
International Journal of Electrical and Computer Engineering (IJECE)

Vol. 7, No. 4, August 2017, pp. 2045~2053

ISSN: 2088-8708, DOI: 10.11591/ijece.v7i4.pp2045-2053 2045

Journal homepage: http://iaesjournal.com/online/index.php/IJECE

Formal Specification of QoS Negotiation in ODP System

Abdessamad Jarrar, Youssef Balouki, Taoufiq Gadi
Faculty of Sciences and Technologies Informatics, Imaging and Modeling of Complex Systems Laboratory Settat,

Morocco

Article Info ABSTRACT

Article history:

Received Feb 9, 2017

Revised Apr 19, 2017

Accepted May 3, 2017

 The future of Open Distributed Processing systems (ODP) will see an

increasing of components number, these components are sharing resources.

In general, these resources are offering some kind of services. Due to the

huge number of components, it is very difficult to offer the optimum Quality

of service (QoS). This encourages us to develop a model for QoS negotiation

process to optimize the QoS in an ODP system. In such system, there is a

High risk of software or hardware failure. To ensure good performance of a

system based on our model, we develop it using a formal method. In our

case, we will use Event-B to get in the end of our development a system

correct by construction.

Keyword:

Event-B

Formal method

Negotiation

ODP

Quality of service

Refinement processus

Copyright © 2017 Institute of Advanced Engineering and Science.

All rights reserved.

Corresponding Author:

Abdessamad Jarrar,

Faculty of Sciences and Technologies,

Computing, Imaging and Modeling of Complex Systems Laboratory,

FST Settat, Km 3, B.P. : 577 Route de Casablanca, Morocco.

Email: Abdessamad.jarrar@gmail.com

1. INTRODUCTION

The evolution of telecommunications technology and the structure of organizations have led to the

emergence of complex distributed systems. These systems are distributed structures whose components, both

hardware and software, are of different types. In some systems, these components are developed by different

actors acting independently of each other. The assembly of such components gives rise to highly

heterogeneous systems. The applications that support these systems are themselves composed of distributed

components. The interaction between these application components is one of the aspects of the distributed

treatment. Specifically, the distributed processing correspond to different aspects of information processing

in which specific components can be located in different places, during this process the communication

between components may be delays or failures. This means that this kind of systems needs to be developed

carefully due to its complexity [1]. This motivates us to model it using a formal method to ensure the

correctness of our system and obtain a very strong assurance of bug’s absence. Formal methods are a

particular kind of mathematically based techniques for the specification [2], [3], development and

verification of software and hardware systems [4]. There are a variety of formal methods such as language Z,

a specification in Z is a predicate, the specification of invariants and the specification of operations have the

form of a predicate. There is also B-method which is a method of software development based on B, a tool-

supported formal method based on an abstract machine notation, used in the development of computer

software. It was originally developed by Jean-Raymond Abrial [5].

In this paper, we will use Event-B [6] since it allows us to prove that our system is correct by

construction basing on proofs obligations. These proofs are done automatically by a tool called Rodin [7].

Event-B is also based on refinement which means creating an abstract model and enriching it in a multiple

steps by adding more details to get a more concrete model [8]. In every refinement, we prove that the system

is correct and it does not contradict with the previous one, whereby the resulting system is correct by

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Institute of Advanced Engineering and Science

https://core.ac.uk/display/333845349?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 ISSN: 2088-8708

IJECE Vol. 7, No. 4, August 2017 : 2045 – 2053

2046

construction [6]. In the beginning, we present the proposed negotiation approach, this approach is based on

trader. Then, we define the system requirement along two axes: FUN and ENV. After that, we present our

refinement strategy that we will use after that to specify our system. Lastly, we end this paper with a

conclusion presenting an abstract about the work done and our expectation about future works.

2. RELATED WORKS

―Using Event B to Specify QoS in ODP Enterprise Language‖ [1] like our work, is specifying QoS

negotiation using event-B, it presents a specification for the different actors of the system and their states and

it also present negotiation values. However, it doesn’t present a specification of how the system acts exactly

such as how the system is able to negotiate with multiple servers.

―End-to-end QoS negotiation in network federations‖ [9] is another work presenting QoS

negotiation, it presents a good specification of the negotiation process, and in addition it presents a

mathematical modeling. Yet, mathematical model doesn’t prove that the specification is correct. Also, it

limits the study in telecommunication domain.

―An example of dynamic QoS negotiation‖ [10] presents an example of QoS negotiation applied to

a video streaming application, this example is presented with mathematical models and statistics results. The

same as the previous paper, there is nothing proving the correctness of the system.

Our work is presenting a formal specification using Event-B, this allows us to ensure the correctness

of our system using poof obligations, it also presents a modeling of negotiation in more details. Also, our

work is proved using Rodin platform [7] which avoid human mistakes during proving proof obligations.

3. NEGOTIATION APPROACH

Quality of Service (QoS) is a management concept that aims to optimize network resources or

process and ensure good performance of an Open Distributed Processing (ODP) system, this concept is

fundamental in many fields such as transmission protocols [11], routing algorithms [12], resources allocation

algorithms [13] and web service [14]. In our negotiation process, we will base our study on the trader concept

[1]. This means that in addition of the client and servers, we will have a third actor, it is the trader. The trader

is playing the role of a controller who is able to get the best QoS possible for a client. In the beginning, a

client propose a value of quality of service P to the trader, the trader may modify the QoS proposed by the

client or not, after that the trader send the value P’ of QoS to the server, when the server gets the required

value it may either refuse the request or may propose the value V that it may offers, at this stage the trader

will either modify the value proposed by the server or returns it directly to the client, if the client is satisfied

with the proposed value he accepts it or else he refuses it, in this case the trader will automatically start

negotiation with another server and proceed in the same way. The Figure 1 below presents the process of

negotiation with a server basing on a UIT form [15]:

Figure 1. Negotiation Process [1]

4. FORMAL SPECIFICATION OF QOS NEGOCIATION

4.1. Requirement Document

To present the requirement document correctly, we present it along two main axes. The first axis

expresses the main functions of system "FUN", and the second describes these functions and provides some

details regarding the environment "ENV". We present our requirement document as follows:

The system allows for the negotiation of QoS

between a client and one or more servers

FUN 1

IJECE ISSN: 2088-8708

Formal Specification of QoS Negotiation in ODP System (Abdessamad Jarrar)

2047

ENV 1: The trader is an intermediate between client and server.

Negotiation end if the client accepts the QoS or if

he refuses it

FUN 2

ENV 2: A client can be in one of three states (propose, accept or refuse).

The client can only accept negotiation if the trader

proposes a value of quality of service

FUN 3

ENV 3: A trader can either propose a value of QoS or refuses to offer the service.

the trader can only refuse negotiation if all the

servers refuse to offer any QoS or if the client

refuse all the proposed values of QoS

FUN 4

ENV 4: a server can propose or refuse to offer any QoS

The value proposed by the server is always less

than or equal the value given by the trader

FUN 5

ENV 5: values of QoS are always positive.

The trader always propose values less than or

equal the value proposed by the client

FUN 6

The client propose the value he wants, then the

trader seeks the best value less than or equal to that

value in all servers

FUN7

4.2. Refinement Strategy

After specifying our negotiation process correctly, we present our refinement strategy. We start by

creating an abstract model (first refinement) containing the principal functions of our system, then we will

enrich it by adding more function and environment assumptions (second refinement and third refinement). In

more details, here is our refinement strategy:

a. First refinement: In the beginning, we present the various actors states (client, trader and servers) and the

basic logic of the system (FUN 1, FUN 2, FUN 3, FUN 4, ENV 1, ENV 2, ENV 3 and ENV 4)

b. Second refinement: in this refinement, we include negotiation values and how the actors may change it

while negotiating with a server (FUN 5, ENV 5 and ENV 6).

c. Third refinement: lastly, the system is able to negotiate with multiple servers (FUN 7).

4.3. First Refinement: Specifying Actors States

As it is mentioned before, we start by modeling the various states of the system actors. Here is our

first context of the first refinement:

In this context which is the static part of a refinement, we define the set STATE as a partition of the

all the possible states in the system of an actors. In addition, we add an additional state that we have called

―wait‖; this state is the initialization state. We present the dynamic part of the first refinement (machine); we

start by the invariant that are the properties that must be preserved during system occurrence:

CONTEXT
 context0
SETS
 STATE
CONSTANTS
 propose
 refuse
 accept
 wait
AXIOMS
 axm1:partition(STATE,{propose},{refuse}, {accept},{wait})
END

 ISSN: 2088-8708

IJECE Vol. 7, No. 4, August 2017 : 2045 – 2053

2048

In these invariants, we define S_st (Server state) as an element of STATE that is not equal accept,

the same go for T_st (Trader state) as the server and the trader are not allowed to accept the negotiation, the

client is the only actor that may accept the negotiation this is why C_st may be equal any state. In addition,

we present some invariant that control the possible state combinations, for example, if the client is in the

accept state the trader must be in the state propose (inv6), which mean that a client cannot accepts a

negotiation if the trader did not proposes a QoS value. Now we can initialize our variable with ―wait‖ value.

Beside the initialization event we have more events that are able to change the states of the actors

while preserving all the invariants. Client_propose is the event that starts a new negotiation; we can start a

new negotiation only if we end the previous one, which means that the trader is not in the state ―propose‖.

When a client proposes a value of QoS, the trader switches his state to ―propose‖ to start negotiation

with servers.

The server proposes or refuses negotiation if and only if the trader proposes.

The only case where the trader will refuse negotiation is when all servers refuse negotiation, and

then the trader ends negotiation and informs client.

The client refuses a negotiation if he is not satisfied with negotiation value proposed by the trader.

VARIABLES
 S_st
 C_st
 T_st
INVARIANTS
 inv1: S_st ∈ STATE
 inv2: S_st ≠ accept
 inv3: C_st ∈STATE
 inv4: T_st ∈ STATE
 inv5: T_st ≠ accept
 inv6: C_st = accept ⇒ T_st = propose
 inv7: T_st = refuse ⇒ C_st ≠ accept
 inv8: T_st = refuse ⇒ S_st = refuse
 inv9: S_st = propose ⇒ T_st = propose

INITIALISATION:
 THEN
 act1: S_st ≔ wait
 act2: C_st ≔ wait
 act3: T_st ≔ wait
END

Client_propose:
 WHERE
 grd1: C_st = wait
 grd2: T_st ≠ propose
 THEN
 act1: C_st ≔ propose
 END

Trader_propose:
 WHERE
 grd1: C_st = propose
 THEN
 act1: T_st ≔propose
 END

Server_refuse:
WHERE

 grd1: T_st = propose
THEN

 act1: S_st ≔ refuse
END

Trader_refuse:
 WHERE
 grd1: C_st = propose
 grd2: S_st = refuse
 THEN
 act1: T_st ≔ refuse
 act2: C_st ≔ refuse
 END

IJECE ISSN: 2088-8708

Formal Specification of QoS Negotiation in ODP System (Abdessamad Jarrar)

2049

Also, if the client is satisfied with the proposed value by the trader, he accepts negotiation.

4.4. Second Refinement: Modeling Negotiation Values

In this refinement, we present the negotiation values. A client propose a value of quality of service P

to the trader, the trader may modify the QoS proposed by the client or may keep it, after that the trader send

the value P’ of QoS to the server, when the server get the required value it may either refuse the request or

may propose the value V that it is able to offer, at this stage the trader will either modify the value proposed

by the server or return it directly to the client. Before modeling these events, we present the context below

presenting the maximum value of QoS that a server may offer Vserver_max:

In machine1, we have new variables representing the negotiation values (Vclient, Vtrader, Vserver

and Vservice which is the value of QoS offered in case of accepting the negotiation). Moreover, we have

additional invariant for the negotiations values:

Furthermore, we refine the events of refinement 0 by adding actions responsible for dealing with

QoS values such as these actions setting negotiation values to 0 in the initialization event:

The value proposed by the client Vclient must be a not null natural number.

Client_refuse:
 WHERE
 grd1: C_st = propose
 grd2: T_st = propose
 THEN
 act1: C_st≔ refuse
 act2: T_st ≔ refuse
 act3: S_st≔ refuse
 END

Client_accept:
 WHERE
 grd1: T_st = propose
 THEN
 act1: C_st ≔ accept
 END

CONTEXT
 context1
EXTENDS
 context0
CONSTANTS
 Vserver_max
AXIOMS
 axm1: Vserver_max ∈ℕ
 axm2: Vserver_max > 0
END

INVARIANTS
 inv1: Vclient ∈ℕ
 inv2: Vserver ∈ℕ
 inv3: Vtrader ∈ℕ
 inv4: Vservice ∈ℕ
 inv5: Vclient ≥ Vtrader
 inv6: Vtrader ≥ Vserver
 inv7: T_st = propose ⇔ Vtrader ≠ 0
 inv8: S_st = propose ⇔ Vserver ≠ 0
 inv9: (C_st = propose ∨ C_st = accept) ⇔ Vclient ≠ 0
 inv10: Vserver ≤ Vserver_max

act4: Vclient ≔ 0
act5: Vserver ≔0
act6: Vtrader ≔0
act7: Vservice≔ 0

 ISSN: 2088-8708

IJECE Vol. 7, No. 4, August 2017 : 2045 – 2053

2050

The value proposed by the trader must be a positive number less than or equal the value proposed by

the client.

A server proposes a value less than or equal the value proposed by the trader, and this value is

always less than or equal a predefined maximum value of the Qos.

When a trader proposes a value of QoS, the server may be unable to offer any QoS, in this case the

server refuses the process of negotiation.

If a server refuse to offer a QoS, the trader try to negotiate with another server until it find a valid

QoS, however in some cases all the servers are unable to offerQoS, which mean that the trader will stop

negotiation, which mean that we reset the value of Vtrader and Vclient to 0 in the event Trader_refuse:

Even if the trader find a server that may offer a Qos, the client may be not satisfied, in this case the

client may refuse the negotiation by resetting all the negotiation values to 0 in the event Client_refuse:

In the other hand, if the client is satisfied with the offered QoS, he may accept negotiation. In this

case, the value of service will be the value that the trader proposes, which means that we have one additional

action in the event Client_accept:

Client_propose:
 ANY
 val ›
 WHERE
 …
 grd3: val ∈ℕ
 grd4: val ≠ 0
 THEN
 act1: C_st ≔ propose
 act2: Vclient ≔ val
 END

Trader_propose:
 ANY
 val
 WHERE
 grd1: C_st = propose
 grd2: val ∈ℕ
 grd3: val ≤ Vclient
 grd4: val ≥ Vserver
 grd5: val ≠ 0
 THEN
 act1: T_st ≔propose
 act2: Vtrader ≔ val
 END

Server_propose:
 ANY
 val
 WHERE
 grd1: T_st = propose
 grd2: val ∈ℕ
 grd3: val ≤ Vtrader
 grd4: val ≠ 0
 grd5: val ≤ Vserver_max
 THEN
 act1: S_st ≔propose
 act2: Vserver ≔ val
 END

Server_refuse:
 WHERE
 grd1: T_st = propose
 THEN
 act1: S_st ≔ refuse
 act2: Vserver ≔ 0
 END

act3: Vtrader ≔ 0
act4: Vclient≔ 0

act4: Vclient ≔ 0
act5: Vtrader ≔ 0
act6: Vserver ≔ 0

IJECE ISSN: 2088-8708

Formal Specification of QoS Negotiation in ODP System (Abdessamad Jarrar)

2051

4.5. Third Refinement: Negotiation with Multiple Servers

In this last refinement, we allow the system to negotiate with multiple servers. In other words, when

the client gets the QoS value proposed he may be not satisfied with it and refuses the negotiation. In this case,

the trader starts negotiating with another server that may offer a better QoS. To model this, we need to define

a set of servers in our system illustrated in the context below:

Similarly, we define new two variables. The first variable is server which represents the current

server that we are negotiating with. The second is Servers_Not_Tested which represents the set of servers

that we have not negotiated with yet. More than that, we have additional invariant:

In the same way as the previous refinement, we refine also the events of machine 1. In the

beginning, we refine the initialization event:

In the beginning of every new negotiation, the client proposes a QoS as mentioned before, at this

stage, we initiate the set Servers_Not_Tested as all the servers of our network in the event Client_propose :

The trader is the one responsible for choosing the server to negotiate with; this server is chose from

the set Servers_Not_Tested, which mean that we need to check if this set is not empty in the event

Trader_propose using the following guard:

Also, this action picks a server from Servers_Not_Tested:

When a server refuses to offer a QoS, we remove it from Servers_Not_Tested to ensure that we

won’t negotiate with the same sever over and over again. The action allowing removing the server from

Servers_Not_Tested in the event Server_refuse is the following:

The trader refuses negotiation if and only if all the servers refuse to offer a QoS which mean that we

removed all the servers from Servers_Not_Tested, this mean that Servers_Not_Tested is empty. This means

that the Trader_refuse will never be occurred unless Servers_Not_Tested is empty; this is done by the

following guard:

The client accepts the negotiation if there is a server in Servers_Not_Tested that may offer a QoS

and the client is satisfied with it. This means that we will have a new guard in the event Client_accept:

5. PROVING SYSTEM CORRECTNESS

Proof obligations are a set of evidence that ensures the validity of the system, the most important

among them is the preservation of invariants proofs that validates the preservation of all the invariant

condition before and after each event, all this can be done manually. Most of the proofs are easy and are not

act2: Vservice ≔ Vtrader

CONTEXT
 context2
EXTENDS
 context1
SETS
 Servers
AXIOMS
 axm1: Servers ≠ ∅
END

inv1: server ∈ Servers
inv2: Servers_Not_Tested ∈ℙ(Servers)

INITIALISATION:
 THEN
 …
 act8: server :∈ Servers
 act9: Servers_Not_Tested ≔ Servers
 END

act4: Servers_Not_Tested ≔ Servers

grd6: Servers_Not_Tested ≠ ∅

act3: server :∈ Servers_Not_Tested

act3: Servers_Not_Tested ≔ Servers_Not_Tested ∖{server}

grd3: Servers_Not_Tested=∅

grd2: server ∈ Servers_Not_Tested

 ISSN: 2088-8708

IJECE Vol. 7, No. 4, August 2017 : 2045 – 2053

2052

the kind of demonstrations that could interest a mathematician because the difficulty of modeling in event-B

is not the complexity of proof but demonstrations of consistency despite the huge number of events and

invariants, all events must preserve all the invariant. This mean that the problem is that the amount of proof

to prove is very big, in our case we have 21 invariants (9 in machine 0, 10 in the machine 1 and 2 for the

machine 2) and we have 10 events this mean that we have 210 proof to be done. Luckily there is a platform

to do the most of these proofs automatically, this framework is called Rodin. The Rodin platform is an IDE

based on Eclipse for Event- B which provides effective support for refinement and mathematical proof. The

platform is open source, contributes to the Eclipse platform and is more extensible with plugging very

effective (Atelier, ProB ...). In the Table 1 below the statistics of proofs done by Rodin:

Table 1. Proof Statistics
Elements Total Auto manual Reviewed Undischarged

Qosnegot 92 91 1 0 0

Context0 0 0 0 0 0

Context1 0 0 0 0 0

Context2 0 0 0 0 0

Machine0 38 38 0 0 0

Machine1 51 50 1 0 0
Machine2 3 3 0 0 0

6. CONCLUSION

we have developed the process of negotiation of QoS between objects in an ODP system, using the

trading function. We have proposed to introduce a dynamic trading assistant in the user's terminal to help,

firstly, to choose the best service provider and, secondly, to dynamically negotiate the quality parameters of

service (QoS) responsive to the user's requirements and application. The model we have developed is based

on the formal method Event-B. The interest of the Event-B in our study lies in its modeling to formally

express properties validated by evidence during the design of system models, but also in its refinement

principle to master the complexity of the system by progressive and safe development. For future works, we

are working on specifying formally aircraft landing process; we also will develop a model of an abstract

complex adaptive system.

REFERENCES
[1] Y. Balouki AND Al, ―Using Event B to Specify QoS in ODP Enterprise Language‖, Collaborative Networks for a

Sustainable World, IFIP Series Advances in Information and Communication Technology, Vol. 336, pp. 478-485,

Springer, 2010.

[2] Cristophe Métayer et Laurent Voisin, ―The Event-B Mathematical Language‖, Mars 26 2009.

[3] Biggs, N, ―Discrete Mathematics‖M Second Edition. New Delhi: Oxford University Press, ISBN-10:

0198507178, 2003.

[4] R. W. Butler, ―What is Formal Methods?‖, Retrieved 2006-11-16, 2001-08-06.

[5] Jean-Raymond Abrial, ―The B Tool (Abstract)‖, (PDF), In Robin E. Bloomfield and Lynn S. Marshall and Roger

B. Jones. VDM — The Way Ahead, Proc. 2nd VDM-Europe Symposium. Lecture Notes in Computer Science.

328. Springer. pp. 86–87. ISBN 3-540-50214-9. 1988.

[6] Jean-Raymond Abrial, ―Modeling in Event-B: System and Software Design‖, Cambridge University Press, 2008.

[7] Michael Jastram (Editor) Foreword by Prof. Michael Butler, ―Rodin User's Handbook‖ , Covers Rodin v.2.8.

[8] Thai Son Hoang, Hironobu Kuruma, David Basin, Jean-Raymond Abrial, ― Developing Topology Discovery in

Event-B‖, 2009.

[9] Helia Pouyllau, Richard Douville, ―End-to-end QoS negotiation in network federations‖, ICT ETICS project, Grant

agreement, FP7-248567 Contract Number: INFSO-ICT-248567, 2010.

[10] P. Cremonese , S.Giordano, ―An example of dynamic QoS negotiation‖, Finsiel S.p.A via Matteucci 34 Pisa Italy.

[11] Augustin WAYAWO, ―The Transmission Multicast and The Control of QoS for IPV6 Using the Insfrastructure

MPLS‖, International Journal of Information and Network Security (IJINS), Vol 1 No 1, pages 9-27. 2012.

[12] Liu Hui, ―A Novel QoS Routing Algorithm in Wireless Mesh Networks‖, TELKOMNIKA Indonesian Journal of

Electrical Engineering, Vol 11 No 3, pages 1652-1664. 2013.

[13] Dac-Nhuong Le, ―PSO and ACO Algorithms Applied to Optimization Resource Allocation to Support QoS

Requirements in NGN‖, International Journal of Information and Network Security (IJINS), Vol 2 No 3, pages

216-228. 2013.

[14] Naji Hasan.A.H, Gao Shu, AL-Gabri Malek and Jiang Zi-Long, ―An Optimal Semantic NetworkBased Approach

for Web Service Composition with QoS‖, TELKOMNIKA Indonesian Journal of Electrical Engineering, Vol 11

No 8, pages 4505-4511. 2013.

http://www.iaesjournal.com/online/index.php/IJINS/article/view/302
http://www.iaesjournal.com/online/index.php/IJINS/article/view/302
http://www.iaesjournal.com/online/index.php/IJINS
http://www.iaesjournal.com/online/index.php/IJINS
http://www.iaesjournal.com/online/index.php/TELKOMNIKA/article/view/2321
http://www.iaesjournal.com/online/index.php/TELKOMNIKA
http://www.iaesjournal.com/online/index.php/TELKOMNIKA
http://www.iaesjournal.com/online/index.php/IJINS/article/view/2072
http://www.iaesjournal.com/online/index.php/IJINS/article/view/2072
http://www.iaesjournal.com/online/index.php/IJINS
http://www.iaesjournal.com/online/index.php/TELKOMNIKA/article/view/3068
http://www.iaesjournal.com/online/index.php/TELKOMNIKA/article/view/3068
http://www.iaesjournal.com/online/index.php/TELKOMNIKA

IJECE ISSN: 2088-8708

Formal Specification of QoS Negotiation in ODP System (Abdessamad Jarrar)

2053

[15] UIT-T, ―Série X: Réseaux Pour Données Etcommunication Entre Systèmes Ouverts, Technologies de l'information

– Qualité de service – Guide pour les méthodes et les mécanismes Recommandation‖, X642 09/1998.

BIOGRAPHIES OF AUTHORS

Abdessamad Jarrar is a PhD candidate at IIMCS Laboratory which stands for Informatics, Imaging

and Modeling of Complex Systems in Faculty of Sciences and Technologies Hassan 1st University,

Settat, Morocco, his research interests center around modeling of complex systems using formal

methods, he is currently in his second year of his PhD. his currect research focus on modeling an abstract

complex adaptive system, in addition, he is working on a method to solve the problem of infinte cycles

in complex systems.

Youssef Balouki is currently a professor of computer and information science at the Faculty of Sciences

and Technologies, Hassan Ist University, Settat, Morocco. He holds a PhD in Computer Science (2010)

from MohammedV University, Rabat, Morocco and he graduated in Computer Science (1995) in Cadi

Ayyad University, Marrakech, Morocco where he got his Master’s degree in computer Science.

According to Google Scholar, DBLP digital library (as at May 2016) he has several publications which

have been cited quite a few times. Finally, his main research interests lie in the Databases, Distributed &

Parallel Computing and Scientific Computing.

Gadi Taoufiq is a Professor on computer science at the faculty of science and technologies (Hassan

First University of Settat Morocco). Since 2014, he is the Director of the Informatics, Imaging and

Modeling of Complex Systems Laboratory. He has conducted more than tens PhD theses and written a

fifty of scientific papers in the domain of 3D models analysis, models Driving Architecture, Datamining

and Database Analysis, Modeling of Complex Systems. He is recipient of the best paper awards at the

IMP Session of IEEE CIST’ 2016.

