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 This article presents some results of SEPIC converter dynamics when 
controlled by a center pulse width modulator controller (CPWM). The duty 
cycle is calculated using the ZAD (Zero Average Dynamics) technique. 
Results obtained using this technique show a great variety of non-linear 
phenomena such as bifurcations and chaos, as parameters associated with  
the switching surface. These phenomena have been studied in the present paper 
in numerical form. Simulations were done in MATLAB. 
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1. INTRODUCTION  
Research on dynamic systems has been applied to different fields such as biology, power converters, 

impact oscillators, mechanical systems, etc. where a large number of phenomena [1] of a non-linear 

nature [2, 3] are presented. Dynamic systems defined in pieces are very important topics of study in theoretical 

and experimental matters, being investigated in depth in recent years. An example of systems defined in pieces, 

are DC–DC voltage converters, which allow the control of output voltage from a given voltage source; that is, 

they act as bridges for energy transfers between sources and loads, both of direct current [4]. This leads 

naturally to the question of how to transfer energy from the source to the load with 𝑉𝑖𝑛   amplitude, which needs 

a 𝑥1𝑟𝑒𝑓 voltage, with the minimum loss of power. Multiple applications are presented by these converters 

including power sources in computers, distributed power systems, power systems in electric vehicles, 
etc [5, 6]. Therefore, this study has been a source of research in the fields of dynamic systems. Power converters 

introduce a series of non-linearities in the switching process, which is why they have been studied as variable 

structure systems. In [7] controllers were designed in sliding mode to work with this type of converter. 

Later, Carpita [8] designed a controller based on a sliding surface given by a linear proportion of the error and 

the derivative of the error. These two results allow working with a robust, stable, and efficient controller. 

However, by generating a discontinuous action of this controller, a "chattering" phenomenon arises in 

the system [9], which implies an increase in the ripple and distortion at the exit. 
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With the purpose of eliminating the "chattering" phenomenon, several techniques have been proposed 

to find a control scheme that guarantees a fixed switching frequency. For example, in [7], it is proposed to 

synthesize a controller that guarantees a zero average of voltage error through a technique known as Zero 

Average Current Error (ZACE). Fossas and his colleagues proposed a new control technique for power 

converters in which an auxiliary output is set and a digital control action is defined that guarantees zero average 

in the auxiliary output in each iteration, maintaining a fixed frequency of commutation, robustness, 

and stability. This technique is known as ZAD (Zero Average Dynamics) and consists of the definition of 

a switching surface on which the system is evolved on average. In [10] , it has been implemented making use 

of the switching surface 𝑠(x(𝑡)) = (𝑥1(𝑡) − 𝑥1𝑟𝑒𝑓) + 𝑘𝑠(�̇�1(𝑡) − �̇�1𝑟𝑒𝑓), where good results are shown in 

terms of robustness and low output error. In [11, 12] it is also applied to analyze the dynamics present in 

the boost converter to study present non-linear phenomena, driven by a center aligned pulse width modulation 

converter (CPWM). 

In the present article, the ZAD technique has been implemented to control a SEPIC converter, which 

has been used to control boost and buck converters in previous Works  [11, 13, 14]. A linear combination of 

the error in voltage and current has also been taken as the switching surface 𝑠(x(𝑡)) = 𝑘1(𝑥1(𝑡) − 𝑥1𝑟𝑒𝑓) +

𝑘2(𝑥2(𝑡) − 𝑥2𝑟𝑒𝑓) + 𝑘3(𝑥3(𝑡) − 𝑥3𝑟𝑒𝑓) + 𝑘4(𝑥4(𝑡) − 𝑥4𝑟𝑒𝑓) and from this, the calculation of duty cycle has 

been done with which the system is evolved in a period of time T [15]. Finally, bifurcations that arise in 

the evolution of 1-periodic orbits have been characterized and the presence of chaos has been determined from 

certain values of constants associated with the commutation surface, which were taken as bifurcation 

parameters [16, 17]. 

 

 

2. RESEARCH METHOD 

An SEPIC converter [18] is a DC to DC converter belonging to the family of fourth-order 

converters [19]. This device can supply more or less voltage than the input voltage. The basic scheme of 

a SEPIC converter is shown in Figure 1, where 𝑉𝑖𝑛  is the input voltage, 𝑖1 is the current in 𝐿1 inductor, 𝑆 is 

the switch, 𝐷 is the diode, 𝑣1 is the voltage in 𝐶1 capacitor, 𝑅 is load resistance, 𝑖2 𝑖s the current in 𝐿2 

inductor, 𝑣2 is the voltage in 𝐶2 capacitor. The basic principle of the SEPIC converter consists of two different 

states, depending on the state of the switch 𝑆. 

 

 

 
 

Figure 1. Basic scheme of an SEPIC converter  

 

 

When switch 𝑆 is closed, the status is 𝑂𝑁 and the input source 𝑉𝑖𝑛  connects to 𝐿1 coil at the same time 

as the diode 𝐷 is polarized inversely. As a consequence, the intensity that circulates through 𝐿1 inductance 

grows linearly, storing energy. In this situation, the 𝐶1 capacitor feeds the 𝐿2 inductor and the tension of 𝐶2 is 

delivered to the load. When switch 𝑆 is open, the status 𝑂𝐹𝐹 andthe energy previously stored in 𝐿1coil together 

with the input is transferred to the 𝐶1 input capacitor and the energy stored in the 𝐿2 inductor is transferred to 

𝐶2 and to the load.  

Two modes of operation are distinguished in the SEPIC converter, depending on the currents by  

the inductors canceled during the operation period 𝑇: Continuous Driving Mode (𝑀𝐶𝐶) and Discontinuous 

Driving Mode (𝑀𝐶𝐷). In this article, we will study the dynamics of the SEPIC converter in 𝑀𝐶𝐶. 

The dynamics of the SEPIC converter are governed by the solution of this system of differential equations:  
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𝐿1
𝑑𝑖1

𝑑𝜏
= −(1 − 𝑢)(𝑣1 + 𝑣2) + 𝑉𝑖𝑛

𝐶1
𝑑𝑣1

𝑑𝜏
= (1 − 𝑢)𝑖1 − 𝑢𝑖2

𝐿2
𝑑𝑖2

𝑑𝜏
= 𝑢𝑣1 − (1 − 𝑢)𝑣2

𝐶2
𝑑𝑣2

𝑑𝜏
= (1 − 𝑢)(𝑖1 + 𝑖2) −

𝑣2

𝑅
.

 (1) 

 

In this system, 𝑖1, 𝑣1, 𝑖2, and 𝑣2 are status variables 𝐿1, 𝐿2, 𝐶1, 𝐶2, and ;, 𝑅 are the parameters and  

𝑢 ∈ {0,1} is the control variable. In system (1), if 𝑢 = 1, then SEPIC is 𝑂𝑁 (topology 1) and when 𝑢 = 0, 
SEPIC is 𝑂𝐹𝐹 (topology 2). Making the change of variables:  

 

𝑥1 =
𝑖1

𝑉𝑖𝑛
√
𝐿1

𝐶1
𝑥2 =

𝑣1

𝑉𝑖𝑛
𝑥3 =

𝑖2

𝑉𝑖𝑛
√
𝐿1

𝐶1
𝑥4 =

𝑣2

𝑉𝑖𝑛

𝑡 =
𝜏

√𝐿1𝐶1
,

 (2) 

 

if 𝛼 =
𝐿2

𝐿1
, 𝛽 =

𝐶2

𝐶1
, and 𝛾 = 𝑅√

𝐶1

𝐿1
 are defined, then a dimensional system is obtained for the dynamics of 

the SEPIC converter: 

 
�̇�1 = −(1 − 𝑢)(𝑥2 + 𝑥4) + 1
�̇�2 = (1 − 𝑢)𝑥1 − 𝑢𝑥3
𝛼�̇�3 = 𝑢𝑥2 − (1 − 𝑢)𝑥4
𝛽�̇�4 = (1 − 𝑢)(𝑥1 + 𝑥3) −

𝑥4

𝛾
,

 (3) 

 

where the new parameters of the system are 𝛼, 𝛽, and 𝛾. Each topology of the system can be expressed in 

compact form by 

 
�̇� = 𝐀𝑖𝐱(𝑡) + 𝐛, (1) 

 

where 𝑖 ∈ {1,2} and 

 

𝐀1 =

[
 
 
 
 
0 0 0 0
0 0 −1 0

0
1

𝛼
0 0

0 0 0 −
1

𝛽𝛾]
 
 
 
 

, 𝐀2 =

[
 
 
 
 
0 −1 0 −1
1 0 0 0

0 0 0
−1

𝛼
1

𝛽
0

1

𝛽
−

1

𝛽𝛾]
 
 
 
 

, 𝐛 = [

1
0
0
0

]. 

 

The solution of each topology can be expressed as  

 

 𝐱𝑖 = 𝜙𝑖(𝑡 − 𝑡0)𝐱(𝑡0) + 𝝍𝑖(𝑡 − 𝑡0), (2)  

 

where 𝜙𝑖(𝑡 − 𝑡0) = 𝑒
𝐀𝑖(𝑡−𝑡0) and 𝝍𝑖(𝑡 − 𝑡0) = ∫

𝑡

𝑡0
𝑒𝐀𝑖(𝑡−𝜏)𝐛𝑑𝜏 

 

2.1.  Pulse width modulation 

The control scheme [20] that will be used in this study corresponds to center-aligned modulation by 

pulse width in such a way that a time interval [nT, (n + 1)T] is divided into three subintervals, where the first 

and the last have the same length, as shown in Figure 2. Commutations are made according to the scheme 
{1,0,1} and, therefore, the system will operate as follows: 

 

�̇� =

{
 
 

 
 𝐀1𝐱+ 𝐛 si nT ≤ t ≤ nT +

d

2
 

𝐀2𝐱 + 𝐛 si nT +
d

2
≤ t ≤ (n + 1)T −

d

2

𝐀1𝐱+ 𝐛 si (n + 1)T −
d

2
≤ t ≤ (n + 1)T,

  (6)  

 

where 𝑇 is the period, 𝑑 is the duty cycle and the time during which the system is operated in status 𝑂𝑁. 
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Figure 2. Symmetrical center pulse 
 

 

After choosing the control scheme, we must decide how to calculate the time that the system must 

remain in conduction; that is, we must choose a criterion that allows us to calculate (period to period)  

the duty cycle 𝑑. In this paper, we will calculate it using ZAD (Zero Average Dynamics) control technique [2] 

and based on the fact that being a variable structure system, the principles of control in sliding modes can be 

applied in such a way that the error dynamic is zero on average in each iteration [21, 22]. 

 

3. CONTROL STRATEGY 

3.1.  ZAD control strategy 

This technique consists of defining a switching surface 𝑠(𝐱(𝑡)) = 0 in which the system will evolve 

on average [12]. In this paper, the switching surface given by the equation 𝑠(𝐱(𝑡)) = (𝑥1(𝑡) − 𝑥1𝑟𝑒𝑓) +

𝑘𝑠(�̇�1(𝑡) − �̇�1𝑟𝑒𝑓), using this switching surface and the technical control ZAD, we obtain the next expression 

for the duty cycle: 

 

𝑑 =
2𝑠(𝐱(𝑛𝑇))+𝑇�̇�2(𝐱(𝑛𝑇))

�̇�2(𝐱(𝑛𝑇))−�̇�1(𝐱(𝑛𝑇))
,  (7) 

 

where 𝑑 is a real number between 0 and T, if 𝑑 < 0 or 𝑑 > 0. Expression (7) is redefined, saying that 

the system is saturated. For this situation, the following selection is made in each period: 

 

𝑑 = (
0 if d ≤ 0
𝑇 if d ≥ T

.  (8) 

 

3.2.  Poincaré map 

The Poincaré map of the SEPIC converter controlled with CPWM {1,0,1} and ZAD technique is given 

by the following: 

1. If 𝑑𝑛 ∈ (0, 𝑇) (duty cycle does not saturate) 

 

𝑃(𝐱𝑛 , 𝑑𝑛) = 𝜙1 (
𝑑𝑛

2
)𝜙2(𝑇 − 𝑑𝑛)𝜙1 (

𝑑𝑛

2
)𝐱(𝑛𝑇)

+𝜙1 (
𝑑𝑛

2
)𝜙2(𝑇 − 𝑑𝑛)𝜓1 (

𝑑𝑛

2
)

+𝜙1 (
𝑑𝑛

2
)𝜓2(𝑇 − 𝑑𝑛) + 𝜓1 (

𝑑𝑛

2
) , and

  (9)  

 

2. If  𝑑𝑛 = 0 (duty cycle saturates) 
 

𝑃(𝐱𝑛 , 𝑑𝑛) = 𝜙2(𝑇)𝐱(𝑛𝑇) + 𝜓2(𝑇) (10) 

 

3. If 𝑑𝑛 = 𝑇 (duty cycle saturates) 

 

𝑃(𝐱𝑛 , 𝑑𝑛) = 𝜙1(𝑇)𝐱(𝑛𝑇) + 𝜓1(𝑇)  (11)  

 

 

4. BIFURCATIONS 

In this section, a study of the qualitative change of the SEPIC converter is made by varying one of the 

parameters associated with the switching surface. To characterize the type of bifurcation we find, we will use 

the bifurcation diagram, which is obtained from the Poincaré map given by the relations (9), (10), and (11), 

and proper values of the Jacobian matrix evaluated at equilibrium points of the system.  
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4.1.  Flip bifurcation 
The simulation described below is presented when we consider the SEPIC converter as a reducer; 

in addition, we take as reference values the vector (0.0544 1 0.1237 0.44)𝑇. Figure 3 shows a configuration 
of the state variables for which there is a 1T-periodic orbit that goes from stable to unstable, which indicates  

a bifurcation point. The point of interest is when 𝑘3 ∈ [40, 60]. The diagrams of these figures were obtained 

by varying 𝑘3  in the specified range with 𝑘1 = 25, 𝑘2 = −15, 𝑘4 = −10, 𝑇 = 0.18, 𝛼 = 0.2683, 𝛽 = 0.7021,  

and 𝛾 = 3.5583. Reviewing the eigenvalues of the Jacobian matrix associated with the Poincaré application in  

Table 1 and observing Figure 3, we find the resulting bifurcation is of the flip type [23] because one of these 

values goes from being stable to unstable, crossing through −1 for a value of the parameter 𝑘3= 51.96. 
This type of bifurcation is characterized by a period doubling; that is, the system goes from having  

a 1T-periodic orbit to having 2T-periodic orbits. Table 1 presents the values of the Poincaré map. An analysis 

of these allows confirmation that this is a flip-type bifurcation [24, 25] because the proper value that goes from 

stable to unstable does it crossing by −1 in the interval 𝑘3 ∈ (51.40, 52.30) as shown in Figure 4. This type of 

bifurcation occurs because the orbit 1𝑇-periodic becomes unstable and an orbit 2 𝑇-periodic is born, i.e., 

a period doubling occurs [12].  

 

 

 
 

Figure 3. Bifurcation diagram varying 𝑘3 

 

 

Table 1. Eigenvalues of the jacobian matrix near the stability limit when varying 𝑘3 
𝑘3   𝜆1   𝜆2,3  𝜆4 

51.40 -0.99970 0.98106± 0.15499𝑖 0.95968 

51.58 -0.99979 0.98107 ± 0.15495𝑖 0.95959 

51.76 -0.99989 0.98107 ± 0.15492𝑖 0.95950 

51.94 -0.99998 0.98107± 0.15489𝑖 0.95942 

52.12 -1.00008 0.98108± 0.15485𝑖 0.95933 

52.30 -1.00017 0.981084± 0.15482𝑖 0.95925 
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Figure 4. Graphic variation of eigenvalues by varying 𝑘3 

 

 

4.2.  Neimar–saker bifurcation 

When 𝑘1 is varied in the interval [−10,−2] and we take as fixed values 𝑘2 = 1, 𝑘3 = −6, 𝑘4 = 2.5, 

𝑇 = 0.18, 𝛼 = 0.2683, 𝛽 = 0.7021, 𝛾 = 3.5583, and, as a condition, initial (1.1241 1 0.5621 2)𝑇 , we also 
find a bifurcation in the dynamics of the SEPIC converter as seen in Figure 5. In the bifurcation diagrams of 

Figure 5 a change in the dynamics of the system is observed, which is characteristic of a Neimar-Saker type 

bifurcation. To characterize this bifurcation, we analyze the evolution of the eigenvalues of the Jacobian matrix 

of the Poincaré map near the point of bifurcation 𝑘1 = −2.42. We observe in Table 2 and Figure 6 that 
the complex and conjugated eigenvalues of the Poincaré application near the bifurcation point, its module 

approaches 1, which characterizes the Neimar–Saker-type bifurcation. 
 

 

 
 

Figure 5. Bifurcation diagram varying 𝑘1 
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Table 2. Eigenvalues of the poincaré map near the stability limit when varying 𝑘1 
𝑘1   𝜆1            𝜆2,3  𝜆4 

-3.0  -0.98014 0.9918± 0.1470i 0.95786 

-2.75  -0.97929 0.9911± 0.1447i 0.96092 

-2.5 -0.97843 0.9902 ± 0.1423i 0.96426 

-2.25  -0.97757 0.9891± 0.139i  0.96792 

-2.0  -0.97669 0.9879± 0.1372i 0.97194 

 

 

 
Figure 6. Graphic variation of eigenvalues by varying 𝑘1 

 

 

5. EXISTENCE AND CHAOS CONTROL 

To guarantee the presence of chaos in the system, we use the exponents of Lyapunov, which determine 

the proximity or divergence of two orbits that were initially close. The i-th Lyapunov exponent is given by 
the expression:  

 

𝐿𝑖 = lim
𝑘→∞

(
1

𝑘
∑𝑘𝑛=0 𝑙𝑜𝑔|𝜆𝑖(𝐽𝑃(𝐱𝑛))|),  (12) 

 

where 𝐱𝑛  is the i-th value of Poincaré map, 𝐽𝑃 its Jacobian, and 𝜆𝑖 is the i-th eigenvalue of 𝐽𝑃.  

The presence of a positive Lyapunov exponent in a system whose trajectories evolve within a finite zone of 

the state space guarantees chaotic behavior [26]. On the other hand, the sum of all Lyapunov exponents in  

a chaotic attractor must be negative [27]. 

To determine the presence of chaos [16, 28] and its respective control, we will use the values with 

which the flip bifurcation was obtained. Figure 7 shows the existence of positive Lyapunov exponents for 

values of 𝑘3 greater than 51.96 . Additionally, Figure 3 shows that for values of 𝑘3 ∈ (51.40,52.30),  
the system evolves in a bounded region of the state space. Therefore, we can see that the system presents 

chaotic behavior for values of 𝑘3 greater than 51.96.  

 

 

 
 

Figure 7. Lyapunov exponents by varying 𝑘3 
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5.1. Chaos control with FPIC technique 

Because our system is non-autonomous, it is excited with an external signal 𝑢. Any method of chaos 

control must stabilize the unstable orbits, and for this it must necessarily assure that proper values of  

the Jacobian matrix of the Poincaré map are within the unit circle (stability border). In this sense, several control 

strategies have been designed. To control the chaos presented by the SEPIC converter with ZAD, we use 

the FPIC (Fixed Point Induced Control) technique [29], which was designed by [14] and has been used 

numerically in [13, 30]. 

This is based on the continuity of proper values theorem and helps stabilize period one or more orbits 

in unstable and/or chaotic systems and does not require the measurement of state variables. It forces the system 
to evolve to the fixed point; therefore, it is necessary to have prior knowledge of the control signal equilibrium 

point. The equilibrium point obtained for the system is given by the transposed vector:  
 

𝐱∗ = (
𝑥4𝑟𝑒𝑓
2

𝛾
, 1,
𝑥4𝑟𝑒𝑓
𝛾

, 𝑥4𝑟𝑒𝑓)

𝑡

, 

 

that corresponds to a steady-state duty cycle 
 

𝑑∗ = 𝑇
𝑥4𝑟𝑒𝑓

1+𝑥4𝑟𝑒𝑓
  (13)  

 

The duty cycle 𝑑𝑍𝐹 is to apply ZAD and FPIC control techniques is given by: 
 

𝑑𝑍𝐹 =
𝑑+𝑁𝑑∗

𝑁+1
,  (14) 

 

where 𝑑 is determined by (7) and 𝑑∗ by (13). 

Next we apply the FPIC technique to the dynamics of the SEPIC converter. Figures 8 (a) shows that 

by choosing 𝑁 =  0.003, the area in which the system exhibits chaotic behavior decreases. Figure 8 (b) shows 

that for the FPIC constant 𝑁 =  0.005 the area in which the system exhibits chaotic behavior continues to 

decrease. Finally in Figure 8 (c) when the FPIC constant 𝑁 =  0.006 the area in which the system exhibits 

chaotic behavior has almost completely disappeared. 
 

 

  
(a) (b) 

 

 
(c) 

 

Figure 8. Bifurcation diagram varying 𝑘3 with FPIC control (a) 𝑁 = 0.003, (b) 𝑁 = 0.005, (c) 𝑁 = 0.006 
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6. CONCLUSION 

By analyzing the dynamics of the SEPIC converter numerically using the ZAD technique with 

CPWM, we can observe the presence of non-linear phenomena such as quasi-periodicity and chaos.  

The presence of bifurcations was detected by varying the parameters 𝑘1 and 𝑘3 associated to the switching 

surface, being the flip and Neimar–Saker bifurcations, respectively. Chaotic behavior can be controlled by 

introducing the FPIC technique. However, it is important to see how the FPIC technique influences other 

behaviors of the system, such as regulation. 
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