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 Many features can be extracted from the massive volume of data in different 

types that are available nowadays on social media. The growing demand for 

multimedia applications was an essential factor in this regard, particularly in 

the case of text data. Often, using the full feature set for each of these 

activities can be time-consuming and can also negatively impact 

performance. It is challenging to find a subset of features that are useful for a 

given task due to a large number of features. In this paper, we employed a 

feature selection approach using the genetic algorithm to identify the 

optimized feature set. Afterward, the best combination of the optimal feature 

set is used to identify and classify the Arabic named entities (NEs) based on 

support vector. Experimental results show that our system reaches a state-of-

the-art performance of the Arab NER on social media and significantly 

outperforms the previous systems. 
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1. INTRODUCTION 

The named entity recognition is a subtask of natural language processing used for identifying and 

extracting useful information such as names of people, places, and organizations from unstructured text [1]. 

This approach was first introduced at the "Sixth Conference on Understanding Messages-MUC6-" [2]. This 

focused mainly on extracting information from formal text. A number of papers on these systems were first 

concerned with the English language, then a series of publications on other languages, namely German, 

Spanish, Dutch, Japanese and Indian, etc.... Regarding the Arabic language, the application of this concept 

was initiated only in 2005 [3].  

It is stated that most of the research projects around this topic in the different languages have 

achieved a very high level of performance comparable to that of human subjects, especially in English [4]. 

Many typical machine learning applications result from the complex relationships between features (also 

known as input variables or characteristics). A feature is a property or attribute of data that may be employed 

by algorithms, for instance, in the field of machine learning to extract valuable information from data sets. 

Each item of data in an application has specific characteristics. For a particular application, all or a subset of 

the extracted features is used to obtain a meaningful result. 

As more and more data becomes available, and dozens or thousands of features are available for 

individual datasets, system complexity increases not only in terms of understanding the data but also in 

resource usage and system efficiency [5]. Although dataset size is not controllable, the feature set can be 

https://creativecommons.org/licenses/by-sa/4.0/
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reduced by including only relevant and unique features, so that overall efficiency improves and resource use 

decreases [6]. Redundant or irrelevant features may take the form of correlated features in which there is a 

dependency between them. Dependent features may provide no additional information or have an impact on 

output. This means that the elimination of such a feature does not influence the total information content. In 

certain cases, these characteristics can introduce a bias in the system and thus affect performance. Since there 

can be N possible characteristics for a dataset, there can be 2N combinations of characteristics to be tested to 

see which features contribute positively to the problem outcome. Evolutionary algorithms, like genetic 

algorithms (GA) [7], may be used for feature selection, where a subset of features must be found from a very 

large search space. Through this paper, we study the drawbacks of taking into account a large number of 

features by implementing a feature selection solution based on the GA and using it in a system to classify 

named entities according to their categories.  

The objective of this work aims to evaluate current works that use evolutionary algorithms for 

feature selection, as well as to provide a novel GA-based approach for selecting feature subsets, and to apply 

the proposed solution to classify named entities. We plan to publish this system in Github. The rest of our 

paper is described as follows: In section 2, we discussed the NER and its different applications. Section 3 is 

devoted to some challenges of Arabic named recognition, especially on twitter. Afterward, in section 4, we 

present the literature review related to NER systems in the context of feature selection using GA. Section 5 

and 6 are about feature selection techniques and the genetic algorithm used throughout this paper. 

Furthermore, suitable ways to formulate our problematic are presented in Section 7. In Section 8 and 9, we 

present our contribution concerning Arabic NER based on feature selection using GA. Then, we end with a 

concluding part. 

 

 

2. BACKGROUND 

2.1. What is NER? 

A named entity is a word or expression that uniquely describes an element among a set of other 

items with similar attributes. Names of named entities include names of organizations, persons, and places in 

the global domain, names of genes, proteins, drugs, and diseases in the biomedical area. Named entities 

recognition (NERs) is defined as the process of identifying and classifying the entities named in the text into 

predefined entity categories [8]. Formally, considering a series of tokens S = {W1,…,W2,WN}, NER aims to 

output a list of tuples, each tuple specify the entity referred to a named entity in S here, 𝐼𝑠 ∈ [1, 𝑁], and 
 𝐼𝑒 ∈ [1, 𝑁] are the start and end indexes of a named entity mentioning; t is the entity type of a set of 

predetermined categories. 

 

2.2. The broader role of NER 

The general NER implications related to NLP research are too essential to list. Some examples of 

uses for which NERs are relevant are presented in this section. 

 Information retrieval: This consists of identifying and extracting relevant documents from a data set 

based on an incoming request. A research study by [9], noted that approximately 71% of all search 

engine queries contain NE. Information extraction can be facilitated by the NER in two phases [10]. 

First, find the NE in the request; second, identify the NE in the searched documents, and then retrieve 

the relevant documents with consideration for their classified NEs and how they are linked with the 

request. 

 Question answering: This is quite similar to information extraction, but with over advanced findings. A 

question-answering approach utilizes questions as an entry and provides short and precise answers in 

return [11]. Besides, in order to facilitate the recognition of NEs in a query, the NER task can be used 

during its analysis phase. This will, therefore, enable us to identify and locate the relevant documents 

and even to provide an appropriate answer. 

 Machine translation: This refers to the automatic translation of a text from one natural language into 

another [12]. NEs require special consideration regarding which parts of a NE need to be translated and 

which sections need to be transliterated [13]. For instance, people's names tend to be transliterated in the 

case of a location name. The name portion and the category portion (e. g., mountains) are generally 

transliterated and translated, each one respectively. 

 Text clustering: The clustering of the research results can exploit the NER by sorting the resulting 

clusters according to the ratio of entities that each cluster contains [10]. This improves the process of 

analyzing the nature of each cluster and also enhances the clustering approach in terms of selected 

characteristics. 
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 Navigation systems: Such systems, which make it easier to navigate using digital maps, have now 

become an essential part of our lives [14]. They give indications, information on neighboring places, 

which may be related to other online resources, and circulation conditions. In these systems, points of 

interest (called "waypoints") consist of NEs saved in a database with their geo-coordinates [15].  

 

 

3. ARABIC NAMED RECOGNITION CHALLENGES 

3.1. Arabic challenges 

The United Nations recognize Arabic as one of the main languages of the world. It is mostly used 

around the world by 300 million people in 28 countries. It is part of the Semitic family of languages, which 

also includes Hebrew and Amharic, the principal language of Ethiopia. 

Three different kinds of Arabic language are available: 

 Classical Arabic: The language of the Holy Quran; 

 Modern standard Arabic (MSA): The language of official documents, newsletters, education. 

Traditionally, it is the common Arabic language of all Arabs. 

 Colloquial Arabic: or dialectal Arabic, it is the informal language that people use for daily 

communication; it differs from one country to another. In general, five dialects of colloquial Arabic may 

be distinguished: Egyptian, Levantine, Maghrebian, Gulf, and Iraqi [16]. 

Arabic is written from right to left. However, unlike English or French, there are no "capital" letters. 

Arabic morphology is very complex [17]. From a root, we can extract words that are lexically and 

semantically different. As an example, the words "madrassa" and "modarissa" are taken from the root "d-,r-

,s- سرد" which is written in the same way in Arabic ٍ ( gninaem tnereffid a htiw tub سة  ,madrassa = schoolمدر

modarissa = educator). 

 

3.2. Arabic twitter challenges 

Social media networks contain a huge amount of unstructured data. In fact, tweets present multiple 

challenges for analysis compared to standard text. In the Arab world, the majority of people write social 

media content informally, sometimes in a mixture of bilingual languages, using Latin words within an Arabic 

tweet. Besides, there are non-Arabic words written in Arabic letters, more often in Maghreb dialects, people 

use Latin letters to write familiar Arabic words. Another challenge is to repeat the letters inside or at the end 

of a word, for example, to call a name. For the named entity, as an example of repeating a letter when calling, 

for instance, نيمأ == نيييمأ. 

 

 

4. RELATED WORK 

Several studies have focused on finding the best combinations of features of NERs task. Mainly, the 

authors have focused on one hypothesis: the difficult task of identifying the best features based on NER 

classes (i.e., PER, ORG, LOC, etc.). In fact, [18-22], employed GA as feature selection approach to identify 

the optimized feature set. Since there are therefore many classes, the process of determining the appropriate 

characteristics for these classes is a difficult task. In this way, GA was applied to the CoNLL-2003 reference 

dataset. The results showed that the application of the GA has a significant impact in terms of identifying the 

best combination of characteristics that significantly improved the accuracy of the classification. 

Therefore, many features are used for named entity recognition. This dimensionality of features 

requires a selection to determine the optimized feature set. This is due to the variations in strength between 

these features, some of them can be insignificant in some cases, and others can be powerful. In addition to 

this, [23] proposed a feature selection approach for reducing the feature dimensionality employed in NERs. 

Thus, a genetic algorithm (GA) is used to identify the best combination of features. In this, multiple features 

were used, including POS tagging, word length, affixes, and word frequency. These characteristics were 

coded as chromosomes for the identification of the features optimized using GA. After that, the best 

combination is used to classify the entities based on a maximum entropy classifier (ME). The results showed 

that the performance of the ME with the best combination of characteristics surpassed the performance of the 

ME with all its characteristics. Regarding [24], They propose a method to identify an optimal feature set for 

extracting NEs from company web pages using GA. The functionality dimension contains text elements such 

as POS tags, keywords, and capitalization. Similarly, it provides web features such as fonts, URL, and block 

position. Therefore, an SVM classifier is applied to classify NEs. The results of the classification showed an 

improvement in performance when using the optimized feature set. 

Similarly Le and Tran [25] Thanh and Tran [26] provides the implementation of a genetic algorithm 

for the selection of a subset of optimal features that are used in the maximum entropy classifier for the NER 

task. Various strategies have been proposed to reduce the GA computation time, such as (i) reducing the 
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population size after a few generations; (ii) parallel computation of the fitness of the individuals in each 

generation; and (iii) progressive sampling to obtain the optimal sample size of the training data. 

The SVM classifier has been used successfully by classifying data instances directly into their actual 

classes. The evaluation explains that the SVM classification is performed better with the optimized feature 

selected by GA. For example, [27] introduced a gene selection approach that uses a hybrid combination of 

genetic algorithms and support vector machines. The primary aim of this hybridization was to exploit their 

respective merits fully (e.g., robustness to the size of the solution space and the capacity to process very large 

size of characteristic genes, etc.) to extract essential feature genes (or molecular signatures) for a complex 

biological phenotype. 

In this manner, [28] developed a fine-grained NE corpus for Dutch that consists of 6 types of NE: 

person, place, organization, product, events, and miscellaneous. They developed the Dutch NE system 

following the approach of the set of classifiers. They used three classifiers in the development of the system: 

memory-based learning (MBL), conditional random fields (CRF), and support vector machines (SVM). 

These classifiers were trained on the features, and the result is a set using various voting mechanisms in the 

genetic algorithm. Their classifier obtained an F-score of 84.91%. Moreover, [29], they have provided a wide 

variety of features to identify NEs from biomedical texts. They use two powerful and diverse classification 

methods, such as the conditional random field (CRF) and the supporting vector machine (SVM), to construct 

many models based on various representations of the feature set and/or feature models. 

The CRF and k-nearest classifiers were used in combination with the genetic algorithm for this 

named entity classification task. For instance, [30] proposes a multi-objective approach for the extraction of 

biochemical entities based on modified differential evolution, feature selection, and set of classifiers. The 

algorithm works in two layers. The first layer refers to the identification of adequate features set for the task 

to be performed within a supervised statistical classifier, i.e., the conditional random field (CRF), it produces 

a set of solutions, a subset being used to build a set in the next layer. The approach proposed is evaluated for 

the extraction of entities in chemical texts, which involves identifying the names of IUPAC and its similar 

and classifying them in some predefined categories. Experiments conducted on a reference data set show 

recall, accuracy, and F-measure values of 86.15%, 91.29%, and 88.64%, respectively. In [31], The author 

employed a methodology to carry out a selection of characteristics for the classification task in named entity 

recognition using a multi-objective genetic algorithm. They have tested this approach with the application of 

a weak Pareto tournament genetic selection algorithm and a k-nearest neighbors machine learning algorithm. 

They showed its efficiency on three real-world data sets. They demonstrated that the multi-objective 

algorithm is well adapted to feature selection and has the benefit of generating different solution options.  

This technique also has been used to deal with multi-class problems. Regarding [32], they provide 

an improved method of feature selection based on a genetic algorithm for unbalanced data from several 

classes. This approach improves the fitness function by using the EG-mean evaluation criterion instead of the 

precision of the overall classification to select traits that are suitable for the recognition of minor classes. 

Thus, [33], they have implemented genetic algorithms (GA) to tackle the problem of multi-class prediction. 

They describe a GA-based gene selection scheme that automatically determines the members of a predictive 

gene group, as well as the optimal group size, which maximizes the success of the classification using a 

maximum likelihood classification method (MLHD). 

Recently, [34] proposed the genetic algorithm (GA) to minimize the computational time required to 

find the relevant and informative features of the Arabic text required for classification. The SVM was utilized 

as a machine-learning algorithm to evaluate the accuracy of Arabic named entity recognition. At the same 

time, [35] developed a new heuristic approach based on the genetic algorithm to under-sample the training 

data that is used for NER. Regarding the fact that the training patterns of the NER are proper sentence forms, 

the approach developed also takes this issue into account and has applied it to individual sentences from the 

training data. 

 

 

5. FEATURE SELECTION 

Feature selection is a preprocessing technique that helps to determine the critical features of a 

particular problem. Traditionally, it has been used across various fields, including biological data processing, 

finance, intrusion detection systems, and NLP problems. Feature selection represents an important technique 

applied in reducing dimension reduction; using such a method, relevant features are chosen, and irrelevant 

and redundant features are eliminated [36]. Reducing the dimensionality of inputs may enhance performance 

by decreasing the learning speed and complexity of models or by increasing the generalizability and accuracy 

of classification. Choosing appropriate characteristics can also lower the cost of measurement and enhance 

the problem understanding. In some cases, the impact of feature selection can be impressive. For instance, in 

the analysis of microarray data, it is possible to utilize only 2 of the 7129 features to enhance classification [37].  
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The main reasons for using feature selection are as follows: 

 It allows the machine learning algorithm to train faster. 

 It reduces the complexity of a model and facilitates its interpretation. 

 It enhances the accuracy of a model if the correct subset is selected. 

 Avoids overfitting. 

Due to the benefits mentioned above, feature selection is actually employed in real-world problems, 

mainly classification and regression problems. Feature selection has been effectively applied to resolve 

problems in various areas, including microarray analysis, image classification, facial recognition, and text 

classification [38]. The feature selection methods are also categorized into filters, embedded, and wrappers 

methods, according to the relationship with the training method [36]. Filters are totally independent of any 

training method, as the focus is on the general characteristics of the data. They are not computationally 

expensive and have an excellent generalization capability due to their independence from the induction 

algorithm. Both wrapper and embedded methods require a learning method to perform feature selection. For 

wrappers, an induction method evaluates subsets of best candidate features. Embedded methods lie between 

filters and wrappers because the selection is part of the induction method's training process. 

 

 

6. GENETIC ALGORITHM 

Genetic algorithms are part of the evolutionary family of algorithms as shown in Table 1. Their 

purpose is to find an approximate solution to an optimization problem in cases where no exact solution exists 

(or where the solution is unknown) in order to solve the problem within a suitable period of time. Genetic 

algorithms utilize the philosophy of natural selection as a concept that can be applied to a population of 

potential solutions to a specific problem. The solution is approached by successive "jumps", as in a 

separation and evaluation procedure, except that formulas are searched for instead of direct values. The key 

GA processes are as follows: population initialization, fitness calculation, selection, crossover, mutation, and 

termination criteria. 

 

 

Table 1. Pseudo code of the genetic algorithm 
1: Define the parameters 
2: Selecting encode method 

3: Generating the initial population 

4: While I < Max-Iter and Best-fitness < Max-Fitness do 
5:        Fitness calculation 

6:        Selection 

7:        Crossover 
8:        Mutation 

9: end while 

10: decode the individual using maximum fitness 
11: return the optimal solution 

 

 

6.1.  Fitness function 

The fitness function is utilized to calculate the degree of fitness related to every chromosome that 

represents the degree of fitness of the current solution. The evaluation of the chromosome's fitness must take 

into account two factors, namely the number of selected characteristics and the accuracy of the classification 

when using the subset of selected features. Thus, the fitness function is presented as follows: 

 

𝑓(𝐶𝑖
𝑗
) = 𝐽(𝐶𝑖

𝑗
) − 𝑤|𝐶𝑖

𝑗
| (1) 

 

where 𝐶𝑖
𝑗
 is the i-th chromosome for the current population at j-th generation; 𝐽(𝐶𝑖

𝑗
) is the accuracy of the 

classification based on the solution represented by 𝐶𝑖
𝑗
 ; |𝐶𝑖

𝑗
| refers to the number of features selected that 

could be calculated based on counting the non-zero genes in the chromosome. 𝐶𝑖
𝑗
; w is the weight of |𝐶𝑖

𝑗
| 

Which is an empirical value. 

 

6.2. Selection operation 

A new population is generated following each evolution. In order to choose the parent chromosomes 

to mate, a selection probability needs to be calculated. The probability of selection may be defined as 

follows: 
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𝑃(𝐶𝑖
𝑗
) =

𝑓(𝐶𝑖
𝑗
)

∑ 𝑓(𝐶𝑖
𝑗
)𝑀

𝑘=1

⁄   (2) 

 

where f is the fitness value, and M is the size of the current population. 

 

6.3.  Crossover operation 

The crossing operation generates novel chromosomes through the rearrangement of the genes of the 

parent chromosomes. The crossing operations generally used are single-point crossing, two-point crossing, 

multi-point crossing, and so on. During our research, we have chosen a single-point crossing to generate new 

solutions. Figure 1 shows an overview of the operation carried out. 

 

 

 
 

Figure 1. The crossover operation 

 

 

6.4.  Mutation operation 

The mutation process is carried out immediately at the end of the crossing operation as shown in 

Figure 2. Its purpose is to maintain population diversity in each successive generation and to expand the 

research space. Mutations can be achieved through random inversion of one or more bits of a single parent 

chromosome to produce a new child. A variety of mutation processes have been initiated by researchers, such 

as mutation by inversion, mutation by exchanging neighbors, etc. 

 

 

 
 

Figure 2. The mutation operation 

 

 

6.5. Terminate criterion 

A GA reiterates the evolution iteration to reach the optimal solution until a predetermined end 

criterion is reached. Some benefits of the genetic algorithms of this method are as follows: 

 They generally outperform traditional feature selection techniques. 

 Genetic algorithms can process datasets having numerous features. 

 They do not require particular knowledge of the problem being studied. 

 Such algorithms may easily be parallelized in computer groups. 

And some drawbacks are: 

 Genetic algorithms can be costly to compute because the evaluation of each individual requires the 

construction of a predictive model. 

 Genetic algorithms can be expensive to compute because evaluating each individual requires the 

construction of a predictive model. 

 These algorithms can take a long time to converge because they contain stochastic algorithms. 

 

 

7. FEATURE SELECTION USING GA 

Feature selection, or selection of inputs, refers to the process of searching for the most relevant 

inputs for a given predictive model. These methods can be used to find and eliminate unnecessary, irrelevant, 

and redundant characteristics that do not add to or reduce the accuracy of the predictive model. 

Mathematically, input selection is expressed as a problem of combinatorial optimization. Therefore, the 
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function to be optimized is the predictive model's generalization performance, as represented through the 

error on the chosen instances of a data set. The input variables are the inclusion (1) or exclusion (0) of the 

input variables. 

A comprehensive selection of characteristics would allow a large number of different combinations 

to be evaluated (2N, where N is the number of features). This process requires a lot of computational work, 

and, if the number of characteristics is large, it becomes impractical. This is why we need intelligent methods 

for selecting characteristics in practice. 

The genetic algorithm represents a very sophisticated algorithm for the selection of features. It is a 

stochastic approach to function optimization based on the mechanics of natural genetics and biological 

evolution. In this paper, we demonstrate that genetic algorithms may be employed to optimize the 

performance of a predictive model for selecting the best features. In nature, organisms' genes change over 

consecutive generations in order to become better adapted to the environment. The genetic algorithm is a 

heuristic optimization process based on natural evolutionary procedures 

 

 

8. EXPERIMENTAL RESULTS 

8.1. Evaluation metrics 

The standard NER evaluation script of the CoNLL was used to evaluate the proposed approach. As 

detailed in [39], the valuation methods of the CoNLL are particularly aggressive, as no partial credit is 

allowed to a partially extracted named entity. The outcomes obtained after the execution of the CoNLL 

evaluation script are presented in terms of precision, recall, and f-score for each NER class [40]. 

 True positive (TP): Entities recognized by the NER that match the truth on the ground. 

 False positive (FP): Entities recognized by NER that do not match the truth on the ground. 

 False negative (FN): Entities marked in the Basic Truth but not recognized by NER. 

 Accuracy measures the capacity of a NER system to show only the correct entities, and Recall measures 

the capacity of a NER system to recognize all entities in a corpus. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
  (3) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
  (4) 

 

F-score is the harmonic mean of precision and recall, and the balanced F-score is the most commonly used: 

 

𝐹𝑠𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +𝑅𝑒𝑐𝑎𝑙𝑙
  (5) 

 

8.2.  Cross-validation 

In this work, cross-validation was used k times to evaluate the quality of the solution achieved using 

the genetic algorithm, where k is equivalent to five. The data set is divided arbitrarily into five sub-samples 

with equal size. Only one sub-sample was specified as a validation set to be used in testing performance, and 

then the k-1 sub-samples were employed as a training set. This procedure was repeated five times. In each 

fold, each k sub-sample was used exactly once as a validation set. The k results of the folds were then 

averaged to provide a single score. 

 

8.3. Pre-processing 

Normalization is carried out after removing punctuation, diacritics, and stop words from the text. 

We employed diacritics suppression, punctuation suppression, and Arabic normalization provided by the 

AraNLP library for the preprocessing of texts. AraNLP developed by [41, 42] described stop words as 

"words that have no significant semantic relationship with the context in which they exist" [43]. We have 

established a list of the most frequent stop words that have occurred in corpora. It comprises prepositions, 

conjunctions, punctuation marks, and numbers. Some Arabic stop word examples are: "(In) "(ي  (who) ",(ف

ذي  .ھي\ھو "and (he/she) ,ال

After we used the word stemming in Arabic, that means the process of deleting all prefixes and 

suffixes from a word to generate the stem or root. After that, we applied a lemmatization process. This is a 

process of converting the plural into the singular or deriving a verb from the gerund form. Other possibilities 

include deriving the root from model words. This process of derivation is important for classifiers and index 

builders/researchers because it reduces dependency on particular word forms and reduces the potential size of 

vocabularies, which otherwise might have to contain all possible forms. In our work, we used the 

MADAMIRA tool [44]. 
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8.4. Datasets 

In order to evaluate our model, we use the training and test datasets developed by [45]. These 

datasets have been labeled using three different kinds of named entities in order to evaluate our model, we 

use the training and test datasets developed by [45]. These datasets have been labeled using three different 

kinds of named entities: location, person, and organization as shown in Table 2. The training dataset consists 

of randomly chosen tweets from May 3-12, 2012. The test data set includes tweets that were randomly 

selected from November 23, 2011, to November 27, 2011. Note that these two datasets were tagged 

according to the linguistic data consortium's ACE tagging guidelines. This data set was used for testing in 

[46-49], as we will see in the experimental results. 
 

 

Table 2. Twitter evaluation data statistics 
 Tokens Person Location Organization 

Train set 55k 788 713 449 

Test set 26k 464 587 316 

 

 

8.5. Named entity features 

The principal features are identified according to the various combinations of word and tag contexts 

available. We employ the following features to build NER system based on feature selection using a genetic 

algorithm. Besides, we defined a semantic-driven feature that has been very successful in improving the 

system's overall performance: 

a. Context words (CTX): These are the words that precede and follow the current word. They are using the 

observation that surrounding words provide useful information for the identification of NEs. In our 

case, we take five words in total [-2, 2]. 

b. Word suffix and prefix (LEX): Suffixes and prefixes of fixed-length words (say, n) are very useful to 

identify NEs and perform nicely for Arabic languages having strong inflection. 

c. Gazetteer (GAZ): A binary feature is used to identify the presence of the word in a single Gazetteer. In 

our system, the gazetteer employed is the combination of (i) ANERGaz: as proposed by [50], that 

contains 2183 LOCs, 402 ORGs, and 2308 PERs; and (ii) WikiGaz: Wikipedia extensive gazetteer [46], 

that contains 50141 LOCs, 17092 ORGs, and 65557 PERs. 

d. Morphological features (MORPH): can mostly indicate the absence of named entities. For example, 

Arabic allows the attachment of pronouns to nouns and verbs. However, pronouns are rarely associated 

with entities named. In our case, such features are generated by the MADAMIRA tool [44]. Five 

morphological features have been selected to be used in this work: 

 Aspect: Refers to the aspect of an Arabic verb. It can have four values: command, imperfect, 

perfective, not applicable. However, as none of the NEs may be verbal, we apply this characteristic 

as a binary feature specifying whether a word is labeled for aspect or not; 

 Gender: The nominal gender. There are three values: female, male, not applicable; 

 Person: It shows information about the person. Possible values are 1, 2, 3, Not applicable. As for 

the aspect, we apply it as a binary feature that indicates if a word is marked for the person or not; 

 Proclitic2: The proclitic conjunction. We used a tool that generates nine different values for this 

feature: no proclitic, not applicable, Conjunction fa, Connective particle fa, Response conditional 

fa, Subordinating conjunction fa, Conjunction wa, Particle wa, Subordinating conjunction wa; 

 Voice: The verb voice. It has the following values for this feature: active, passive, not applicable, 

indefinite. 

e. Part of speech (POS) tags: POS tags indicate (or counter-indicated) the possible presence of a named 

entity at word level or at the word sequence level. We used POS tags provided by the MADAMIRA 

tool. 

f. Word2vec cluster IDs (W2V Cluster): Word2vec is an algorithm for learning embedding utilizing a 

neural network model proposed by [51]. Embeddings are represented as a set of latent variables, with a 

specific instantiation of these variables representing each word. As part of our system, we employ the 

K-means method on word vectors and utilize cluster IDs as characteristics. 

g. Brown clustering IDs (BC ID): As provided by [52], brown clustering is an approach of hierarchical 

clustering to maximize the mutual information of bigram words. Word representations, particularly 

brown clustering, have been shown to enhance the NER system's efficiency by adding them as a feature 

[53]. 

h. Word2vec (W2V): Word embedding derived from untagged text has successfully proven valuable for 

numerous NLP tasks, especially for part-of-speech (POS) tagging [54], named entity recognition [55], 
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chunking [53], and parsing [56]. In large corpus, names appear in regular contexts that will be profitable 

for most sequence tagging tasks: such as NER. So that we could initialize our word vectors with pre-

trained word embedding, [57] Demonstrate that the use of embedded words may encode morphological 

information and can add additional information to the embedding of character-based words. 

In order to evaluate the performance of pre-trained word embedding, we carried out four 

experiments using various sets of publicly available word embedding sets and compared the obtained 

findings with a random sampling method to initialize our model. Table 3 demonstrates the obtained outcomes 

using the four different word embedding and the random sampling method. Based on the results in Table 3, 

we obtained a meaningful enhancement using preformed words compared to random words. In our work, we 

used AraVec, which proposed by [40] and is a pre-trained open-source word embedding project that aims to 

provide the Arabic NLP research community with powerful and freely usable words embedding models. In 

the rest of our paper, we used the word-embedding model pre-trained by more than 1,476,715 tokens on 

Twitter with the Skip-Gram algorithm, and we use an embedding dimension of 300 vectors. 

 

 

Table 3. Results with a different choice of word embeddings 
Embedding Dimension F1-Score 

Random Initialisation 300 60.97 

FastText 300 62.12 
Wikipedia2Vec 300 65.45 

AraVec 300 67.70 

 

 

8.6. Proposed approach 

The proposed method consists of five principal steps, as shown in Figure 3. The first step is 

associated with the data to be used in the experiment in which a Darwish's dataset is used for this purpose. 

The second step aims to perform a transformation task to normalize and segment the data into a suitable form 

for processing. The third step is to extract features from the transformed form of the data. The fourth step 

consists of the contribution of this study in which a genetic algorithm is performed on the extracted features 

in order to select the best combination of features. Finally, the fifth step is associated with the classification 

process in which a support vector machine (SVM) classifier is used to classify the named entities. 

 

 

 
 

Figure 3. The proposed approach 

 

 

9. RESULTS AND DISCUSSIONS 

9.1. Effects of feature selection 

This evaluation aimed to determine the capacity of the proposed approach to address colloquial 

Arabic text utilized on Twitter. The SVM approach was used in two steps to study the effect of feature 

selection utilizing GA, firstly, with the set of optimized features obtained from GA, and secondly, the SVM 

was performed with all features. The evaluation was carried out using common information retrieval 
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measures accuracy, recall, and F-measure. In Tables 4 and 5, we present the SVM and SVM with GA 

outcomes using accuracy, recall, and f-measure for all classes, including person, organization, and location. 

Notably, as shown in Tables 4 and 5, using the SVM with GA surpassed the SVM with all features 

for all classes, including person (73.5% vs. 59.11%), organization (47.59% vs. 41.79%) and location (76.79% 

vs. 64.34%). Finally, in terms of the average percentage of f-measure, the SVM with GA outperformed the 

SVM with 67.70% vs. 56.21%. The evaluation of the proposed approach has been split into two stages; the 

first SVM will be implemented using the entire set of features; the second SVM will be implemented using 

the optimized feature set. The results showed that the application of the SVM with GA as the feature 

selection approach outperformed the application of the SVM without GA by reaching 67.7% of f-measure. 

This emphasizes the usability of the structure analysis in terms of identifying a set of optimized 

characteristics for NERs. In this way, the objective of identifying a set of optimized features for the 

extraction of NERs from Darwish's data set is achieved. 

 

 

Table 4. Results with SVM and all features 
SVM Precision (%) Recall (%) F-Score 

LOC 81.63 53.10 64.34 
ORG 50.28 35.76 41.79 

PERS 78.11 47.55 59.11 

Overall 71.30 46.39 56.21 
 

Table 5. Results with SVM-GA 
GA-SVM Precision (%) Recall (%) F-Score 

LOC 88.66 65.80 76.79 

ORG 63.73 37.98 47.59 

PERS 82.40 66.34 73.50 

Overall 80.58 58.37 67.70 
 

Significant results are in bold. 

 

 

9.2. Comparisons with existing systems 
We carried out numerous experiments that combine various models and architectures to understand 

their impact on the Arab NER system on social media. Table 6 illustrates the outcomes of these experiments. 

Experiments show that the tremendous increase in overall system performance was achieved using the 

combination of GA-based feature selection, yielding an improvement of 2.5 points in the F1 score. We 

compare our system with four other models. The highest score reported on this task was achieved by [46]. 

Their system uses simple effective language-independent approaches based on using extensive gazetteers, 

domain adaptation, and a two-pass semi-supervised method. They scored 65.2 points in the F1 score. The 

same Twitter dataset was used by [47] to test their model, which adopted a supervised machine learning 

approach by using the Conditional Random Fields sequence labeling, word embedding, and word 

representations. They scored 59.59 points in F1. The third system [48], implemented a hybrid approach to 

extract Arab person names from tweets and resolve their ambiguity by utilizing contextual bigram models. 

They scored 66.75 points in the F1 score in the extraction of a person's names. The fourth system [49] used a 

deep co-learning approach using semi-labeled and BI-LSTM-CRF on the top of the system; they scored 59.2 

points in the F1 score. Our model outperformed these four models. Table 6 presents our findings on the Arab 

NER for social media compared to these systems. 

 

 

Table 6. Comparative evaluation results 
 Entity Precision Recall F-score 

Darwish Kareem 
2014 [46] 

LOC 83.60 70.80 76.70 
ORG 76.40 43.70 55.60 

PERS 67.10 47.80 55.80 

Overall 76.8 56.6 65.20 
Ayah Zirikly 

2015 [47] 

LOC * * 61.03 

ORG * * 41.28 

PERS * * 68.92 
Overall 81.70 46.90 59.59 

Omnia Zayed 

2015 [48] 

LOC * * * 

ORG * * * 
PERS 81.90 56.32 66.75 

Overall * * * 

Chadi Helwe 

2019 [49] 

LOC * * 65.30 

ORG * * 39.70 

PERS * * 61.30 

Overall * * 59.20 
Our system LOC 88.66 65.80 76.79 

ORG 63.73 37.98 47.59 

PERS 82.40 66.34 73.50 

Overall 80.58 58.37 67.70 

Significant results are in bold. 
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The existing Arab NER systems presented in Table 6 utilize the same corpus and evaluation 

parameters as those described in this work, i.e., the Darwish's dataset and evaluation parameters. The results 

obtained confirm that the proposed system outperforms by 2.50% of the existing models. The reasons for the 

higher performance of the proposed system are the better optimization technique of the genetic algorithm 

based on SVM and its ability to deal with overlapping features compared to existing systems effectively. As 

shown in Figure 4, it summarizes the results for the overall state of the art system that exists in the literature. 

 

 

 
 

Figure 4. TWEETS test set results 

 

 

10. CONCLUSION  

In this paper, we have shown that our system, which uses feature selection and genetic algorithm, 

achieves state-of-the-art results by creating an Arabic named entity recognition system on social media and 

significantly outperforming the previous state-of-the-art system. The experimental results achieved 

demonstrate the benefits of using feature selection techniques to enhance the performance of our system. The 

reported results demonstrate that a strategy of adaptive trait selection based on genetic algorithms can 

considerably decrease the number of features needed to train our system and, at the same time, improve the 

performance in recognition of the named entity. This is one step towards applying machine learning 

techniques to automate the construction of classification systems for severe text processing problems. Our 

future work is to find some strategies to minimize GA calculation time, like improving the method of 

calculating the ability of individuals to calculate GA. Rather than calculating individuals' actual ability, these 

values can be predicted according to the ability of individuals in previous generations of GA. 
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