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Abstract

In this report, an improved estimation procedure for the regression parameter in simple

linear regression models with the Laplace measurement error is proposed. The estima-

tion procedure is made feasible by a Tweedie type equality established for E(X|Z), where

Z = X + U , X and U are independent, and U follows a Laplace distribution. When the

density function of X is unknown, a kernel estimator for E(X|Z) is constructed in the

estimation procedure. A leave-one-out cross validation bandwidth selection method is de-

signed. The finite sample performance of the proposed estimation procedure is evaluated

by simulation studies. Comparison study is also conducted to show the superiority of the

proposed estimation procedure over some existing estimation methods.
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Chapter 1

Introduction

1.1 Errors-in-variables(EV) models

Regression modeling is one of the most popular statistical inference tools used for fitting

the relationship between a scalar quantity Y and an explanatory covariate or covariates X.

The classical regression model takes the form of

Y = m(X) + ε,

where m(x) = E(Y |X = x) is the regression function, and ε is the error term accounted for

any other variability of Y which cannot explained by X, E
(∑

(X)
)

= 0 When both Y and

X are available, which is often the case in the classical regression setup, myriad of estimation

procedures are proposed for the regression function whenever m(x) has a parametric form

or not.

However, in some practice we cannot observe the covariates X directly. Instead, a

surrogate, say Z, is available. It is commonly assumed in the measurement literature that

the surrogate Z and the covariate X are related in an additive way, that is Z = X + U ,

where U is called measurement error. The research of interest thus becomes how to make
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statistical inference on m(x) based on the data (Z, Y ) in the following errors-in-variables

regression model

Y = m(X) + ε, Z = X + U.

Examples of measurement error are abundant in real applications and literature. Most

medical variables, such as blood pressure, pulse rate, temperature, and blood chemistries,

are measured with non-negligible error; Variables in agricultural studies such as the precip-

itation, soil nitrogen content, degree of pest infestation, farm crop acreage allocation, and

the like cannot be measured precisely. In management sciences, social sciences, and nearly

every other field many variables can only be measured with error. For more examples, see

Carroll et al. (2006).1

Although it is still debatable, Adcock(1877,1878)2 3 is usually regarded as the first person

specifically to consider such models. Depending on X being random or fixed, measurement

error models can be classified into three subgroups.

• Functional Models: Xi’s are fixed unknown constants.

• Structural Models: Xi’s are i.i.d and independent of the errors.

• Ultra-Structural Models: Xi’s are independent, but not identically distributed,

possibly with different means, homoscedasticity remains.

In this report, we are considering structural measurement models.

It might be tempting to consider applying the classical statistical inference procedures

by simply ignoring the measurement errors, that is, replacing X with Z in all relevant

statistical procedures. This is the so-called the naive procedures. According to Carroll et

al. (2006),1 the naive methods generally induces three negative consequences in statistical

inferences:

• It causes bias in parameter estimation for statistical models;
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• It leads to a loss of power, sometimes profound, for detecting interesting relationship

among variables;

• It masks the features of the data, making graphical model analysis difficult.

So in estimation theory, how to handle the bias caused by the measurement error remains

the primary research interest in the measurement error literature. Correcting for measure-

ment error requires additional information or data. Myriad approaches to carry out the

corrections for measurement errors have been proposed, including the direct bias correction,

moment based approaches, likelihood based techniques, regression calibration, SIMEX and

techniques based on modifying estimating equations.

In this report, we focus on the simple errors-in-variables linear regression model, that is

Y = α + βX + ε, Z = X + U. (1.1)

The proposed estimation methods can be readily extended to multiple linear regression

case, even to nonlinear and parametric regression models. Some typical assumptions on

model (1.1) include EU = E(ε) = 0, Var(U) = σ2
u > 0, V ar(ε) = σ2

ε > 0, and X, ε, U are

independent.

1.1.1 Identifiability

Identifiability present a big challenge in the early development of measurement error mod-

eling.

For simple linear errors-in-variables regression models, if we assume that ε,X, U are

independent, each being normally distributed with mean 0, µx, 0, and variances σ2
ε , σ

2
x and

σ2
u, respectively, then one can easily find two different sets of values for α and β such that

(Y, Z) possesses the same distribution. In fact, if there is no auxiliary information available,

µx is the only parameter that is identifiable.
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Under the normality assumptions, there are six side assumptions found in the literature

that make the structural model identifiable.

(a). the ratio of the error variance λ = σ2
ε/σ

2
u is known;

(b). the reliability ratio (attenuation coefficient) κx = σ2
x/(σ

2
x + σ2

u) is known;

(c). σ2
u is known;

(d). σ2
ε is known;

(e). both σ2
u and σ2

ε are known;

(f). β0 is known, and EZ 6= 0.

These identifiable conditions are used in the different contexts. For example, (a) is the most

popular of these additional assumptions and is the one with the most published theoretical

results; (b) is commonly found in the social science and psychology literatures and it is

often referred as heritability in genetics; (c) has gained attention recently and is a popular

assumption when working with nonlinear models. In the case of σ2
u being unknown, an

estimate of σ2
u can be constructed by using replications of Z at X; (d) is less useful and

cannot be used to make the equation error model or the ME model with more than one

explanatory variable identifiable; (e) frequently leads to the same estimates as those for (a)

and also leads to an over-identified model. It worths to point out that (f) only apply to one

predictor case, and it does not make the normal model, with more than one explanatory

variable, identifiable.

The most important theoretical result on the identifiability of the simple linear measure-

ment error regression models belongs to Reiersol (1950)4. He proved that

• if (u, ε) are jointly normal, then X is not normal if and only if β0, β1 are identifiable.

• when u and ε are independent, then X being nonnormally distributed is sufficient for

β0 and β1 to be identifiable in the structural model.

4



• if X is normal, u and ε are independent, then β0, β1 are identifiable if and only if

neither u nor ε has a distribution that is divisible by a normal distribution.

1.2 Estimation Procedures in Structural EV Models

A common way to estimate the regression coefficients in the normal structural errors-in-

variables regression models is the maximum likelihood estimation procedure. Based on the

structural relationship, we have

EZ = EX = µ, EY = β0 + β1µ,

Var(Z) = σ2
x + σ2

u, Var(Y ) = β2
1σ

2
x + σ2

ε , Cov(Z, Y ) = β1σ
2
x.

The invariance properties of ML estimates implies that the solutions of the following equa-

tions are the valid MLEs of the six unknown parameters in the simple linear normal struc-

tural errors-in-variables regression model:

Z̄n = µ̂, Ȳn = β̂0 + β̂1µ̂, SZZ = σ̂2
x + σ̂2

u,

SY Y = β̂2
1 σ̂

2
x + σ̂2

ε , SZY = β̂1σ̂
2
x, (1.2)

if SZZ ≥ SZY /β̂1, SY Y ≥ β̂1SZY , SZZ ≥ σ̂2
u, SY Y ≥ σ̂2

ε , sign(SZY ) = sign(β̂1), where SZY is

the sample covariance between Zi’s and Yi’s. For any generic random variables (X, Y ), SXY

denotes the sample covariance of X and Y based on a sample from (X, Y ), that is

SXY =
1

n

n∑
i=1

(Xi − X̄)(Yi − Ȳ ),

with X̄ and Ȳ being the sample mean based on the data from X and Y . The regression

line solving the above equations lies between the standard regression line of Y against Z
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and the standard regression line of Z on Y . In fact, we can show that

|β̂1R| =
|SZY |
SZZ

≤ |β̂1| ≤
SY Y
|SZY |

=

∣∣∣∣ 1

β̂1I

∣∣∣∣ ,
where β̂1R is the estimated slope from the standard regression of Y on Z, and β̂1I is the

estimated slope from the standard regression of Z on Y . Moran (1971)5 illustrated the

lack of uniqueness of the MLE. Let γ be a small positive quantity less than both |β̂1| and

σ̂2
ε β̂
−1
1 σ̂−2x . Replace the quantities β̂0, β̂1, σ̂

2
x, σ̂

2
u, and σ̂2

ε in (refeq1.2) by β̂0 − γµ̂, β̂1 + γ,

β̂1σ̂
2
x(β̂1 + γ)−1, σ̂2

u + γσ̂2
x(β̂1 + γ)−1, and σ̂2

ε − β̂1γσ̂2
x, respectively. Then the five equations

remain unchanged so that if one set of estimates is an ML solution, so is the other.

1.2.1 MLE under Identifiability Conditions

To uniquely determine the MLE, we need to adopt some identifiability conditions to make

sure the equations (1.2) have unique solutions. In the following, we list the MLEs of β0, β1

under different identifiability conditions. The MLEs of other unknown parameters in the

model can be readily obtained, however, the discussion of these estimates will be omitted,

since our focus is on the regression coefficients.

When λ = σ2
ε/σ

2
u is known. If we assume that λ = σ2

ε/σ
2
u is known, then the MLEs are

β̂1 =
SY Y − λSZZ +

√
(SY Y − λSZZ)2 + 4λS2

ZY

2SZY
,

β̂0 = Ȳn − β̂1Z̄n, σ̂2
x = SZY /β̂1.

In fact, we can show that

(β̂0, β̂1) = argminβ0,β1

n∑
i=1

[
Yi − β0 − β1Zi√

λ+ β2
1

]2
.

For λ = 1, we can see that, geometrically, (β̂0, β̂1) minimizes the squared distance from
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points (Zi, Yi)’s from a straight line with intercept β0 and slope β1.

When σ2
u is known. If σ2

u is assumed to be known, then solving equations (1.2) we obtain

the following estimates

β̂1 = (SZZ − nσ2
u)
−1SZY , β̂0 = Ȳ − β̂1Z̄,

σ̂2
ε = SY Y − β̂1SZY , σ̂2

x = SZZ − σ2
u.

For the quantities defined above to be a proper estimates, σ̂2
x and σ̂2

ε must be nonnegative.

One can show that the estimates σ̂2
x, σ̂

2
ε will be positive if and only if SY Y (SZZ−σ2

u)−S2
ZY >

0.

When the reliability ratio k = σ2
x/(σ

2
x+σ2

u) is known. The MLE of β1 when k is known

has the form of β̂1 = k−1β̂Naive, where β̂Naive is the naive estimate of β1 which is simply the

least squares estimate by regression Y on Z.

The MLE under other identifiability conditions are also easy to derive. The details are

omitted here for the sake of brevity. More details on this topic can be found in Fuller

(1987)6, Cheng and van Ness (1992)7, Buonaccorsi (2010)8 and the references therein.

1.2.2 Bias-Corrected Estimate of the Regression Coefficients

Under the condition of σ2
u being known, the most popular estimate for β1 is the bias-corrected

estimator

β̂BC = (SZZ − σ2
u)
−1SZY =

∑n
i=1(Zi − Z̄)(Yi − Ȳ )∑n
i=1(Zi − Z̄)2 − nσ2

u

. (1.3)

Although we derived β̂BC as the MLE of β1 under the normality assumptions, the other

derivation of β̂BC indeed does not need the distributional assumptions on the random com-

ponents in linear EV regression models. It can be obtained by directly modifying the

moment conditions. In fact, from Cov(Y, Z) = β1σ
2
x, Var(Z) = σ2

x +σ2
u, we can immediately

get β1 = (Var(Z)−σ2
u)Cov(Z, Y ). Replacing Cov(Z, Y ) and Var(Z) with the sample analogs
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leads to the bias-corrected estimate (1.3).

Because of its simple form and free of distributional assumptions, the bias-corrected

estimate β̂BC has enjoyed its tremendous popularity in the errors-in-variables regression

literature. β̂BC behaves very well when the sample size is moderately large, however, the

MSE of β̂BC can be out of control when the sample size is small. For illustration purpose,

we generate a sample of size n = 30 from the simple linear EV regression model with U , X,

ε all from N(0, 1), U ∼ N(0, 0.8), β0 = β1 = 1 are chosen to be true regression parameter

values, then the bias-corrected estimate β̂BC of β1 is calculated. The estimation procedure is

repeated 500 times and the MSE is recorded which is shown in the following table. We also

Table 1.1: MSE of β̂BC

n MSE
30 20.898
50 1.1728
100 0.0837

found that the MSE of β̂BC is affected heavily by the magnitude of σ2
u. The general trend is

that the larger the σ2
u values, the large the MSE values.

1.3 Motivation

In real applications, it appears that the normality assumptions on all random components

in model (1.1) are too restrictive. Although estimating the regression coefficients is possible

even if no distributional assumptions imposed on the model, as evidenced by the bias-

corrected estimation procedure, the poor performance of this estimate would still make

seeking for new estimates under fewer distributional assumptions a worthwhile errand.

By only assuming that U ∼ N(0, σ2
u) and σ2

u is known, Song, Shi and Zhang (2016)9

proposed an improved estimation procedure based on Tweedie’s formula. To be specific,

8



under the normality assumption on U , Tweedie’s formula asserts that

E(X|Z) = Z + σ2
u

g′(Z)

g(Z)
,

where g(·) denotes the density function of Z. In addition to this conditional expectation

formula, we also have

Var(X|Z = z) = σ2
u + σ4

u

(
g′′(z)

g(z)
− g′2(z)

g2(x)

)
.

The extension to multivariate X is also straightforward. Efron (2011)10 acclaimed the

Tweedie’s formula as an “extraordinary Bayesian estimation formula”, and he employed

this formula to deal with the selection bias and also applied it to genomics data analysis.

The original proof of Tweedies’s formula is based upon the property of the exponential

family and a Bayesian argument. Using a deconvolution relationship, Song, Shi and Zhang

(2016)9 provided a much simpler proof of Tweedie’s formula.

Denote W = E(X|Z), we can rewrite model (1.1) as

Y = α + βW + ε+ β(X −W ) = α + βW + e. (1.4)

It is easy to see that e = ε + β(X − W ) is uncorrelated with W by the independence

assumption on ε,X and U . Now (1.4) is indeed a classical regression model. Therefore, if

the density function g of Z, or the density function of X, is known, consistent estimates

of the regression coefficients can be readily obtained by the least squares procedure. To be

specific, suppose that (Yi, Zi), i = 1, 2, . . . , n, constitutes a sample from model (1.1). Define

Wi = E(Xi|Zi) = Zi + σ2
u
g′(Zi)
g(Zi)

. Then the least square estimates of β and α based on model

(1.4) has the well known forms

β̂ =

∑n
j=1(Wi − W̄ )(Yi − Ȳ )∑n

j=1(Wi − W̄ )2
, α̂ = Ȳ − β̂W̄ , (1.5)

9



where Ȳ , W̄ are the sample means of Yi’s and Wi’s. The technique is indeed a special

example of the regression calibration approach proposed in Carroll and Stefanski (1990)11.

If the density function of Z is unknown, usually it is the case, then the estimates in (1.5)

can be modified by replacing the true density g with its kernel density estimate.

Based on the tail behavior of the characteristic function of U , Fan and Troung (1993)12

made a classification on the distributions of the measurement errors.

• Super-smooth: The distribution of a random variable u is super-smooth of order r,

if its characteristic function φu(t) satisfies

d0|t|r0 exp(−|t|r/γ) ≤ |φu(t)| ≤ d1|t|r1 exp(−|t|r/γ)

as t→∞, for some positive constants d0, d1, r, γ and constants r0, r1.

• Ordinary Smooth: The distribution of a random variable u is ordinary smooth of

order r, if its characteristic function φu(t) satisfies

d0|t|−r ≤ |φu(t)| ≤ d1|t|−r

as t→∞, for some positive constants d0, d1, r.

Examples of super-smooth distributions include N(0, 1) (r = 2), Cauchy(0, 1) (r = 1);

and examples of ordinary smooth include Gamma with density αpxp−1 exp(−αx)/Γ(p) (r =

p), and Laplace distribution with density 2−1 exp(−|x|) (r = 2).

Tweedie’s formula has assisted us to construct an improved estimation procedure when

U follows a normal distribution, which is a representative of super-smooth distributions.

However, in real applications, the measurement error U may possesses heavy tailed distri-

butions. Thus it might be interesting to investigate if a Tweedie-type formula exists for

E(X|Z) when U follows a heavy tailed distribution. If so, then similar to the estimation

10



procedure developed in Song, Shi and Zhang (2016)9, we can construct an improved estima-

tion procedure accordingly for the regression parameters when the measurement error has

a heavy tailed structure.

In the next chapter, we shall explore this possibility when U has a Laplace distribution,

which is a typical example of the ordinary smooth distributions.
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Chapter 2

Linear Regression with Laplace

Measurement Error

In this chapter, we consider the simple linear regression model with Laplace measurement

error. First, some basic facts on Laplace distribution are summarized, then a Tweedie-type

formula is established based on the relationship between the density functions of X and Z

when the measurement error U possesses a Laplace distribution. A new estimate for the

regression coefficient thus can be constructed based the formula.

2.1 Laplace Distribution

The Laplace distribution, named after Pierre Simon Laplace, arises naturally as the distri-

bution of the difference of two independent, identically distributed exponential variables.

For this reason, it is also called the double exponential distribution.

The probability density function of a Laplace distribution with mean µ and variance σ2

takes the form of

f(x;µ, σ2) =
1√
2σ
e−
√
2|x−µ|
σ .

For convenience, we denote Laplace(µ, σ2) the Laplace distribution with mean µ and variance

12



σ2. The characteristic function of Laplace(µ, σ2) is given by

ψ(t) =
exp(iµt)

1 + σ2t2/2
, i2 = −1.

In the following discussion, we denote g the density function of Z. Since σ2
u is assumed

to be known, so without of generality, we simply assume that σu =
√

2.

2.2 E(X|Z) When U Follows Laplace(0,
√
2)

In order to construct a similar estimate as in the normal measurement error case, we have to

derive an expression for E(X|Z) when U follows Laplace(0, σ2). The result is summarized

in the following lemma.

Lemma 1. Suppose the density function g is twice differentiable, and for H(z) = g(z),

zg(z), zg′(z), H(z) exp(−|z|)→ 0 as z → ±∞. Then

E(X|Z = z) = z +
exp(z)

∫∞
z
g(x) exp(−x)dx− exp(−z)

∫ z
−∞ g(x) exp(x)dx

g(z)
. (2.1)

As pointed out in Efron (2011), the Tweedie’s formula for normal measurement error

can be applied more generally to multivariate exponential families. Since the Laplace mea-

surement error is clearly not a member in the exponential family, so the formula proved in

Lemma 1 is more interesting.

Proof. Denote fx, fx,z and fz|x the density function of X, (X,Z) and the conditional density

function of Z given X. We have

E(X|Z = z) =

∫
xf(x|z)dx =

∫
xfx,z(x, z)

g(z)
dx

=

∫
xfz|x(z|x)fx(x)dx

g(z)
=

∫
x · 1

2
e−|x−z|

(
g(x)− g′′(x)

)
dx

g(z)
. (2.2)
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The numerator can be further written as

∫
x · 1

2
e−|x−z|

(
g(x)− g′′(x)

)
dx

=
1

2

∫ ∞
z

xez−x
(
g(x)− g′′(x)

)
dx+

1

2

∫ z

−∞
xex−z

(
g(x)− g′′(x)

)
dx

=
1

2
ez
∫ ∞
z

xe−x
(
g(x)− g′′(x)

)
dx+

1

2
e−z
∫ z

−∞
xex
(
g(x)− g′′(x)

)
dx.

One the one hand, we have

∫ ∞
z

xe−xg′′(x)dx =

∫ ∞
z

xe−xdg′(x) = xe−xg′(x)|∞z −
∫ ∞
z

g′(x)(e−x − xe−x)dx

= −ze−zg′(z)−
∫ ∞
z

g′(x)e−xdx+

∫ ∞
z

g′(x)(xe−x)dx

= −ze−zg′(z)−
[
g(x)e−x|∞z +

∫ ∞
z

g(x)e−xdx

]
+

[
g(x)xe−x|∞z −

∫ ∞
z

g(x)(e−x − xe−x)dx
]

= −ze−zg′(z)−
[
− g(z)e−z +

∫ ∞
z

g(x)(e−x)dx

]
+

[
− g(z)ze−z −

∫ ∞
z

g(x)e−xdx+

∫ ∞
z

g(x)xe−xdx

]
= −ze−zg′(z) + g(z)e−z − 2

∫ ∞
z

g(x)e−xdx− g(z)ze−z +

∫ ∞
z

g(x)xe−xdx,

on the other hand, we have

∫ z

−∞
xe−xg′′(x)dx = g′(x) · xex|z−∞ −

∫ z

−∞
g′(x)[ex + xex]dx

= g′(z) · zez −
∫ z

−∞
g′(x)exdx−

∫ z

−∞
g′(x)xexdx

= g′(z) · zez −
[
g(x)ex|z−∞ −

∫ z

−∞
g(x)exdx

]
−
[
g(x)xex|z−∞ −

∫ z

−∞
g(x)(ex + xex)dx

]
= g′(z) · zez − g(z) · ez +

∫ z

−∞
g(x)exdx− g(z)zez +

∫ z

−∞
g(x)exdx+

∫ z

−∞
g(x)xexdx

= g′(z)zez − g(z)ez + 2

∫ z

−∞
g(x)exdx− g(z)zez +

∫ z

−∞
g(x)xexdx.

14



Therefore, the numerator in (2.2) can be written as

1

2
ez
[ ∫ ∞

z

xe−xg(x) + ze−zg′(z)− g(z)e−z + 2

∫ ∞
z

g(x)(e−x)dx+ g(z)ze−z −∫ ∞
z

g(x)xe−xdx

]
+

1

2
e−z
[ ∫ z

−∞
xexg(x)dx− g′(z)zez + g(z)ez

−2

∫ z

−∞
g(x)exdx+ g(z)zez −

∫ z

−∞
g(x)xexdx

]
= ez

∫ ∞
z

g(x)e−xdx+
1

2
g(z) · z − e−z

∫ z

−∞
g(x)exdx+

1

2
g(z) · z

= g(z) · z + ez
∫ ∞
z

g(x)e−xdx− e−z
∫ z

−∞
g(x)exdx.

Plugging the above result into (2.2) leads to the desired result.

2.3 Estimation When g Is Known

If the density function g is known, or equivalently, if the density function of X is known,

then similar to the procedure developed in Shi, Zhang and Song (2016), we can estimate

α, β in model (1.1) with the same formulae as in (1.5)

β̂ =

∑n
j=1(Wi − W̄ )(Yi − Ȳ )∑n

j=1(Wi − W̄ )2
, α̂ = Ȳ − β̂W̄ , (2.3)

where Wi = E(X|Z = Zi), and

E(X|Z = z) = z +
ez
∫∞
z
g(x)e−xdx− e−z

∫ z
−∞ g(x)exdx

g(z)
.

Example 1. Assume that X ∼ N(0, τ 2), U follows Laplace distribution with mean 0 and

σu =
√

2. Let Φ̄τ (x) = 1− Φ(τ − x/τ) and Φτ (x) = Φ(−x/τ − τ). Then

g(z) =
1

2
eτ

2/2

[
e−zΦ̄τ (z) + ezΦτ (z)

]
,
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and

E(X|Z = z) = z +
ez
∫∞
z

{
e−2xΦ̄τ (x) + Φτ (x)

}
dx− e−z

∫ z
−∞

{
Φ̄τ (x) + e2xΦτ (x)

}
dx

e−zΦ̄τ (x) + ezΦτ (x)
.

Example 2. Assume that X has a uniform distribution over [−a, a] with a > 0, U follows

Laplace distribution with mean 0 and σu =
√

2. Then

g(z) =
e−(z−a) − e−(z+a)

4a
I(a,∞)(z) +

2− e−(z+a) − ez−a

4a
I[−a,a](z) +

ez+a − ez−a

4a
I(−∞,−a)(z),

and

E(X|Z = z) = z +
A(z)

g(z)
,

where, for z < −a,

A(z) =
(1− a− z)ea+z − (1 + a− z)e−a+z

4a
;

for −a ≤ z ≤ a,

A(z) =
(1 + a+ z)e−a−z − (1 + a− z)e−a+z

4a
;

and for z > a,

A(z) =
(1 + a+ z)e−a−z − (1− a+ z)ea−z

4a
.

2.4 Estimation When g Is Unknown

If the density function g is unknown, then α̂, β̂ defined in (2.3) are not legitimate estimates

of α and β. In this case, some nonparametric estimate of the density function g can be

constructed based on the sample from Z, then plugging this nonparametric estimate into

the expression of Wi defined in the previous section will provide estimates for α, β.

One of the most popular nonparametric density estimate is the kernel density estimate.
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Let K be a symmetric density function about 0, hn be a sequence of positive numbers

satisfying hn → 0 and nhn →∞ as n→∞. The kernel density estimate of g based on the

sample Z1, Z2, . . . , Zn is defined by

ĝn(z) =
1

nhn

n∑
i=1

K

(
Zi − z
hn

)
.

Under some regularity conditions, the kernel density estimate ĝn(z) is consistent and asymp-

totically normal.

Thus, plugging the kernel estimate ĝn(z) into the formula (2.1) in Lemma 1, we get an

estimate for E(X|Z), that is

Ê(X|Z = z) = z +
exp(z)

∫∞
z
ĝn(x) exp(−x)dx− exp(−z)

∫ z
−∞ ĝn(x) exp(x)dx

ĝn(z)
. (2.4)

The finite sample performance of the kernel density estimate is quite sensitive to the

choice of the bandwidths, however, it is not sensitive to the selection of the kernel functions.

Therefore, the kernel function is mainly chosen for the sake of convenience. The commonly

used kernel functions include standard normal, uniform and Epanechnikov kernel. In the

following, we shall derive the formulae of W = E(X|Z) when the kernel function is selected

to be standard normal and Epanechnikov kernel. For the sake of brevity, the subscript n

will be suppressed from hn in the sequel.
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2.4.1 When K Is Standard Normal

If K is chosen to be standard normal density function, that is K(x) = (2π)−1/2 exp(−x2/2),

then we have

W = Z + he
h2

2

∑n
i=1

[
eZ−Zi

(
1− Φ

(
(Z − Zi)/h+ h

))
− e−(Z−Zi)Φ

(
(Z − Zi)/h− h

)]
∑n

i=1 φ

(
(Z − Zi)/h

) ,

(2.5)

where φ and Φ denote the density function and CDF of standard normal distribution,

respectively.

2.4.2 When K Is Epanechnikov kernel

The Epanechnikov kernel function is defined as

K(x) =
3

4
(1− x2)I(|x| ≤ 1).

It is notes that Epanechnikov kernel is the optimal function in the sense that it minimizes

the asymptotic MSE of the kernel density estimate among all kernel functions with finite

second moment.

It is shown that when K is taken to be the Epanechnikov kernel, we obtain

W = Z +
A(Z)

B(Z)
, (2.6)
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where

A(Z) =
3h

4n

n∑
i=1

eZ−Zi

[
1[Z < Zi − h]

[(
2h− 2

h3

)
eh +

(
2h+ 2

h3

)
e−h
]

+1[|Z − Zi| ≤ h]

[(
1

h
− 1

h3

(
(Z − Zi + 1)2 + 1

))
eZi−Z −

(
2h+ 2

h3

)
e−h
]]

−3h

4n

n∑
i=1

e−Z+Zi

[
1[Z < Zi − h]

(
2h− 2

h3
eh +

2h+ 2

h3
e−h
)

+1[|Z − Zi| ≤ h]

(
2h− 2

h3
eh +

(
(Z − Zi − 1)2 + 1

h3
− 1

h

)
eZ−Zi

)]
,

and

B(Z) =
3

4nh

n∑
i=1

(
1−

(
Z − Zi
h

)2)
[Zi − h ≤ Z ≤ Zi + h]

2.5 Bandwidth Selection

As we pointed out in the previous section, the finite sample performance of the kernel

estimate is very sensitive to the choice of bandwidth. There are two common methods in

practice to recommend bandwidth values. The first is to try different choices of bandwidths,

and suggest a reasonable range on which the MSEs appear to be small and stable. This

method indeed can help us to see how sensitive the estimation procedure is on the choice

of bandwidths; the second alternative is to use some data driven methods to select the

bandwidth, for example, the cross validation procedure.

Due to its objective nature, the cross validation procedures are widely used in nonpara-

metric smoothing. In general, cross-validation is a model validation technique for assessing

how the results of a statistical analysis will generalize to an independent data set. It is

mainly used in settings where the goal is prediction, and one wants to estimate how accu-

rately a predictive model will perform in practice.

19



In the simulation studies we conducted in Chapter 3, we will use the so called leave-one-

out cross validation procedure. In this procedure, we use 1 observation as the validation

set and the remaining observations as the training set. To be specific, suppose (Zi, Yi), i =

1, 2, . . . , n is a sample of size n from (Z, Y ) in model (1.1). For each i = 1, 2, . . . , n, we use

the observations (Zj, Yj), j = 1, 2, . . . , n, j 6= i to estimate g, then W , α, β by the procedures

proposed in the previous chapter, denote the resulting estimates as W(−i), α̂(−i), and β̂(−i).

For each h, define the criterion function

CV (h) =
n∑
i=1

[
Yi − α̂(−i) − β̂(−i)W(−i)

]2
.

Then the leave-one-out procedure will use the minimizer of the CV (h) to be the bandwidth

used in the final estimation.
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Chapter 3

Simulation Studies

To evaluate the finite sample performance of the proposed methodology, several simulation

studies will be conducted in this section. Comparison studies will be also made to show

the superiority of the proposed estimation procedure over some other existing ones in the

literature.

In measurement error literature, the distribution of X is rarely assumed to be known.

However, for comparison purpose, we shall conduct some simulation studies under this strict

assumptions, in particular, X ∼ N(0, σ2
x) will be considered. See Example 1 in Section 2.3

for the explicit expression of E(X|Z). For convenience, we shall call such estimate the oracle

estimate.

For comparison purpose, the naive estimate will be also calculated along with other

estimation procedures. The naive estimates of α and β can be obtained by simply regressing

Y directly on the surrogate Z.

For each scenario, the simulation will be replicated 500 times, the MSEs based on these

500 estimates will be used as the criterion to evaluate the relative performance of the chosen

estimation procedures.
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3.1 The Sensitivity of The Bandwidth

In this simulation study, we generate the data from model (1.1) with α = β = 1, X ∼

N(0, 1), U ∼Laplace(0,
√

2). The sample size is taken to n = 100, 200, 300. To generate

the random sample from Laplace distribution, we used the function rdoublex from the R

package smoothmest. To see how sensitive the proposed estimation procedure to the choice

of bandwidth, we chose h = an−1/5 with a values range from 0.1 to 4 and the kernel function

to be the standard normal density. The simulation results are summarized in Table 3.1.

From Table 3.1, we can see that the finite MSEs for β̂ are bigger when a values are too

big or too small. This observation well aligns with the fact that smaller bandwidths increase

the variability of the kernel estimate and bigger bandwidths increase the bias of the kernel

estimate. However, the MSE values do not vary too much, which indicates the estimation

of the regression parameters in the linear errors-in-variables model is not affected too much

by the selection of the bandwidth. This is also the case for the estimate α̂.

We also conduct the simulation using the Epanechnikov kernel, see Table 3.2. Surpris-

ingly, the MSEs of both α̂ and β̂ varies more than the Gaussian kernel. The MSE values

for β̂ is much less around a = 1.5 than the MSEs at two ends of chosen a values, while for

α̂, the MSE values seem to increase when a gets bigger. This phenomenon worths a further

investigation in the future.

3.2 Leave-1-Out Cross Validation

In nonparametric smoothing, sometimes it is more desirable to have a data-driven bandwidth

selection procedure to help us to determine the bandwidth used in the estimation procedure.

In Section 2.5, we introduced a data-driven bandwidth selection procedure, the leave-one-

out cross validation method, which is a special case of the leave-p-out cross validation

methods. In stead of using 1 observation as the validation set, the leave-p-out procedure

uses p observations as the validation set and the rest observations as the training data set.
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The simulation setup is the same as in the previous section except for X ∼ N(0, 4).

To search the optimal bandwidth by minimizing the criterion function CV (h) defined in

Section 2.5, we consider the CV (h) values for a grid of h values in [1.5, 6] by a step of 0.05.

Figure 3.11 presents the CV (h) graphs using K as the kernel function, and Figure 3.12 is

the graph of CV (h) when K is chosen to be Epanechnikov kernel, for n = 100, 200, 300. For

illustration purpose, we also create some histograms of β̂ using the cross validation band-

widths. The simulation results based on cross validation bandwidth are not very encouraging

when n is small. However, the estimates are clearly improved when n gets larger.

We also create a series histograms based on 500 estimates of β̂, for the purpose of

illustration. See Figure 3.1 to Figure 3.10.

3.3 Comparison Studies

In this section, a simulation study is conducted to compare the proposed method with some

other existing estimation procedures such as the bias-corrected estimate (BC), Stein type

I (Stein1) and type II estimate (Stein II). The regression estimates using the true values

of X (Oracle) and the estimates assuming the density function of X is known (True) are

also calculated and serve as bench marks for comparison. Naive estimate is also calculated

to see the effect of ignoring the measurement errors in the estimation procedure. The

simulation setup is exactly the same as in Section 3.1 except some changes in the sample

size, bandwidth, and variance of the measurement error, which is specified in the following.

The two Stein type estimates was proposed by Alice S. Whittemore (1989)13 by using

Stein estimates of the unobserved true covariates. The estimates are obtained by regressing

the response variable Y on adjusted covariates based on the observed surrogates. For Stein

type I, II estimates, the adjusted covariate are,

e1(Zi) = Zi −
(n− 2)Zi∑n

j=1 Z
2
j

, e2(Zi) = Zi −
(n− 3)σ2

u(Zi − Z̄)∑n
j=1(Zj − Z̄)2

,
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respectively.

Also, to see how the magnitude of the measurement error affects the estimation pro-

cedure, two values of σ2
u are tried in the simulation study. Table 3.4 shows the simula-

tion results when the sample size are chosen to be n = 30, 80, 100 and σ2
u = 1/4, 1/6 and

h = an−1/5 with a = 0.4, 0.8, 1.5.

From Table 3.4, we can see that Stein type I estimate is inferior to all other estimate;

clearly, the naive estimate is very biased, as expected according to the theory of linear

regression model with measurement errors. The proposed estimate shows a certain degree of

biasedness comparing to the bias-corrected estimate, but the bias can be partly attributed

to the kernel estimate of g, which has a non-negligible bias. However, the MSE of the

proposed estimate is less or at least comparable to that of the bias-corrected estimate.

As expected, the estimate using the true values of X (Oracle) and the estimates assuming

the density function of X is known (True) perform best, although the MSE of the True

estimate is slightly bigger than that of the Oracle estimate.

24



Figure 3.1: Histogram of β̂ when a=0.1 for Gaussian Kernel function N=500

(a) a=0.1 n=100 (b) a=0.1 n=200 (c) a=0.1 n=300

Figure 3.2: Histogram of β̂ when a=0.3 for Gaussian Kernel function N=500

(a) a=0.3 n=100 (b) a=0.3 n=200 (c) a=0.3 n=300

Figure 3.3: Histogram of β̂ when a=0.5 for Gaussian Kernel function N=500

(a) a=0.5 n=100 (b) a=0.5 n=200 (c) a=0.5 n=300
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Figure 3.4: Histogram of β̂ when a=0.8 for Gaussian Kernel function N=500

(a) a=0.8 n=100 (b) a=0.8 n=200 (c) a=0.8 n=300

Figure 3.5: Histogram of β̂ when a=1 for Gaussian Kernel function N=500

(a) a=1 n=100 (b) a=1 n=200 (c) a=1 n=300
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Figure 3.6: Histogram of β̂ when a=0.1 for Epanechnikov Kernel function N=500

(a) a=0.1 n=100 (b) a=0.1 n=200 (c) a=0.1 n=300

Figure 3.7: Histogram of β̂ when a=0.3 for Epanechnikov Kernel function N=500

(a) a=0.3 n=100 (b) a=0.3 n=200 (c) a=0.3 n=300

Figure 3.8: Histogram of β̂ when a=0.5 for Epanechnikov Kernel function N=500

(a) a=0.5 n=100 (b) a=0.5 n=200 (c) a=0.5 n=300
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Figure 3.9: Histogram of β̂ when a=0.8 for Epanechnikov Kernel function N=500

(a) a=0.8 n=100 (b) a=0.8 n=200 (c) a=0.8 n=300

Figure 3.10: Histogram of β̂ when a=1 for Epanechnikov Kernel function N=500

(a) a=1 n=100 (b) a=1 n=200 (c) a=1 n=300

Figure 3.11: CV (h) plot for Gaussian Kernel function

(a) n=100 (b) n=200 (c) n=300
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Table 3.1: Mean and MSE for Gaussian Kernel

n a Mean of α̂ Mean of β̂ MSE of α̂ MSE of β̂

100 0.1 1.0009 0.7019 0.0175 0.1026
0.3 1.0080 0.7859 0.0203 0.0656
0.5 1.0015 0.8535 0.0209 0.0500
0.8 1.0086 0.9218 0.0264 0.0417
1 0.9982 0.9382 0.0247 0.0462
1.5 0.9975 0.9719 0.0235 0.0409
2 0.9968 0.9488 0.0222 0.0313
2.5 1.0004 0.9433 0.0198 0.0302
3 1.0052 0.9020 0.0207 0.0310
3.5 1.0041 0.8530 0.0191 0.0381
4 0.9903 0.8355 0.0220 0.0416

200 0.1 1.0057 0.7357 0.0094 0.0784
0.3 0.9949 0.8510 0.0119 0.0349
0.5 0.9981 0.9102 0.0105 0.0264
0.8 0.9996 0.9591 0.0116 0.0205
1 1.0047 0.9954 0.0122 0.0230
1.5 1.0026 1.0187 0.0115 0.0221
2 0.9972 1.0100 0.0122 0.0176
2.5 0.9987 0.9810 0.0117 0.0146
3 1.0010 0.9568 0.0116 0.0141
3.5 1.0043 0.9072 0.0112 0.0196
4 1.0031 0.8662 0.0098 0.0268

300 0.1 0.9959 0.7706 0.0061 0.0593
0.3 0.9974 0.8807 0.0078 0.0247
0.5 1.0049 0.9406 0.0080 0.0186
0.8 1.0061 0.9973 0.0074 0.0170
1 0.9921 1.0130 0.0088 0.0167
1.5 1.0006 1.0399 0.0081 0.0172
2 1.0041 1.0391 0.0086 0.0159
2.5 1.0002 1.0053 0.0080 0.0131
3 1.0028 0.9732 0.0078 0.0098
3.5 0.9977 0.9285 0.0062 0.0123
4 0.9983 0.9000 0.0070 0.0166
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Table 3.2: Mean and MSE for Epanechnikov Kernel

n a Mean of α̂ Mean of β̂ MSE of α̂ MSE of β̂

100 0.1 1.0073 0.6914 0.0313 0.1126
0.3 1.0040 0.8090 0.0323 0.0638
0.5 1.0521 0.8813 0.0338 0.0528
0.8 1.0918 0.9342 0.0369 0.0393
1 1.1789 0.9450 0.0615 0.0447
1.5 1.3862 0.8914 0.1840 0.0425
2 1.6251 0.7676 0.4264 0.0763
2.5 1.8409 0.6386 0.7654 0.1479

200 0.1 1.0030 0.7405 0.0179 0.0782
0.3 1.0067 0.8826 0.0160 0.0307
0.5 1.0219 0.9560 0.0163 0.0261
0.8 1.0871 1.0036 0.0230 0.0233
1 1.1526 0.9985 0.0391 0.0215
1.5 1.3119 0.9620 0.1105 0.0198
2 1.5224 0.8633 0.2897 0.0315
2.5 1.7366 0.7528 0.5656 0.0710

300 0.1 0.9975 0.7956 0.0102 0.0503
0.3 1.0136 0.9367 0.0111 0.0182
0.5 1.0308 0.9874 0.0122 0.0174
0.8 1.0705 1.0320 0.0157 0.0191
1 1.1110 1.0175 0.0230 0.0178
1.5 1.2762 0.9900 0.0885 0.0144
2 1.4581 0.9132 0.2213 0.0181
2.5 1.6675 0.8111 0.4602 0.0439

Figure 3.12: CV (h) plot for Epanechnikov Kernel function

(a) n=100 (b) n=200 (c) n=300

30



Table 3.3: Estimates using Gaussian kernel with bandwidth selected by cross validation

n bandwidth α̂ β̂

100 5.95 0.9530 0.8347
200 5.90 0.9743 0.9132
300 2.00 1.0275 0.9743

Table 3.4: Means and MSEs of the Estimates of β

σu n a Oracle Naive BC Tweedie Stein1 Stein2 True
1/4 30 0.4 Mean 0.9958 0.7970 1.0270 0.8988 1.7928 1.0063 0.9914

MSE 0.0373 0.0788 0.0775 0.0626 3352.7427 0.0716 0.0578
0.8 Mean 1.0050 0.8082 1.0329 0.9290 -0.7013 1.0128 1.0072

MSE 0.0363 0.0742 0.0800 0.0594 4845.7029 0.0729 0.0573
1.5 Mean 0.9963 0.7978 1.0222 0.9035 7.9331 1.0022 0.9943

MSE 0.0038 0.0791 0.0771 0.0600 56208.1381 0.0716 0.0584
80 0.4 Mean 0.9981 0.8003 1.0072 0.9247 4.8584 1.0006 0.9989

MSE 0.0119 0.0531 0.0237 0.0240 513.0648 0.0232 0.0203
0.8 Mean 0.9991 0.8018 1.0109 0.9421 0.6866 1.0042 1.0004

MSE 0.0130 0.0526 0.0237 0.0225 42477.1090 0.0231 0.0206
1.5 Mean 0.9937 0.7983 1.0106 0.9246 0.9421 1.0038 0.9959

MSE 0.0129 0.0547 0.0265 0.0256 4251.7449 0.0259 0.0214
1/6 30 0.4 Mean 1.0023 0.8646 1.0271 0.9444 -3.0804 1.0137 1.0065

MSE 0.0358 0.0570 0.0670 0.0519 11321.3502 0.0579 0.0521
0.8 Mean 1.0035 0.8673 1.0279 0.9596 -12.5888 1.0147 1.0100

MSE 0.0393 0.0561 0.0621 0.0517 250376.1693 0.0590 0.0518
1.5 Mean 0.9967 0.8583 1.0194 0.9379 8.4888 1.0061 1.0000

MSE 0.0364 0.0574 0.0588 0.0494 52011.5187 0.0562 0.0504
80 0.4 Mean 1.0053 0.8602 1.0077 0.9555 -2.2989 1.0033 1.0036

MSE 0.0120 0.0316 0.0180 0.0179 40193.3335 0.0177 0.0163
0.8 Mean 0.9998 0.8593 1.0096 0.9648 9.7799 1.0052 1.0017

MSE 0.0137 0.0336 0.0213 0.0198 5177.6765 0.0210 0.0185
1.5 Mean 0.9930 0.8589 1.0076 0.9510 16.4470 1.0032 1.0015

MSE 0.0129 0.0336 0.0199 0.0195 124107.3356 0.0197 0.0184
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Chapter 4

Conclusions

In this report, an improved estimation procedure for the regression parameter in simple

linear regression models with the Laplace measurement error is proposed. The estimation

procedure is made feasible by a Tweedie type equality established for E(X|Z). Both cases

where the density function of Z is known and unknown are discussed. When the density

function of Z is unknown, a kernel estimator for the density function of Z is constructed

which in turn is used in estimating E(X|Z). We provided the formulae of E(X|Z) when

Gaussian kernel and Epanechnikov Kernel are used. Simulation study are conducted to

evaluate the finite sample performance of the proposed procedures. Bandwidth selection is

also discussed in implementing the proposed estimation procedures. In particular, a trail

and practice method in bandwidth selection can help us decide a reasonable range of values

where the MSEs of the estimation of β keep small and stable. As a data driven bandwidth

selection procedure, the eave-one-out cross validation bandwidth selection method is also

discussed. Simulation studies show that the proposed estimator performs better than or at

least comparable to some existing estimating procedures.

The asymptotic properties of the proposed estimator has not been investigated in this

report, and this will be our future research.
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Appendix A

Proofs of Main Results

This appendix includes the proof of the main formulae we used in Chapter 2.

A.1 Proofs of (2.5) for Gaussian Kernel

Note that

ez
∫ ∞
z

ĝ(x)e−xdx =
ez

nh

n∑
i=1

∫ ∞
z

K

(
Zi − x
h

)
e−xdx.

With K being standard normal density, we have

∫ ∞
z

K

(
Zi − x
h

)
e−xdx =

∫ ∞
z

1√
2π
e−

(Zi−x)
2

2h2 e−xdx

=

∫ ∞
z

1√
2π
e−

Z2
i

2h2
+
Zix

h2
− x2

2h2
−xdx =

1√
2π
e−

Z2
i

2h2

∫ ∞
z

e(
Zi
h2
−1)x− x2

2h2 dx

=
1√
2π
e−

Z2
i

2h2

∫ ∞
z

e−
x2−2(Zi−h

2)x

2h2 dx =
1√
2π
e−

Z2
i

2h2

∫ ∞
z

e−
(x−(Zi−h

2))2

2h2 e
(Zi−h

2)2

2h2 dx

=
1√
2π
e−

Z2
i

2h2 e
(Zi−h

2)2

2h2

∫ ∞
z

e−
(x−(Zi−h

2))2

2h2 dx = he−
Z2
i

2h2 e
(Zi−h

2)2

2h2

∫ ∞
z

1√
2πh

e−
(x−(Zi−h

2))2

2h2 dx
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By changing variable, x−(Zi−h2)
h

= v, we can obtain

he−
Z2
i

2h2 e
(Zi−h

2)2

2h2

∫ ∞
z−(Zi−h2)

h

1√
2πh

e−
v2

2 dv = he−
Z2
i

2h2 e
(Zi−h

2)2

2h2

[
1− Φ

(
z − (Zi − h2)

h

)]
= he

h4−2Zih
2

2h2

[
1− Φ

(
z − (Zi − h2)

h

)]
= he

h2

2
−Zi
[
1− Φ

(
z − Zi
h

+ h

)]
.

Therefore,

ez
∫ ∞
z

ˆg(x)e−xdx =
1

nh
ez

n∑
i=1

e
h2

2
−Zi
[
1− Φ

(
z − Zi
h

+ h

)]
=

1

n

n∑
i=1

ez−Zi+
h2

2

[
1− Φ

(
z − Zi
h

+ h

)]
.

On the other hand, we have

e−z
∫ z

−∞
ĝ(x)exdx =

e−z

nh

n∑
i=1

∫ ∞
z

K

(
Zi − x
h

)
exdx.

Similarly, we have

∫ z

−∞
K

(
Zi − x
h

)
exdx =

1√
2π
e−

Z2
i

2h2
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2
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h
− h
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,

and

e−z
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1
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he
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2
+ZiΦ
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z − Zi
h
− h
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=
1
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2 Φ

(
z − Zi
h
− h
)
.

Plugging the above result into (2.4) completes the proof of (2.5).
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A.2 Proof of (2.6) for Epanechnikov Kernel

For Epanechnikov kernel function

K(x) =
3

4
(1− x2)I[|x| ≤ 1],

we have

∫ ∞
z

K

(
Zi − x
h

)
e−xdx =

3

4

∫ ∞
z

(
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(
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)2
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∣∣∣∣ ≤ 1

]
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3

4
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3

4
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h
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By changing variable and integration by parts, we obtain
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,
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.
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Now, let’s consider ∫ Zi+h

z
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By changing variable again,
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In summary, we have
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To calculate the second half in the numerator of (2.4), first we have
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we obtain
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Plugging all the above result into (2.4), we complete the proof of (2.6).
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Appendix B

R Codes

In this appendix, we list all the R-programs we used in the simulation studies.

B.1 R Codes for Table 1.1

# Simulation for Table 1.1

# Biased Correction estimate

b_hat = 0

a_hat = 0

MSE = 0

# 500 time for simulation

N = 500

for (k in 1:N)

{

n=30

U=rdoublex(n,mu=0,lambda=1)

X=rnorm(n, mean = 0, sd =1)

E=rnorm(n, mean = 0, sd = 1)

a=1

b=1

Y=a+b*X+E

Z =X+U

VarU = sqrt(2)

Ybar = mean(Y)

Zbar = mean(Z)
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b_hat[k] = sum((Y - Ybar)*(Z-Zbar)) / (sum((Z-Zbar)^2)- n*VarU)

B = sum((Y - Ybar)*(Z-Zbar)) / (sum((Z-Zbar)^2)- n*VarU)

a_hat[k] = Ybar - B*Zbar

}

mean(a_hat)

mean(b_hat)

1/N*sum((a_hat-1)^2)

1/N*sum((b_hat-1)^2)

B.2 R Codes for Table 3.1 , Figure 3.1 - 3.5

# Simulation for Table 3.1 , Figure 3.1 - 3.5

# Histogram of bhat when a=0.1,0.3 ... 4 for Gaussian Kernal function

bhat = 0

ahat = 0

MSE = 0

# use outside loop N times for simulation

N=500

for (k in 1:N)

{

n=100

U=rdoublex(n,mu=0,lambda=1)

# Generate n random number from normal disrtribution

X=rnorm(n, mean = 0, sd = 1)

# Generate n error term from normal disrtribution

E=rnorm(n, mean = 0, sd = 1)

# We can get Y and Z_original a(alpha)=1, b(beta)=1

a=1

b=1

Y=a+b*X+E

Z_original=X+U

# A window width

A = 1
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h=A*n^(-1/5)

EXZ = 0

for (i in 1:n)

{

Z=rep(Z_original[i],100)

Zi=X+U

q_one=(Z-Zi)/h+h

q_two=(Z-Zi)/h-h

pnorm1=pnorm(q_one, mean = 0, sd = 1)

pnorm2=pnorm(q_two, mean = 0, sd = 1)

numerator_one=(exp(Z-Zi)*(1-pnorm1)-exp(Zi-Z)*(pnorm2))

denominator_one=(1/(sqrt(2*pi))*exp(-1/2*((Z-Zi)/h)^2))

EXZ[i] = Z_original[i] + h*exp(h^2/2)* sum(numerator_one)

/sum(denominator_one)

}

reg = lm(Y~EXZ)

bhat[k]=reg$coefficients[2]

ahat[k]=reg$coefficients[1]

MSE[k] = mean(reg$residuals^2)

}

mean(bhat)

1/N*sum((bhat-1)^2)

hist(bhat, freq=FALSE,main="Histogram of bhat when a=1

for Gaussian Kernal function")

lines(density(bhat))

B.3 R Codes for Table 3.2 , Figure 3.6 - 3.10

# Simulation for Table 3.2 , Figure 3.6 - 3.10

# Histogram of bhat when a=0.1..2.5 for Epanechnikov Kernal function

b_hat = 0

a_hat = 0

MSE = 0

# N times for simulation

N = 500

for (k in 1:N)

{

n=300

U=rdoublex(n,mu=0,lambda=1)
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X=rnorm(n, mean = 0, sd = 1)

E=rnorm(n, mean = 0, sd = 1)

a=1

b=1

Y=a+b*X+E

Z_original=X+U

# A bandwidth

A = 2.5

h=A*n^(-1/5)

EXZe = gzhat= 0

for (j in 1:n)

{

Z=rep(Z_original[j],100)

Zi=X+U

numerator_1stHalf = 0.75*sum((exp(Z-Zi)*(((Z<Zi-h)*(((2*h-2)/h^3)*

exp(h)+((2*h+2)/h^3)*exp(-h)))+(Z>Zi-h)*(Z<Zi+h)*((1/h-(1/h^3)*

((Z-Zi+1)^2+1))*exp(Zi-Z)+((2*h+2)/h^3)*exp(-h)))))/n

numerator_2ndHalf = 0.75*sum((exp(-Z+Zi)*(((Z>Zi+h)*(((2*h-2)/h^3)*

exp(h)+((2*h+2)/h^3)*exp(-h)))+(Z>Zi-h)*(Z<Zi+h)*(((2*h-2)/h^3)*

exp(h)+((1/h^3)*((Z-Zi-1)^2+1)-1/h)*exp(Z-Zi)))))/n

denominator_two = (0.75)*(1/(n*h))*sum((Z>Zi-h)*(Z<Zi+h)*

(1-((Z-Zi)/h)^2))

gzhat[j]=denominator_two;

EXZe[j] = Z_original[j]*denominator_two + (numerator_1stHalf-

numerator_2ndHalf)

}

Ynew=Y*gzhat;

reg1 = lm(Ynew~gzhat+EXZe-1)

b_hat[k]=reg1$coefficients[2]

a_hat[k]=reg1$coefficients[1]

MSE[k] = mean(reg1$residuals^2)

}

mean(a_hat)

mean(b_hat)

1/N*sum((a_hat-1)^2)

1/N*sum((b_hat-1)^2)

# main="Histogram of b_hat when a=1 for Epanechikov Kernal function"
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hist(b_hat, freq=FALSE)

lines(density(b_hat))

B.4 R Codes for Figure 3.11

# Simulation for Figure 3.11

# CV(h) and hi plot for Gaussian Kernel function

n=100

U=rdoublex(n,mu=0,lambda=1)

# Generate n random number from normal disrtribution

X=rnorm(n, mean = 0, sd = 1)

# Generate n error term from normal disrtribution

E=rnorm(n, mean = 0, sd = 1)

# We can get Y and Z_original a(alpha)=1, b(beta)=1

a=1

b=1

Y=a+b*X+E

Z_original=X+U

start= 0.02

end = 2

range = 0.02

# create hi range for h (bandwidth)

hi = seq(start,end, by= range)

# Create Rh set to 0. Rh is function for h

Rh =0

bvalue = 0

# start loop by setting h equal to hi range

for ( h in hi)

{

bhat = 0

ahat = 0

k=1

EXZ = 0

while(k <= n)

{
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start_insideloop= 1

end_insideloop = n

range_insideloop = 1

ni = seq(start_insideloop,end_insideloop, by= range_insideloop)

ni = ni[-k]

for (i in ni)

{

Z=rep(Z_original[i],n-1)

Zi=X+U

Zi=Zi[-k]

q_one=(Z-Zi)/h+h

q_two=(Z-Zi)/h-h

pnorm1=pnorm(q_one, mean = 0, sd = 1)

pnorm2=pnorm(q_two, mean = 0, sd = 1)

numerator_one=(exp(Z-Zi)*(1-pnorm1)-exp(Zi-Z)*(pnorm2))

denominator_one=(1/(sqrt(2*pi))*exp(-1/2*((Z-Zi)/h)^2))

EXZ[i] = Z_original[i] + h*exp(h^2/2)* sum(numerator_one)/

sum(denominator_one)

}

reg = lm(Y[-k]~EXZ[-k])

bhat[k]=reg$coefficients[2]

ahat[k]=reg$coefficients[1]

k=k+1

}

# transform range to index and store them in vector Rh with order

index = (h+range-start)/range

Rh[index] = sum((Y - ahat*-bhat*EXZ)^2)

bvalue[index] = summary(reg)$coefficients[2]

}

plot(hi[!is.na(Rh)],Rh[!is.na(Rh)],type="l", ylab="CV(h)",xlab="hi")

B.5 R Codes for Figure 3.12

# Simulation for Figure 3.12

# CV(h) and hi plot for Epanechnikov Kernel function

# set the sample size n

n=100

U=rdoublex(n,mu=0,lambda=1)

X=rnorm(n, mean = 0, sd = 1)
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# Generate n error term from normal distribution

E=rnorm(n, mean = 0, sd = 1)

# set true value for a and b to 1 and get Y and Z_original value

a=1

b=1

Y=a+b*X+E

Z_original=X+U

# Create a range hi for h from start to end point by range

start= 0.01

end = 5

range = 0.01

# create hi range for h (bandwidth)

hi = seq(start,end, by= range)

# Create Rh set to 0. Rh is function for h

Rh =0

# start loop by setting h equal to hi range

for ( h in hi)

{

# Epanechikov Kernal function

b_hat = 0

a_hat = 0

MSE = 0

# create EXZe for expected value in Epanechikov kernal

EXZe = 0

for (j in 1:n)

{

# create Z vector with equal value from Z_original

Z=rep(Z_original[j],n)

# add X to measurement error which is random number from laplace U

Zi=X+U

numerator_1stHalf = sum((exp(Z-Zi)*(((Z<Zi-h)*(((2*h-2)/h^3)*

exp(h)+((2*h+2)/h^3)*exp(-h)))+(Z>Zi-h)*(Z<Zi+h)*((1/h-(1/h^3)*

((Z-Zi+1)^2+1))* exp(Zi-Z)+((2*h+2)/h^3)*exp(-h)))))

numerator_2ndHalf = sum((exp(-Z+Zi)*(((Z>Zi+h)*(((2*h-2)/h^3)*

exp(h)+((2*h+2)/h^3)*exp(-h)))+ (Z>Zi-h)*(Z<Zi+h)*

(((2*h-2)/h^3)*exp(h)+((1/h^3)*((Z-Zi-1)^2+1)-1/h)*exp(Z-Zi)))))
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denominator_two = (1/h)*sum((Z>Zi-h)*(Z<Zi+h)*(1-((Z-Zi)/h)^2))

# calculate EXZe, expected value of X give Z in Epanechikov kernal

EXZe[j] = Z_original[j] + (numerator_1stHalf-numerator_2ndHalf)/

denominator_two

}

# create regression model and get estimate b_hat and a_hat and MSE

# store b_hat, a_hat and MSE in vector we created before

reg1 = lm(Y~EXZe)

b_hat=reg1$coefficients[2]

a_hat=reg1$coefficients[1]

MSE = mean(reg1$residuals^2)

# transform range to index and store them in vector Rh with order

index = h/range

# calculate Rh function related to Y ma_hat, mb_hat, mEXZe, store

# by index

Rh[index] = sum((Y - a_hat-b_hat*EXZe)^2)

}

# plot hi vs Rh graph

plot(hi[!is.na(Rh)],Rh[!is.na(Rh)],type="l", ylab="CV(h)",xlab="hi")

B.6 R Codes for Table 3.3

# Simulation for Table 3.3

set.seed(66889)

a=1;

b=1;

reg=matrix(0,nrow=3,ncol=3);

kk=1

for(n in c(100,200,300))

{

x=rnorm(n,0,3);

u=rexp(n,1)-rexp(n,1);

e=rnorm(n,0,1);

y=a+b*x+e

z=x+u;

hseq=seq(1.6,6,by=0.05)

CV=rep(0,length(hseq));
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k=1;

for(h in hseq)

{

zdiff=kronecker(z,z,"-");

Atemp=exp(zdiff)*(1-pnorm(zdiff/h+h))-

exp(-zdiff)*pnorm(zdiff/h-h);

At=matrix(Atemp,nrow=n);

Bt=matrix(dnorm(zdiff/h),nrow=n);

res=rep(0,n);

for(i in seq(n))

{

yi=y[-i];

wi=z[-i]+h*exp(h^2/2)*apply(At[-i,-i],2,sum)/

apply(Bt[-i,-i],2,sum);

myreg=lm(yi~wi)$coefficients;

cat(myreg,"\n")

res[i]=y[i]-myreg[1]-myreg[2]*(z[i]+h*exp(h^2/2)*

apply(At[-i,],2,sum)[i]/apply(Bt[-i,],2,sum)[i]);

}

CV[k]=mean(res^2)

k=k+1;

}

plot(hseq, CV,type="l")

x11()

h=hseq[CV==min(CV)]

zdiff=kronecker(z,z,"-");

Atemp=exp(zdiff)*(1-pnorm(zdiff/h+h))-exp(-zdiff)*

pnorm(zdiff/h-h);

At=matrix(Atemp,nrow=n);

Bt=matrix(dnorm(zdiff/h),nrow=n);

w=z+h*exp(h^2/2)*apply(At,2,sum)/apply(Bt,2,sum);

regtemp=lm(y~w)$coefficients;

reg[kk,]=c(h,regtemp[1],regtemp[2]);

kk=kk+1

}

reg
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B.7 R Codes for Table 3.4

total=1000

aTrue=bTrue=rep(0,total)

aNaive=bNaive=rep(0,total)

aCrect=bCrect=rep(0,total)

aOracle=bOracle=rep(0,total)

aTwid=bTwid=rep(0,total)

aStein1=bStein1=rep(0,total)

aStein2=bStein2=rep(0,total)

for(k in seq(total))

{

# Generating Sample

n=100;

h=0.8*n^(-1/5)

su=sqrt(1/4);

x=rnorm(n,0,1);

u=rdoublex(n,0,su/sqrt(2));

e=rnorm(n,0,1);

z=x+u;

y=1+x+e;

su2=su^2;

#True

bTrue[k]=cov(y,x)/cov(x,x);

aTrue[k]=mean(y)-bTrue[k]*mean(x);

# Naive

bNaive[k]=cov(y,z)/cov(z,z);

aNaive[k]=mean(y)-bNaive[k]*mean(z);

# Bias-Corrected

bCrect[k]=cov(y,z)/(cov(z,z)-su2);

aCrect[k]=mean(y)-mean(z)*bCrect[k];

# Known x and u distribution

Znum=Zdem=rep(0,n)

f0=function(v)
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{

((1-pnorm(sqrt(2)/su-v))*exp(1/su2-v*sqrt(2)/su)+

pnorm(-sqrt(2)/su-v)*exp(1/su2+v*sqrt(2)/su))*

exp(-sqrt(2)*v/su)

}

f1=function(v)

{

((1-pnorm(sqrt(2)/su-v))*exp(1/su2-v*sqrt(2)/su)+

pnorm(-sqrt(2)/su-v)*exp(1/su2+v*sqrt(2)/su))*

exp(sqrt(2)*v/su)

}

f2=function(v)

{

(1-pnorm(sqrt(2)/su-v))*exp(1/su2-v*sqrt(2)/su)+

pnorm(-sqrt(2)/su-v)*exp(1/su2+v*sqrt(2)/su)

}

for(j in seq(n))

{

Znum[j]=integrate(f0,z[j],200)$value*exp(sqrt(2)*z[j]/su)/

f2(z[j])

Zdem[j]=-integrate(f1,-200,z[j])$value*exp(-sqrt(2)*z[j]/su)/

f2(z[j])

}

ez=z+Znum+Zdem

myreg=lm(y~ez)$coefficients;

aOracle[k]=myreg[1]

bOracle[k]=myreg[2]

# Nonparametric Tweedie Estimate

for(i in seq(n))

{

q_one=(z[i]-z)/h+h*sqrt(2)/su;

q_two=(z[i]-z)/h-h*sqrt(2)/su;

pnorm1=pnorm(q_one);

pnorm2=pnorm(q_two);

numerator_one=(exp((z[i]-z)*sqrt(2)/su)*(1-pnorm1)

-exp((z-z[i])*sqrt(2)/su)*(pnorm2));

denominator_one=(1/(sqrt(2*pi))*exp(-1/2*((z[i]-z)/h)^2));

ez[i]=z[i]+h*exp(h^2/su2)*sum(numerator_one)/

sum(denominator_one)
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}

myreg=lm(y~1+ez)$coefficients;

bTwid[k]=myreg[2]

aTwid[k]=myreg[1]

# Stein Estimate (Alice S. Whitemore)

ez1=z-(n-2)*z/sum(z^2)

ez2=z-su2*(n-3)*(z-mean(z))/(var(z)*(n-1))

myreg=lm(y~ez1)$coefficients

aStein1[k]=myreg[1]

bStein1[k]=myreg[2]

myreg=lm(y~ez2)$coefficients

aStein2[k]=myreg[1]

bStein2[k]=myreg[2]

cat(k,"\n")

}

est1=c(mean(aTrue),mean((aTrue-1)^2),mean(bTrue),

mean((bTrue-1)^2))

est2=c(mean(aNaive),mean((aNaive-1)^2),mean(bNaive),

mean((bNaive-1)^2))

est3=c(mean(aCrect),mean((aCrect-1)^2),mean(bCrect),

mean((bCrect-1)^2))

est4=c(mean(aTwid),mean((aTwid-1)^2),mean(bTwid),

mean((bTwid-1)^2))

est5=c(mean(aStein1),mean((aStein1-1)^2),mean(bStein1),

mean((bStein1-1)^2))

est6=c(mean(aStein2),mean((aStein2-1)^2),mean(bStein2),

mean((bStein2-1)^2))

est7=c(mean(aOracle),mean((aOracle-1)^2),mean(bOracle),

mean((bOracle-1)^2))

result=cbind(est1,est2,est3,est4,est5,est6,est7)

dimnames(result)=list(c("alpha (Mean)","alpha (MSE)","beta (Mean)",

"beta MSE"),

c("True","Naive","Bias-Corrected","Tweedie","Stein1","Stein2",

"Oracle"))

round(result,4)

ymax=max(density(bTrue)$y,density(bNaive)$y,density(bOracle)$y,
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density(bCrect)$y,density(bTwid)$y)

xmin=min(bTrue,bNaive,bCrect,bOracle,bTwid);

xmax=max(bTrue,bNaive,bCrect,bOracle,bTwid);

plot(density(bTrue),type="l",lwd=2,ylim=c(0,ymax),xlim=c(xmin,xmax),

xlab="Estimates of Slope","Density",main="")

lines(density(bNaive),lty=1,lwd=1)

lines(density(bCrect),lty=2,lwd=1)

lines(density(bOracle),lty=4,lwd=1)

lines(density(bTwid) ,lty=5,lwd=2)

legend("topright", legend = c("True", "Naive","Bias-Corrected",

"Oracle","Tweedie"), lwd=c(2,1,1,1,2),xjust = 1, yjust=1,

cex=0.8,lty=c(1,1,2,4,5),bty="n")
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