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 Recent years have witnessed the drastic development of World Wide Web 
(WWW). Information is being accessible at the finger tip anytime anywhere 
through the massive web repository. The performance and reliability of web 
engines thus face huge problems due to the presence of enormous amount of 
web data. The voluminous amount of web documents has resulted in 
problems for search engines leading to the fact that the search results are of 
less relevance to the user. In addition to this, the presence of duplicate and 
near-duplicate web documents has created an additional overhead for the 
search engines critically affecting their performance. The demand for 
integrating data from heterogeneous sources leads to the problem of near-
duplicate web pages. The detection of near duplicate documents within a 
collection has recently become an area of great interest. In this research, we 
have presented an efficient approach for the detection of near duplicate web 
pages in web crawling which uses keywords and the distance measure. 
Besides that, G.S. Manku et al.’s fingerprint based approach proposed in 
2007 was considered as one of the “state-of-the-art" algorithms for finding 
near-duplicate web pages. Then we have implemented both the approaches 
and conducted an extensive comparative study between our similarity score 
based approach and G.S. Manku et al.’s fingerprint based approach. We have 
analyzed our results in terms of time complexity, space complexity, Memory 
usage and the confusion matrix parameters. After taking into account the 
above mentioned performance factors for the two approaches, the 
comparison study clearly portrays our approach the better (less complex) of 
the two based on the factors considered.
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1. INTRODUCTION  

Near-duplicate documents can adversely affect the efficiency and effectiveness of search engines. 
Due to the pair-wise nature of the comparisons required for near-duplicate detection, this process is 
extremely costly in terms of the time and processing power it requires. Despite the ubiquitous presence of 
near-duplicate detection algorithms in commercial search engines, their application and impact in research 
environments is not fully explored. The implementation results of near-duplicate detection algorithms forces 
trade-offs between efficiency and effectiveness, entailing careful testing and measurement to ensure 
acceptable performance. This paper describes the experimental results and the performance analysis of the 
proposed methods by Narayanaet al [19, 20, 21, 22] with the existing approach proposed by GS  Manku et al 
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[9]. The results and discussion is carried out using the huge document collection of databases to clearly 
evaluate the performance of the approaches. In addition to this, the well-accepted evaluation metrics are 
employed here to directly compare the approach with the existing ones. In order to prove the effectiveness, 
we initially set up the experimental environment and collect the huge collection of documents which are 
more appropriate to conduct an experimental study, so that only the effectiveness can be evaluated in a 
fulfilled manner according to expert’s view.  
 
 
2. RELATED WORK 

The discovery of near-duplicates benefits numerous applications including web search engines. 
Some advantages of near-duplicate detection in web search engines are, helps to perform focused crawling, 
increase the quality and diversity of query results, and identifies spam [6, 8,10]. Many web mining 
applications trust on the ability to accurately and efficiently identify near-duplicates. They include document 
clustering [4], finding replicated web collections [5], detecting plagiarism [12], community mining in a social 
network site [13], collaborative filtering [3] and discovering large dense graphs [11]. Removal of near-
duplicates [1] saves network bandwidth, reduces storage costs and improves the quality of search indexes and 
it also reduces the load on the remote host that is serving such web pages. Documents that are exact replicas 
of each other (due to mirroring and plagiarism) can be easily identified by standard check summing 
techniques [2], but the most difficult part is to identify the near-duplicate documents [9]. 

Earlier the research on duplicate detection was performed generally in the areas of databases, digital 
libraries, and electronic publishing. Recently, duplicate detection has been studied for web search tasks, for 
example, to give more effective and proficient web crawling, document ranking, and document archiving. 
Numerous duplicate detection techniques have been proposed, that range from manually coded rules to 
applications of the latest machine learning techniques [7, 8, 16, 17]. Recently, few authors have proposed 
techniques for near-duplicates detection [9,14,15,16]. Their focus varies from providing high detection rates 
to minimizing the computational and storage resources. For large collections, some techniques are too pricey 
computationally to be deployed in their full capacity, whereas some algorithms are very efficient yet very 
brittle and sensitive to even small changes of the text. 

A comparison of the two algorithms namely shingling algorithm [4] and random projection based 
algorithm [2] was performed by Monika Henzinger [8] on a very large scale set of 1.6B distinct web pages. 
The outputs showed that none of the algorithms works well for locating near-duplicate pairs on the same site, 
while both attain high accuracy for near-duplicate pairs on different sites. A combined algorithm has been 
presented by them which achieve precision 0.79 with 79% of the recall of the other algorithms. Chuan Xiao 
et al. [7] have presented exact similarity join algorithms with application to near-duplicate detection and a 
positional filtering principle. It exploits the ordering of tokens in a record and leads to upper bound estimates 
of similarity scores. They demonstrated the better-quality performance of their algorithms to the existing 
prefix filtering-based algorithms on several real datasets under a wide range of parameter settings. 

Hui Yang et al. [15] have presented DURIAN (DUplicate Removal In lArge collectioN), an 
improved version of a prior near-duplicate detection algorithm. DURIAN uses a traditional bag-of-words 
document representation, document attributes ("metadata"), and document content structure to recognize 
form letters and their edited copies in public comment collections. The outputs show that statistical similarity 
measures and instance-level constrained clustering can be very helpful for efficiently identifying near-
duplicates. 

Andrei Z. Broder et al. [4] have created an efficient method to find out the syntactic similarity of 
files and have applied it to every document on the World Wide Web. Using this method, they have built a 
clustering of all the documents that are syntactically similar. Possible applications include a "Lost and 
Found" service, filtering the results of Web searches, updating widely distributed web-pages, and identifying 
violations of intellectual property rights. 

Hui Yang et al. [18] have discovered the use of simple text clustering and retrieval algorithms for 
locating near-duplicate public comments. They have focused on automating the method of near-duplicate 
detection, particularly form letter detection, in this domain. They gave a clear near-duplicate definition and 
explored simple and efficient methods of using feature-based document retrieval and similarity-based 
clustering to discover near-duplicates. The technique is evaluated in experiments with a subset of a large 
public comment database collected for EPA rule. Donald Metzler et al. [17] have explored methods for 
measuring the intermediate kinds of similarity, focusing on the task of finding where a particular piece of 
information initiated. They mentioned a range of ideas to reuse detection at the sentence level, and a range of 
ideas for merging sentence-level evidence into document-level evidence. They considered both sentence-to-
sentence and document-to-document comparison, and have integrated the algorithms into RECAP, a 
prototype information flow analysis tool. 
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Sergey Brin et al. [16] have created a system for registering documents and then detecting copies, 
either complete copies or partial copies. They illustrated algorithms for such detection, and metrics required 
for evaluating detection mechanisms constituting accuracy, efficiency and security. They also mentioned a 
prototype implementation of this service, COPS, and presented experimental results that suggest the service 
can really detect violations of interest. Ziv BarYossef et al. [14] have mentioned the issue of dust: Different 
URLs with Similar Text. They proposed original algorithm, DustBuster, for detecting dust; that is, for 
discovering rules that change a given URL to others that are likely to have similar content. DustBuster mines 
dust effectively from previous crawl logs or web server logs, without investigating page contents. 

Gurmeet Singh Manku et al [9] have made two research contributions in developing a near-duplicate 
detection system for a multi-billion page repository. Initially, they verified that Charikar's [2] fingerprinting 
technique is appropriate for this goal and then they proposed an algorithmic technique for finding existing f-
bit fingerprints that differ from a given fingerprint in at most k bit-positions, for small k. This technique is 
valuable for both online queries (single fingerprints) and batch queries (multiple fingerprints). Jack G. 
Conrad et al. [6] have determined the extent and the types of duplication present in large textual collections. 
Their research is divided into three parts. At first they started with a study of the distribution of duplicate 
types in two broad-ranging news collections consisting of approximately 50 million documents. Then they 
check the utility of document signatures in addressing identical or nearly identical duplicate documents and 
their sensitivity to collection updates. Lastly, we have demonstrated a flexible method of characterizing and 
comparing documents in order to allow the identification of non-identical duplicates. This method has 
created promising results following an extensive evaluation using a production-based test collection formed 
by domain experts. 
 
 
3. EXPERIMENTAL ENVIRONMENT AND SETUP 

The proposed near duplicate document detection system is programmed using Java (jdk 1.6) and the 
backend used is MS Access. The experimentation has been carried out on a 2.9 GHz, i5 PC machine with 4 
GB main memory running a 32-bit version of Windows XP. 
 
3.1.  Dataset Collection 

Here, we have gathered our huge dataset with the aid of a computer program, Wget. Here, we have 
collected by giving some URLs of the news website like Times of India or India Times. So that, we can get 
more number of web documents with relevant information. Almost, we have collected 75K documents for 
our research analysis. With these documents, the proposed research methods get analyzed with the existing 
algorithm and hence prove the efficiency with the evaluation metrics. 
 
3.2.  Wget 

Wget can optionally work like a web crawler by extracting resources linked from HTML pages and 
downloading them in sequence, repeating the process recursively until all the pages have been downloaded or 
a maximum recursion depth specified by the user has been reached. The downloaded pages are saved in a 
directory structure resembling that on the remote server. This "recursive download" enables partial or 
complete mirroring of web sites via HTTP. Links in downloaded HTML pages can be adjusted to point to 
locally downloaded material for offline viewing. Wget (or just Wget, formerly Geturl) is a computer program 
that retrieves content from web servers, and is part of the GNU Project. Its name is derived from World Wide 
Web and get. It supports downloading via HTTP, HTTPS, and FTP protocols. Its features include recursive 
download, conversion of links for offline viewing of local HTML, support for proxies, and much more. 
 
3.3.  Dataset Creation & Testing 

The dataset is created by means of having 75K crawled web pages. Within these, 30K pages are 
taken out and 25K pages in those 45K pages are transformed into near duplicate web pages with the aid of 
some intermediate steps. Out of which, 30K web pages are exact duplicates, 25K pages are transformed near 
duplicates and the remaining 20K pages are the newly involved web pages. Thus, we have a total of 75K web 
pages for our experimental analysis. 

In the testing phase, the fingerprint values and the keywords of the collected exact duplicate web 
pages are extracted and stored in the database. Then, the remaining web pages are utilized to test the results 
in the case of finding the exact duplicate, near duplicate and non duplicate web pages. 
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4. PERFORMANCE EVALUATION METRICS 
There are two main considerations when solving an NDD problem: efficiency and accuracy. 

Applications of NDD typically need to handle a very large collection of documents. A practical algorithm 
will need to determine whether a document is a duplicate of some other documents in the repository in real-
time. As a result, efficiency has been the main focus of existing popular NDD approaches, where various 
techniques of generating short signatures using hash functions and pruning inverted index searching were 
invented. In contrast, the problem of how to improve NDD accuracy has received less attention. Thus, in this 
thesis, we have analyzed our results in terms of time complexity, space complexity, Memory usage and the 
confusion matrix parameters.  
 
4.1 Space Complexity 

The space complexity of a program (for a given input) is the number of elementary objects that this 
program needs to store during its execution. This number is computed with respect to the size n of the input 
data. The way in which the amount of storage space required by an algorithm varies with the size of the 
problem it is solving. Space complexity is normally expressed as an order of magnitude, e.g. O(N^2) means 
that if the size of the problem (N) doubles then four times as much working storage will be needed. Space 
complexity is the storage required for the execution of the algorithm. This includes all permanent and 
temporary storage required by the algorithm, including any necessary stack allocations for recursions. 
 
4.2 Time Complexity 

Intuitively, the amount of time an algorithm takes depends on how large is the input on which the 
algorithm must operate: Sorting large lists takes longer than sorting short lists; multiplying huge matrices 
takes longer than multiplying small ones. The dependence of the time needed to the size of the input is not 
necessarily linear: sorting twice the number of elements takes quite a bit more than just twice as much time; 
searching (using binary search) through a sorted list twice as long, takes a lot less than twice as much time. 
The time complexity function expresses that dependence. Note that an algorithm might take different 
amounts of time on inputs of the same size. We can define the size of an input in a general way as the number 
of bits required to store the input. This definition is general but it is sometimes inconvenient because it is too 
low-level. More usefully we define the size of the input in a way that is problem-dependent. 
 
4.3 Memory Usage 

The memory utilized by the current jobs present in the particular system. Memory is an important 
resource for your application so it’s important to think about how your application will use memory and what 
might be the most efficient allocation approaches. Most applications do not need to do anything special; they 
can simply allocate objects or memory blocks as needed and not see any performance degradation. When you 
are creating an application that can be memory-intensive, it may be useful to monitor the current memory 
usage. This allows you to modify the behavior of the program as its RAM requirements increase and to 
predict out-of-memory exceptions. 
 
4.4 Confusion Matrix 

In the field of artificial intelligence, a confusion matrix is a specific table layout that allows 
visualization of the performance of an algorithm, typically a supervised learning one (in unsupervised 
learning it is usually called a matching matrix). Each column of the matrix represents the instances in a 
predicted class, while each row represents the instances in an actual class. The name stems from the fact that 
it makes it easy to see if the system is confusing two classes (i.e. commonly mislabeling one as another). A 
confusion matrix contains information about actual and predicted classifications done by a classification 
system. Performance of such systems is commonly evaluated using the data in the matrix. The following 
table shows the confusion matrix for a two class classifier. The entries in the confusion matrix have the 
following meaning in the context of our study: 

 a is the number of correct predictions that an instance is negative, 
 b is the number of incorrect predictions that an instance is positive, 
 c is the number of incorrect of predictions that an instance negative, and 
 d is the number of correct predictions that an instance is positive. 

 
 

Confusion matrix 
Predicted 

Negative Positive 

Actual 
Negative a b 
Positive c d 
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4.4.1 True Positive 
True positive is defined as the ability of a test to identify the correct one with a condition. A test 

with a high true-positive rate will nearly always be positive for the object who have the condition (the test 
has a low rate of false-negative results). The true-positive rate is also known as sensitivity. It indicates the 
likelihood that the object with a positive test result would actually have the condition for which the test is 
used. The higher the value of the positive predictive value (for example, 90 percent would be considered a 
high value), the more useful the test is for predicting that the object has the condition. 
 
4.4.2 False Positive 

The false positive rate is the proportion of absent events that yield positive test outcomes, i.e., the 
conditional probability of a positive test result given an absent event. The false positive rate is equal to the 
significance level. The specificity of the test is equal to 1 minus the false positive rate. In statistical 
hypothesis testing, this fraction is given the Greek letter α, and 1 − α is defined as the specificity of the test. 
Increasing the specificity of the test lowers the probability of type I errors, but raises the probability of type II 
errors (false negatives that reject the alternative hypothesis when it is true). 
 
4.4.3 True Negative 

True negative is defined as the ability of a test to identify correct one without the condition. A test 
with a high true-negative rate will rarely be wrong about who does not have the condition (the test has a low 
rate of false-positive results). The true-negative rate is also known as specificity. It indicates the likelihood 
that objects with a negative test result would not have a condition. The higher the value of the negative 
predictive value (for example, 99 percent would usually be considered a high value), the more useful the test 
is for predicting that the object do not have the condition. 
 
4.4.4 False Negative 

The false negative rate is the proportion of events that are being tested for which yield negative test 
outcomes with the test, i.e., the conditional probability of a negative test result given that the event being 
looked for has taken place. In statistical hypothesis testing, this fraction is given the letter β. The "power" (or 
the "sensitivity") of the test is equal to 1− β.  
 
4.4.5 Accuracy 

The accuracy of a measurement system is the degree of closeness of measurements of a quantity to 
that quantity's actual (true) value. That is, the accuracy is the proportion of true results (both true positives 
and true negatives) in the population. It is a parameter of the test. 

TP TN
Accuracy

TP FP FN TN




    
 
 
5. PERFORMANCE AND COMPARATIVE ANALYSIS RESULTS 
5.1 Effectiveness Analysis  

The effectiveness of our work is compared with the Manku et al.’s work in terms of various 
evaluation metrics. The experimentation is carried out using 75,000 web pages, which are divided into three 
categories. In the first set, we have considered the 30,000 web pages and 25,000 pages are the near duplicate 
of these pages by adding some more keywords in these web pages in the third set, non-duplicate web pages. 
In order to construct the database, first set of web pages are taken and it has been preprocessed with a set of 
operations so that top-10 frequent keywords are extracted. These keywords and their frequency are stored in 
the database for our work. But, in Manku et al.’s work, fingerprint of the web documents and it permutation 
are stored in the database. 

In effectiveness analysis, all the web documents are preprocessed and matched with pages that are 
already in the database. The first and second set of document should be near duplicate and the third set of 
documents should be non-duplicate documents. At the same way, we have matched all web documents with 
the database to find whether the input documents are duplicate or no-duplicate. Then, the evaluation metrics 
is computed based on the definition given in the previous chapter. The same experiments have been 
conducted for the various matching threshold. In manku work, the bit difference threshold (k) is fixed like, 2, 
3 and 4 and in our work, the actual threshold fixed by our experiments is 19.5043. For fixing the value of k, 
the SSM values [0,5), [5,10), [10,15) and [15,19.5] is fixed from 1,2,3 and 4 respectively. For the various 
threshold values, the evaluation metrics are found out and the graph is plotted. 

In figure 1, True positive of both the works are computed and plotted as graph. From the graph, we 
can analyze that our work has obtained the TP of 42,900 which is compared with existing technique that has 
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achieved 42500. This concludes that the number of correctly identified pages as duplicate is high compared 
with the existing technique. Also, if the matching is varied to the higher values, the behavior of both the 
algorithms is similar. Both the algorithms improve their performance in identifying the exact duplicate 
documents.  

Figure 2 is plotted for the false positive of both the algorithms for various matching threshold. When 
comparing the performance of both the algorithms in terms of FP, the proposed algorithm is better compared 
with the previous algorithm. Our algorithm obtained 10,443 as FP for the threshold of two, but the existing 
algorithm achieved 10583. This ensures that non-duplicate documents incorrectly identified as duplicate 
documents have been reduced for our algorithm compared with the existing technique. 

Figure 3 is plotted for the true negative of both the algorithms for various matching threshold. When 
comparing the performance of both the algorithms in terms of TN, the proposed algorithm is better compared 
with the previous algorithm. Our algorithm obtained 9490 as TN for the threshold of four, but the existing 
algorithm achieved 9,300. This ensures that non-duplicate documents correctly identified as non-duplicate 
documents have been improved for our algorithm compared with the existing technique.  

Another evaluation metric utilized in our work is FN that considers the non duplicate documents 
incorrectly identified as duplicate documents. Based on that, for various matching thresholds, FN value is 
computed for both the algorithms and it is plotted as graph shown in figure 4. After analyzing this graph, 
both algorithms achieved the similar value for the first two thresholds. But, for the k value of four, our 
algorithm has obtained 12050 while the existing algorithm achieved 12600. 
  
 

 
 

Figure 1 Graph plotted for True positive 
 
 
 

 
 

Figure 2 Graph plotted for false positive 
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Figure 3 Graph plotted for True Negative 
 
 
 

 
 

Figure 4 Graph plotted for False Negative 
 
 

Figure 5 shows the sensitivity of our algorithm with existing technique. From the graph, the 
performance is increasing when the matching threshold is increased.  Here, the performance is similar for the 
thresholds, 2 and 3. But, for the threshold of four, our algorithm has performed even better of previous 
algorithm. Our algorithm achieved an improvement of nearly 1% in near duplicate detection process 
compared with existing technique. 
 
 

 
 

Figure 5 Graph plotted for sensitivity 
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Figure 6 shows the specificity of our algorithm with existing technique. From the graph, the 
performance is increasing when the matching threshold is increased.  Here, the performance is different for 
all the thresholds, 2, 3 and 4. For the threshold of four, our algorithm achieved an improvement of 1% in near 
duplicate detection process compared with existing technique. 

Figure 7 shows the accuracy plot of both the algorithms. Here, the performance is better for all the 
thresholds even with the existing technique. Here, for the smaller thresholds, the performance is slightly 
improved but, for the large threshold, the performance of our algorithm achieved 1% improvement with the 
existing technique. And also, this chart suggests that the better threshold for this experiment is k=4 for both 
the algorithms. Figures 8 and 9 shows the FP and FN rates. From all the graphs, the performance is better for 
our algorithm and threshold suggested for near duplicate detection process is four. 
 
 

 
 

Figure 6 Graph plotted for specificity 
 
 

 
 

Figure 7 Graph plotted for accuracy 
  
 

 
 

Figure 8 Graph plotted for FP rate 
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Figure 9 Graph plotted for FN rate 
 
 
5.2 Scalabilty Analysis 

This section describes the scalability analysis of both the methods. The scalability analysis is needed 
to find how the algorithms are behaved when the size of the data is continuously changed to higher value. 
The scalability of both algorithms is compared with computation time needed to database construction, 
memory space needed to store the fingerprint/keywords and the space complexity.  
 
5.2.1 Computation Time Anaysis 

Time is one of the most significant parameter that can effectively determine the complexity of the 
algorithm. In simple terms, it can be defined as the runtime of the algorithm. Time can be employed as an 
effective measure in investigative studies to determine the better of the n algorithms considered. In our 
consideration, 

 Manku et al.’s fingerprint based approach, the computation time is considered as the time taken 
to perform exact bitwise match between the query fingerprint and the stored permuted 
fingerprints. Roughly, for k=3, the query fingerprint has to be matched with nearly 2240 
permutations of a single fingerprint. The condition becomes more intricate with n fingerprints 
available in the repository. 

  Similarly, in correspondence to our proposed similarity score based approach; the computation 
time is considered as the time taken to compute the consolidated similarity score between the 
query and the reference web page.  

Figure 10 is plotted for computation time needed for inserting the keywords/fingerprints of all the 
web pages to the database. Here, whenever the number of pages is increased, the computation time is also 
increased in the same way for both the algorithms. But, the insertion time of our algorithm is comparatively 
high compared with the existing algorithm when the number of pages inserted into the database is high. 
While analyzing the graph, we found that our algorithm took much computation time to insert a set of 
keywords for the particular web pages. For 5k web pages, our algorithm took 15000 sec but, existing 
algorithm took only 10500 sec. Due to finding of frequency, our algorithm took slightly high computation 
time compared with existing technique.   
 
5.2.2 Memory Usage Anaysis 

Memory is an important resource for an application, so it’s important to think about how an 
application will use memory and what might be the most efficient allocation approaches. Most applications 
do not need to do anything special; they can simply allocate objects or memory blocks as needed and not see 
any performance degradation. When we are creating an application that can be memory-intensive, it may be 
useful to monitor the current memory usage. This allows us to modify the behavior of the program as its 
RAM requirements increase and to predict out-of-memory exceptions. 
 

0.205

0.21

0.215

0.22

0.225

0.23

0.235

0.24

0.245

0.25

2 3 4

F
N

 r
at

e

k

Narayana et al.

Manku et al.



                ISSN: 2088-8708 

IJECE  Vol. 2, No. 6,  December 2012 :  819 – 830 

828

 
 

Figure 10 Time complexity Analysis Graph 
 
 

Figure 11 is plotted for the memory needed to execute both algorithms for various set of web pages. 
Here, the performance of both the algorithms is almost similar for various set of pages. The only difference 
we saw from graph is that our algorithm achieved significantly higher memory for 10k pages.  

 
 

 
 

Figure 11 Memory Analysis Graph 
 
 
5.2.3 Storage Space Complexity Analysis 

Another most well-known complexity measure used for delineating an algorithm’s complexity is the 
storage space incurred. With ideal detection accuracy achieved by both the approaches considered, we take 
up storage space (memory overhead) as another parameter for comparative analysis. Generally, prior to near-
duplicate detection, every repository is likely to have hundreds of reference web pages (signatures) that are to 
be checked with the query web page. So, the term ‘storage space’ describes the memory space incurred to 
store those signatures or keywords of all those reference web pages, say n.  

Here, we have considered 25k web pages and its corresponding information is stored in the database 
for duplicate detection process. For our algorithm, the top-10 keywords are stored in the database but the 
existing technique stored fingerprint and its possible permutation. Figure 12 shows the performance of the 
scalability issue in database construction. Whenever the web pages are increased, the space complexity is 
also increased. But, the percentage of increasing is less for our algorithm compared with existing technique. 
From the graph, we can assure that our algorithm is scalable compared with the existing technique. After 
adding 30k web pages, the space needed for our algorithm is 1*exp10. But, the existing technique is needed 
2.6*exp10 which is more than double of our algorithm.   
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Figure 12 Space Complexity Analysis Graph 
 
 
6. CONCLUSION  

The experimentation has been carried out using the 75k web pages and the effectiveness and 
scalability are analyzed for our algorithm and the existing technique. From the effectiveness analysis, our 
algorithm has achieved better accuracy compared with the existing technique. Additionally, the scalability of 
our algorithm is achieved by our algorithm in terms of space needed to store the extracted web information. 
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