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 The e-learning is the primary method of learning for most learners  
after the regular academics studies. The knowledge delivery through  
E-learning technologies increased exponentially over the years because of  
the advancement in internet and e-learning technologies. Knowledge delivery 
to some people would never have been possible without the e-learning 
technologies. Most of the working professional do focused studies for carrier 
advancement, promotion or to improve the domain knowledge. These learner 
can find many free e-learning web sites from the internet easily in the domain 

of interest. However it is quite difficult to find the best e-learning content 
suitable for their learning based on their domain knowledge level. User spent 
most of the time figuring out the right content from a plethora of available 
content and end up learning nothing. An intelligent framework using 
machine learning algorithms with random forest Classifier is proposed to 
address this issue, which classifies the e-learning content based on its 
difficulty levels and provide the learner the best content suitable based on  
the knowledge level .The frame work is trained with the data set collected 
from multiple popular e-learning web sites. The model is tested with real 

time e-learning web sites links and found that the e-contents in the web sites 
are recommended to the user based on its difficulty levels as beginner level, 
intermediate level and advanced level. 
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1. INTRODUCTION 
E-learning is a popular learning method with the help of internet and other e-learning technologies. 

It bridges the geographical gap between the learner and teacher. E-learning become popular with  

the advancement in e-learning technologies and the availability of world class e-learning web sites. Currently 

it is the primary method of learning for most of the working professional and entrepreneurs. E-learning gives 
us the choice and flexibility to learn from anywhere and at any time. Because of its wider usage and 

potentiality, the e-learning web sites increased exponentially over the years. It is easy for any learners to find 

multiple e-learning web sites needed for their domain. However because of the availability of many web 

sites, the user most of the time get overwhelmed with the magnitude of content availability and find it 

difficult to understand and choose the right learning content. User spent most of the time trying to figure out 

the content to be chosen and end up learning nothing significant to improve the knowledge. This situation can 

be managed by providing intelligent content recommendations based on the domain knowledge level of 

 the user which helps to find the right learning content. Different approaches were used to address this issue. 

Some of the methods used are recommended systems, good learners rating, association rule mining, learner 

grouping, item set mining etc.  
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Recommended systems are the most popular method used to suggest eLearning content to the user. 

Ontology based and fuzzy rule based systems are popular content based recommendation system used in 

eLearning [1]. Commonly used recommended systems are collaborative filtering based systems, hybrid 

filtering systems and content based filtering systems [2]. Content based filtering uses previously studied 

learners’ rating. It can bring additional similar learning material based on good learner’s recommendations. 

Collaborative filtering approach brings similar learners materials to recommend to the user. A mix of content 

filtering and collaborative filtering methods are used in Hybrid filtering [3]. These system does not classify 

contents based on the knowledge levels of the user. An intelligent e-learning framework is proposed  

to identify the cognitive level of e-content available in various e-learning web sites. The data set needed for 
this is collected through web scrapping of popular e-learning web sites. The web pages are downloaded and 

scraped as text files to collect the dataset. Random forest classification algorithm is used to classify the text 

based on difficulty levels. 

 

 

2. LITERATURE REVIEW 

Numerous studies have conducted to recommend the best e-learning content to the learner through 

various text classification methods. Atorn Nuntiyagul el. al., categorize questions kept in an item bank and 

reestablish it based on difficulty levels by using patterned keywords and phrase with support vector machine 

algorithms. Inputs are given as mathematical questions in text format. The selected keyword patterns and 

weights are combined and applied to vector space model as a feature matrix. The methodology takes  
the advantage of text classification techniques in machine learning and information retrieval [4]. 

G. Desai et.al., proposed that the Naive Bayes approach is one of the best method for text classification and it 

yields good results. It uses statistical and supervised learning methods. The methodology used is random 

sampling of the labeled categories of text. It explains the automatic classification of research topics based on 

the result analysis and textual content [5]. Sankar Perumal et. al., Proposed a new content based 

recommender system to provide appropriate contents by filtering the frequent item patterns obtaining through 

pattern mining and then ordering the final contents using fuzzy logic into different levels. It has higher 

efficiency and accuracy compared to the other parallel methods [1]. Tarus and Niu has conducted study to 

understand the different ontology based e-learning recommended systems which demonstrated ontology for 

representing knowledge that brought enhancement in the recommendations. 

The methodology used is survey of the e-learning recommended systems and compared and 

analyzed the results of various ontology based recommended systems. The ontology-based systems uses 
hybrid recommendation systems and knowledge-based techniques and other approaches such as content-

based filtering, collaborative filtering, fuzzy-based context-aware and trust-based techniques [6]. Shuai et. al., 

provide extensive review of the researches in deep learning recommended systems and devised 

a nomenclature for deep learning based recommended models. Also proposed an organization scheme for 

classifying and clustering existing works with advantages and disadvantages of using deep learning based 

recommended systems [7]. Dragi Kocev et.al has done an experimental evaluation of Multi label learning 

methods by selecting competent methods and using data set from different domains and based on  

the previous usage statistics. Multi label learning is learning by examples. The results are experimentally 

analyzed and found that the best performing methods are random forests of predictive clustering trees and 

hierarchy of multi-label classifier [8]. Salem et. al., suggested an automatic meta-learning recommendation 

model which extract learning contents from knowledge units as teaching notes using Natural Language 
Processing techniques. NLP helps to extract the verbs based on the cognitive levels. It describes the use of 

Blooms taxonomy for computer science domain [9]. Amal et. al., provided a graph based Tringluarity system 

for knowledge unit identification and classification using Bloom’s taxonomy levels. When a knowledge unit 

is given the system finds out the hidden association in the knowledge unit using Tringluarity graph.  

This model can be used to give the new sequential ordering of knowledge units in a textbook [10]. 

Colin et. al., suggest that the existing learning taxonomies are not useful for practical oriented subjects such 

as computer programming and devised a new taxonomy for programming.  

A two dimensional approach of Bloom’s taxonomy called Matrix Taxonomy is proposed to provide 

more practical framework to assess the learner. The two dimensions are divided as producing and interpreting 

which removes the strict ordering and retain the Blooms concepts [11]. Othman et. al., uses Naïve base 

classifier method to identify Bloom’s taxonomy levels in text based on rule set in training data. The concept 

can be used to order a text book using Blooms Taxonomy cognitive levels and give a new sequential ordering 
to the book. The results shows that the several parts of the book which are described as intermediate become 

advanced and some advanced topics become intermediate [12]. Yahyaa et. al., analyzed the difficulty levels 

of questions asked in class during teaching, using Bloom Taxonomy verbs. The classification is done based 

on its difficulty levels using Bloom levels with K-NN, Naïve Bayses and SVM algorithms using term 
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frequency as the selection criteria. It uses four stages such as text representation, selection, classifier 

construction and testing the classifier [13]. Yamaguchi et. al., has developed personalized English teaching 

material for beginner level learners which identifies the cognitive level of a text document content. 

The difficulty level is identified by the personalized vocabulary of the learner. The learning materials are 

recommended based on the vocabulary knowledge of the students. The number of unknown words estimate 

the difficulty level of the content. The research has relevance today because of the exponential growth of 

e-learning content availability in the web [14]. Yahya and Osman identified difficulty levels using support 
vector machine algorithms for question paper categorization based on difficulty levels. Already 

categorized questions are gathered and support vector machine classifier is applied on these questions for 

classification [15]. Yang et. al., proposed a method to apply teaching and learning to learners from diverse 

background effectively using item response theory. The approach uses web document classification by 

introducing the concept of knowledge unit obtained from the subject. The questions are developed to measure 

and analyze them using item response theory. The learners are assessed through self-assessment based on 

the subject and user’s knowledge level the sub topics of the subject. Based on this, the students are divided in 

to different groups to learn from the web [16].  

 

 

3. RESEARCH METHOD 

Dataset is collected from popular e-learning websites through web scraping. The contents were 
dived in to three different difficulty levels namely beginner, intermediate and advanced. The difficulty level 

is identified before downloading the e-content by reading each page of the e-content in the website. 

Each page is parsed to produce the text file for further processing. The dataset with varying dimensions are 

created to check the robustness of the algorithm at different dimensionalities. The data set is divided in to 

three sizes, 600 files, 2100 files and 4000 files to check the performance as shown in Table 1. 
 

 

Table 1. Description of the datasets used to test the model 
Total Files in each dataset Beginner files Intermediate files Advanced files Training files Testing files 

600 200 200 200 150 50 

2100 700 700 700 525 175 

4000 1800 900 1300 3000 1000 

 

 

3.1.  Block diagram 

Figure 1 shows the work flow of the proposed framework. Figure 2 show generic architecture of 

the proposed framework. The content obtained through web crawling is loaded in to the framework. After 

preprocessing and data reduction, bloom taxonomy verbs and its synonyms were added to the selected feature 
set to improve the accuracy of the classifier. The random forest classier is used to train and test the model. 

The model is validated using the e-learning web pages from different e-learning web sites. Finally, 

the eLearning content is recommended to the learner based the domain knowledge of the learner. 
 

 

 
 

Figure 1. Work flow diagram of the classification 
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Figure 2. Generic architecture of the proposed framework 

 

 

3.2.  Preprocessing 
Pre-processing minimize noise in the dataset by removing the unrelated and irrelevant data from  

the document. It removes all the tab spaces, punctuations, one letter words, two letter words, numeric strings 

and stop words. All the letters in the documents are converted to lower case and all words with two letters are 

removed from the document. The document is divided into flat array of words after removing metadata elements. 

 

3.3.  Feature extraction 
The size of the document obtained after preprocessing is further reduced through feature extraction 

methods. The number and frequency of unique words in the feature set is obtained and all the duplicate 

words are removed to reduce the size of the data. The feature size is further reduced using feature selection 

methods by removing less important features and taking only relevant percentage of the total feature set.  

This percentage is calculated using N-Fold cross validation as follows. The N-Fold cross validation is done 
by taking 15 to 75 percentage of the total feature set. 

 

n = (Total No.of Features*percentage)/100) (1) 

 

Feature = words [0: n], Where percentage is an integer value less than 100 .The different percentage value of 

the total feature set is calculated to find the best percentage of feature selection. The data size percentage 

between 15 and 25 is giving the best accuracy and it reduced the data size further by 75 to 85 percentage.  

The documents after preprocessing is divided into training and testing. 75 percentage of the data is used for 

training and remaining 25 is used for testing. The best training and testing percentage is calculated  

using N-Fold validation with varying training and testing data size percentage such as 65-35, 70-30, 

75-25 ,80-20 and 85-15. 
 

3.4.  Bloom’s taxonomy 
Bloom taxonomy helps to divide a learning content in to different cognitive levels based on  

the difficulty level of the learning content [17]. Bloom Taxonomy is hierarchical, learning at the higher level 

depends on having attained sufficient knowledge in the lower level. Before understanding a concept, one 

must remember it. In order to apply a concept, one must first understand it. The concept should be evaluated 

before analyzing it. To create a concept/product, it must be thoroughly evaluated. Different levels are: 

 Remembering-lowest level 

 Understanding-lowest level 

 Applying-Intermediate level 

 Analyzing-Intermediate level 

 Evaluating-Advanced level 

 Creating-Advanced level 

Bloom’s taxonomy helps to identify the difficulty level of the content with the help of different 
verbs used in each context [18]. The Bloom’s taxonomy verbs are added to the feature set obtained after data 

reduction. The synonyms of each of these verbs are extracted using WordNet from NLTK took kit. 

The Bloom’s synonyms are also added to the feature set. This helps to improve the performance of 

the classification algorithm and to predict the classes in which the document belong [19]. 
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3.5.  Machine learning 
The machine learning algorithm is used to train the machine with the model created with the help of 

different e-learning documents. In Machine learning, training is done using the fit method, the system is able 

to automatically understand difficulty levels of contents passed through using classification algorithms [20, 21]. 

The random forest machine learning algorithms is used for training the model after comparing many other 

algorithms on the data set [22]. The accuracy of the random forest classifier is found to be the highest in 

comparison with other algorithms.  
 

3.6.  Random forest classifier 
Random forest belongs to ensemble family of classifiers as shown in Figure 3. It consist of number 

of random decision trees. It recursively generate many binary decision trees from a bagged random set of 

data. Each tree is independent from the other and it is constructed from a bootstrap sample of training 

data [23]. The trees in the random forest is constructed by an addition of randomness and therefore algorithm 

is named as random forest [24]. The data which is left without any decision tree is called the out of bag data 

and it is used for testing the performance of the decision tree. It uses feature selection method and feature 

ranking based on the importance of a feature in the overall dataset. The accuracy and robustness of the RF is 

very high. Its main advantages are its power to handle over-fitting and missing data [25] as well as its 

capacity to handle large datasets without eliminating the variables in the feature selection and resilience to 

high dimensionality data, insensitivity to noise, and resistance to over fitting. The trees in forest gives out 
a prediction result and the class which has more voting is taken as the model prediction value. 
 

 

 
 

Figure 3. Generic architecture of random forest classifier 

 

 

Random forest consist of a collection of randomized regression trees 

 

 𝑅𝑁(𝑋,   𝐾𝑀,
, 𝐷𝑁 ),𝑀≥1 (2) 

 

Where K1, k2, are independently distributed random variable [24]. The Random trees are combined to form 

aggregate estimate of regression.  

 

𝑅𝑁(𝑋, 𝐷𝑁) = 𝐸𝐾[𝑅𝑁(𝑋, 𝐾, 𝐷𝑁)] (3) 

 

Where 𝐸𝐾 is the expectation with respect to the random parameter on X and the data set 𝐷𝑁 . the RF get 

the most important features from the feature set to construct the decision trees. RF chooses the best fit using 

the gini index. 

 

gini(ar) = 1- ∑[𝑃𝑗]2
 (4) 

 

𝑔𝑖𝑛𝑖
𝑠𝑝𝑙𝑖𝑡

= ∑
𝑛𝑎𝑟

𝑛

𝑛

𝑎𝑟=1

 𝑔𝑖𝑛𝑖(𝑎𝑟) (5) 
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Where Pj is the frequency of the feature set (ar) at class J, 𝑛𝑎𝑟 is the number of randomly selected training 

records. Each tree in the random forest output prediction value and the class with more vote is taken as 

the prediction value. The six Blooms’ taxonomy classes are condensed into three classes with three difficulty 

levels. The Random forest classifier performance is improved with the addition of Blooms verbs and its 

synonyms into the feature set as RF internally use Gini index to select the best features and Gini index look 

for the most frequently occurring features from the feature set [25]. As the Blooms features are abundant in 

e-learning content, it improves the performance of the classifier. 

 
 

4. IMPLEMENTATION 

The algorithm is made to run with different data size to understand the best performance and to 

identify the optimum data size percentage required. This is accomplished with the help of N-Cap cross 

validation. The optimum data performance is obtained at 8 percentage to 15 percentage of data size.  

Table 2 and Figure 4 shows the accuracy, training time and testing time of Random forest classifier on 

the data set with different dimensionality of the data set. 8 to 14 percentage of the total data is used for testing 

the model after N-fold cross validation. 

 

 

Table 2. Random forest classifier run with 600 files with 8 to 14% feature selection 
Dimensionality in Percentage Time needed to Train Time needed to Test Accuracy 

8 0,171s 0,017s 0,986 

9 0,171s 0,017s 0,990 

10 0,155s 0,017s 0,986 

11 0,1712s 0,017s 0,986 

12 0,171s 0,017s 0,986 

13 0,186s 0,017s 0,990 

14 0,187s 0,017s 0,918 

 

 

 
 

Figure 4. Result of random forest classifier run with different data size 

 

 

The algorithm is made to run again after applying Bloom’s Taxonomy verbs and all its synonyms 

into the feature set using WordNet from NLTK tool kit. The accuracy of the algorithm is improved further 

with the addition of Bloom’s Taxonomy verbs and synonyms. The accuracy, training time and testing time of 

the classifier with bloom taxonomy verbs in the feature set is shown in the Table 3 and Figure 5. These 

values increased with the addition of Blooms verbs in the feature set. 

 
 

Table 3. Random forest classifier run using 600 files with 8 to 14%  

feature selection using bloom’s taxonomy verbs and synonyms 
Dimensionality in Percentage Time needed to Train Time needed to Test Accuracy 

8 0,282s 0,000s 0,983 

9 0,264s 0,017s 0,992 

10 0,266s 0,017s 0,992 

11 0,281s 0,017s 0,992 

12 0,295s 0,017s 0,992 

13 0,344s 0,017s 0,992 

14 0,297s 0,017s 0,992 
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Figure 5. Random forest classifier run with different data size with bloom’s taxonomy verbs and synonyms 

 

 

4.1.  Recommendation 

The trained model is saved and validated on real data using many web sites links from popular  

e-learning web sites, The web pages from e-learning web sites are passed to the Framework. The classifier 

divides the e-learning content from multiple websites in to three different difficulty levels and recommended 

to the user as shown in Figure 6. 

 

 

 
 

Figure 6. Recommendation of e-learning content using trained Framework based on difficulty levels 

 

 

5. RESULTS AND DISCUSSION 
Random forest classifier is used for developing the intelligent framework to assess the difficulty 

level of the e-content in multiple websites. The framework can be used to recommend right learning content 

to a learner based on the domain knowledge level. The model is trained with data sets of varying size using 
different percentage of feature selection. The model is test with N-Fold cross validation to obtain the best 

accuracy. The trained model is tested with different percentage of test data set to ensure the accuracy before 

saving the final model. The saved model is tested with real time web site links and found that the values 

obtained are correct. The output is validated using the link and check the actual data in the web sites and 

found that the difficulty levels are predicted with accuracy. The output of the classifier show in Figure 7. 

 

 
URL Subject Topic Difficulty Level 

https://www.w3schools.com/java/java_booleans.asp  java Booleans beginner 

https://www.w3schools.com/java/java_arraylist.asp  java ArrayList intermediate 

https://www.w3schools.com/java/java_break.asp  java Break and Continue beginner 

https://www.w3schools.com/java/java_comments.asp  java Java Comments beginner 

https://www.w3schools.com/java/java_constructors.asp  java Constructors beginner 

https://www.w3schools.com/java/java_data_types.asp  java Data Types beginner 

https://www.w3schools.com/java/java_date.asp  java Date and Time intermediate 

https://www.javatpoint.com/InetAddress-class  java Java InetAddress advanced 

 
Figure 7. The output of the classifier using e-learning content from websites with different difficulty levels 

https://www.w3schools.com/java/java_booleans.asp
https://www.w3schools.com/java/java_arraylist.asp
https://www.w3schools.com/java/java_break.asp
https://www.w3schools.com/java/java_comments.asp
https://www.w3schools.com/java/java_constructors.asp
https://www.w3schools.com/java/java_data_types.asp
https://www.w3schools.com/java/java_date.asp
https://www.javatpoint.com/InetAddress-class
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6. CONCLUSION  
The number of e-learning web sites and the users of these web sites increased dramatically over  

the years because of the advancement in internet and e-learning web sites. The e-content availably is so much 

that the user often found it hard to figure out the right content. This leads to the necessity of an intelligent 

solution to recommend the right e-learning content to the user. The proposed framework uses a Random 

forest Classifier to develop a trained model. The model is used to classify the e-learning content in web sites 

based on its difficulty levels. The framework is useful to find the exact learning content from a large 

collection of content from the web site based on the knowledge level of the user. 
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	Where K1, k2, are independently distributed random variable [24]. The Random trees are combined to form aggregate estimate of regression.

