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 Boiler fault is a critical issue in a coal-fired power plant due to its high 

temperature and high pressure characteristics. The complexity of boiler 

design increases the difficulty of fault investigation in a quick moment to 

avoid long duration shut-down. In this paper, a boiler fault prediction model 

is proposed using artificial neural network. The key influential parameters 

analysis is carried out to identify its correlation with the performance of the 

boiler. The prediction model is developed to achieve the least 

misclassification rate and mean squared error. Artificial neural network is 

trained using a set of boiler operational parameters. Subsequenlty, the trained 

model is used to validate its prediction accuracy against actual fault value 

from a collected real plant data. With reference to the study and test results, 

two set of initial weights have been tested to verify the repeatability of the 

correct prediction. The results show that the artificial neural network 

implemented is able to provide an average of above 92% prediction rate of 

accuracy. 
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1. INTRODUCTION 

In a large coal-fired power plant, effective equipment monitoring and control strategies are crucial 

to avoid a catastrophic accident. In existing systems, historical data are used mainly for monitoring, control 

and over-limit alarm; but not for fault prediction or diagnosis [1]. Furthermore, coal-fired power plant boiler 

(CFB) units have complex characteristics and mechanisms due to its high temperature and high pressure 

characteristics. The most common types of faults related to boiler in coal-fired power plant include ash 

deposit fouling and slagging [2]-[5], abnormal high superheater inlet temperature reading, abnormal 

temperature of the flue gas and the boiler’s pressure reading during depressurization before start up [6].  

The most common techniques in developing a power plant systems involve mathematical or causal 

models, data mining and artificial neural network (ANN) approach [1], [7]-[13]. The basic idea of modelling 

is to approximate the real geometry to an ideal geometry with an assumption that the values are perfect or 

accurate. It introduces uncertainties because all the material properties are dependent on the insights and the 

right selection of the constant property values of the actual equipment understudy [14]. Ramadhas et al. [15] 

concluded that results from their theoretical model of  the complete combustion studies for a biodiesel fuelled 

engine were proved to be reliable and adequate, although in general it is still difficult to attain actual 

complete combustion. This is due to the fact that their approach is based on the numerical calculation of 

mass, momentum and energy equations in either one, two or three dimensions to follow the propagation of 

flame or combustion front within the engine combustion chamber. Whereas, ANN approach has a high 
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degree of fault tolerance and high processing speed because of its simplified connections while dealing with 

complex calculations [7]. This is obtained with high accuracy without the use of technically advance 

developed software [16]. Moreover, ANN is able to learn the relationship between the selected input and 

output through a process known as network training. This approach allows user to test and explore the 

simulation faster and easier. To ensure that the ANN model is ready to be deployed, it is first validated using 

unseen data to compare its accuracy of the output against the actual output value [3]. 

There are a great number of studies carried out implementing ANN in prediction and replicating the 

behavior of an energy generation plant boiler. One of the most researched areas include fault detection and 

classification of a power transmission line to provide quick respond time while avoiding a trip occurance in 

the circuit breaker between its substations [17], [18]. As for a power plant fault diagnosis, an ANN approach 

is integrated with an expert system interface to improve the system’s overall performance [19], [20]. In the 

late 90s, a predictive controller has been derived from a neural network model based nonlinear algorithm that 

provides an offset free closed loop behavior for a thermal power plant control [21]. A study was carried out 

to simulate the evolution of boiler heat absorption under realistic condition of the ash deposition in a coal 

fired boiler using ANN [2]. Another work by [16] reported how ANN was developed to monitor boiler’s 

behavior and evaluate the biomass fouling as a mean of improving the existing boiler monitoring technique.  

Meanwhile in a more recent work by Smrekar et al. [22], an ANN was developed to predict fresh 

steam properties for suitable combination of input parameters. In their work, they were able to identify three 

high impact input parameters that allows them to achieve acceptable accuracy. The parameters include mass 

flow rate of coal, which is dependent on the belt conveyor speed, valve openings of the steam line and the 

feed water pressure. Rusinowski et al. [23] developed an ANN model to map the influence of flue gas losses 

and energy losses due to unburned combustibles on the main operational parameters of the boiler. The 

developed model was able to confirm that the air excess ratio and flue gas temperature exert a dominant 

influence upon the flue gas losses. Over the past decade, these studies have shown the capability of an ANN 

as a tool in energy prediction and modelling.       

This paper investigates the use of an ANN with a specific set of parameters to predict the boiler 

faulty condition in a coal-fired power plant and report the findings with the support of existing literature. The 

outcome of this simulation will be used as part of an ongoing study in developing an intelligent monitoring 

system interface for a power plant boiler condition monitoring. This paper is divided into two sections. The 

first section will be a brief discussion on the use of Multi-layered Perceptron (MLP) in ANN. Then, in the 

second section; the investigation of the implemented model are discussed to report the prediction outcome 

and performance. 

 

 

2. MULTI-LAYERED PERCEPTRONS (MLP) NEURAL NETWORK 

One of the most well documented and frequently used types of ANN is MLP [24]. An MLP is a feed 

forward neural network consisting of a number of neurons connected by weighted links. The neurons are 

organized in several layers, namely the input layer, hidden layer(s) and output layer. An example of a typical 

one hidden layer MLP is illustrated in Figure 1. As illustrated in Figure 1, the input layer receives an external 

activation vector, and passes it through the weighted connections (Wij) of the neurons in the hidden layer. 

This process computes their activations (Wkj) and passes them to neurons in succeeding layers until it reaches 

the output layer [25]. Basically, the input vector is propagated forward through the network producing an 

activation vector in the output layer at the end of the process. The mapping of input vector onto output vector 

is in fact determined by the connection weights of the net. 

 

 
Figure 1. A topology of a general MLP with one hidden layer 
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Table 1. Input parameters data description 
Input parameters Dataset description Unit 

Temperature 

•   Boiler re-heater and superheater inlet/outlet and exchange metal 

temperature 

•   Economizer inlet/outlet temperature 

°C 

Pressure 

•   Boiler drum pressure 

•   Superheated steam pressure 

•   Circulation pump pressure 

•   Temperature and steam outlet pressure 

•   Economizer inlet pressure 

Bar 

Flow rate 

•   Steam flow 

•   Feedwater flow 

•   Superheater water injection compensated flow 

Ton/hr 

 

 

One of the main components of an MLP is the training algorithm. The purpose of the training 

algorithm is to find the approximate solutions to minimized errors [24]. From existing literatures [26]-[28], it 

is evident that the most common training algorithms used for ANN model prediction and forecasting are the 

gradient descent methods class of algorithm. One of the preferred algorithms of this class, in terms of 

convergence speed, accuracy and robustness with respect to its learning parameters, is the Resilient 

Backpropagation (RProp) algorithm introduced by [28]. The basic principle of RProp is the direct adaptation 

of the weight update values Wij. It modifies the size of the weight step directly by introducing the concept of 

resilient update values. This results in an adaptation effort that is not distorted by an unforeseeable gradient 

behavior [25]. In this paper, the ANN model will use RProp as the training algorithm for this simulation for 

the boiler fault prediction. 

 

 

3. BOILER OPERATIONAL PARAMETERS 

Generally, a physical model requires an exact number of parameters values for calculations. Hence, 

the choices are dictated by the equation representing the processes involved. This limits the choice of input 

and output parameters by the ―cause and effect‖ relations [22]. Unlike a physical model, the input and output 

parameters in ANN modelling are mostly selected on the basis of the objective of the modelling and the 

boiler’s operators’ experience. In fact, the input parameters are usually optimized to compromise between the 

number of parameters and the desired accuracy of the ANN prediction.The final set of input parameters was 

defined on the basis of observations related only to the boiler unit, advice and feedback from the plant 

operator, removal of parameters that has non-effective factors on the faulty scenario and any redundant 

readings from the same sensors [29]. The input parameters and their dataset description are listed in Table 1.  

The parameters listed are important to monitor the overall performance of the boiler. Primarily, the 

temperature of the steam produced in the boiler is dependant on the superheater and reheater to reach its 

optimum temperature before it is transferred to the turbine. Therefore, the water supply and fuel flow rate 

leading to the burner need to be at the right pressure and temperature level to provide the exact amount of 

combustion for the steam production. Likewise, the water leaving the high pressure feedwater heater needed 

to be raised to reach the saturation temperature to correspond to the boiler drum pressure as a safety measure. 

This is achieved through the economizer by exchanging heat with the gas leaving the superheater in the 

temperature and pressure inlet and outlet tube up to the stack. Hence, a summary of the dataset that 

corresponds to the temperature, pressure and flow rate of the boiler efficiency are identified in Table 1. 

Next step is to feed the selected parameter data to the network for simulation. Firstly, it is known 

that the starting values of the weights in a network have a significant effect on the training process [30], [31]. 

Achieving this requires coordination between the training set normalization, the choice of training function 

and the choice of weight initialization. To evaluate how much influence each assumed initial weights has on 

the output and thereby to identify the best initial weight for the simulation, a sensitivity analysis was 

performed. The first initial set of the weight (W1) value was set to zero and the second initial set of weights 

(W2) is a pre-selected and randomized value set. These weights are applied to the same selected data set in 

order to examine how much it changed the accuracy of the misclassified rate (MCR) produced when using 

RProp. The training and testing result are recorded and saved accordingly for analysis and comparison. In 

order to compare the result fairly, the following criteria were set:  

a. Data normalization is important to avoid bias and noise disturbances. Since the target output is set to be 

either 0 for normal and 1 for faulty; all the sample data are normalized and scaled to be between 0 and 1 

using the Min-Max normalization method Equation (1). 
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  Data normalized  
           

             
       (1) 

 

Where Ax represents the original data value before normalization 

 

b. The network consists of 3 layers; input layer, one hidden layer and one output layer. In the hidden layer, 

there are 32 hidden neurons, and two output value of 0 and 1 for the output layer. The number of 

iterations for each epoch is set to 500 and each data set will be trained for 10 runs. 

c. The selected training algorithm used for this simulation is RProp due to its high speed convergence, 

accuracy and robustness. By setting the learning rate to its default value of 0.1, all the weights in the 

network converge roughly at the same speed. 

d. One of the most common forms of activation function is the Hyperbolic tangent sigmoid function 

Equation (2). This function is selected because they are more likely to produce outputs that are on average 

close to zero [32]. 

 

                       (2) 

 

e. One pre-randomized data set was used for each ANN model. This is to ensure that the same data were 

used in training and testing. This provided the common platform for comparison of results for different 

initial weights set. 

f. The same proportion of data for training, and testing was used for each ANN (70% training and 30% 

testing). 

g. To determine the minimum difference between the answer of the output neuron Y and the target value of 

Z, the minimization of the error using Mean Squared Error (MSE) method Equation (3) is used, where Zj 

is the target output and Yj represents the output of the network. 

 

    
 

 
∑ (      )

  
          (3) 

 

h. To evaluate the performance of the network in achieving an acceptable accuracy rate, the Miss-

Classification Rate (MCR) shown in Equation (4) is used where TP represents true positive, TN 

represents true negative and TS is the total number of samples. 
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4. RESULTS AND ANALYSIS  

In this paper, data from a local thermal power plant containing 1286 training data and 551 testing 

data are pre-randomized and normalized for the ANN model. The selected network is a three layer MLP with 

32 input parameters and two target classes of 0 and 1. The hidden layer consists of 32 hidden neurons and a 

sigmoid function is used as the activation function. MATLAB platform is used to conduct this simulation in a 

2.20GHz Intel® Core™ i5-5200U CPU with 8GB RAM.  

In Table 2, the network simulation result implementing both initial weight setups for W1 and W2 

are reported. Based on the result, it is evident that the selected training algorithm (RProp) was able to 

compute the training in an average of 1.42 milliseconds for 500 iterations using W1. From the observation, it 

was also able to achieve the highest accuracy for MSE of 0.0317, while achieving a very good MCR of 

3.53%. Meanwhile, when the initial weight W2 was applied, the training result has a slight improvement. 

Based on the outcome, although it took 1.63 millisecond to compute; the MSE achieved is 0.0254 and it has a 

lower misclassification rate of 2.71%.  

 

 

Table 2. Training and Testing Results of Multilayer Perceptron Neural Networks 
 Weight Sample MSE Misclassified rate 

Training result W1 0.0317 3.53% 

 W2 0.0254 2.71% 

Testing result W1 0.0487 5.86% 

 W2 0.0491 6.06% 
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Figure 2. Initial weight setup comparison for the fault prediction 

 

 

 

Figure 3. Training result of the ANN model using W2 

 

 

To check for the best parameter setup for the ANN in this investigation, the testing results of the 

same data set sample are also recorded for comparison. Although the computation time recorded is the same 

with the training result; there is a significant difference in the MSE and MCR recorded. The testing sample 

for W1 produces an average of 0.0487 for its MSE with a very small difference of 2.33% higher MCR of 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

ANN to Predict Coal-Fired Boiler Fault using Boiler Operational … (Nong Nurnie Mohd Nistah) 

2491 

5.86% compared to the training outcome presented in Table 2 for W1. Meanwhile a small difference of MSE 

and MCR value is recorded when the initial weights are modified using W2, an average of 0.0491 for its 

MSE and 6.06% MCR respectively. 

In Figure 2, a sample of 100 predicted output were extracted from a continuous recorded simulation 

of 1286 simulated data sample to compare them against the actual measured output. Here, the initial weight 

for W2 shows a better accuracy rate of 95.5% compared to W1 for the first 100 sample of 1 minute intervals 

training. Based on the fault and normal threshold line in Figure 2, predicted output from randomized initial 

weights shows more data points that has the least prediction error compared to the predicted output using 

zeros as initial weights. However, when the network using random weights (W2) is presented with new set of 

data for testing, the recognition rate had a slight drop resulting into 91.8% output prediction accuracy, see 

Figure 3 and Figure 4. This may be due to the fact that data used for testing has never been used to train the 

network. The accuracy rate may improve if more data are collected and used for training in future work to 

allow better learning rate for the network. 

 

 

 
 

Figure 4. Testing result of the ANN model using W2 

 

 

5. CONCLUSION 

The primary target of this paper was to investigate an implementation of ANN for a fault predictive 

tool for a CFB to facilitate plant operators to identify and narrow down the operational boiler parameters that 

causes the fault quickly. From the analysis of the simulation using the ANN method, it has shown a good 

performance of the system that predicts the condition of the listed parameters in Table 1 with a satisfactory 

comparison supported by the experimental values. The developed model was able to provide an indication of 

the importance of the various input parameters, in terms of the effects of variation in their output values. 

Moreover, the initialization of the random weights in the method also results in an improved accuracy rate of 

97.3% during training and a slight difference of 93.9% accuracy in the testing phase. To conclude, the 

proposed model using random weights perform better and can be used to predict the CFB fault operational 

parameters accurately.     
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