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 The paper provides the results of the experimental and computational study 

of the processes occurring in high temperature superconducting transformer 

windings while secondary winding is short-circuited. The obtained 

mathematical simulation matches closely with the experimental results.  

The temperature variation curves for superconducting windings were 

analysed, and conclusions were made on the necessity of changes in HTS 

transformer design, namely the necessity of windings heat-insulation from 

each other and adding a high-resistance coating material for HTS wire in 

HTS transformer primary winding. 
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1. INTRODUCTION  

The power engineers of tomorrow will inevitably face the problems caused by common increase in 

power consumption and, consequentially, in power generation [1]. One of the key factors, which occurs even 

today, is a population mass switching to electric cars. The author of [2] has calculated over 200% load on 

distribution network power equipment would be expected even at 47% switch from common cars to electric 

ones should power demand of electric cars charging plants be unregulated. Considering just this one of many 

factors, conclusion can be made that load density will exceed up-to-date allowable limits in large cities. 

Considering this, applying technologies based on high-temperature superconductivity (HTS) 

becomes a relevant solution to the resulting problems. Namely, they are superconducting cables to increase 

power line rating without changing its voltage, and current limiters to decrease fault currents, which increase 

due to increase in supply system power. Currently, there are many types of HTS current limiters [3-12] 

because the process of current limiting itself occurs due to the unique property of HTS wires, used in these 

limiters, to lose their superconductivity when current exceeds a certain value. Therefore, attaining current 

limiting properties doesn't require developing any dedicated devices but integrating this new effect into  

the known and commonly used ones: transformers, electric machines, cables. The advantages of this 

integration are illustrated with an example of a transformer in Figure 1 (in order to emphasize inconsistency 

in Russian terminology, the author uses another term for HTS current limiter: SFCL [superconducting fault 

current limiter]; the term HTS current limiter is used further in the text). 

This paper focuses on the problems encountered in the integration of common transformer 

characteristics and HTS current limiter into one device. In particular, the problem of transformer windings 
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overheating at current limiting mode is considered. The criteria for selecting of HTS transformer parameters, 

based on placing restrictions on the state curve, are developed along with justification of some requirements 

for windings design. 

 

 

 
 

Figure 1. Design versions of a power grid with and without HTS current limiters  

(in the figure, SFCL means "superconducting current limiter") 

 

 

 

2. PROBLEM DESCRIPTION 
A profound understanding of a problem, encountered in the attempt of designing an HTS device, 

requires considering the processes of various scales and physical nature. To begin with, the design of HTS 

wire should be examined. HTS wire is a composite tape see in Figure 2 which has a finest ceramic layer with 

superconducting properties: yttrium barium copper oxide (YBCO); all the other layers ensure protection from 

stress and chemical exposure. It should be noted that the described superconducting properties appear only 

when HTS wires are cooled to sufficiently low temperatures [13]. For example, YBCO has a critical 

temperature of 93 K at which superconducting properties appear. To achieve efficiency in performance, 

superconductors are commonly immersed in a low-temperature medium such as liquid nitrogen with  

a boiling point at 77 K. 

 

 

 
 

Figure 2. Second generation HTS wire (measurements are shown in mm) 
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However, the external layer of material, which provides protection, usually is also the main circuit 

for current to flow in for the case of superconducting properties loss. Moreover, at present, a technology for 

manufacturing superconducting wires enables a wide variety of metals to be used as a protection layer: 

stainless steel, bronze, etc. This enables to select a superconducting wire with the desirable properties. 

It is obvious from the foregoing that current limiting occurs due to HTS wire superconducting 

properties loss. Thus, in terms of electronics, any HTS device should be considered a component with  

non-linear current-voltage characteristic (I-V curve). The non-linear segment gradually changes into  

the linear one as current increase on account of current mainly flowing in a relatively linear part of HTS wire 

non-superconducting layers, which is due to increase of superconducting layer resistance [14]. However, any 

current flowing in non-superconducting layers results in Joule losses in non-superconducting material bulk. 

This results in wire temperature excursion, which may cause its self-destruction. Thus, when designing HTS 

devices for power industry needs, potential consequences of emergency states should be considered.  

This problem becomes particularly difficult when designing HTS current-limiting transformers. 

 

 

3. HTS TRANSFORMER: EXPERIMENTAL SETUP DESCRIPTION  

Further correct mathematical descriptions of HTS transformer electrothermal behaviour require 

obtaining the oscilloscope graphs for current and voltage in HTS transformer windings at the known 

parameters of the experiment. For this purpose, an experimental setup was built: a transformer with HTS 

windings and open magnetic structure. The transformer scheme is shown in Figure 3 and the photo is in  

Figure 4. Table 1 provides the main parameters of the item. The built transformer is of the warm iron type,  

i. e. operating at the near-room temperature.  

Figure 4 illustrates the scheme of the performed experiment. The primary winding of the HTS 

transformer was directly connected to 220 V mains. The secondary winding was examined in two states: 

open-circuited and short-circuited ones. The interest in these two states of the secondary winding will be 

explained further on when developing a mathematical simulation. Currents in primary and secondary 

windings along with their voltage drop were measured via FLUKE 435-II register. The results of  

the experiment together with the simulation results are provided in Chapter 5 of the paper. 

 

 

  
 

Figure 3. Experimental setup scheme 

 

Figure 4. HTS transformer appearance,  

spools with windings (on the left),  

windings immersed in cryostat (on the right) 

 

 
Table 1. Design parameters of the HTS transformer 

Parameter Primary winding Secondary winding 

Cross-section area of the HTS tape, manufactured by SuperOx, mm2 0.4 

Critical current of the tape, A 80 160 

Voltage, V 220 110 
Rated current, A 50 100 

Number of turns 47 23 

Windings hight, mm 210 215 

Windings diameter, mm 130 110 

Inductance, mH ~0.16 ~0.4 

Insulation Kapton 
Cooling medium Liquid nitrogen 

Core Air 
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4. HTS TRANSFORMER: SIMULATION OF ELECTROTHERMAL BEHAVIOUR AT 

CURRENT LIMITING MODE  

Consistent with the scheme in Figure 5, we developed electrics of the mathematical simulation, 

which includes transformer differential equations for describing the transient processes occurring in it [15].  

The assumption here is that the transformer magnetic structure has zero losses and does not reach saturation. 

 

𝐿1
𝑑𝑖1

𝑑𝑡
+ 𝑖1(𝑅𝑠𝑐1(𝑖, 𝑇) + 𝑅1) + 𝑀

𝑑𝑖2

𝑑𝑡
= 𝑈𝑠𝑖𝑛(𝜔𝑡)  (1) 

 

𝐿2
𝑑𝑖2

𝑑𝑡
+ 𝑖2(𝑅𝑠𝑐2(𝑖, 𝑇) + 𝑅2(𝑡)) + 𝑀

𝑑𝑖1

𝑑𝑡
= 0  (2) 

 

Here L1 and L2 are the inductances of the transformer primary and secondary windings, 

correspondingly, H; M is the transformer windings mutual inductance, H. R1 and R2 are the resistances of 

the primary and secondary windings circuits, Ohm, due to non-superconducting wires and terminals 

resistance along with supply system resistance for R1, and load resistance for R2; R2 dependence on time 

represents the resistance change in case of short circuit. i1 and i2 are the currents in the primary and 

secondary windings, A; U is the magnitude of a supply (power system) voltage, V; ω is the angular 

frequency, rad/s. Rsc1 and Rsc2 are the non-linear resistances of the HTS transformer windings, which are 

dependant on their current i and temperature T, Ohm. 

The following expression is commonly used to describe a non-linear I-V curve of an HTS wire on 

the assumption that HTS wire has equal properties lengthwise: 

 

𝑅𝑠𝑐(𝐼, 𝑇) = (
1

𝐸0
𝑖

(
𝑖

𝐼𝑐(𝑇)
)

𝑛 +
1

𝑅𝑙𝑎𝑦𝑒𝑟𝑠(𝑇)
)

−1

 (3) 

 

Here Ic(T) is the current which, by convention, is set to be conductor critical current, A; it is taken to 

be equal to 80A for this wire at liquid nitrogen temperature (77K). The current at which electric strength of 

the field inside the superconductor equals 1 µV/cm is commonly called critical current (the criterion was 

suggested by an HTS tape manufacturer); E0 is the winding voltage at critical current, V; n is the power index 

for I-V curve of a superconducting tape, which is taken to be equal to 15 and temperature-independent. Rlayers 

is the HTS tape non-superconducting layers resistance, which is temperature-dependent, Ohm.  

For information on specific resistance and heat capacity refer to the support literature, in this paper 

information from [16-18] was used. Whereas in expression 3, critical current Ic behaves according to  

the following law [18]: 

 

𝐼к(𝑇) = −
𝐼𝑐0

0,1848
ln (

𝑇

93
) (4) 

 

Note that critical current may be considered equal to zero when the temperature rises above 90 K.  

The winding heating process should be taken into consideration to develop an adequate simulation. 

Heat balance equation is developed to consider superconducting coil heating. This is on the assumption that 

temperature distribution is uniform through HTS coil bulk, we also neglect coil insulation material effect on 

temperature variation and hysteresis occurrence at liquid nitrogen boiling: 

 
𝑑𝑇

𝑑𝑡
=

𝑄(𝐼,𝑅𝑠𝑐)−𝐴𝑞(∆𝑇) 

𝐶𝛴(𝑇)
  (5) 

 

where Q is the amount of heat in the coil bulk, which loses superconductivity at current flowing in it per unit 

time, W; A is the area of the coil surface, m2; q is the specific heat flow from unit area of the coil surface to 

liquid nitrogen per unit time see in Figure 5, W/m2; СΣ is the HTS coil total heat capacity, which 

is temperature-dependent, J/K [16, 17]. 

The amount of heat, created by the current flowing in HTS winding, may be found as shown below: 

  

𝑄(𝐼, 𝑅𝑠𝑐) = 𝑖(𝑅𝑠𝑐)2𝑅𝑠𝑐(𝑇)         (6) 

 

Specific heat flow q is a complicated function of the temperature difference between a surface being 

cooled and liquid nitrogen, this function is shown in Figure 6. As is obvious, when superconducting coil is 

significantly overheated, heat withdrawal won't be effective, which causes further overheat until HTS wire 

heat breakdown occurs. 
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Figure 5. Scheme of the experiment 

 

 

 
 

Figure 6. Specific heat flow as a function of the temperature difference between a surface being cooled  

and a liquid coolant [19] 

 

 

5. THE RESULTS OF CURRENT LIMITING STUDY AND OPTIMISATION OF THE 

TRANSFORMER HTS WINDINGS 

A simultaneous computational solving of the (1-6) for the known parameters from Table 1 allows 

obtaining an approximate simulation of HTS transformer electrothermal behaviour as shown in Figures 7-9. 

Figure 7 shows a comparison between the results of the experiment and computer simulation of current 

limiting in HTS transformer windings. The fact that experimental current-limiting curves and ones of 

simulation match closely allows rather accurately extrapolating the experimental results to more prolonged 

short-circuit, which commonly can't be observed through the experiment due to the threat of equipment 

damage or mains circuit-breaker tripping.  

As mentioned above, the experiment was carried out at directly applying 220 V to the HTS 

transformer primary winding. The extrapolated current curves at 220 V are shown in Figure 8. The curves of 

temperature variation in the windings according to the (5 and 6) are also shown here. Because a direct 

measurement of the windings temperature is rather difficult, the temperature curves based only on  

the simulation results are provided. Note that the results of current and temperature simulation for the transformer 

match closely with the corresponding electrothermal behaviour curves for a current limiter [20-25]. Let us focus 

on two observations resulting from the obtained results.  

 First, limiting of the primary winding current results in deterioration of the conditions for current 

transformation to the secondary winding and, therefore, its reduction. This means that current in  

the secondary winding can't cause superconductor resistance increase in the secondary winding just as 

efficiently. Hence, there is little point in coating the secondary winding HTS wire with a metal of high 

ohmic resistance.  

 Second, note that the primary winding temperature appeared to be higher due to its higher damping 

resistance. However, when applying 220 V to the primary winding thermal stabilization, which is 

potentially indefinite, is observed. However, all other conditions being equal, a higher voltage of 380 V is 

applied to the primary winding (Fig. 9), we will observe a quench in the primary winding, i.e.  

the winding temperature increased to the point of liquid nitrogen film boiling, and heat withdrawal from 

the windings can't be efficient anymore, which soon results in an intolerable temperature rise. Note that, 

as mentioned above, due to deterioration of the conditions for transformation, the current in secondary 

winding is unable to cause any significant overheat of the winding.  
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 Unfortunately, in a real HTS transformer convection heat transfer from primary winding to secondary one 

inevitably results in secondary winding resistance increase. Eventually, the secondary winding current 

will cause even more heat release, which in turn will result in even more overheat of both windings.  

It offers to require of HTS transformer design that its windings have maximum heat-insulation from each 

other to avoid the effect described above. 

 

 

 
 

Figure 7. The results of the experiment, performed consistent with the scheme in Figure 5, and computer 

simulation of winding currents according to the expressions (1-6) 
 

 

  
 

Figure 8. The results of HTS transformer windings 

electrothermal behaviour simulation at applying 

mains voltage of 220 V, thermal stabilization is 

observed (the subscript 1 indicates the processes  

in the primary winding; the subscript 2,  

in the secondary one) 

 

Figure 9. The results of HTS transformer windings 

electrothermal behaviour simulation at applying 

mains voltage of 380 V, quench is observed  

(the subscript 1 indicates the processes in  

the primary winding; the subscript 2,  

in the secondary one) 

 

 

6. CONCLUSION 

The physical model of HTS transformer was built to study the processes of current limiting on  

the basis of YBCO HTS tape with a copper coating. Based on the obtained experimental results: applying 

mains voltage (220 V) to the primary winding of the transformer while the secondary one is short-circuited, 

the current-limiting curves were obtained and the process mathematical simulation, which describing  

the experimental results acceptably, was developed. The pattern of the device thermal behaviour is obtained 

on the basis of this simulation under the assumption that the device windings are lumped components with 

isotropic properties of HTS tape and surrounding coolant. Two important conclusions, which determine  

the further efficiency of HTS transformer design, were made from the results of its electrothermal  

behaviour analysis: a) The HTS transformer windings should be heat-insulated from each other to prevent 

heat transfer by convection between them and the resulting cascade overheat. b) Only primary winding  

HTS wire should be coated with a damping resistance material, because secondary winding damping 

resistance efficiency decreases measurably due to deterioration of the conditions for current transformation at  

current limiting. The temperature curves presented above require experimental verification, which is 
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projected for the future. The mathematical simulation requires considering distributed parameters of HTS 

tape material and specifics of windings convection.  
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