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ABSTRACT 

Highly accurate predicted genetic values must be obtained at an early age to promote rapid genetic progress. The objectives 
of this study were to compare accuracies (R2) of genomic values (GVs) and to estimate genetic correlation between true genetic 
values and genomic values obtained using predicted breeding values (EBV) and deregressed EBV (DEBV) as response variables. A 
first population, effective population size 800 and 100 generations, was simulated using the QMSim program to generate linkage 
disequilibrium. Thereafter, 20 males and 200 females were used to generate a second 14-generation population, with 6,400 
individuals per generation and its corresponding phenotype and genotype in SNP terms. Generations 7 to 14 of the second population 
were used in several combinations as training (PEn) and evaluation (PEv) subpopulations. GVs, their accuracies, and genetic 
correlations were obtained using the GenSel and ASREML programs. When PEn was the largest, the mean R2 of GV was the highest, 
0.77 ± 0.01. The closer PEn was to PEv, the higher the R2, and correspondingly, the lower the predicted error variance. The trends 
for R2 and PEV held true for both EBV and DEBV used as response variables. Genetic correlation estimates between true genetic 
values and GVs varied from 0.41 to 0.53 in the two scenarios studied. They decreased when PEn and PEv were farther apart. There 
were only slight advantages of using DEBVs as response variables over using EBVs. 

KEY WORDS: Genomic evaluation, Deregressed predicted genetic value, Genomic predicted value, Accuracy, Genetic 
correlation. 

 
RESUMEN 

Los valores genéticos de individuos en una población deben obtenerse de forma precisa y a edad temprana para promover un 
progreso genético rápido. Los objetivos de este estudio fueron comparar las exactitudes (R2) de valores genómicos predichos (GBV) 
y estimar la correlación genética entre los valores genéticos verdaderos (TGV) y los GBV, utilizando los valores genéticos estimados 
(EBV) y EBV ajustados (DEBV) como variables respuesta. Una primera población de 100 generaciones con tamaño efectivo 800 se 
simuló con el programa QMSim para generar desequilibrio de ligamiento. Posteriormente, se utilizaron 20 machos y 200 hembras 
por generación en una segunda población de 14 generaciones, con 6,400 individuos por generación y sus correspondientes fenotipos 
y genotipos en términos de SNP. Las generaciones 7 a 14 de la segunda población se usaron como subpoblaciones de entrenamiento 
(PT) y evaluación (PE). Los GBV, sus exactitudes y correlaciones genéticas se obtuvieron utilizando los programas GenSel y ASREML. 
Cuando la PT fue la más grande, R2 media fue la más alta, 0.77 ± 0.01. Cuanto más cercana es PT a PE, mayor R2, y menor la varianza 
del error de predicción (PEV). Las tendencias para R2 y PEV se mantuvieron tanto para EBV como para DEBV utilizadas como variables 
de respuesta. Los estimadores de correlación genética entre TGV y GBV variaron de 0.41 a 0.53 en los dos escenarios estudiados. La 
R2 disminuyó cuando PT y PE estuvieron más separadas. Hubo ligeras ventajas de utilizar DEBV como variables de respuesta en lugar 
de EBV. 

PALABRAS CLAVE: Evaluación genómica, Valor genético predicho ajustado, Valor genómico predicho, Correlación genética. 
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Genetic improvement depends on genetic 
variation, selection intensity, generation interval, 
and accuracy of estimated breeding values (EBV). In 
the genetic evaluation of animals, it is important to 
maximize EBV accuracy. An increase in EBV accuracy 
for selection of candidate animals will spur genetic 
progress. Among other advantages, the use of 
genomic selection allows an increase in the accuracy 
of genetic values(1), especially at a young age(2). 
Three technological breakthroughs have boosted 
wide-spread DNA information use in animal 
breeding(3): the development of genomic selection 
technology, the discovery of massive numbers of 
genetic markers (SNPs), and high throughput cost-
effective genotyping technology. Although the 
advantages of genomic selection have been 
observed most notoriously in dairy cattle(4), in 
general, the use of genomic selection can be 
expected to yield improvements in genetic progress 
of up to 10 % in any species(4). 

In genomic evaluation, response variables can 
be individual phenotypes, repeated observations, 
records on close family members such as progeny, 
EBVs or their deregressed counterparts from genetic 
evaluations(5,6). According to these authors, using 
deregressed EBV (DEBV), an accuracy of up to 2.76 
times higher than with records of a single individual 
can be obtained. With average daily gain and feed 
conversion ratio of swine data, obtained accuracies 
were 18 to 39 % higher, depending on the trait 
evaluated, when DEBVs were used as response 
variables instead of EBVs(7). These authors 
concluded that DEBV is the preferred response 
variable, whereas the choice of statistical method 
was less critical when they analyzed purebred swine 
data. The increase of 18 to 39 % in reliability is 
worthwhile, since the reliabilities of the genomic 
breeding values directly affect the returns from 
genomic selection(7). 

Deregressed EBVs, with the parent average 
removed, produce more exact predicted genomic 
values (GV) for two reasons(5). First, DEBVs, when 
used as the response variable, result in fewer double 
counts than when EBVs are used because the DEBVs 
exclude information from the individual’s ancestors. 
If both the offspring and its parents are genotyped, 
the degree of double count decreases when DEBVs 

are used as the response variable. Second, when 
using EBVs as the response variable, the degree of 
double count in the GVs decreases, particularly when 
the reliabilities of the genetic values are low. 

However, DEBVs are not always the best choice 
for use as the response variable in genomic 
evaluation. Simulated dairy cattle(6) and jumping 
horse(8) data were used to compare EBVs and DEBVs 
as response variables. Both groups of authors found 
only slight advantages to using DEBVs, instead of 
conventional EBVs, as response variables. The 
objectives of this study were to compare the 
accuracy of genomic values and to estimate the 
genetic correlation between true genetic values and 
genomic values obtained using predicted breeding 
values (EBV) and deregressed EBV (DEBV) as 
response variables for four training populations and 
four evaluation generations. 

The methodology for simulating the training 
(PEn) and evaluation (PEv) populations used in this 
study was described previously(9). Briefly, two 
populations using the QMSim program(10) were 
simulated. The first, to obtain linkage disequilibrium, 
had 800 individuals as the effective population size 
and 100 generations. The second population, where 
PEn and PEv originated, had 14 discrete generations, 
each of which was generated randomly using 20 
males and 200 females, a panel of 53,010 SNPs 
(each evenly separated by 100 centiMorgans) 
randomly placed in 30 chromosomes, and 540 QTLs 
with effects coming from a gamma distribution(11). 
Both SNPs and QTLs were regarded as biallelic with 
random starting frequencies. Genotypes and 
phenotypes of 6,400 individuals were simulated; the 
heritability used was 0.4 and only additive effects 
were considered. Genotypic and phenotypic 
information was generated using the QMSim 
program(10). The four PEn comprised generations 10 
(n= 1,000); 9 and 10 (n= 1,400); 8 to 10 (n= 
1,800); and 7 to 10 (n= 2,200); as well as their 
phenotypes and the corresponding EBVs and DEBVs. 
The four PEv comprised generations 11 to 14. 

In a first step, the EBVs were predicted with a 
single-trait animal model including the random effect 
of animal, the fixed effects of sex of the individual, 
and generation. The ASREML program(12) was used 
at this stage. The DEBVs were then obtained 
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following methodology of Garrick et al(5). Weight (wi) 
for the ith animal was obtained using the following 
equation(5): 

wi=(1–h2)/[(c+(1–r2)/r2)h2] 
Where c is the lack of fit of the prediction 

equation, or the genetic part not explained by the 
markers(5); the value assumed was c=0.1; 
heritability of the trait, h2, was assumed to be 0.4; 
and r2 was the reliability of the DEVGs for the ith 
animal. 

Deregression of EBVs adjusts for ancestral 
information, it removes shrinkage present in EBV, 
and by taking parental contribution into account, 
DEBVs can be regarded as equivalent to the 
information provided by the records of each sire and 
its progeny(13). 

In a second step, the predicted genetic values 
(EBVs) obtained using ASREML and their 
corresponding DEBVs were used as response 
variables to predict the GVs. A weighted genomic 
analysis was carried out using the BayesCπ function 
of the Gen-Sel program(14). A 41,000-round long 
chain was used. The last 1,000 samples were used 
to obtain the a posteriori mean estimates of marker 
effects and variances. The first 40,000 iterations 
were regarded as the burn-in period; π was fixed at 
0.95. The genomic analysis used animals of 
generations 7 to 10 to obtain the prediction 

equations. The evaluation populations were 
generations 11 to 14. The Bioinformatics to 
Implement Genomic Selection (BIGS) platform 
(http://bigs.ansci.iastate.edu/) platform was used 
for the analysis. 

The genomic values and their corresponding 
accuracies were obtained by summing all the SNP 
effects, using the following equation: 

GVni = 1

ˆ
k

ij j
j

z u
=

∑
 

Where GVni is the genomic value for the ith 
individual; zij is the genotype of the jth marker on the 
ith individual, and ˆju  is the a posteriori mean of SNP 
effect for the jth marker. 

Accuracies (R2) of GVs were obtained as the 
square of the correlation between GVs and the true 
genetic values(6,13,15). Criteria for comparing the two 
alternatives of analysis were R2 and GV prediction 
error variance (PEV). Additionally, as another 
criterion for comparing the two response variables 
studied, the genetic correlation estimates was used 
between the true genetic values and the predicted 
GVs from the two alternatives of genomic analysis(6). 
These estimates were obtained using ASREML(12). 

An important aspect in genetic improvement is 
the response to selection, and this depends on 
selection accuracy(16). Table 1 shows the means and 

 
Table 1. Mean ± standard deviation for accuracy (R2) and prediction error variance (PEV) of genomic values 

obtained using deregressed predicted genetic values as response variables, four training 
populations, and four generations of evaluation 

  Training population 

Evaluation generation 10 9 and 10 8 to 10 7 to 10 
R2 
11 0.52±0.04 0.67±0.03 0.73±0.03 0.77±0.01 
12 0.39±0.04 0.55±0.03 0.63±0.03 0.68±0.03 
13 0.32±0.05 0.49±0.04 0.58±0.03 0.64±0.03 
14 0.28±0.06 0.45±0.04 0.54±0.04 0.60±0.03 
PEV 
11 0.05±0.003 0.05±0.003 0.04±0.003 0.04±0.003 
12 0.06±0.004 0.06±0.004 0.06±0.004 0.05±0.004 
13 0.07±0.005 0.07±0.005 0.06±0.005 0.06±0.005 
14 0.07±0.006 0.08±0.006 0.07±0.006 0.07±0.005 
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corresponding standard deviation for R2 and PEV of 
GVs obtained from the different combinations of PEn 
and PEv when the response variable was DEBV. The 
highest R2, 0.77 ± 0.01, was observed for the largest 
training population (generations 7 to 10, n= 2,200 
individuals) and 11 was the generation under 
evaluation. In contrast, the lowest mean for R2, 0.28 
± 0.06, was observed for the combination of the 
smallest training population and the farthest 
evaluation population being evaluated, generation 
14. These results are within the range of R2 values 
reported by Hassani et al(17), who found 0.49 (±1 
SNP) to 0.75 (±100 SNPs) using whole-genome 
training for single QTL with a 50 K SNP panel and 
BayesC0. 

Two clear trends can be observed for R2 in 
Table 1. First, as PEn and PEv moved farther apart, 
R2 decreased. Second, as the size of PEn decreased, 
R2 became smaller. These results are similar to those 
reported by other research groups(18-21), who 
concluded that the closer the relationship between 
individuals in PEn and those in PEv, the higher the 
R2 of GVs. Similarly, using both simulated and real 
sheep data, Genomic Best Linear Unbiased 
Prediction was compared with two pedigree based 
methods(22). It was found that both empirical and 
estimated accuracy of GVs were different for several 
degrees of relationship. These authors concluded 
that R2 of GVs is proportional to the genetic 
relationship of animals under selection to the 

reference population. The increase in R2 of GVs 
when PEn and PEv are closely related, can be 
explained by more precise genomic relationships, 
improving in this way the connectedness between 
these populations and more distant populations. 
Accordingly, another research group(23) concluded 
that accuracy of GVs deteriorated as the relationship 
between animals in the PEn and those under 
selection decreased. One implication of this is that 
PEn has to be regularly updated to keep the marker 
effect estimates in sync with new generations of the 
breeding population(2).  

On the other hand, as expected, the trend for 
R2 held true for PEV, but in the opposite direction. 
The greater the population size and the closer 
relationship between PEn and PEv, the lower PEV. 
Pszczola et al(15) mentioned that PEV can be 
calculated as the connectedness between the 
reference population and the animals under 
evaluation. This may explain the increase in PEV as 
PEn and PEv became farther apart. Greater 
connectedness reduces bias, and thus genetic 
evaluation improves(24). The observed trend for PEV 
held true for both EBV and DEBV response variables. 

Table 2 shows the means and their 
corresponding standard deviations for R2 and PEV 
for the combinations of PEn and PEv when the 
response variable was EBV. In general, R2 values 
were only slightly lower than those observed when 
DEBVs were used as response variables. The trends 

 
Table 2. Mean ± standard deviation for accuracy (R2) and prediction error variance (PEV) of genomic values 

obtained using predicted genetic values as response variables, four training populations, and four 
generations of evaluation 

  Training population 
Evaluation generation       10      9 and 10 8 to 10 7 to 10 
R2 
11 0.48±0.04 0.65±0.03 0.71±0.02 0.76±0.02 
12 0.38±0.05 0.55±0.03 0.62±0.03 0.68±0.02 
13 0.32±0.05 0.49±0.03 0.58±0.03 0.64±0.03 
14 0.28±0.06 0.45±0.04 0.54±0.04 0.60±0.03 
PEV 
11 0.05±0.003 0.05±0.003 0.04±0.003 0.04±0.003 
12 0.05±0.004 0.06±0.004 0.06±0.004 0.05±0.004 
13 0.06±0.004 0.07±0.005 0.06±0.004 0.06±0.004 
14 0.06±0.005 0.07±0.006 0.07±0.005 0.06±0.005 
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observed for the decrease in R2 and the increase in 
PEV when DEBVs were response variables, as size of 
PEn diminished and the distance between PEn and 
PEn augmented, held true for EBVs used as response 
variables. These results are similar to those obtained 
by other authors(25,26,27), who found that size of PEn 
affected R2 of GVs. The results of the present study 
and those obtained by other groups of researchers 
agree with what could be theoretically expected(1,28). 
These authors developed predictive equations for 
accuracy of predicted genomic values, which depend 
on size of PEn, effective population size of the breed, 
heritability of the trait, and length of genome. 

The results of a study with two multi-breed beef 
cattle populations and Angus and Hereford purebred 
populations(13) used to obtain the GVs and 
corresponding R2 for six growth and carcass traits 
showed that accuracies were lower for prediction 
equations trained in a single breed. These results 
were attributed to the smaller number of records 
derived from a single breed in the training 
populations. The R2 range was 0.01 ± 0.10 to 0.65 
± 0.07, although the authors also reported a 
negative estimate, -0.10 ± 0.15. 

The results of this work, regardless of whether 
DEBV or EBV were used as response variables, are 
similar to those obtained by Saatchi et al(23). These 
authors evaluated different training populations of 
Hereford cattle; accuracy estimates ranged from 
0.15 to 0.52, with 0.30 on average when trained on 
old animals and validated on young animal 
populations. The results obtained in our study may 
be explained by the fact that genomic prediction on 
closely related individuals is based on relationship; 
genomic relationships are more accurate when the 
relationships between PEn and PEv populations are 
close(3). On the other hand, prediction on distant 
individuals requires DL between QTL and 
markers(29). 

The R2 results are lower than those reported by 
Pszczola et al(30). These authors found that the 
inclusion of animals with predicted genotypes in the 
reference population did not significantly increase 
accuracies of GVs for juvenile animals. They 
attributed the lack of significance to the low 
accuracy of predicted genotypes and concluded that 
inclusion of non-genotyped animals is expected to 

enhance genomic selection accuracy only when the 
unknown genotypes can be predicted with high 
accuracy. The results obtained by these authors 
varied from 0.57 to 0.96, from 0.48 to 0.88, and 
from 0.33 to 0.72 for heritabilities of 0.30, 0.05, and 
0.01, respectively, under different sizes of the 
reference population, and different numbers of 
animals with known or predicted genotypes. 

The small difference in GV accuracy that we 
obtained in our study when EBVs or DEBVs were the 
response variables agree with reports by other 
researchers. However, these results are opposite to 
those observed by Ostersen et al(7), who found 18 to 
39 % higher accuracies for feed conversion ratio and 
daily gain when they used DEBVs instead of EBVs as 
response variables. The estimation methodologies 
they used were GBLUP, Bayesian Lasso, and 
MIXTURE, where the marker effects are assumed to 
follow a normal distribution, double exponential, and 
a mixture of two normal distributions, respectively. 
The three alternatives of analysis yielded similar 
reliabilities of the GVs for the two traits analyzed. 

Contrary to our results, Ricard et al(8) did not 
find substantial advantages to genomic values 
obtained using deregressed EBVs as response 
variables or the GBLUP and BayesCπ alternatives of 
analysis compared with conventional BLUP 
predictions. They followed a specific deregression 
procedure that included not only the individual’s own 
performance, but also the performance of several 
relatives (not just offspring), in addition to the 
genotyped sample. This regression procedure was 
easy to implement from EBVs, reliabilities, and 
pedigrees. Unfortunately, accuracy of genomic 
evaluation, measured by cross validation in several 
validation samples, was not enough to suggest its 
use in current breeding plans for the jumping horse 
population studied. However, the authors mention 
that this conclusion is related only to accuracy, and 
the potential benefits of a higher selection intensity, 
reduced generation intervals, and low inbreeding in 
the long run should be considered when genomic 
selection in horses is planned. In dairy cattle similar 
results were reported(6). The authors compared two 
response variables, EBVs and daughter yield 
deviations (DYD) on simulated dairy data under 
eight scenarios of heritability, number of daughters 
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per sire, and number of genotyped sires. They found 
that DYDs yielded slightly lower reliabilities than 
EBVs. The average differences in GV accuracy of 
between EBVs and DYDs were 0.009 for h2= 0.30, 
and 0.035 when h2= 0.05. 

Table 3 presents the genetic correlation 
estimates between true genetic values and the GVs 
r(TBV,GV) obtained using DEBVs and EBVs as response 
variables. A slight advantage of using DEBVs, range 
0.43 to 0.53, instead of EBVs, range 0.41 to 0.51, 
held constant throughout all training population 
sizes. Also, genetic correlation estimates decreased 
as PEn and PEv separated. The r(TBV,GV) estimates of 
the present study are higher than those observed by 
Alarcón-Zúñiga et al(9), range 0.29 to 0.40, using the 
same dataset but different models for the genomic 
analysis. Genetic correlation estimates between 
direct genomic values and phenotypes from k-fold 
validation in Red Angus, Angus, Hereford, 
Simmental and Limousin ranged from 0.32 to 0.85 
for birth weight, weaning weight, milk yield, rib eye 
muscle area, marbling, direct calving ease, and 
maternal calving ease(21,31). Similarly, genetic 
correlation estimates between true genetic values 
and GVs for marbling, using data sets with different 
proportions of available information, ranged from 
0.256 to 0.859 (32). Guo et al(6) found genetic 
correlation estimates between GVs and conventional 
parent average ranging from 0.457 to 0.688 using 
three statistical models and eight combinations of 
heritability and number of daughters per sire. 

Some limitations of our work are that a distance 
between training and evaluation populations needs 
to be more specific, and size and number of 

generations in the training population also need to 
be better determined. Moreover, since our study 
used simulated information, it does not entirely 
correspond to real production system conditions. 

The advantage of using deregressed predicted 
genetic values as the response variable, instead of 
conventional predicted genetic values, was very 
slight with any combination of training population 
size and evaluation generation. Regardless of the 
response variable used, predicted genetic value or 
deregressed predicted genetic value, larger training 
population were associated with higher genomic 
values accuracy. 

Prediction error variance was low and similar 
with any combination of training population size and 
evaluation generation, regardless of the response 
variable used. The genetic correlation estimates 
between true genetic values and genomic values 
obtained using DEBV as the response variable were 
slightly higher than those between true genetic 
values and genomic values obtained using EBV as 
the response variable. 
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