

MOBILE APPLICATION FOR EVENT UPDATES

by

SATYA SAGAR VANTEDDU

B.Tech., Jawaharlal Technological University, 2011

A REPORT

submitted in partial fulfillment of the requirements for the degree

MASTER OF SCIENCE

Department of Computing and Information Sciences

College of Engineering

KANSAS STATE UNIVERSITY

Manhattan, Kansas

2016

Approved by:

Major Professor

Dr. Mitchell Neilsen

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by K-State Research Exchange

https://core.ac.uk/display/33381904?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Copyright

SATYA SAGAR VANTEDDU

2016

Abstract

It is really tough for someone new to a place to search for new addresses or navigate from

one building to another. Further, it would help the user to keep track of event at each

building/location in the app itself rather than noting them down on a piece of paper. Keeping these

in mind, the idea is to develop a mobile app through which one can easily search for

addresses/buildings which might not be available in google maps and also should be getting

updates regarding the events at that location. This can be achieved by storing the latitudes and

longitudes of each building or any specific location through the website which in turn is updated

in the mobile application. The user can further check the events at each building which will be

updated from the website.

The application is divided into two parts, user module and admin module. The user would

be using a mobile app to perform the required operations while the admin is responsible for storing

the locations and events. Since there are a huge percentage of both android, iOS and windows

users these days, it would be beneficial to build a hybrid app which would work cross platform

rather than building a native app. I would be using the native browsers of these operating systems

to achieve this.

The admin module is a website through which locations and events at specified locations

can be stored based on dates in an attached relational database. This module can only be accessed

by authorized users and is responsible for all the updates visible for the mobile app user.

 The completely developed app can be used by any organization or institution to be

used by their staff/students, etc.

iv

Table of Contents

List of Figures .. vi

List of Tables .. vii

Acknowledgements .. viii

Chapter 1 - Introduction .. 1

1.1 Project Description ... 1

1.2 Motivation ... 1

Chapter 2 - Background and Technologies used .. 2

2.1 CodeIgniter ... 2

2.1.1 Application Flow Chart .. 3

2.1.2 Model-View-Controller ... 3

2.1.3 Security .. 4

2.1.3.1 XSS Filtering .. 4

2.1.3.2 SQL Injection .. 5

2.1.3.3 Cross-Site Request Forgery (CSRF) ... 5

2.2 Apache Cordova ... 6

2.2.1 Web Hybrid App .. 6

2.2.2 Apache Cordova ... 6

Chapter 3 - Requirements and System Design ... 8

3.1 Requirements .. 8

3.2 System Design .. 9

3.2.1 UML Diagrams .. 9

3.2.1.1 Class Diagram ... 10

3.2.1.2 Use Case Diagram... 11

3.2.1.3 Activity Diagram .. 11

Chapter 4 - Building the System ... 13

4.1 Admin Module .. 13

4.1.1 Database ... 13

4.1.2 Model ... 15

4.1.3 View ... 15

v

4.1.4 Controller ... 15

4.2 User Module ... 15

4.2.1. Google Maps API ... 16

4.2.3 JQuery Mobile – App Layout .. 17

Chapter 5 - Using the System ... 18

5.1 Admin Module .. 18

5.1.1 Users .. 18

5.1.2 Buildings .. 19

5.1.3 Events ... 20

5.2 User Module ... 22

Chapter 6 - Testing.. 27

6.1 Unit Testing .. 27

6.2 Integration Testing .. 30

6.3 Compatibility Testing ... 31

6.4 Assumptions .. 31

Chapter 7 - Conclusion and Future work .. 32

7.1 Conclusion .. 32

7.2 Future Work .. 32

Chapter 8 - References .. 33

vi

List of Figures

Figure 2-1 CodeIgniter-Application Flow Chart .. 3

Figure 2-2 Cordova Application Architecture [4] .. 7

Figure 3-1 Class Diagram ... 10

Figure 3-2 Use Case Diagram ... 11

Figure 3-3 Activity Diagram ... 12

Figure 4-1 E/R diagram .. 14

Figure 4-2 Relational Schema ... 14

Figure 5-1 Login Page .. 18

Figure 5-2 User List .. 19

Figure 5-3 Adding New User .. 19

Figure 5-4 Building List.. 19

Figure 5-5 Adding New Building ... 20

Figure 5-6 Events List ... 20

Figure 5-7 Add New Event ... 21

Figure 5-8 Logout ... 21

Figure 5-9 Search box ... 21

Figure 5-10 App Home Screen ... 22

Figure 5-11 Events at a Building .. 23

Figure 5-12 Building Search ... 24

Figure 5-13 Events Page ... 25

Figure 5-14 Current Location ... 26

vii

List of Tables

Table 6-1 Unit testing on Admin Module ... 28

Table 6-2 Unit Testing for User Module .. 30

Table 6-3 Integration Testing.. 30

Table 6-4 Compatibility Testing ... 31

viii

Acknowledgements

I would like to express my sincere gratitude to my Major Professor, Dr. Mitchell Neilsen

for his encouragement and for trusting my abilities to complete this project.

I take immense pleasure in extending my heartfelt thanks to my committee members Dr.

Daniel Andresen and Dr. Torben Amtoft for their encouragement and for taking the time to serve

on my committee.

I take this opportunity to acknowledge the support and help received from the academic

staff of the Department of Computing and Information Sciences.

I would like to thank my parents and friends for their immense love and belief.

1

Chapter 1 - Introduction

 1.1 Project Description

The proposed application ‘Event Management’ is designed to provide a solution for

problems faced by anyone new to a place. This application addresses a couple of very common

problems. Finding a specific building, even though google maps locate most of the locations there

are few buildings that cannot be located because of the organization’s compliance or other reasons.

Another common problem anyone faces is being unaware of most of the events going on within

the organization. With this app installed in your mobile device, the user can search for any building

within the organization and also get updates about the events going on in all the buildings/

locations.

The system is built in two modules, Admin module, for the organization to provide data

and User module for the user to access the data which the organization is providing. The Admin

module is a secured website which can be only by the organization through which the locations

can be updated and also the events on daily basis. This is achieved using PHP, HTML, Bootstrap

and MySQL. The User module is a cross platform mobile application which would be available

for users to download and use. Users would be able to search for buildings and check for events

on daily basis. This is achieved using Cordova and JavaScript.

 1.2 Motivation

Being an international student, me along with my friends faced these problems when we

were new to Manhattan and the idea of building an app to provide a solution for this emerged.

There are also several events going around in KSU which are generally communicated through e-

mails long before the actual date which somehow are overlooked. The idea of user being able to

see all the events happening on the present day got me excited to work on this application.

2

Chapter 2 - Background and Technologies Used

The two modules to build this system are mostly achieved using web application features.

Admin module is built using a PHP framework called CodeIgniter. CodeIgniter is a powerful PHP

framework with a small footprint, built for those who required a simple, yet elegant toolkit to build

fully-featured web applications. It requires nearly zero configuration, with no restrictive coding

rules, and offers simple solutions to complex application requirements. CodeIgniter features a rich

set of libraries for commonly needed tasks, as well as a simple interface and logical structure to

access these libraries. It's exceptionally fast, as its core system only requires a few small libraries,

with additional libraries loaded dynamically upon requests, based on your needs for a given

process. This means the base system is both lean and agile. As CodeIgniter uses the MVC

controller approach, it allows for great separation between logic and presentation, particularly

useful for projects in which designers are working on template files [1].

User module is built using Apache Cordova PhoneGap, jQuery mobile and JavaScript.

PhoneGap provides access to the services and hardware of the phone by way of a JavaScript

library. This library is the same for all phones, so you can really write a single application code

base and use it on a range of different platforms [2]. This application interacts with the server

through Ajax calls to get the necessary data that can be viewed by the user.

 2.1 CodeIgniter

CodeIgniter is a PHP-driven Application Development Framework - a toolkit to build web

sites using PHP [3]. CodeIgniter lets the user develop projects much faster since there is no need to

write code from scratch since it has a rich set of libraries for commonly needed tasks and further

has a simple interface to access these libraries. This framework has small footprint with and has

very minimum to no server requirements and also is compatible with wide versions of PHP.

3

CodeIgniter uses the Model-View-Controller approach, which allows great separation between

logic and presentation. We describe MVC in more detail later.

 2.1.1 Application Flow Chart

The following graphic illustrates how data flows throughout the system in CodeIgniter:

Figure 2-1 CodeIgniter-Application Flow Chart [10]

The “index.php” file serves as the front controller which initializes the base resources needed to

run CodeIgniter [10]. The Router examines the HTTP request from “index.php” to determine the

action to be taken and if a cache file exists, it is sent directly to the browser. Before the application

controller is loaded, the HTTP request and any user submitted data is filtered for security. The

Controller loads the model, core libraries, helpers, and any other resources needed to process the

specific request. The finalized View is sent to the web browser and if caching is enabled, the view

is cached first so that on subsequent requests it can be served.

 2.1.2 Model-View-Controller

CodeIgniter is based on the Model-View-Controller development pattern. MVC is a

software approach that separates application logic from presentation. In practice, it permits the

web pages to contain minimal scripting since the presentation is separate from the PHP scripting.

4

 The Model represents the data structures. Typically, the model classes will contain

functions that help retrieve, insert, and update information in our database.

 The View is the information that is being presented to a user. A View will normally be a

web page, but in CodeIgniter, a view can also be a page fragment like a header or footer.

It can also be an RSS page, or any other type of “page”.

 The Controller serves as an intermediary between the Model, the View, and any other

resources needed to process the HTTP request and generate a web page.

CodeIgniter has a fairly loose approach to MVC since Models might not be always required. Based

on the system that has to be built, we can ignore models and build the application minimally using

Controllers and Views. CodeIgniter also enables us to incorporate existing scripts, or even develop

core libraries for the system.

 2.1.3 Security

There is always a concern about security when building a website as there are lot of hackers

may get into the server through the website. Hacking is regularly performed by automated scripts

written to scour the Internet in an attempt to exploit known website security issues in software.

The security of the website can be breached by using attacks like XSS, SQL injection, CSRT, etc.

These three are the most common attacks which can compromise a website. However, CodeIgniter

framework provides a security class which has methods to tackle these attacks thereby ensuring

the security of the website.

 2.1.3.1 XSS Filtering

XSS means cross-site scripting. CodeIgniter comes with XSS filtering security. This filter

will prevent any malicious JavaScript code or any other code that attempts to hijack cookie and do

5

malicious activities. xss_clean() method is used to filter data through the XSS filter. This method

is generally used only while submitting data.

 2.1.3.2 SQL Injection

SQL injection is an attack made on database query. CodeIgniter provides inbuilt functions

and libraries to prevent this. It follows ways like escaping queries, query biding and active record

class.

 Escaping Queries: $this->db->escape() function automatically adds single quotes around

the data and determines data type so that it can escape only string data.

 Query Biding: In this method, the query’s parameters are filled with question marks (?)

which are later replaced with required parameters using query() function. The values

passed through query() function automatically escape values there by producing safer

queries.

 Active Record Class: Using active records, query syntax is generated by each database

adapter. It also allows safer queries, since the values escape automatically.

 2.1.3.3 Cross-Site Request Forgery (CSRF)

Cross-Site Request Forgery (CSRF) is an attack that forces end users to execute unwanted

actions on a web application in which they're currently authenticated. CSRF attacks specifically

target state-changing requests, not theft of data, since the attacker has no way to see the response

to the forged request. CodeIgniter prevents this attack by enabling it in

application/config/config.php file. When we are creating form using form_open() function, it will

automatically insert a CSRF as hidden field. We can also manually add the CSRF using

theget_csrf_token_name() and get_csrf_hash() function. The get_csrf_token_name() function

will return the name of the CSRF and get_csrf_hash() will return the hash value of CSRF.

6

 2.2 Apache Cordova

 2.2.1 Web Hybrid App

Web hybrid mobile apps are those which wrapped in a webview with a thin native container

used just as the bridge to native. No UI components are provided from the native side, it’s simply

a wrapper for native-to-webview communication. This kind of apps run as a locally installed app

on the device built using HTML5/ JavaScript/ CSS. It is run in a webview(embedded web browser)

which can access native API’s like camera, contacts, etc.

 2.2.2 Apache Cordova

Apache Cordova is an open-source mobile development framework [4]. It allows us to use

standard web technologies - HTML5, CSS3, and JavaScript for cross-platform development.

Applications execute within wrappers targeted to each platform, and rely on standards-compliant

API bindings to access each device's capabilities such as sensors, data, network status, etc.

Cordova uses Android SDK and JDK to generate the platform specific file (.apk in our case). What

stops a web app from accessing the services of a mobile device is simply that the browser

sandboxes it for security reasons. All Cordova PhoneGap does is remove the sandbox and provides

a JavaScript API to access the system components. Figure 2.2 gives a brief idea about several

components of Cordova application.

The Cordova-enabled WebView provides the application with its entire user interface. On

some platforms, it can also be a component within a larger, hybrid application that mixes the

WebView with native application components.

The WebApp is the part where the application code resides. The application itself is

implemented as a web page, by default a local file named index.html, that references CSS,

JavaScript, images, media files, or other resources are necessary for it to run. The app executes in

7

a WebView within the native application wrapper, which can be distributed to app stores. This

container has a very crucial file –config.xml file that provides information about the app and

specifies parameters affecting how it works, such as whether it responds to orientation shifts.

Plugins are an integral part of the Cordova ecosystem. They provide an interface for Cordova and

native components to communicate with each other and bindings to standard device APIs. This

enables us to invoke native code from JavaScript.

Figure 2-2 Cordova Application Architecture [4]

8

Chapter 3 - Requirements and System Design

 3.1 Requirements

Requirement gathering is a very important part of software development. This phase plays

a key role in what we are going to build. This is as important as developing the actual system.

Unless a set of concrete requirements are available, the developer cannot get a clear idea about

his/her approach to develop the system. To gather the requirements of this system, I initially

thought about how a new user would face problems in a new place. With this thought in mind, I

have defined the modules in the system and their expectations. The user would fetch data i.e. would

only read data from the database while there should be someone who would provide data, that can

be our Admin. The requirements gathered with help of Dr. Mitch Neilsen for these two modules

are defined below:

The requirements of the user:

 User should be able to see KSU map by default.

 User should be able to search for buildings in KSU while the app predicts what the user is

looking for.

 User should be able to see red markers on buildings where there are events on the present

day.

 User should be able to check the events on that day by clicking on the red marker.

 User should be able to check all the events in a list format.

 User should have the flexibility to check his current location.

The requirements of the Admin are:

 Admin should be protected account i.e. should be able to access through username and

password.

9

 Admin should be able to give access to new users to add locations/buildings or events.

 Admin should be able to add locations based on latitudes and longitudes.

 Admin should be able to modify location parameters.

 Admin should be able to add/modify events based on time and date to the buildings already

stored in the database.

 Admin should be able to add events only to the buildings which are in the database.

It is required that the devices in which this system is implemented is connected to internet and

geolocation.

 3.2 System Design

A picture is worth a thousand words [6], this absolutely fits while discussing about system

design. System design is a method of defining the modules, functions, etc., in a pictorial

representation such that it satisfies the requirements. System design is dependent on the specified

requirements. In a nut shell, system design is a graphical representation of requirements document

which can be built using UML diagrams.

 3.2.1 UML Diagrams

UML stands for Unified Modeling Language. UML diagrams represent both a static view

and a dynamic view of the system. The static view focuses on the objects, attributes, operations

and relationships. Structure diagrams show the static view of the system. The dynamic view

focuses on the dynamic behavior of the system. It concentrates on collaborations among objects

and various changes in the internal states of the objects. Behavior diagrams show the dynamic

view of the system. Following UML diagrams give a brief idea about the present system.

10

 3.2.1.1 Class Diagram

The class diagram is a static diagram otherwise known as structural diagram[7]. It represents

the static view of an application. Class diagram is not only used for visualizing, describing and

documenting different aspects of a system but also for constructing executable code of the software

application. The class diagram describes the attributes and operations of a class and also the

constraints imposed on the system. The class diagrams are widely used in the modelling of object

oriented systems because they are the only UML diagrams which can be mapped directly with

object oriented languages. The class diagram shows a collection of classes, interfaces, associations,

collaborations and constraints. The following figure represents the class diagram of this system.

Since the system is developed in MVC architecture, the model, view and controller classes are

represented separately along with their interactions.

Figure 3-1 Class Diagram

11

 3.2.1.2 Use Case Diagram

To model a system the most important aspect is to capture the dynamic behavior [8]. To

clarify a bit in details, dynamic behavior means the behavior of the system when it is running

/operating.

In UML there are five diagrams available to model dynamic nature and use case diagram is one of

them. Use case diagrams are consists of actors, use cases and their relationships. The diagram is

used to model the system/subsystem of an application. The purpose of use case diagram is to

capture the dynamic aspect of a system. The following diagram represents the use case diagram of

this system where Admin and User are defined as actors and the operations they can perform are

defined as use cases.

Figure 3-2 Use Case Diagram

 3.2.1.3 Activity Diagram

Activity diagram is another important diagram in UML to describe dynamic aspects of the

system [9]. Activity diagram is basically a flow chart to represent the flow form one activity to

12

another activity. The activity can be described as an operation of the system. So the control flow

is drawn from one operation to another. This flow can be sequential, branched or concurrent.

Activity diagrams deals with all type of flow control by using different elements like fork, join etc.

The activity diagram in this system is represented as shown in Figure 3-2. The activities are the

operations that the system can perform in Admin module and User module.

Figure 3-3 Activity Diagram

13

Chapter 4 - Building the System

This system is built in two different modules. Even though the user module is a mobile

application, it is a hybrid app and is coded with jQuery mobile. Both the modules require extensive

coding in web scripting languages like HTML5, JavaScript, CSS and PHP. The Admin module

consists of a website which communicates with the database which in turn sends data to the mobile

application. The system is built in such a way that the website is given read/write permissions over

database and the mobile app has only read permissions. Below is a detailed explanation about each

of these modules:

 4.1 Admin Module

Admin module should provide all the functionalities for an organization to save location

names, update events and also give authorization to specific users. To achieve this, all the data

should be stored in a database. I chose MySQL for Data Management. HTML for content and

structure, CSS for style and presentation, JavaScript for client side scripting and PHP for server

side scripting. All these operations are built on a single framework called CodeIgniter. CodeIgniter

follows a MVC approach which is explained further in detail.

 4.1.1 Database

Based on the requirement, this module should have three entities namely Users, Buildings

and Events. Users will have data about the users who are allowed to modify the database but are

not related to buildings. This table specifically stores the users who can log in to the system. An

E/R diagram shows the entities, attributes and their relation in a schema and can be later converted

to a relational schema to maintain the project database. Below diagram shows the entity

relationship between them.

14

Figure 4-1 E/R diagram

This relational schema is maintained in MySQL database and is accessed through the

model section of CodeIgniter. The relational schema is built aligning to the requirements, such that

the events and buildings are related whereas the users table specifically stores user data who can

use the system. Below relational schema gives a brief idea,

Figure 4-2 Relational Schema

15

 4.1.2 Model

The model section is where the logic resides to communicate with the database and also

update the view thereby making them visible to the user. Models are built for Buildings, Events

and Users typically perform add, delete and getall data functions. In case of user model, an

additional function for login validation is also present. Model is also responsible for the view to

get updated based on user request coming through controller. All this logic is coded in PHP. This

part of the code is in */application/models folder of CodeIgniter template.

 4.1.3 View

The web pages that are visible to the user are all coded in view section. Typically there will

be web pages for User, Buildings and Events section individually. Within these sections, each

section would have a webpage to add new entry and also to view all the entries already present in

the database. This part of the code is done in HTML, CSS and JavaScript. This part of the code is

in */application/views/en/default/ folder of CodeIgniter template.

 4.1.4 Controller

The Controller acts as an intermediary between model and view. The controller function is

triggered whenever the user performs an action in the view. Controller thereby sends the

information to model which interacts with the database and sends the information back to

controller which in turn updates the view. Controlling functions are developed in PHP for Users,

Buildings and Events which will triggered when user performs operations like add, delete, etc.

This part of the code is in */application/controllers folder of CodeIgniter template.

 4.2 User Module

The user module is a hybrid mobile application which is built using Cordova PhoneGap

and jQuery mobile scripting language. The main purpose of this app is,

16

 To show the present day events at a particular building.

 Search the buildings he is looking for in google maps.

 Get a list of events that are going to happen.

All these is achieved using the google maps API and jQuery mobile scripting.

 4.2.1. Google Maps API

The main section of the app is google maps which is first initialized with features like ‘My

Location’ and ‘Refresh’. Map is initialized to a particular location by giving the default latitude

and longitude as below,

<script async defer src="https://maps.googleapis.com/maps/api/js?key=AIzaSyAzQYXYGrK-

9Wv289cM5XGIXl0SH24ZNlg &callback=initMap" type="text/javascript"></script>

function initMap() {

 var map = new google.maps.Map(document.getElementById('map'), {

 zoom: 8,

 center: new google.maps.LatLng(39.183608, -96.571669),

 mapTypeId: google.maps.MapTypeId.ROADMAP

});

After the map initialization, the main focus was to show marker’s on all the locations where there

are events on the present day. For this, a marker is initialized on all such locations. In addition to

this, the marker should have an event listener when it is clicked such that it shows the events at

that location. A sample of that code is below,

google.maps.event.addListener(marker, 'click', (function(marker, i) {

 return function() {

 infowindow.setContent(description);

 infowindow.open(map, marker);

 }

})(marker));

17

This mobile app receives data from the database through AJAX calls in json format.

var request = $.ajax({

 type: "POST",

 url: "http://creativeignite.com/samad/event_project/index.php/admin/get_data",

 dataType:'json'

 });

The Cordova plugin for geolocation [5] is used to get the present location of the user which is added

to the framework before using it. Below is the sample,

navigator.geolocation.watchPosition(onSuccess, onError, { timeout: 5000, enableHighAccuracy:

true });

 4.2.3 JQuery Mobile – App Layout

JQuery mobile allows us to structure the app as we wish to. The Google map takes the

center stage along with which the below components are embedded,

1. Current Location

2. Refresh

3. Search box

4. Clear search

5. Events page

The above components are bundled in a single page using jQuery Mobile. The current

location gives the user’s present location. Refresh button would check if there are any updated

events. Search box is to search for any location which has an autocomplete feature. Clear search

would clear the markers from the map. Events page displays all the present and future events.

18

Chapter 5 - Using the System

As the requirements demands from the systems is used in two different modules and the

target audience for each module are different. The first module, Admin module is targeted to be

used by the administrator/organization whereas the second module is targeted to be used by the

employees/students, etc. Below is a brief description about how to use both these modules,

 5.1 Admin Module

The admin module will be able to perform all the operations that an administrator does,

from logging in to adding events. Below are the screenshots of the webpages after developing.

First and foremost is the login page through which a user can enter into the system to modify the

database.

Figure 5-1 Login Page

 5.1.1 Users

Users can be added to database or listed from the database in this section. User has fields

like username and password. If a user has to be authorized to access this system, the admin should

add his details through this web page. Figure 5-2 shows how the user details can be updated or

deleted from the database from Action column.

19

Figure 5-2 User List

 New user can be added to the database from the Users > Add new section as shown in the below

screenshot.

Figure 5-3 Adding New User

 5.1.2 Buildings

Buildings are locations which can be stored with latitudes and longitudes. New buildings

can be added or all the buildings can be listed out in this section. Figure 5-4 shows how the

buildings can be modified or deleted from the database through Action column.

Figure 5-4 Building List

20

New buildings can be added to database from Buildings > Add New section which is shown in

the below screenshot. Latitude and Longitude can be picked from the given external website.

Figure 5-5 Adding New Building

 5.1.3 Events

Events section is where events can be added to buildings based on date and time. Events

can be added at each of the buildings present in the database along with its date and time. A short

description and room number also can be added. Figure 5-6 shows how the events can be modified

or deleted from the database using Action column.

Figure 5-6 Events List

 Figure 5-7 shows how events can be added to database. An event has title, description, the

building which can be selected from the dropdown, room number, date and time. New entries

which we give here will be updated in the database which in turn would be visible in the mobile

app.

21

Figure 5-7 Add New Event

After the necessary operations are performed, the user can logout of the account as shown in figure

5-8. Admin even has the flexibility to search with in the fetched list through the search box

provided.

Figure 5-8 Logout

Figure 5-9 Search box

22

 5.2 User Module

The mobile application when installed asks the user for permission to access internet and

location which will be necessary to use this application. By default, the app looks like Figure 5-

10. The home screen has a search box to search for buildings, a clear search button to clear any

searched building, a ‘my location’ button and a refresh button.

Figure 5-10 App Home Screen

23

The red markers which are visible by default are the places where there are events on that

particular day. These markers are clickable and when done so, will display the list of events at that

particular location as shown in Figure 5-11.

Figure 5-11 Events at a Building

24

The user can even search for a particular location he is looking for through the search box

provided above the map. The app predicts the location you are looking for and suggests names

accordingly. The building user is looking for will be viewed as a green marker. User can even look

for events at this building by clicking on the green marker.

Figure 5-12 Building Search

25

If the user wants to check for all the events that are going to happen, he can simply click

on the left top corner which will open a new page where all the future events are listed as shown

in the Figure 5-13.

Figure 5-13 Events Page

26

User can even check his location by clicking the blue location button on the map. By doing

this, user can check how far he is from the location he is searching for. The user can even refresh

the map for new events by clicking the blue refresh button on the map. This feature would allow

the user to get the modification of any events to be reflected on the app.

Figure 5-14 Current Location

27

Chapter 6 - Testing

In the software development process, errors can be injected at any stage during

development. Therefore, software testing, which represents the ultimate review of specification,

design, and coding, is a critical element of software quality assurance. Testing presents an

interesting anomaly for the software engineer. The main objective of testing this system was to

uncover any unusual activity the user was not expecting. Since this system consists of two

modules, I have opted for Unit testing, Integration testing and Compatibility testing.

 6.1 Unit Testing

Unit testing in a testing methodology wherein we test the individual components of the

code. In this case, unit testing is performed on the web site before deploying the website using

XAMPP server in windows system and also after deploying in google Chrome browser. Following

table shows the operations conducted to ensure proper functionality,

S. No. Test case Expected Result Result

1. Open Login page Login page should open. Pass

2. Admin should be able to login

with right credentials

Admin should successfully login Pass

3. Admin shouldn’t to able to login

with wrong credentials

Admin should not login Pass

4. Admin should be able to see all

the users

User list should be populated Pass

5. Admin should be able to

modify/delete a user

Modifications should be reflected in

the user list

Pass

28

6. Admin should be able to add

users

New users should be listed in user

list page

Pass

7. Admin should be able to list all

the buildings

All the buildings should be

populated

Pass

8. Admin should be able to

modify/delete building details

The modifications should be

reflected in list of buildings

Pass

9. Admin should be able to add new

buildings

New buildings should be listed in

list of buildings

Pass

10. Admin should be able to pick

latitudes and longitudes from the

link provided

Admin should be seeing a new

website to pick latitudes and

longitudes

Pass

11. Admin should be able to list all

the events

All the events should be populated Pass

12. Admin should be able to

modify/delete events

Modifications should be reflected in

the list of events

Pass

13. Admin should be able to add new

events based on date and time

New events should be visible in the

list of events page

Pass

14. Admin should be able to logout Admin is redirected to login page Pass

Table 6-1 Unit testing on Admin Module

The user module is tested by deploying the app in an android phone and the below

operations are performed to ensure that all the functionalities are working as expected.

S. No. Test case Expected Result Result

1. Open the app The app should load with default

screen

Pass

29

2. User’s location in the map User should be able to identify his

location

Pass

3. Red markers on building where

there are events

Markers should be visible if there

are events at that building on the

present day

Pass

4. Present day events On clicking the markers, the events

at that building should be populated

Pass

5. No marker for no events building There should be no marker at a

building if there are no events on

that day

Pass

6. Building search User should get a green marker

when he searches for a particular

building

Pass

7. Predict the building user is

searching

The app should suggest names

based on the text the user is giving

Pass

8. Search multiple buildings User should be able to search for

multiple buildings

Pass

9. Clear search All the green markers should vanish

when the user clicks ‘clear search’

Pass

10. Refresh events User should be able to refresh for

updated events by clicking the

refresh button

Pass

30

11. List all events User should be able to list all the

future events with its details

Pass

12. Page transition User should be able to transit

between event list page and map

page without any trouble

Pass

Table 6-2 Unit Testing for User Module

 6.2 Integration Testing

Integration testing is performed to ensure that all the components are working as expected

after integrating all the components together. In this case, the admin module and user module

should be able to interact without any problem and the data should be transferred without any

glitches. Following tests are performed to ensure that the system is integrated as expected,

S. No. Test case Expected Result Result

1. New building in website The app should be able to search for

the new building.

Pass

2. New event in a building The app should show a marker if an

event in added to a building

Pass

3. Building modification The marker should change its place

based on modified latitude and

longitudes

Pass

4. Event date modification Event should show marker based on

its date

Pass

5. Event modification The event modification should be

visible on refreshing the app

Pass

Table 6-3 Integration Testing

31

 6.3 Compatibility Testing

Compatibility test is performed to check the devices the built system can work on. The

website works on any browser and since the mobile app is a cross platform applications, the

application is expected to work in various mobile platforms like android, iOS, windows, etc.

Following tests are performed in android and iOS,

S. No. Test Result

 HTC one M8 Google Nexus

1. Install and Launch Success Success

2. Stress Test 0 issues reported 0 issues reported

3. Page transitions and button press 0 issues reported 0 issues reported

4. Screen rotation Success Success

Table 6-4 Compatibility Testing

 6.4 Assumptions

There are few prerequisites for the system to work without any problem. Following are

the assumptions made,

 The Admin module is accessed on a device with internet.

 For the mobile application to run successfully, the device should be GPS enabled and

should be connected to internet.

32

Chapter 7 - Conclusion and Future Work

 7.1 Conclusion

In conclusion, this system would help a great deal for users who are new to any place. Any

person who is new to a place would looks for places where there are events and where he wants to

go. These places might not be available yet in google maps or internet. In a world where each

individual owns a smartphone, this app would come in very handy for the users.

Personally, while developing this system, I got to learn about how a database, a website

and a mobile application can be integrated. I have learnt technologies like PHP, JavaScript, and

JQuery Mobile etc. in depth and also got a very good leaning about frameworks like CodeIgniter

and Cordova PhoneGap.

 7.2 Future Work

The mobile application can be developed even further by including plugins like Navigation,

notification, etc. Navigation would let the user find the way to travel from one point to another

within the organization. Notifications plugin would give the user notification beforehand about

any event which he wants to attend.

33

Chapter 8 - References

[1] Mashable (n.d.). Introduction to CodeIgniter. Retrieved April 6, 2016, from

 http://mashable.com/2014/04/04/php-frameworks-build-applications/#xiYcCfdQ3Gqy

[2] I-Programmer (n.d.). Intro to PhoneGap. Retrieved April 6, 2016 from

 http://www.i-programmer.info/programming/mobile/3037-getting-started-with-

phonegap.html

[3] CodeIgniter (n.d.). CodeIgniter User Guide. Retrieved April 6, 2016 from

 http://www.codeigniter.com/user_guide/general/welcome.html

[4] Cordova (n.d.). Cordova overview. Retrieved April 6, 2016 from

 https://cordova.apache.org/docs/en/latest/guide/overview/

[5] Cordova (n.d.). Cordova geolocation plugin. Retrieved April 7, 2016 from

 http://cordova.apache.org/docs/en/latest/reference/cordova-plugin-geolocation/index.html

[6] Tutorials point (n.d.). UML diagram overview. Retrieved April 8, 2016 from

http://www.tutorialspoint.com/uml/uml_overview.htm

[7] Tutorials point (n.d.). UML Class diagram. Retrieved April 8, 2016 from

http://www.tutorialspoint.com/uml/uml_class_diagram.htm

[8] Tutorials point (n.d.). UML User Case diagram. Retrieved April 8, 2016 from

http://www.tutorialspoint.com/uml/uml_use_case_diagram.htm

[9] Tutorials point (n.d.). UML Activity diagram. Retrieved April 9, 2016 from

http://www.tutorialspoint.com/uml/uml_activity_diagram.htm

[10] CodeIgniter (n.d.). Application Flow Chart, Retrieved April 6, 2016 from

 http://www.codeigniter.com/user_guide/overview/appflow.html

http://mashable.com/2014/04/04/php-frameworks-build-applications/#xiYcCfdQ3Gqy
http://www.i-programmer.info/programming/mobile/3037-getting-started-with-phonegap.html
http://www.i-programmer.info/programming/mobile/3037-getting-started-with-phonegap.html
http://www.tutorialspoint.com/uml/uml_activity_diagram.htm

