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 This Paper is an attempt to develop the multiclass classification in the 

Benchmark fault model applied on wind energy conversion system using the 

relevance vector machine (RVM). The RVM could apply a structural risk 

minimization by introducing a proper kernel for training and testing. 

The Gaussian Kernel is used for this purpose. The classification of sensor, 

process and actuators faults are observed and classified in the 

implementation. Training different fault condition and testing is carried out 

using the RVM implementation carried out using Matlab on the Wind Energy 

Conversion System (WECS). The training time becomes important while the 

training is carried out in a bigger WECS, and the hardware feasibility is 

prime while the testing is carried out on an online fault detection scenario. 

Matlab based implementation is carried out on the benchmark model for the 

fault detection in the WECS. The results are compared with the previously 

implemented fault detection technique and found to be performing better in 

terms of training time and hardware feasibility. 
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1. INTRODUCTION 

The fault detection in the WECS is an important aspect in the working of the wind power generation 

system, as the faults occurring in the system would increase the maintenance cost. Development of the 

overall fault detection including the turbine, generator, converter, pitch and the drive train becomes important 

considering the cost involved in the maintenance of the WECS. The benchmark model wind turbine for fault 

identification, which includes the sensor, process and actuator fault condition, is developed [1]. A 4.8 MW 

WECS model is developed in order to observe the faults in the system. SVM based fault detection is carried 

out in Wind turbines and compared with the ANN for the accuracy, training and tuning times [2]. The linear 

SVM performed better in comparison with the ANN. The classification using RVM performed better than the 

SVM while the training time is said to be higher [3]. Wind generator bearing fault are sensed by the sound 

and vibration in the tower using empirical mode decomposition method [4]. A nine turbine based wind farm 

challenge to detect the wind turbine faults in the individual turbine are carried out [5]. A state estimation set 

membership approach based implementation is found in fault detection of benchmark model with noise [6]. 

A multi-objective optimization framework for large scale wind turbine system is developed using the 

H¥ /H-
 observer to detect the sensor and actuator fault [7]. Especially fault detection is a classification 

between two classes; normal state or fault and for the classification, support vector machine (SVM) is a 

useful machine learning method [7], [8], [9] and applications to fault detections are reported [10]. 

This paper takes up the implementation from the benchmark model and implement the RVM on the 

benchmark model for the wind fault identification problem. The overall faults like the sensor, process and 
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actuator faults are included in order to classify the faults according the measurement from different sensors 

from the WECS. Further the paper is sectioned as follows, Section-II would talk about the different sections 

of the WECS where the fault is detected.Section-III talks about the RVM implementation on the wind fault 

detection.Section-IV infers the results and discussion followed by the conclusion and the references. 

 

1.1.   Wind energy conversion system model 

The benchmark model developed in [1] is used in the present implementation. It comprises of the 

wind model, blade and pitch model, drive train model, generator/converter model, controller and parameters. 

In the wind model the different sequence of wind is stored as a vector vw , which would be used for the input 

to the wind turbine. The Blade and Pitch model comprises of the aerodynamic and the pitch model of the 

turbine as defined in (1). 
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The aerodynamic torque is defined in equation (1) where r  is the Air density (kg/m3)  ,R  is the rotor 

radius,Cq  rotor torque coefficient, l  tip speed ratio, b  blade pitch angle. 

If the wind turbine has three blades and thus would have three blade pitch angles. Thus the torque 

equation would be as defined in (2), which is the sum of torques in all the three blades. 
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The reason that b value varies for each blade introduces little variation in the torque developed by each 

blade, though the overall behavior of the model is similar to that of the model with similar b value.  

The hydraulic pitch system is a closed loop model defined by a second order transfer function which is a 

piston servo system. 
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Equation (3) defines the second order transfer function of hydraulic pitch system where V is the damping 

factor, natural frequency defined by wn
. The transfer function is defined for all three-pitch system in similar 

way. The damping factor is the same for all the three-pitch system if there are no disturbances. Hydraulic 

power drop and the increase in air pressure is are the parameters that vary when there is a fault occurrence in 

the pitch system. The parameters for power drop is defined as 2n and 2 and that of the air pressure is 3n

and 3 . The closed loop pitch actuator being the linear system with change in sensor gain affecting it would 

need mean of two sensor values to be fed to the actuator. Thus the pitch reference would be changed 

according to the changes sensor values which is indicated as follows. 

 

𝛽𝑟,𝑓,𝑖[𝑛] = 𝛽𝑟,𝑖[𝑛] −
∆𝛽𝑖,𝑚1[𝑛] + ∆𝛽𝑖,𝑚2[𝑛]

2
 (4) 

 

Where 𝑖 ∈ {1,2,3} and 𝛽𝑟,𝑓,𝑖[𝑛] is the reference pitch that gets generated after the disturbance. The model of 

transferring the torque from rotor to the generator is defined as the drive train model. A gear box in the 

middle to convert the lower speed to the higher speed is represented as a two mass model defined 

in (5) and (6).  

 

𝐽𝑟𝜔𝑟(𝑡) = 𝜏𝑟(𝑡) − 𝐾𝑑𝑡𝜃∆
̇ (𝑡) − (𝐵𝑑𝑡 + 𝐵𝑟)𝜔𝑟(𝑡) +

𝐵𝑑𝑡

𝑁𝑔
𝜔𝑔(𝑡) (5) 
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𝐽𝑔�̇�𝑔(𝑡) =
𝜂𝑑𝑡𝐾𝑑𝑡

𝑁𝑔
𝜃Δ(𝑡) +

𝜂𝑑𝑡𝐵𝑑𝑡

𝑁𝑔
𝑤r(𝑡) − (

𝜂𝑑𝑡𝐵𝑑𝑡

𝑁𝑔
2

+ 𝐵𝑔) 𝜔𝑔(𝑡) − 𝜏𝑔(𝑡) (6) 

 

�̇�Δ(𝑡) = 𝜔𝑟(𝑡) −
1

𝑁𝑔

𝜔𝑔(𝑡) 

 

Where 𝐽𝑟the moment of inertia of low speed shaft is,  𝐾𝑑𝑡is the torsion stiffness of the drive train, 𝐵𝑑𝑡 is the 

torsion damping coefficient of the drive train, 𝐵𝑔 is the viscous friction of the high speed shaft. 𝑁𝑔  is the gear 

ratio, 𝐽𝑔 is the moment of inertia of the high speed shaft. 𝜂𝑑𝑡 is the efficiency of the drive train. 𝜃Δ(𝑡)  is the 

torsion angle of the drive train. The fault in the drive train is due to variation in the drive train efficiency 

which would be denoted by 𝜂𝑑𝑡2 instead of  𝜂𝑑𝑡. 

The electrical model which comprises of the generator and the converter which works in frequency 

which is much higher than the benchmark model is defined by the first order transfer function as  

defined in (7). 
 

𝜏𝑔(𝑠)

𝜏𝑔,𝑟(𝑠)
=

𝛼𝑔𝑐

𝑠 + 𝛼𝑔𝑐
 (7) 

 

Where 𝛼𝑔𝑐  is the generator and converter parameter. The generator power is defined by (8) 
 

𝑃𝑔(𝑡) = 𝜂𝑔𝜔𝑔(𝑡)𝜏𝑔(𝑡) (8) 
 

where 𝜂𝑔 is the efficiency of the generator. The control scheme chosen for this implementation simple as the 

focus is on the fault detection of WECS. In order to simplify the benchmark model the drive train damper is 

avoided. There are two modes in which this implementation would work, one is the power optimization mode 

and the reference power mode. The power optimization mode is when the speed of the wind is greater than 

the nominal speed. The controller starts when there is less power generated from the wind energy due to wind 

speed less than the nominal speed. It is denoted as 
 

𝑃𝑔[𝑛] ≥ 𝑃𝑟[𝑛] ⋁ 𝜔𝑔[𝑛] ≥ 𝜔𝑛𝑜𝑚 

 

where 𝜔𝑛𝑜𝑚 is the nominal generator speed and the mode changes from this mode 2 to the mode 1 if 
 

𝜔𝑔[𝑛] ≤ 𝜔𝑛𝑜𝑚 − 𝜔Δ 
 

where 𝜔Δ  is the offset that is subtracted from the nominal speed to avoid the change from mode 1 to mode 2 

and vice versa frequently. The conditions of fault and the mode variation along with the model parameters 

are used as it is from [1]. 

 

 

2. RELEVANCE VECTOR MACHINE BASED IMPLEMENTATION OF FAULT DETECTION 

The different fault conditions are trained on the Relevance Vector Machine (RVM) and a multi class 

RVM structure is developed in order to test the different fault condition of the wind fault that is considered 

in [1]. The multiple RVM structures are developed as discussed in [11]. The different fault conditions are as 

given in the Table 1 is introduced for training the RVM and testing it.  
 

 

Table 1.Different Fault Conditions Trained Using RVM 
Fault No. Fault Type Fault Site Symbols 

1a Fixed Value Sensor Faults Blade Positions ∆𝛽1,𝑚1,∆𝛽𝑖1𝑚2 

∆𝛽2,𝑚1, ∆𝛽2,𝑚2 

∆𝛽3,𝑚1, ∆𝛽3,𝑚2 

1b Gain Factor 

2a Fixed Value Sensor Fault Rotor Speed ∆𝜔𝑟,𝑚1,
∆𝜔𝑟,𝑚2 

 2b Gain Factor 

3a Fixed Value Sensor Fault Generator Speed ∆𝜔𝑔,𝑚1,
∆𝜔𝑔,𝑚2 

 3b Gain Factor 

4a Offset Actuator Fault converter system ∆𝜏𝑔 

5a Abrupt Changed Dynamics Actuator Fault  

Pitch Systems 
∆𝛽1,∆𝛽2,∆𝛽3 

5b Slow Changed Dynamics 

6 Changed Dynamics System Fault Drive Train ∆𝜔𝑟 , ∆𝜔𝑔 
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The pitch positions are considered for the implementation of the 1a and 1b faults that would be 

taken as the vector for the RVM training. The vector that reflects the sensor faults in blade positions is as 

given in the following  

 

x =

bk,m1(t j )- bk,m2(t j )

bk,m1(t j )- bk,m1(t j-1)

bk,m2(t j )- bk,m2 (t j-1)

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

 

 

Where k=1,2,3  which is the denoting blade number and i=1,2 denotes the mode in which the WECS is 

working. And t j  and  t j-1
 are the time instant at j and j-1 respectively. The absolute value of 

bk,m1(t j )- bk,m2(t j )  would vary between .001 and 2, but in order to differentiate from the fault and the 

normal scenario the value is predefined as 5000. The parameters for the faults defined by 2a, 2b, 3a and 3b 

𝜔𝑔,𝑚𝑖, 𝜔𝑔,𝑚𝑖 are  used for training. The vector for training is given by the following. 

 

x =

bk,m1(t j )- bk,m2(t j )

bk,m1(t j )- bk,m1(t j-1)

bk,m2(t j )- bk,m2 (t j-1)

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

 

 

The measurement is filtered in order to avoid sudden variation by using 𝜔
 g with

 t=0.02s and 𝜔 r with 

t=0.06s. In order to increase the ability to measure distinctly the Gaussian variance is increased to 15 while 

measuring. For faults 4a and 6 the vector is as defined in the following, 

 

x =

w p,m1(t j )-w p,m2(t j )

t g
d (t j )-t g

m(t j )

l2X wg

d (t j )- (wg,m1(t j )-wg,m2(t j )) / 2

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

 

 

where wg

d
 is the desired generator speed, t g

d
 is the desired generator torque given by the controller 

(
Pr

t g
d

 where Pr  is the power which is desired to be produced). The factor l2 =10-6XJwind

6
 is used in the 

third component of x in order to utilize the wind speed and for normalization. 

Relevance vector Machine for Fault Detection in Wind Turbines: 

RVM is used to develop ten separate training models for different fault conditions. For ten different 

faults ten different regression functions is articulated. The regression function is used to map the input to 

different regions of the state space. The function that is used for the regression function is given as below, 

 

𝑓𝑟𝑣𝑚(𝑥) = ∑ 𝛼𝑖𝐾(𝑥, 𝑥𝑖) + 𝑏

𝑁

𝑖=1

 

 

where 𝐾(. , . ) is the Gaussian kernel function , 𝑥𝑖 , 𝑖 = 1 … 𝑁 ,are the training samples which comprise of all 

the fault condition and non fault condition values of the 11 variable from all the three blades. The sparse 

parameter 𝛼𝑖  is determined using the Bayesian estimation algorithm. The regression is carried out using the 

logistic regression as given by  

 

 (𝑑 = 1|𝑥) =
1

1+exp (−𝑓𝑟𝑣𝑚(𝑥)
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The mapping function is generated for each of this implementation by applying the regression algorithm 

explained in [12]. The RVM is trained for each fault situation and the trained model is generated after the 

regression procedure. The parameter is optimized by maximizing the objective function 

 

𝐽(𝛼) = ∑ log 𝑝(𝑑𝑖|𝑥𝑖) + ∑ log 𝑝(𝛼𝑖 |𝜆𝑖
∗)

𝑁

𝑖=1

𝑁

𝑖=1

 

 

Where 𝜆𝑖
∗  is the maximum a posteriori estimate of hyperparameter  𝜆𝑖. The input x for all the fault condition 

are defined in the previous section and the RVM training is carried out by the use of the RVM 

implementation thus introduced in the above . 

 

 

3. RESULTS AND DISCUSSIONS 

The Matlab based Implementation is carried out and the results are as shown in the following 

discussion. The third fault scenario as discussed in [1] is applied for the implementation which  is the rotor 

speed sensor fault occurring in the two blades of the turbine. While carrying out the training process the time 

taken for the training process is calculated for making all the nine faults trained and the models to be 

developed for each fault. 

The model created after the training process comprises of the α,the sparse parameter, and the bias 

value b along with the kernel structure. The amount of memory space needed for storing it would be a 

parameter for the hardware feasibility of the proposed method. The memory space required for it be stored is 

around 160kb of the memory thus allowing it to be feasible in hardware implementation. By giving the 

different wind speed, which is randomly generation. Due to the variation in the wind the torque generated  

in the Figure 1. 

 

 

 
 

Figure 1. Torque Waveform with random wind supply Turbine 

 

 

The simulation is run for 4400 Secs. The faults are applied at different places like the below. 

1. Fault type 1a, b1,m1 =-3o occurring between 100s and 200s.  

2. Fault type 1b, b2,m2 =5o 2,m2 
on 500-600s.  

3. Fault type 1a, b3,m1 =7o on 900-1000s.  

4. Fault type 2a, wr,m1 =2rad.s
-1 on 1200-1300s.  

5. Faults type 2b and 3b, wr,m2 =0.5wr,m2 
and  wg,m1 =1.5wg,m1 

on 1700-1800s.  

6. Fault type 4a, tg =tg -1000 Nm on 4200-4300s.  
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7. Fault type 6, hdt =0.22hdt  

8. Fault type 5a, parameters in pitch actuator 2 (wn,z) 8 abruptly changed from [11.11, 0.6] to [5.73, 0.45] 

from 3200 and 3300s. 

9. Fault type 5b, parameters in pitch actuator 3 (wn,z) changed slowly (with a linear function) from [11.11, 

0.6] to [3.42, 0.9] over 30s, remained constant during 40s, and then decreased again over 30s from 3400 

and 3500s.  

While carrying out the training process the time taken for training all the fault and the non fault condition for 

all the nine fault conditions by using RVM is given in Table 2. After training the faults in the RVM 

implementation. The fault detection is tested with the above faults using the models developed using RVM. 

The detection of fault would show the 1 in the detection graph and zero in the detection graph when 

there is no fault. Figures 1 and 2 displays the wind turbine torque and the wind speed respectively in Turbine. 

Figures 3 and 4 displays the fault detected in Blade 1 and Blade 2 1200-1300s and 1700-1800s. The hardware 

feasibility of the proposed algorithm would require the time taken for the training portion and the memory 

space needed to store the models developed after the training process. The Table 2 displays the time taken for 

all the nine faults trained and the model generation for all the faults and the space for the models stored in the 

memory. The table is developed considering the i5 processor, 3.2GHz processor with the 8GB ram. 
 

 

Table 2. Time taken for Training Each Faults Using RVM and Memory Used for the Model Thus Developed 
Fault No. Fault Type Fault Site Memory Space for model Execution Time 

1a Fixed Value Sensor Faults Blade Positions 16KB 1054 secs on an average for 

each model 1b Gain Factor 

2a Fixed Value Sensor Fault Rotor Speed 20KB 

 2b Gain Factor 

3a Fixed Value Sensor Fault Generator Speed 10KB 

 3b Gain Factor 

4a Offset Actuator Fault converter system 1KB 

5a Abrupt 

Changed 

Dynamics 

Actuator Fault 

Pitch Systems 

16KB 

5b Slow 

Changed 

Dynamics 

6 Changed 

Dynamics 

System Fault Drive Train 47KB 

 

 

 
 

Figure 2. Speed in wind turbine  
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Figure 3. Rotor speed fault detected in blade 1 

 

 

 
 

Figure 4. Rotor speed fault detected in blade 2 

 

 

4. CONCLUSION 

The Relevance Vector Machine based implementation was carried out with the benchmark model 

developed as mentioned in the literature. The RVM function was trained and ten different models were 

developed for each kind of fault and the results were found to be satisfactory. The hardware feasibility study 

takes in to consideration the execution time and the memory usage for the models thus developed while 

training. The amount of execution time and the memory used clearly supports the hardware feasibility 

positively. 
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