
International Journal of Electrical and Computer Engineering (IJECE)
Vol. 7, No. 4, August 2017, pp. 2261 – 2277
ISSN: 2088-8708 2261

Institute of Advanced Engineering and Science

w w w . i a e s j o u r n a l . c o m

A Proposal for End-to-End QoS Provisioning in
Software-Defined Networks

Francesco Lucrezia1, Guido Marchetto2, Fulvio Risso3, Michele Santuari4, and Matteo Gerola5

1,2,3Polytechnic of Turin, Torino, Italy
4,5CREATE-NET, Trento, Italy

Article Info

Article history:
Received: Feb 17, 2017
Revised: Jun 2, 2017
Accepted: Jun 17, 2017

Keyword:
QoS
Provisioning
Networking
SDN
ONOS

ABSTRACT

This paper describes a framework application for the control plane of a network infras-
tructure; the objective is to feature end-user applications with the capability of requesting
at any time a customised end-to-end Quality-of-Service profile in the context of dynamic
Service-Level-Agreements. Our solution targets current and future real-time applications
that require tight QoS parameters, such as a guaranteed end-to-end delay bound. These ap-
plications include, but are not limited to, health-care, mobility, education, manufacturing,
smart grids, gaming and much more. We discuss the issues related to the previous Integrated
Service and the reason why the RSVP protocol for guaranteed QoS did not take off. Then
we present a new signaling and resource reservation framework based on the cutting-edge
network controller ONOS. Moreover, the presented system foresees the need of considering
the edges of the network, where terminal applications are connected to, to be piloted by dis-
tinct logically centralised controllers. We discuss a possible inter-domain communication
mechanism to achieve the end-to-end QoS guarantee.

Copyright c© 201x Institute of Advanced Engineering and Science.
All rights reserved.

Corresponding Author:
Name: Francesco Lucrezia
Affiliation: Polytechnic of Turin, Italy
Address. Corso Duca degli Abruzzi, 24, 10129 Torino, Italy
Email: francesco.lucrezia@polito.it

1. INTRODUCTION
Internet service providers (ISPs) are striving to innovate their network infrastructures at the pace content

providers do with their services. Digital contents are consumed by smart phones and sophisticated terminal stations
that continuously evolve together with the applications they host. Interestingly enough, the evolution of the Over-
The-Top (OTT) services is mainly happening without the aid of network service providers, within the best-effort data
traffic channel in the access networks. Recently, a new plethora of applications requiring a RTT delay of around 1ms
have been grouped under the hat of tactile-internet applications: a tactile sensor reads information and a connected
system reacts with actuators seen by a human within 1 ms [1].
Although we are still far from achieving end-to-end RTT of around 1ms with wireless communications, ISPs need to
be ready to re-architect their software control-plane in order to fully exploit the enormous potentials offered by their
infrastructures.
The goal of this paper is to present the design and a prototype implementation of a control-plane network application
for provisioning dynamic end-to-end QoS profiles to end-user applications. The current adoption of distributed control
algorithms forces the use of the same signaling protocol (e.g. RSVP, BGP-LS) in all the data-path nodes, not taking
into account the resistances inevitably present between device vendors and between administrative domains. For this
reason the Service-Level-Agreements (SLAs) between a service provider and its customers or between providers are
still mainly static. Moreover, the experience has shown that the scalability issue of the core network in maintain-
ing per-flow state for resource reservation in each node along a path prevented the diffusion of RSVP and integrated
services in general. As discussed in [2], per-flow service treatment does not scale in the Internet core; backbone
routers must be fast and only an aggregate behaviour is feasible. Instead, it is important to enable such treatment

Journal Homepage: http://iaesjournal.com/online/index.php/IJECE

Institute of Advanced Engineering and Science

w w w . i a e s j o u r n a l . c o m

Lenovo
Typewritten Text

Lenovo
Typewritten Text

Lenovo
Typewritten Text
, DOI: 10.11591/ijece.v7i4.pp2261-2277

Lenovo
Typewritten Text

2262 ISSN: 2088-8708

at the edge of the network where mass of users enjoying a mixture of heterogeneous applications share indistinctly
the same portion of the network as in the case of cellular access networks; performance degradation is likely to hap-
pen in the access links where an increasing number of traffic sources and sinks can introduce a significant amount
of queueing delay. Given these considerations, we believe that an hybrid combination of flow-based and class-based
traffic treatment, respectively at the edge and in the core of the network, could enable guaranteed services for current
and future real-time applications. Since these applications could have terminals deployed all around the globe, the
end-to-end provisioning will have to span a chain of administrative domains, requiring an east-west communication
interface to convey data that vary from classic inter-domain routing information exchanged via BGP. If we make the
assumption that QoS requirements requested by the customer applications are satisfied in the core network, at least for
what concerns a delay bound, and up to a maximum bandwidth allocation, then we can think to overlay an integrated
service scheme on top of the current deployments where class-based treatment is applied, as long as the resource
admission control system is able to map the dynamic service requests to the statically allocated resources in the core.
Our proposal is a signaling scheme for path reservation and configuration whose implementation does not require the
involved data-path devices to be bound to a single control protocol. The aim is to solve the interoperability problem
in provisioning end-to-end guaranteed services, in a multi-vendor, multi-technology and multi-domain environment
by exploiting current software technologies advances; in particular, the decoupling between functional intents and the
way they are accomplished is crucial.

The paper is organised as follows: Section 2. gives a high level description of the complete system workflow,
the first part of Section 3. is dedicated to a general introduction to the QoS and to the Internet technologies adopted
to achieve it. Here is where the most of the related works are considered. Then it focuses on our specific use-case
scenario and on the RSVP critical issues. In Section 4. we discuss the communication interface between clusters or
domains of networks required to achieve the end-to-end provisioning, while in Section 5. a brief contextualisation
of our work into a policy management system is presented. Section 6. and all its subsections contain the specific
details of our prototype system implementation and Section 7. presents some benchmark results on the service request
computation time. Finally, Section 8. concludes the paper.

2. SYSTEM WORKFLOW
The overall process is activated upon the occurrence of some external event, either sensorial or caused by

the human will, that triggers the dispatch of a request sent by the user application. The request contains a user au-
thentication token, an application identifier, information about an endpoint to contact together with additional flow
specifications, and a QoS profile containing delay and bandwidth requirements, plus an amount of time (or an estimate
of it) for which the profile is required. A previous agreement between the user and the network operator is made in
order to convey to a traffic plan based on its dynamism, amount of data, QoS parameters, number of requests and
possibly other parameters. The request is sent to a manager application running on top of the local domain controller
that is listening for incoming connections from registered users. The authentication token, previously generated in a
hand-shake phase is verified and the content of the payload is parsed and elaborated as follows.

The endpoint information, either a destination address (L2 or L3, depending on the use-case) or the hostname
of the machine to be contacted, is used as look-up key to get the collection of candidate paths existing between the
end terminals of the user application. Then an admission control routine runs to check the availability of a suitable
path where resources are to be reserved for the subject QoS profile. Once a path is selected, the network application
has to instruct the core controller to setup a priority flow between the endpoints of the user application; for the sake
of simplicity, we will refer to point-to-point paths, although the solution is equally applicable to paths with multiple
destinations (> 2).

It may be necessary to establish connectivity between the endpoints, other than traffic control’s rules. For
example, in a pure Openflow network where none of the routing protocol suite runs in the data-path devices, the
controller would prescribe a set of flow rules containing forwarding instructions, together with QoS constraints. If
forwarding rules have been previously installed on the data-path devices, then only traffic classification and shaping is
to be done through device-specific configurations.

To setup a priority flow, the manager application issues the setup of custom queues in the devices along the
selected path and sends an intent request to the controller’s core with the specification of the target flow. An intent
is an abstraction used by the applications to specify their high-level desires in form of policies. The ONOS network
controller [3], used in our prototype implementation, is the first open-source controller that provide such feature to

IJECE Vol. 7, No. 4, August 2017: 2261 – 2277

IJECE ISSN: 2088-8708 2263

(2) Request

(1) Topology discovery

(4) Path setup

(3) Resource reservation

DOMAIN
CONTROLLER A

Peering Provider

Admission Control

(4) Path setup

DOMAIN
CONTROLLER B

Peering Provider

Admission Control

Figure 1. Reference scenario

10

End-Point
interlink

CLUSTER
A

CLUSTER
B

Network view of
cluster A

Figure 2. Domain topology abstraction

its applications. The intent is then split by the core into device-specific flow rule requests dispatched to the proper
software drivers of the underlying devices. Queues are also configured by means of device-specific drivers.

As mentioned before, the endpoints can normally span multiple domains and, clearly, each domain has to
take care of its portion of the network. A key point of the system is the topology abstraction (Figure 2): all forward-
ing devices of the local domain are exposed to the controller with the same abstraction model, as is an entire remote
domain topology, view as a single device (a big switch) whose ports are connected to terminal endpoints or to other
domain topologies. When the endpoint of the application requesting a priority path resides on a different domain, the
admission control routine recognises the presence of a virtual device associated to the remote domain and as a con-
sequence queries the network manager application of the remote domain in order to establish an end-to-end resource
reservation along the path between the endpoints (Figure 1). Once the process converges, the domain controllers can
simultaneously setup the path in their own portion of the network, the manager application that received the original
request sends a response back to the user application that can start sending priority data over the network.

3. QOS PROVISIONING
3.1. General Discussion

QoS is introduced in packet-switched networks in order to apply a special treatment to specific data packet
flows. At the device level, QoS is achieved through traffic classification, shaping, and scheduling at the egress ports;
at the ingress ports packets are filtered for policing. Classification determines which treatment each data packet has to
undergo, shaping is used to control customer input data rate to conform to the SLAs, while scheduling affects delay
and throughput of the data packet flows. Given conformance to a SLA, scheduling at the network interfaces is the
lowest level operation gearing QoS provisioning, also known as service discipline.

At the path level, QoS is achieved through resource reservation over the whole set of nodes along the path.
The reservation must be secured end-to-end and the resource allocation in one node must be consistent with the others
along the path. A path selection with the end-to-end delay constraint is subject to inaccurate information due to the
dynamic nature of the delay and hence subject to theoretical intractability ([4] [5]). However, end-to-end delay and
delay jitter bounds have been computed by means of network calculus applied to queueing systems modelling the

A Proposal for End-to-End QoS Provisioning...(Francesco Lucrezia)

2264 ISSN: 2088-8708

networks ([6, 7, 8]). Academic and industrial communities have been very active in the last decades in investigating
network models and algorithms to solve the QoS routing problem, also known as the multi-constrained path compu-
tation problem ([9, 10, 11, 12, 13, 14, 15]). In [2] they cover all the important components of the QoS provisioning
in Internet as it has been conceived in the last decades: integrated services, RSVP ([16, 17]), DiffServ [18], Multi
Protocol Label Switching (MPLS [19]) and constraint-based routing.

Today network operators employ MPLS mainly for layer 2 and Layer 3 Virtual-Private-Network (VPN) ser-
vices ([20]), while constrain-based routing for Traffic Engineering (TE) operations is complex to achieve in a complete
distributed control-plane. Moreover, TE is not useful in presence of congestion. This happens at the bottleneck links
that typically reside in the last mile towards the customers. DiffServ model within a single AS is employed by ISPs
for class-based treatment of the data packets; but the validity of the Type of Service (ToS) field in the packet IP header
may lose completely meaning when traversing multiple administrative domains. In other words, within a single ad-
ministrative domain the class-based QoS provisioning is theoretically easy to achieve and technology is not the hurdle,
while policy and economic factors have the major impact on the fate of the QoS provisioning in the multi-domain
scenario. IntService and the RSVP signaling protocol instead did not take off even within the single administrative
domain. RSVP is used for labels distribution in G/MPLS but it failed in its primordial intent. In order to accomplish
the process described in Section 2. an end-to-end guaranteed service must be provided. In the next section we discuss
the critical issues of RSVP and in what our proposal differs from it.

3.2. Comparison with RSVP

Path Computation and Routing. RSVP uses a combination of Constrained Shrotest Path First (CSPF) algo-
rithm and Explicit Route Objects (EROs) to determine how reserved traffic and signaling messages are routed over the
network; RSVP is a distributed signaling protocol and it needs routing to work. EROs are a mean to explicit indicate
some nodes that must belong to the reserved path; in order to force a specific path through a set of nodes you should
enter and configure each node with specific EROs instructions. If the total bandwidth reservation exceeds the available
bandwidth specified across the link for a particular path segment, the path must be recomputed through another route.
If no segments can support the bandwidth reservation, path setup fails and the RSVP session is not established.

In our solution the path computation is independent from the routing protocol. Different routing and for-
warding scheme can be used to build the path in the underlying network: flow-rules, labels, tunnels. But no routing
of the signaling scheme is needed; centralised path computation is clearly much faster and protocol-independent. The
controller only needs the view of the topology as a connected graph. To force the reservation in a specific path, you
can directly reserve resources and install forwarding rules into the proper devices at once. The candidate paths are
collected from the store and a suitable one is found before injecting resource reservation rules into the network. This
occurs in the centralised controller within a single software process.

RSVP is simplex. In RSVP the reservation process is applied in a single direction of the path. To have full
duplex reservation, the number of operations and the messages exchanged are doubled.

In a centralised network controller, you can equally provide simplex or duplex reservation via a single soft-
ware entity.

Admission and Policy Control. RSVP Admission and policy control is applied to each node. So RSVP
implementation must be integrated with each node’s traffic and policy control module, thus increasing the chance of
interoperability. RSVP must provide QoS service characterisation within opaque objects parsed by each network node.

In our proposal the QoS service characterisation is completely decoupled by the signaling protocol/scheme
and must be embedded only into the front-end APIs consumed by the customer applications. The admission and policy
control is applied only once, in each domain, in the central controller. An RPC-based mechanism is used for configur-
ing the traffic control module given the possibility to fulfil the request. Our prototype relies on ONOS. ONOS provides
common abstracted behaviours for traffic selection and treatments that are translated into device-specific rules.

First speaker. RSVP session initiator is the inbound router running RSVP in conjuction with other protocols
(e.g. MPLS or GMPLS in case of label distribution). If RSVP is embedded in a host application, then the first net-
work node should speak RSVP, otherwise a tunnel between the application and the first RSVP-capable device shall be

IJECE Vol. 7, No. 4, August 2017: 2261 – 2277

IJECE ISSN: 2088-8708 2265

created thus increasing the number of operation required for RSVP signaling to work.

In the presented solution the session initiator is a user application featured with proper APIs for contacting
the controller. The idea is to keep the API consumer implementation as simple as a REST client that has the capability
to create, remove, update and delete a priority path. Such client would be provided for different software environments.

Scalability. As per [21], the scaling problems of RSVP are linked to the resource requirements (in terms
of processing and memory) of running RSVP. The resource requirements increase proportionally with the number of
sessions. Each session requires the generation, transmission, reception and processing of RSVP Path and Resv mes-
sages per refresh period. Supporting a large number of sessions, and the corresponding volume of refresh messages,
presents a scaling problem.

A centralised control plane presents the same scalability issues concerning the state maintenance of an in-
creasing number of sessions in the data-path nodes. But it only matters the traffic control and flow rules, while
processing and singnaling overhead are significantly lowered.

Complexity. Finally, and maybe the most relevant obstacle to success, RSVP is complex because it was
designed with IP multicast in mind, intermediate nodes have to merge resource reservation requests coming from the
receiver nodes. Moreover, the basic RSVP reservation model is "one pass": a receiver sends a reservation request up-
stream, and each node in the path either accepts or rejects the request. This scheme provides no easy way for a receiver
to find out the resulting end-to-end service. To solve this issue an enhancement was proposed [22], introducing further
complexity in the concretization of RSVP and the integrated services in general.

Orchestrating the data-path nodes from within a central controller avoids the issues related to the exchange of
asynchronous signaling messages. The decision process not being distributed decreases the complexity in maintaining
a single state of the system.

3.3. End-to-End Behaviour

The end-to-end QoS profile model shall follow the one described in the Specification of Guaranteed Quality
of Service [23]. As per [23], "the end-to-end behaviour provided by a series of network elements is an assured level of
bandwidth that, when used by a policed flow, produces a delay-bounded service with no queueing loss for all conform-
ing datagrams". We invite to refer to the specifications for further clarification about the QoS model taken into account.
Each network node must provide a service that matches, with some error bounds, the fluid model ([24, 25]) through the
token bucket scheme with paramters (b, r, p), respectively the bucket size, the token rate and the peak rate. The QoS
request includes a maximum end-to-end delay bound, dreq , that shall be guaranteed between the application terminals.

In the centralised controller, the link providers are responsible for notifying the presence of the information
on the links they are provider for (propagation delay, transmission capacity and the maximum transmission unit); these
information are stored in the controller database upon discovery of the link itself. Likewise, the device providers in
the southbound must export other relevant information, such as the delay error terms representing how the device’s
implementation of the guaranteed service deviates from the fluid model in each network interface (the Ctot and Dtot

in the formula 2 below).

On a link l with capacity cl, we define a minimum bandwidth reserved to the best effort traffic, Rbel . Let Ri

be the allocated bandwidth for a flow i. On each link, the total number of accepted profiles N is subject to:

N : cl ≥ Rbel +

N∑
i

Ri (1)

The end-to-end delay bound as defined in [23] is:

[(b−M)/R ∗ (p−R)/(p− r)] + (M + Ctot)/R+Dtot +
∑
l

dpl (2)

With r <= p <= R, M being the path Maximum-Transmission-Unit and
∑

l dpl
the propagation delay sum.

A Proposal for End-to-End QoS Provisioning...(Francesco Lucrezia)

2266 ISSN: 2088-8708

Statement 1 imposes that the sum of the allocated bandwidths for N flows must not exceed the capacity of
the link. Flows requesting a maximum delay bound are assigned to higher priority queues w.r.t. to the best effort
traffic. It is possible to assign the same high priority queue to more distinct flows, as long as statement 1 holds. R shall
be chosen such that dreq is greater or equal to the value computed in equation 2, provided that dreq is greater than
the fixed delay terms Dtot and

∑
l dpl

. These constraints must apply on all links of a candidate path between the end
terminals of the customer application; a new queue is created for a new flow if they are satisfied. As mentioned in the
previous section, the admission control routine occurs only once per domain (more details in Sec. 4.), in the central
controller. Network elements must export the proper information, while the drivers have to translate a service request
into device-specific traffic control rules.

The provisioning of a guaranteed service along a path of several devices and links is possible only through
a cross-vendor and cross-technology solution. This leads to the adoption of software driver modules installed into
the centralised controller. These drivers converts the protocol-agnostic rules into device-specific instructions and are
essential to solve the interoperability problem derived by the presence of devices from multiple vendors and technolo-
gies. For example, in a LTE cellular network, the high-level profile is mapped to a standardised QoS Class Identifier
(QCI) by the proper software driver; the mapping would be followed by the setup of the packet data network gateway
and the mobile station with some scheduling rules applied to the target data flow [26]. The same high-level profile has
to be translated into a specific setup on the backhaul that provides the connectivity towards the core network consisting
of all the required switches to aggregate the traffic from the access cellular network [27]. These switches could be, for
instance, pure Linux devices in which case the driver would execute a remote procedure call configuring the involved
interfaces with the well-known commands suite tc qdisc, tc filter and tc class for setting up the queues. If instead a
switch is an Openflow-enabled device, classification and priority come within the forwarding rules, while the queue
configuration for the service discipline must be supplied on a separate communication channel, for example, through
OVSDB protocol in Open-vSwitch [28] (Fig 3).
Together with the local domain (or local cluster in the single administrative domain) our framework adds the reflection
of such operations into the remote domain (cluster) where the endpoint of the customer application requesting the
service resides.

Note that we control the edge devices on each side of the communication while leaving aside the backbone
routers where per-flow service treatment does not scale. While rfc-2212 states that all the nodes of a path should take
part of the resource reservation process for equation 2 to hold, we argue that the dynamic resource reservation at the
edge of the network can occur transparently w.r.t. the statically allocated resources of the core where the QoS exists
only for classes of traffic, rather than flows, in form of virtual circuits created with protocols such as MPLS or GMPLS
(Fig. 4). If the backbone is treated as a composition of these circuits rather than a composition of nodes and links, then
a resource mapping between the dynamic and the static portions of the network resolves in representing these circuits
as aggregate elements into the topology view of the controller. Path-Computation-Element (PCE) describes a model
to address the problem of constrain-based path computation in conjunction with a label switched protocol ([29, 30]).
An all in one orchestration framework for the complete set of the network elements is left as a future work.

Ingress
Policing

Forwarding

PRIO 0

PRIO 1

Queuing

Ingress
Policing

Forwarding

Queuing

Controller

Linux tc
driver

Openflow
driver

OVSDB
driver

Linux device

OVS bridge

RPC
• tc qdisc
• tc filter
• tc class Queue config

• queue id
• queue min bw
• queue max bw

Flow config
• set queue
• set priority

Figure 3. Driver modules in the controller are the means for device-level configuration of the queues

IJECE Vol. 7, No. 4, August 2017: 2261 – 2277

IJECE ISSN: 2088-8708 2267

Dynamic	resource	allocation	

Static	resource	allocation
(e.g.	MPLS	channels)	

Figure 4. Two allocation schemes for two layers of the network

4. EAST-WEST COMMUNICATION INTERFACE
When the terminals of the application requiring a priority path are located in two portion of the network pi-

loted by distinct controllers, a communication mechanism between these controllers is necessary in order to exchange
the proper information during the reservation process. From hereafter, we will use the term domain and cluster inter-
changeably to indicate distinct portions of the network.
At the origin of the communication, there is the route discovery phase to share the endpoints of each domain. A design
choice is to be made on how and when to expose the network element parameters related to the topology itself. There
are two options: a) sharing these information during the route discovery phase, or b) avoid to pre-share the parameters
and collect them during the resource reservation process on-demand, that is, every time a new request arrives.
Suppose we have a portion of the network under domain A, and another portion under domain B, then suppose that at
some point in time an application connected to A asks for a priority path that includes an endpoint in domain B. The
two different approaches are described in the following sections.

4.1. Pre-Shared Network Parameters and Bandwidth Resource

With option (a), the controller A has already all the information required for the end-to-end admission control
routine when the request arrives. This means that the topology exposed by B to A shall include all the necessary
network infrastructure parameters, (cl,MTU,Ctot, Dtot, d

prop
tot)p for all p in the set of paths that B is willing to expose

to A, which in turns implies that the exposed topology shall be detailed enough for A to select a suitable path. This
requires a more complex topology abstraction than the single big switch as depicted in Fig. 2, because clearly with
the single node abstraction you cannot have as many path properties as you would have with a network of nodes. You
can always achieve a certain level of aggregation by hiding elements of the B topology, by computing the aggregate
parameters for some paths towards the destinations and then exposing a virtual topology composed by only these
paths. In this case each domain controller should maintain a mapping between the local physical devices and links
and the virtual ones exposed to the remote domains. Other than the topology abstraction, there is one major issue
with this approach: the computation of the aggregate, rate-related delay error term, Ctot, which is theoretically not
feasible when the computation occurs, for instance, in the domain controller A for some devices of domain B, because
C depends on the parameter r, the rate requested by a user application. So either C, expressed as a function of r for
each device, is shared during the topology discovery phase, which means exposing the entire topology, or it must be
computed on-demand, by the domain controller B as described in the next section.

4.2. On-demand Network Parameters and Bandwidth Resource

In this case, the path parameters are collected and exchanged during the admission control routine. The do-
main B is requested to run the resource reservation process in its own domain. Controller A forwards the application
request parameters (i.e. dreq , the tuple (b, r, p), the domain ingress point and the target destination) to B, which replies
with a tuple (M,Ctot, Dtot, dp)

B and an upper bound on R, chosen based on a proper selected path, if available, so
that A can compute the end-to-end delay bound before proceeding with the actual reservation and path setup. This
way the topology abstraction can be kept as simple as a single big switch whose function is to merely offer a point of
connection to the remote destinations to any domain controllers with which there is a peering. The network parameters
and the resource selection comes directly from an up-to-date decision process made within the concerned domain. The
computation of Ctot can be actually computed while masking the details of the local topology. This approach is the
choice of our implementation prototype described in the rest of the article.

A Proposal for End-to-End QoS Provisioning...(Francesco Lucrezia)

2268 ISSN: 2088-8708

4.3. Resource Management

The network parameters used for the delay bound computation in equation 2 are mainly static, except for
the bandwidth R, the dynamic network resource under consideration. We assume unlimited buffer space for the
queues, or at least enough to fill the entire bandwidth resource in any link of the network. Within each domain a
resource management system should track the allocated and the available bandwidth in each link of the underlying
network. From the inter-domain communication perspective, the bandwidth resource management unfolds three cases
depending on the use-case scenario:

• Full share. The bandwidth is completely shared between applications, regardless of the domain they reside.
This can be the case where the control plane of a single administrative domain is split into multiple regions
for performance reason or because of different underlying physical networks. In this scenario, it is necessary
to update the exposed resource each time an application obtains or releases a portion of the bandwidth. Upon
a new allocation or release in one domain, a message is sent in broadcast to all the other domains with which
there is a peering. The message is read by the remote controllers and their local resource stores are updated
accordingly. In the on-demand mode of communication, Section 4.2., each domain manages its bandwidth
resource independently and only during a reservation process the resource availability in a remote domain is
determined.

• Partial share. This case is equal to the previous one but only a portion of the bandwidth is shared with the
remote domains.

• Partial static share. A domain controller advertises to each remote controllers a virtual value of the bandwidth
resource during the route discovery phase and no further update messages are exchanged between controllers.
This value is the static portion of the bandwidth allocated to each remote domain. In this case, also with the on-
demand mode of communication a controller can determine the availability of bandwidth even before contacting
a remote domain. This is the case of the multi administrative domains scenario.

5. POLICY ENFORCEMENT
Policy-based QoS management is of primary importance for network operators. If the service discipline at

the network interface is the lowest level operation gearing QoS, at the top level we have the SLAs expressed in terms
of policies. The SLAs consist of a set of specifications that are translated by the network manager into device level
primitives (e.g., forwarding rules, queue configurations, traffic shaping policies, etc.). In [31] [32] the authors pro-
pose automatic policy based management system in the Internet DiffServ architectures. They present a framework
for policy management that reacts to network state changes or customer users requests to dynamically re-adapt the
policy enforcement. In [33] a management framework for automatic policy enforcement is introduced in a network
controller based on Openflow; they describe all the necessary functional components of the system without entering in
the implementation details of any of them thus avoiding to discuss how do they actually interact between each other.

The focus of the present article is on the QoS provisioning in the economic context of dynamic SLAs; this
framework foresees the possibility to be integrated with an existing policy-based management system. The concerned
SLAs are between a service provider and its customers and between service providers who cooperate to provide an
overall service that can span multiple administrative domains. Between the customer and the provider, a set of APIs
can be embedded directly into the customer applications and layered on top of an existing policy management system.
The network operator could also provide ready-to-use applications for specific services (e.g. a remote health control
system). Here we limit the discussion by listing the additional information needed by the policy manager in order to
conform the ingress traffic to the dynamic SLAs.

Policy to regulate the interaction with customer applications:
• List of user and application IDs that are allowed to request a service

• Upper bound on the amount of bandwidth each user could request

• Maximum amount of time each user is allowed to retain a priority path

• Amount of bandwidth reserved to the best effort traffic

• Set of destinations for which a user could request a priority path

• Set of network elements that cannot be part of the reservation process

• Pre-configured queues for selected customers or applications

IJECE Vol. 7, No. 4, August 2017: 2261 – 2277

IJECE ISSN: 2088-8708 2269

Policy to regulate the interaction between providers:

• List of peer domains that are allowed to interact with the local domain

• List of destinations to expose to the remote domains

• Topology abstraction to expose to the remote domains

• Virtual bandwidth resource associated to the exposed destinations

• Aggregate parameters selection, MTU,Ctot, Dtot, dp

• Number of total service requests that a remote cluster is able to perform

• Pre-configured queues for selected peers

6. ARCHITECTURE
6.1. High-level System Components

The main functional modules in the control plane are protocol agnostic thanks to the separation of concerns
given by the network controller architecture of ONOS (see Section 6.2.) that is partitioned into:

• Protocol-aware network-facing modules that interact with the network

• Protocol-agnostic system core that tracks and serves information about network state

• Applications that consume and act upon the information provided by the core

At the application layer resides the admission control and resource allocation routine. It guarantees the correctness of
the QoS provisioning to the end-user applications; it has to dynamically setup and teardown multiple and concurrent
QoS profile sessions and verify that everything in the underlying network is up-to-date and in a consistent state. In the
core controller there are several components required to accomplish the complete reservation process, see Figure 5,
while in the network-facing layer we have as many drivers as the number of different devices in the underlying net-
work and a communication interface used to exchange data between the domain network controllers. Such interface
has to take into account several aspects of the system: routes to destinations discovery, network topology elements
exposition, resource reservation parameters and a policy-driven mechanism to abide to the SLA made between the
involved administrative domains. We leverage on a project called ICONA to fulfil the remote topology and destina-
tions discovery function, see Section 6.4.. The resource reservation parameters are currently exchanged during the
admission control routine at the application layer, using a prototype REST channel interface. The integration with a
policy manager is left as a future work.

Path Manager

Admission Control

Front-End APIs Profile Store

Queue Configuration Intent Installer

Topology Manager

Net. Elem. Store

Resource Manager

Device Manager

Domain Manager

Intent Manager

FlowRule Manager

Driver Manager

Device Drivers Remote Domain Topology
Provider

Application

Core

ProtocolsProtocols

Figure 5. Controller’s Main Components

A Proposal for End-to-End QoS Provisioning...(Francesco Lucrezia)

2270 ISSN: 2088-8708

Application

Northbound – Intent Framework
(policy enforcement, conflict resolution)

Distributed Core
(scalability, persistence, availability)

Southbound
(discover, observe, program, configue)

Openflow NetConf OVSDB

Figure 6. ONOS distributed architecture

6.2. An overview of ONOS

The Open Network Operating System (ONOS) is a software defined networking (SDN) OS for Service
Providers, that is targeting scalability, high availability, high performance and abstractions to make it easy to cre-
ate apps and services [34].

ONOS implements a distributed architecture in which multiple controller instances share multiple distributed
data stores with different level of consistency. The entire data plane is managed simultaneously by the whole cluster.
However, for each device a single controller acts as a master, while the others are ready to step in if a failure occurs.
With these mechanisms in place, ONOS achieves scalability and resiliency. Figure 6 shows the ONOS internal archi-
tecture within a cluster of four instances. ONOS is based on software modules managed by the Apache Karaf suite
[35], a set of java OSGi based runtime and applications. It provides a container into which various component can be
deployed, installed, upgraded, started and stopped at runtime, without interfering other components. The southbound
modules manage the physical topology, react to network events and program/configure the devices leveraging on dif-
ferent protocols. The distributed core is responsible to maintain coherent information, to elect the master controller
for each network portion and to share information with the adjacent layers. In case of a failure in the data path (switch,
link or port down), an ONOS instance becomes aware of the event through the southbound modules, computes alter-
native paths for all the traffic crossing the failed element, and notifies them to the distributed core; then, each master
controller configures accordingly its portion of the network. The northbound subsystem offers an abstraction of the
network and the interface for applications to interact and program the NOS. Finally, the Application layer offers a
container in which third-party applications can be deployed. Applications on top of ONOS can benefit of the Intent
Framework. The ONOS core accepts the intent specifications and translates them into actionable operations on the
network environment. These actions are carried out by the intent installation process, such flow rules being installed
on a switch, or optical lambdas (wavelengths) being reserved.

6.3. The Manager Application

The manager application is a standard, on-platform ONOS application. Its main function is the admission
control routine. We separate the routing and resource assignment process into two steps: the collection of candidate
paths between the application terminals through the ONOS PathManager and the selection of the one that satisfies
the constraints imposed by the basic admission control scheme described in Section 3.. The state of the underlying
network resources is tracked by the ResourceManager, backed by a distributed store, which is queried during this
process to reserve the bandwidth resource. The local path parameters are collected by the internal store populated
with the information of the underlying network elements, while in presence of virtual domain devices, the parameters
are queried to the remote controllers and then merged with the local ones. If a suitable path is found using algorithm
1, the bandwidth in each link is temporary reserved (locked), priorities queues are setup in each device through the
QueueManager module and an intent is submitted by the IntentInstaller (Fig. 7). If the installation is successful, the
ResourceManager is requested to allocate the previously locked resource, otherwise a rollback is performed on all the

IJECE Vol. 7, No. 4, August 2017: 2261 – 2277

IJECE ISSN: 2088-8708 2271

previous actions, bandwidth reservation and queues configuration. The collection of the candidate paths is subject to
the constraint imposed by the eq. 1; other criterions may be applied, taken, for instance, by a configured policy. A
REST applet that implements the APIs consumed by the end-user applications and by the remote domain controllers
to request and terminate the setup of priority paths is also part of the manager bundle. All these components exploit
the service-based OSGi model to communicate each other within the platform.

Algorithm 1 Pseudo-code of the admission control routine. *Assuming p >> r,R

1: (b, r, p,mtu, dreq): user app request

2: R← r
3: collect all paths whose spare capacity on each link is ≥ R
4: for all p in paths do
5: if p contains a domain device then
6: collect (R,MTU,C,D,dprop)p from the remote domain
7: merge local and remote path parameters
8: end if
9: R← max{r, (M + Ctot)/(dreq −Dtot − dproptot)}*

10: if R can be allocated along the path then
11: allocate R and setup queues
12: else
13: rollback and try next path
14: end if
15: end for

(r, b, p)
Front-End APIs Admisson control

(C, D, MTU, dp)

PathManager

(src, dst, r) Set<Path>

NetElementStore

(R)

QueueConfing

IntentInstaller
(path, Fspec)

(R, b, p)

TopologyManager

(Fspec)

Config. subsytem

updates

(R, b, p)

(intent)

ResourceManager

IntentManager

QueueManager

Figure 7. Admission control workflow.

6.4. ICONA: Inter-Cluster ONOS Network Application

ICONA [36] extends ONOS to enable:

• a single administrative domain network to be divided into multiple regions controlled by a cluster of controllers
to decrease event-to-response delays, increase the robustness to geographical location faults and distribute the
load, not only among a single cluster, but also among multiple clusters.

• the communication with other administrative domains leveraging on an East-West interface to ensure the full
control of services and events between domains and enforce configuration policies between domains

ICONA divides the SDN control plane in clusters, each one taking care of a portion of the entire geographical network
and provides an east-west communication interface to enable programmability of the entire network. It shares an
aggregated form of the network topology between two or more clusters of ONOS (Fig. 2) and offers a transparent,
end-to-end, programmatic interface to the NB applications to accommodate connectivity requests between two or
more end-points crossing multiple clusters. It is completely transparent to the northbound applications; the remote
topologies are exposed to the core as normal devices (Figure 8) so that applications and users can interact with them

A Proposal for End-to-End QoS Provisioning...(Francesco Lucrezia)

2272 ISSN: 2088-8708

Drivers

Core

SB API
Providers

ICONA

ONOS	CLUSTER	A ONOS	CLUSTER	B

interlinks

Drivers

Core

SB API
Providers

ICONA

Apps Apps
NB API NB API

Figure 8. ICONA as a peering provider

through the ONOS GUI, CLI, the REST and Java APIs. It leverages on ONOS to take advantage of its native fault
tolerance management and scalability.

ICONA is composed by two main logical components: the Provider containing the main logic which is ag-
nostic to the communication protocol and a set of pluggable and independent mechanisms for the communication with
remote clusters representing the Southbound Interface (SI). The decoupling between functionalities and implementa-
tion is achieved through the use of java interfaces, the modularity and the dynamic activation/deactivation of multiple
components is achieved thanks to the OSGi framework. Each peer is associated to a communication mechanism by
configuration. The Provider component receives from the southbound mechanisms the topology of the remote clusters
in form of virtual devices with ports connecting endpoints and/or other cluster topologies. The device provider module
exposes those devices to the core; the same happens for the endpoints attached to the virtual device. These endpoints
are represented in ONOS by a L2 address and a location attribute, plus a number of metadata, such as ipv4/ipv6
addresses, hostname etc. The inter-cluster links are retrieved partially by configuration (link ID and local physical
connect point) and partially by the remote controller that notifies a virtual connect point whose metadata contains the
same link ID. As the reservation process described in the article targets the access network providers, the inter-domain
links represents indirect connections traversing the backbone transit domains. A centralised and automatic inter-link
discovery and fault recovery mechanism is matter of future investigation. A southbound mechanism is an implemen-
tation of the communication system between clusters. Basically, it is a software component in charge of translating
the provider’s requests into protocol-specific, network operations and the remote clusters messages into abstracted no-
tifications via the SI. This component performs the exchange of the information with message encoding and decoding,
and does not retain any system state except the status of the remote clusters. In our prototype implementation we use
a REST client/server peer-to-peer architecture as the communication mechanism. The client is in charge of sending
local topology elements, while the server is responsible to receive remote topology elements from the other clusters.

6.5. Routing and Scalability

With a complete view of the network topology, routing becomes a problem of graph searching; the ONOS
PathManager exports the proper APIs to the northbound applications. Destinations addressing is a matter of use-
case scenario; in our prototype implementation the endpoints are identified by L2 addresses and the infrastructure
devices are Openflow devices, but this does not affect the generality of the system because, as mentioned in 6.1., the
main functional modules like the admission control routine are protocol-agnostic. Currently the topology discovery
is implemented by a full-mesh communication between clusters of ONOS and each cluster only advertises the des-
tinations that are directly connected to the local devices, thus avoiding to implement a distance vector or link state
routing protocol. Every instance of a cluster handles the peering with a subset of all the other clusters through the
LeadershipService of ONOS in order to load-balance the number of peering connections among the ONOS instances.

7. ALGORITHM COMPUTATION TIME EVALUATION
The purpose of this section is to report some benchmark results on the scalability performance of the control

plane of our prototype implementation.

IJECE Vol. 7, No. 4, August 2017: 2261 – 2277

IJECE ISSN: 2088-8708 2273

Table 1. Single-request computation time

N = 50, pl = 0.75 N = 100, pl = 0.75 N = 450, pl = 0.05 N = 500, pl = 0.05
Response 6.392 9.109 201.842 331.055time (ms)

The resource reservation process overhead within a single domain is proportional to:

Dapp,ctl + Talgo +max
n∈N
{Dctl,n}

where:

• Dapp,ctl: latency between the application and the controller

• Talgo: admission control computation time

• Dctl,n: latency between the controller and the nth device

The overhead when considering the endpoints placed in M domains is proportional to:

Di
app,ctl + T i

algo + max
j∈M\i

{Dij + T j
algo}+ max

n∈N,j∈M
{Dj

ctl,n}

where Dij is the latency between domain controller i and j. In [36] we show that splitting the control plane into
multiple clusters improves the event-to-response reactivity by decreasing the Dctl,n term at the expense of adding
communication overhead between clusters. Splitting the control-plane into multiple regions also decrease the algo-
rithm computation time that here we benchmark within a single region.

The overhead is reported against increasing number of concurrent HTTP requests and increasing topology
dimension for a single instance of an ONOS cluster running on a bare metal HP EliteDesk 800 G1 SFF with Intel
Core i7-4770 CPU @ 3.40GHz, 16 GB RAM. Random topologies are generated by assigning a probability pl of link
existence between any two nodes (Bernoulli model) and injected into the ONOS core database. N is the number
of infrastructure devices, c the concurrency level and n the total number of requests per experiment. For N = 450
and N = 500 we exploit the limit theorem according to which the probability that a Bernoulli random graph is fully
connected is distributed as 1−N(1−pl)

(N−1). The thread pool is configured to use up to a maximum of 300 threads.
The computation time Talgo is assumed to start as soon as the request arrives to the REST applet of the manager
application until the drivers for setting up the queues are called. We use a modified version of algorithm 1 in which
the set of candidate paths is chosen with the Dijkstra algorithm for a maximum of five shortest paths, using a link cost
function that forces to infinite the cost of the direct link between two endpoints, if present, while the cost of all the
other links is uniformly distributed between zero and one. The endpoints for each single request are also randomly
generated so are the network parameters for the admission control formula. The Talgo overhead even for networks
with hundreds of nodes (and links and hosts) is of the order of milliseconds (Table 1); in Figure 9(e) 50% of the
requests, at the origin point, are served within one second. However, we encountered serious problems in processing
requests with a concurrency level of 1000 connections with N equal to 450 and 500 so much so that we decided to
not report the numbers. This inefficiency is intrinsic to the ONOS controller that showed a greedy cpu usage of some
hundreds percentage during the tests, due to possibly unnecessary operations on the simulated network elements.
Nevertheless, note that Talgo includes the collection of candidate paths, the transactional allocation process on the
bandwidth resource on each link of any scanned path, the collection and the access to the device drivers for setting-up
the queues. The high values reported in 9(e) 9(f) with a concurrency level of one hundred are given by the failure in
the transactional operation for bandwidth allocation due to possible collisions among the requests. This is certainly a
point of investigation and the prototype application and control framework would need an engineering effort in terms
of scalability performance for a production-ready application.

8. CONCLUSION
In this article we presented a resource reservation scheme for end-to-end QoS provisioning. We analysed

all the essentials aspects of the framework application running on top of a centralised network controller: the ad-
mission control, the inter-domain communication required to achieve the end-to-end guarantee, the interaction with
the core controller components and the employment of software drivers to decouple the functional intents from the

A Proposal for End-to-End QoS Provisioning...(Francesco Lucrezia)

2274 ISSN: 2088-8708

 0

 100

 200

 300

 400

 500

 600

 700

 800

 50 60 70 80 90 100

M
ill

is
ec

on
ds

Percentage of served requests

c=50, n=100
c=100, n=1000

(a) N = 50, pl = 0.75

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 22000

 50 60 70 80 90 100

M
ill

is
ec

on
ds

Percentage of served requests

c=1000, n=5000

(b) N = 50, pl = 0.75

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 50 60 70 80 90 100

M
ill

is
ec

on
ds

Percentage of served requests

c=50, n=100
c=100, n=1000

(c) N = 100, pl = 0.75

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 50 60 70 80 90 100

M
ill

is
ec

on
ds

Percentage of served requests

c=1000, n=5000

(d) N = 100, pl = 0.75

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 50 60 70 80 90 100

M
ill

is
ec

on
ds

Percentage of served requests

c=50, n=100
c=100, n=1000

(e) N = 450, pl = 0.05

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 50 60 70 80 90 100

M
ill

is
ec

on
ds

Percentage of served requests

c=50, n=100
c=100, n=1000

(f) N = 500, pl = 0.05

Figure 9. Percentage of requests served within a certain amount of time

IJECE Vol. 7, No. 4, August 2017: 2261 – 2277

IJECE ISSN: 2088-8708 2275

device-specific traffic control rules. A lot remains to be explore though: the integration between the flow-based and
class-based QoS within the controller, the automation of a policy-driven mechanism to enable dynamic SLA and a
investigation focusing exclusively on the communication design between domains. We believe that the adoption of
centralised controllers orchestrating the infrastructure devices could enable guaranteed services to span multiple do-
mains and wide-area-networks, opening the doors to the fruition of yet-to-be-seen real-time and tactile applications
over the next-generation communication networks.

REFERENCES
[1] G. P. Fettweis, “The tactile internet: Applications and challenges,” IEEE Vehicular Technology Magazine, vol. 9,

no. 1, pp. 64–70, March 2014.
[2] X. Xiao and L. M. Ni, “Internet qos: A big picture,” Netwrk. Mag. of Global Internetwkg., vol. 13, no. 2, pp.

8–18, Mar. 1999. [Online]. Available: http://dx.doi.org/10.1109/65.768484
[3] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide, B. Lantz, B. O’Connor, P. Radoslavov,

W. Snow, and G. Parulkar, “Onos: Towards an open, distributed sdn os,” in Proceedings of the Third Workshop
on Hot Topics in Software Defined Networking, ser. HotSDN ’14. New York, NY, USA: ACM, 2014, pp. 1–6.
[Online]. Available: http://doi.acm.org/10.1145/2620728.2620744

[4] D. H. Lorenz and A. Orda, “Qos routing in networks with uncertain parameters,” IEEE/ACM Transactions on
Networking, vol. 6, no. 6, pp. 768–778, Dec 1998.

[5] R. Guerin and A. Orda, “Qos based routing in networks with inaccurate information: theory and algorithms,”
in INFOCOM ’97. Sixteenth Annual Joint Conference of the IEEE Computer and Communications Societies.
Driving the Information Revolution., Proceedings IEEE, vol. 1, Apr 1997, pp. 75–83 vol.1.

[6] P. Goyal, S. S. Lam, and H. M. Vin, “Determining end-to-end delay bounds in heterogeneous networks,” in
Proceedings of the 5th International Workshop on Network and Operating System Support for Digital Audio
and Video, ser. NOSSDAV ’95. London, UK, UK: Springer-Verlag, 1995, pp. 273–284. [Online]. Available:
http://dl.acm.org/citation.cfm?id=646982.712176

[7] D. C. Verma, H. Zhang, and D. Ferrari, “Delay jitter control for real-time communication in a packet switching
network,” in Proceedings of TRICOMM ‘91: IEEE Conference on Communications Software: Communications
for Distributed Applications and Systems, Apr 1991, pp. 35–43.

[8] H. Jia and Z. Jinhe, “The design of finegrained network qos controller and performance research with network
calculus,” TELKOMNIKA Indonesian Journal of Electrical Engineering, vol. 12, no. 6, pp. 4468–4474, 2014.
[Online]. Available: http://iaesjournal.com/online/index.php/TELKOMNIKA/article/view/5484

[9] A. R. Bashandy, E. K. P. Chong, and A. Ghafoor, “Generalized quality-of-service routing with resource alloca-
tion,” IEEE Journal on Selected Areas in Communications, vol. 23, no. 2, pp. 450–463, Feb 2005.

[10] X. Yuan and X. Liu, “Heuristic algorithms for multi-constrained quality of service routing,” in Proceedings IEEE
INFOCOM 2001. Conference on Computer Communications. Twentieth Annual Joint Conference of the IEEE
Computer and Communications Society (Cat. No.01CH37213), vol. 2, 2001, pp. 844–853 vol.2.

[11] R. G. Garroppo, S. Giordano, and L. Tavanti, “A survey on multi-constrained optimal path computation: Exact
and approximate algorithms,” Comput. Netw., vol. 54, no. 17, pp. 3081–3107, Dec. 2010. [Online]. Available:
http://dx.doi.org/10.1016/j.comnet.2010.05.017

[12] F. Kuipers, P. V. Mieghem, T. Korkmaz, and M. Krunz, “An overview of constraint-based path selection algo-
rithms for qos routing,” IEEE Communications Magazine, vol. 40, no. 12, pp. 50–55, Dec 2002.

[13] A. Juttner, B. Szviatovski, I. Mecs, and Z. Rajko, “Lagrange relaxation based method for the qos routing prob-
lem,” in Proceedings IEEE INFOCOM 2001. Conference on Computer Communications. Twentieth Annual Joint
Conference of the IEEE Computer and Communications Society (Cat. No.01CH37213), vol. 2, 2001, pp. 859–
868 vol.2.

[14] H. Zang, J. P. Jue, B. Mukherjee et al., “A review of routing and wavelength assignment approaches for
wavelength-routed optical wdm networks,” Optical Networks Magazine, vol. 1, no. 1, pp. 47–60, 2000.

[15] L. Hui, “A novel qos routing algorithm in wireless mesh networks,” TELKOMNIKA Indonesian
Journal of Electrical Engineering, vol. 11, no. 3, pp. 1652–1664, 2013. [Online]. Available:
http://iaesjournal.com/online/index.php/TELKOMNIKA/article/view/2321

[16] B. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin, “Resource reservation protocol (rsvp) – version
1 functional specification,” Internet Requests for Comments, RFC Editor, RFC 2205, September 1997,
http://www.rfc-editor.org/rfc/rfc2205.txt. [Online]. Available: http://www.rfc-editor.org/rfc/rfc2205.txt

[17] J. Wroclawski, “The use of rsvp with ietf integrated services,” Internet Requests for Comments,
RFC Editor, RFC 2210, September 1997, http://www.rfc-editor.org/rfc/rfc2210.txt. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc2210.txt

A Proposal for End-to-End QoS Provisioning...(Francesco Lucrezia)

2276 ISSN: 2088-8708

[18] S. Blake, D. L. Black, M. A. Carlson, E. Davies, Z. Wang, and W. Weiss, “An architecture for
differentiated services,” Internet Requests for Comments, RFC Editor, RFC 2475, December 1998,
http://www.rfc-editor.org/rfc/rfc2475.txt. [Online]. Available: http://www.rfc-editor.org/rfc/rfc2475.txt

[19] Tech. Rep.
[20] E. Rosen and Y. Rekhter, “Bgp/mpls ip virtual private networks (vpns),” Internet Requests for Comments, RFC

Editor, RFC 4364, February 2006.
[21] L. Berger, D. Gan, G. Swallow, P. Pan, F. Tommasi, and S. Molendini, “Rsvp refresh overhead reduction exten-

sions,” Internet Requests for Comments, RFC Editor, RFC 2961, April 2001.
[22] S. Shenker and L. Breslau, “Two issues in reservation establishment,” SIGCOMM Comput. Commun. Rev.,

vol. 25, no. 4, pp. 14–26, Oct. 1995. [Online]. Available: http://doi.acm.org/10.1145/217391.217403
[23] S. Shenker, C. Partridge, and R. Guerin, “Specification of guaranteed quality of service,” Internet Requests

for Comments, RFC Editor, RFC 2212, September 1997, http://www.rfc-editor.org/rfc/rfc2212.txt. [Online].
Available: http://www.rfc-editor.org/rfc/rfc2212.txt

[24] D. Mitra, “Stochastic theory of a fluid model of producers and consumers coupled by a buffer,” Advances in
Applied Probability, vol. 20, no. 3, pp. 646–676, 1988. [Online]. Available: http://www.jstor.org/stable/1427040

[25] S. Ahn and V. Ramaswami, “Fluid flow models and queuesâĂŤa connection by stochastic coupling,” Stochastic
Models, vol. 19, no. 3, pp. 325–348, 2003. [Online]. Available: http://dx.doi.org/10.1081/STM-120023564

[26] M. Alasti, B. Neekzad, J. Hui, and R. Vannithamby, “Quality of service in wimax and lte networks [topics in
wireless communications],” IEEE Communications Magazine, vol. 48, no. 5, pp. 104–111, May 2010.

[27] J. Costa-Requena, “Sdn integration in lte mobile backhaul networks,” in The International Conference on Infor-
mation Networking 2014 (ICOIN2014), Feb 2014, pp. 264–269.

[28] B. Pfaff, J. Pettit, T. Koponen, E. Jackson, A. Zhou, J. Rajahalme, J. Gross, A. Wang, J. Stringer, P. Shelar,
K. Amidon, and M. Casado, “The design and implementation of open vswitch,” in 12th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 15). Oakland, CA: USENIX Association, May 2015, pp.
117–130. [Online]. Available: https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/pfaff

[29] A. Farrel, J.-P. Vasseur, and J. Ash, “A path computation element (pce)-based architecture,” Internet Requests for
Comments, RFC Editor, RFC 4655, August 2006, http://www.rfc-editor.org/rfc/rfc4655.txt. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc4655.txt

[30] J. Vasseur and J. L. Roux, “Path computation element (pce) communication protocol (pcep),” Internet Requests
for Comments, RFC Editor, RFC 5440, March 2009, http://www.rfc-editor.org/rfc/rfc5440.txt. [Online].
Available: http://www.rfc-editor.org/rfc/rfc5440.txt

[31] K. Yoshihara, M. Isomura, and H. Horiuchi, “Distributed policy-based management enabling policy adaptation
on monitoring using active network technology,” 2001. [Online]. Available: http://proceedings.utwente.nl/23/

[32] L. Lymberopoulos, E. Lupu, and M. Sloman, “An adaptive policy-based framework for network services
management,” J. Netw. Syst. Manage., vol. 11, no. 3, pp. 277–303, Sep. 2003. [Online]. Available:
http://dx.doi.org/10.1023/A:1025719407427

[33] M. F. Bari, S. R. Chowdhury, R. Ahmed, and R. Boutaba, “Policycop: An autonomic qos policy enforcement
framework for software defined networks,” in 2013 IEEE SDN for Future Networks and Services (SDN4FNS),
Nov 2013, pp. 1–7.

[34] “Onos website - http://onosproject.org/.”
[35] “Apache karaf - http://karaf.apache.org/.”
[36] M. Gerola, F. Lucrezia, M. Santuari, E. Salvadori, S. S. P. L. Ventre, and M. Campanella, “Icona: a peer-to-

peer approach for software defined wide area networks using onos,” in European Workshop on Software Defined
Networks (EWSDN), October 2016.

BIOGRAPHIES OF AUTHORS

Francesco Lucrezia is a PhD student at Politecnico di Torino, Italy. He received his Bachelor
Degree at the University of Pavia in Computer Science (20111) and his M.S. at Politecnico di
Torino in 2013 in Computer and Communication Networks. His research interests include QoS and
QoE models for the Internet, traffic characterization, Software-Defined-Networking and network
control-plane architectures.

IJECE Vol. 7, No. 4, August 2017: 2261 – 2277

IJECE ISSN: 2088-8708 2277

Guido Marchetto is an assistant professor at the Department of Control and Computer Engineering
of Politecnico di Torino. He got his Ph.D. in Computer Engineering in April 2008 from Politecnico
di Torino. His research topics cover innovative network protocols and network architectures.

Fulvio Risso (Ph.D. in Computer Engineering) is Assistant Professor at at Politecnico di Torino,
Italy. His research interests focus on high-speed and flexible network processing, software defined
networks, network functions virtualization. He started and led several open-source software projects
including WinPcap, the de-facto library for capturing and analysing traffic on Windows, and Net-
Bee, a novel packet library for high speed and flexible traffic processing. Fulvio is author of more
than 60 papers, mostly focused on high speed and flexible network processing.

Michele Santuari Michele Santuari received the Master degree on Telecommunications Engineer-
ing in 2014 from the University of Trento, with the thesis: "An OpenFlow architecture to improve
traffic management in enterprise edge networks". In 2013, he joined CREATE- NET as a junior
research engineer and software developer within the Smart Infrastructure application area. In 2016,
he joined the Future Network area as a research engineer. He is focused mainly on development
actives related to Software Defined Network, in particular on the Control Plane and multi-layer
and multi-domain orchestration. He contribute to open source communities e.g., Open Network
Operating System (ONOS), OpenStack.

Matteo Gerola Matteo Gerola is a software architect and senior research engineer at Future Net-
works unit at CREATE-NET research center. His main research interests focus on SDN, Network
Virtualization, OpenFlow and Optical Networks. Within CREATE-NET he has been involved in
several European projects on SDN, optical technologies, and Future Internet test-beds. He has pub-
lished in more than 20 International refereed journals and conferences. Along the years, he has
participated to events, conferences and workshops as TPC member, author and invited speaker.

A Proposal for End-to-End QoS Provisioning...(Francesco Lucrezia)

