate and A is the area of sediment column. The
approximation of Boers et al. (1984) was used for short sampling intervals.

Eh measurements

Redox potential was measured manually using a home made platinum elec-
trode, consisting of a Pt wire (0.05 cm diameter) mounted in a Pasteur pipette
(0.1 cm external diameter, 10 cm tip length). The pipette glass was melted
around the Pt wire, leaving 0.2 cm of Pt exposed. Potentials were measured
using a standard pH-meter (PHM 62 Radiometer), and a saturated calomel
electrode as reference (K401 Radiometer). All results are given relative to
the calomel electrode. Eh relative to the hydrogen electrode can be found by
adding 241.5 mV. A redox profile was measured as follows: The Pt-electrode
was cleaned in conc. HNO3 and mounted on a manipulator, which enabled
us to control the position of the electrode tip within 0.1 mm resolution.
The Pt- and the reference electrode were plunged in the sediment overlying
water, until a stable reading was reached (10–20 min). The Pt-electrode was
then carefully pressed in 0.1 cm steps down into the sediment, whereas the
reference electrode was left in the overlying water. Rather than searching
for a stable reading and in order to avoid or minimize contamination, the
Pt-electrode was left exactly 10 seconds at each depth before reading the
Eh value. The Pt-electrode only makes a hole with 1 mm diameter (area
0.008 cm2), so it will not significantly affect the concentration of ions mea-
sured in the pore water extracted from the sediment core (area 71 cm2).
Natural variation effects were investigated by measuring Eh randomly in dif-
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Figure 4. Flow chamber experiments. Effects of stirring velocity of overlying water on Mn
fluxes in a coastal sediment. Flow chamber Fc (A) was run with very low velocity (1.1 cm
s−1). Flow chambers 2R and 3R were exposed to velocities in the range of, respectively,
2.3–13.8 down to 1.15 cm s−1 (B) and 4.6–36.8 down to 1.1 cm s−1(C). The upper sediment
stratum (∼ 0.5 to 1 cm) was resuspended at 36.8 cm s−1. Oxygen concentrations (mg l−1)
in the water phase during resuspension are shown. Arrow indicates the point of resuspension
causing disruption of the uppermost sediment stratum.
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Table 3. In vitro resuspension experiments. Measured Mn flux rates at different
stirring velocities of overlying water and comparison with a control sediment.
Horsens Fjord, Denmark.

Flow Condition Flow velocity Flux of dissolved Mn

chamber cm s−1 nmol m−2 h−1

3R Before resuspension 1 1.8· 10−3

Increasing velocity 5–24 –5.9· 10−3

Increasing velocity 28–37 0.19

Resuspension 37 (fluctuated)

After resuspension 1 1.9· 10−3

Fc Control 1 1.9· 10−3

ferent control cores, whereas resuspension effects were investigated through
time-series measurements of Eh on fixed positions in the same core.

The influence of resuspension on Eh profiles was assessed through read-
ings at two positions situated only 0.5 cm apart. At both positions, Eh profiles
were measured before resuspension, “during” resuspension at 36.8 cm s−1

and after the end of resuspension. The term “during” here refers to a reading
done a few minutes after a short stop of motor rotation, as redox profiles could
not be read while the stirring device was rotating. Readings continued for two
days following the stop of motor rotation.

Results and discussion

Resuspension, solute fluxes and pore water profiles

No major changes in the concentrations of O2 and Mn were observed for
applied low and moderate stirring velocities (Figure 4A–4B). There was no
define pattern for dissolved Fe, fluctuations observed were in the same mag-
nitude, independently of core condition (not shown). At stirring velocities
above 20 cm s−1, there was a smooth increase of O2 concentration in cham-
ber water up to the point of resuspension (Figure 4C). Chamber experiments
were run at darkness and water residence time was constant with time. A
possible explanation for this increase of O2 concentration, was a temporarily
fall in the sediment oxygen demand at these water stirring velocities. It was
necessary to increase the velocity up to 36.8 cm s−1 to observe a sudden
disruption and resuspension of the uppermost few mm of sediment. At the
time of resuspension, there was a fall in O2 concentration, before reaching
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Figure 5. Depth sediment pore water profiles for dissolved Mn (A) and for dissolved Fe (B)
obtained after resuspension assays. Profiles are shown for flow chambers 3R (36.8 cm s−1),
2R (13.8 cm s−1), Fc (1.1 cm s−1,with water flow) and core 2C (no stirring or water flow).
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a steady-state. A likely explanation for the fall in O2 concentration was an
increase of sediment activity from the direct exposure of reduced sediment to
oxygenated overlying water.

Mn concentrations varied with the applied stirring velocity, resulting in
alternating Mn flux sign from effluxes at low stirring velocities, via influxes
at intermediate velocities and effluxes again above 28 cm s−1 (Figure 4 and
Table 3). At velocities below 28 cm s−1, there was a simultaneous increase
of O2 concentration and decrease of Mn concentration. This suggests the
occurrrence of Mn oxidation, decreasing the concentration of dissolved Mn
in the water (Table 3). At velocities above 28 cm s−1, concentrations in-
creased abruptly until a maximum was reached at the point of resuspension.
At these velocities, normal diffusional processes in and above the sediment-
water interface, were certainly superimposed by physical forces increasing
pore water exchange which in turn resulted in high Mn release rates to over-
lying water. Different hydraulic pressure gradients inside the chamber may
cause radial flows to develop, which, in case of permeable sands, may go
through the upper mm’s of the sediment (Huettel & Gust 1992). In our sed-
iments, these effects were observed down to 1.9 cm (see below). Dissolved
Mn is an excellent natural marker for such flows, as it is often present in
high concentrations in the pore water of the uppermost sediment strata. Fur-
thermore, the oxidation of dissolved Mn2+ is slow as compared to dissolved
Fe2+ (Wilson 1980; Roekens & van Grieken 1983), giving time to measure
the high concentration level before the Mn2+ is oxidized and precipitates.
After resuspension, velocity was set at 1.1 cm s−1 and the Mn concentration
fluctuated for some hours, before reaching a steady-state. This is in agreement
with others (Santschi et al. 1990; Sundby et al. 1986), who observed similar
fluctuations in stirring interrupted systems with regulated O2 concentrations.

Pore water profiles

Figure 5 shows depth sediment profiles of pore water Mn and Fe after the
end of both resuspension assays, and comparison with two control cores
with different conditions of overlying water flow. The Mn concentration in
the 0–1 cm sediment stratum decreased significantly in all flow chambers,
as compared to the batch, O2 limited core (Figure 5A). This again suggests
the occurrence of oxidation/precipitation of Mn in upper microlayers of sed-
iment. With respect to Fe, resuspension apparently did not cause changes in
the top 0–1 cm, but below this layer (Figure 5B). These results are supported
by the Eh measurements (see below).
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Figure 6. Flow chamber 3R. Time serie depth Eh profile measured before resuspension, “during” resuspension at 36.8 cm s−1 and three times after
the stop of resuspension. Measurements were done in two positions situated only 0.5 cm apart. The line representing the redox-jump is shown on graph
for both situations.
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Eh profiles and resuspension effects

The heterogeneous character of this sediment resulted in high variability
between single Eh profiles in different control cores and between Eh profiles
in different positions in the same sediment core (not shown). Variability of Eh
profiles did not decrease by choosing a shorter distance between measuring
positions in sediment. To avoid problems related to the inhomogeneity of
sediment and in order to investigate resuspension effects, we chose to make
multiple Eh readings in the same position. We investigated the usefullness
of this approach in a control exchange experiment, in which a redox-profile
was measured randomly in a non disturbed core. The small hole left by the
Pt-electrode was then manually filled-up with oxic surface water and the
redox profile was again measured, resulting in higher Eh values. Repetitive
Eh measurements showed that the old redox-profile was re-established within
20 hours (not shown). Thus, to investigate changes due to disturbance, redox
potential were measured frequently.

Figure 6 shows results from time series measurements of two depth redox
profiles in core 3R before, during and after the induced resuspension. The
profiles were all measured exactly at the same two positions in the sediment
core and were not influenced by the imhomogenity of the sediment. It is seen,
that before resuspension there was one large jump in the redox potential at
1.7 cm depth (Figure 6). The redox jump most likely reflects changes in the
Fe(II)/Fe(III) and Mn(II)/Mn(III, IV) equilibria in the pore water (Whitfield
1972). At 36.8 cm s−1 the position of the redox-jump had moved from 1.7 cm
to 1.9 cm, and the redox profile was more flat. During the next two days the
position of the jump moved slowly back towards 1.7 cm. The sharp redox pro-
file measured before resuspension was not fully re-established two days after
resuspension. This breakdown of the redox profile is likely due to porewater
convection requiring some time to equilibrate with the surrounding sediment.

Porewater exchange induced by the resuspension was not evenly distrib-
uted across the sediment. In similar measurements of redox profiles in another
position (only 0.5 cm apart) in core 3R no changes in depth of redox jump
were observed (Figure 6). So, visualization of true effects of resuspension
on Eh depended on electrode position in sediment. The distribution of pore
water exchange is probably influenced by local sediment structure (Webster
et al. 1996), by animal burrows and perhaps even by the holes left by the
Pt-electrode (0.1 cm diameter).
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Conclusion

Our laboratory experiments on resuspension have shown the following points:
(1) Dissolved Mn can be used as a good natural marker to follow the effects

of water stirring in sediments and overlying water.
(2) The increase in stirring velocity of overlying water below the point of

resuspension, resulted in dramatic changes in the concentration of dis-
solved Fe and Mn below the resuspended layers of sediment, and the
movement of the redox boundary from 1.7 cm to 1.9 cm in depth.

(3) The observed increase in Mn concentration in the overlying water below
the point of resuspension was the result of pore water convection effects,
which changed the composition of sediment pore water and the release
rate of Mn to sediment overlying water.

In situ pore pressure measurements should be encouraged, to give direct
evidence of advection of pore water fluids in the sediment (Fang et al. 1993;
Glud et al. 1996) and their influence on concentration gradients of chemical
species in aquatic microenvironments (Davison et al. 1997).
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