
SMART PARKING SYSTEM 

 

By 

  

SIRI CHANDANA YADAVALLI 

 

B-Tech, Jawaharlal Nehru Technological University, India, 2014 

  

A REPORT 

  

Submitted in partial fulfillment of the requirements for the degree 

 

MASTER OF SCIENCE 

  

Department of Computing and Information Sciences 

College of Engineering 

  

KANSAS STATE UNIVERSITY 

Manhattan, Kansas 

 

2016  

 

Approved by: 

Major Professor 

Dr. Daniel Andresen 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by K-State Research Exchange

https://core.ac.uk/display/33381856?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 
 

Copyright 

 

SIRI CHANDANA YADAVALLI 

 

2016 

  



 
 

 

ABSTRACT 

 

Locating a parking spot during peak hours in most populated areas like shopping malls, 

universities, exhibitions or convention centers is difficult for the drivers. The difficulty rises from 

not knowing where the available spots may be at that required time. Smart parking is a solution to 

metropolitan cities to reduce congestion, cut vehicle emission totals and save persons’ time by 

helping them in finding a spot to park. 

Smart Parking is a parking system, usually a new one that is equipped with special 

structured devices (things) to detect the available parking slots at any parking area. This is an 

application based on Internet of Things (IoT) that in Real-Time environment have sensors and 

devices embedded into parking spaces, transmitting data on the occupancy status; and the vehicle 

drivers can search for parking availability using their mobile phones or any infotainment system 

that is attached to the vehicle. Hence the driver would know where there is an available spot to 

park his vehicle in less time, reducing the energy consumption and air pollution. The Client or the 

sensor posts the parking slot occupancy status to a web service URL. The Java based web service 

is built using Spring and Hibernate to connect to the backend system. The web service (.war) file 

is deployed on Apache Tomcat Server and the backend used is MySQL database. 

 

 

 

 



iv 
 

Table of Contents 

 

Table of Figures .................................................................................................................................... vi 

List of Tables ....................................................................................................................................... vii 

Acknowledgements ..............................................................................................................................viii 

CHAPTER 1 – INTRODUCTION ........................................................................................................ 1 

1.1 Project Description ...................................................................................................................... 1 

1.2 Motivation .................................................................................................................................... 1 

CHAPTER 2 – REQUIREMENT ANALYSIS ..................................................................................... 2 

2.1 Requirement Gathering ............................................................................................................... 2 

2.2 Requirement Specification ........................................................................................................... 2 

2.2.1 Software Requirement ............................................................................................................. 2 

2.2.2 Hardware Requirement............................................................................................................ 2 

CHAPTER 3 – DEVELOPMENT BACKGROUND AND APPROACH............................................ 3 

3.1 Spring Framework
 [10] .................................................................................................................. 3 

3.1.1 Core Container ........................................................................................................................ 4 

3.1.2 Data Access/Integration .......................................................................................................... 4 

3.1.3 Web ........................................................................................................................................ 4 

3.1.4 Miscellaneous ......................................................................................................................... 4 

3.2 Hibernate ORM ........................................................................................................................... 4 

3.3 JavaScript .................................................................................................................................... 6 

3.4 Tomcat 7.0.67 Web Server ........................................................................................................... 6 

CHAPTER 4 – SYSTEM DESIGN ....................................................................................................... 7 

4.1 System Design .............................................................................................................................. 7 

4.1.1 Use Case Diagram ................................................................................................................... 7 

4.1.2 Class Diagram ......................................................................................................................... 8 

CHAPTER 5 – IMPLEMENTATION ................................................................................................ 14 

5.1 Output Screens ........................................................................................................................... 14 

5.1.1 Smart Parking System ........................................................................................................... 15 

5.1.2 Tomcat Server ....................................................................................................................... 18 

CHAPTER 6 – TESTING ................................................................................................................... 20 

7.1 Unit Testing ................................................................................................................................ 20 

7.2 Integration Testing .................................................................................................................... 21 



v 
 

7.3 Validation Testing ...................................................................................................................... 22 

7.4 User Testing ............................................................................................................................... 22 

7.5 Performance Testing .................................................................................................................. 22 

CHAPTER 7 – CONCLUSION AND FUTURE WORK ................................................................... 25 

7.1 Conclusion .................................................................................................................................. 25 

7.2 Future Work .............................................................................................................................. 25 

CHAPTER 8 – BIBLIOGRAPHY ...................................................................................................... 26 

 

  



vi 
 

Table of Figures 

 

Figure 3.1 - Spring Framework [3] ................................................................................................3 

Figure 3.2 - Hibernate Architecture [4] .........................................................................................5 

Figure 4.1 - Use Case Diagram for Vehicle Driver ......................................................................8 

Figure 4.2 - Class Diagram for Smart Parking System .................................................................9 

Figure 4.3 - Class Diagram for DAO Classes ............................................................................ 10 

Figure 4.4 - Class Diagram for Entity Classes ........................................................................... 11 

Figure 4.5 - Class Diagram for Model Classes ........................................................................... 12 

Figure 4.6 - Class Diagram for Service Classes ......................................................................... 13 

Figure 5.1 - Smart Parking System ............................................................................................ 16 

Figure 5.2 - Smart Parking System - Set Date ............................................................................ 17 

Figure 5.3 - Web Service on Tomcat Server .............................................................................. 18 

Figure 5.4 – SPS: Change in Occupancy Status ......................................................................... 19 

Figure 7.1 - Response Time Analysis for 50 Users .................................................................... 23 

Figure 7.2 - Response Time Analysis for 100 Users .................................................................. 24 

Figure 7.3 - Response Time Analysis for 100 Users .................................................................. 24 

 

  



vii 
 

List of Tables 

 

Table 5.1 Lines of Code ............................................................................................................ 14 

Table 7.1 Unit Test Cases .......................................................................................................... 21 

Table 7.2 Integration Test Cases ................................................................................................ 22 

Table 7.3 Performance Testing Analysis ................................................................................... 23 

 

  



viii 
 

Acknowledgements 
 

I am deeply grateful to my major professor Dr. Daniel Andresen for his guidance, support, 

pointing me in the right direction. I appreciate the trust he placed in me. I would like to thank Dr. 

Mitchell L. Neilsen and Dr. Torben Amtoft for making their courses valuable and informative. It 

was a privilege to take courses under them, as they provided me with more practical guidance and 

experience. Thank you for serving on my committee. My sincere thanks to Joe Horan for 

supporting me through my study at K-State. 

I would like to thank my parents and grandmother for their unconditional love and support. 

Special thanks to Ashish Pinninti, for the support he extended in difficult times and for being there 

for me when I needed him the most. And my heartfelt thanks to my younger sister and friends of 

mine for their best wishes.



1 
 

CHAPTER 1 – INTRODUCTION 

 

1.1 Project Description  

Seeking a vacant parking space during peak hours in areas like Hospitals, Hotels & Shopping 

Centers, Airports, Universities, and Exhibitions & Convention Center has always been frustrating 

for many drivers. Surveys says that traffic generated by cars searching for vacancies in Parking 

Spaces is up to 40% of the total traffic [1]. Now that is a serious issue to look after, and Smart 

Parking System is one of the best available solutions to at least reduce the traffic congestion caused 

due to the above problem. This application gives information about the occupancy status of the 

spaces in the parking lot equipped with sensors that detect the presence of vehicles. 

Smart Parking is an Internet of Things (IoT) based application, used to detect the available 

parking slots. This app uses ultrasonic sensor to detect the presence of a vehicle (whether the 

parking slot is occupied or not). Based on the parking slot occupancy, the status 

(occupied/unoccupied) is displayed on the web application dashboard. In real time, the 

environment have sensors and devices embedded into parking spaces, transmitting data on the 

occupancy status; and the vehicle drivers can search for parking availability using their mobile 

phones or any infotainment system that is attached to the vehicle. Hence the driver would know 

where there is an available spot to park his vehicle in less time, reducing the energy consumption 

and air pollution.  

The second part in this application is doing analysis on parking trends in a parking lot. The 

analysis gives information about which parking space is most occupied and least occupied and at 

what times of the day. This information is helpful in choosing one parking space when there are 

multiple available, keeping in mind the history of that space. For example, when there are more 

than one vacant slots the driver will want to choose the one that has less occupancy rate because 

the high occupancy rated slot might be wanted by many other drivers and you don't want to waste 

your time reaching that slot. 

1.2 Motivation  

A Smart Parking System like this helps drivers make smart decisions which will reduce 

congestion and make the most of available spaces. Finding a parking space has become a daily 

concern these days, and that is where the motivation for this project came up from. With the 

evolution of technology, we have smartphones, sensors that detect the presence of any object and 

my idea is having a system where parking spaces are equipped with these ultrasonic sensors that 

tells about the occupancy status of the parking spaces and a central management system that posts 

this occupancy status to a web application to guide the drivers in finding a vacant slot. 

 

 

 



2 
 

CHAPTER 2 – REQUIREMENT ANALYSIS 

 

2.1 Requirement Gathering 

As soon as the project idea is confirmed, I have started working on the requirements for 

the implementation of the project. The idea is to develop a web service that can receive information 

about the occupancy status of the parking space from Client (here the database) and post that 

information to the web application. Also passing information to database through web service URL 

and updating the changes in the system. I did some research on current technologies that are used 

in industry and decided on understanding how Spring Framework works, how to connect to 

database with Hibernate instead of JDBC, also seen some best practices in writing JavaScript. 

2.2 Requirement Specification 

These are the technical requirements to develop Smart Parking System web application. 

2.2.1 Software Requirement 

Operating System: Windows XP, Windows 7 or Windows 8 

IDE: Eclipse with STS Plugin 

Application Server: Apache Tomcat 7.0.67 

Front End: HTML5, JavaScript, jQuery, AJAX and CSS 

Frameworks and APIs: Spring and Hibernate 

Web Service: RESTful web services 

Database: MySQL 

Browser: Chrome or Firefox or Internet Explorer 

2.2.2 Hardware Requirement 

Processor: Intel Core 2 Duo or Higher 

RAM: 2GB 

 Users who want to use the application can directly deploy the war file in Tomcat server 

and run the app using localhost with the port number that is configured during installation of the 

web server. The path to the web application is passed along with localhost to the browser.  

 

 

 

  



3 
 

CHAPTER 3 – DEVELOPMENT BACKGROUND AND APPROACH 

 

In order to understand our choice of frameworks we have to describe Smart Parking 

System's particular application requirements. This project has two primary components; a web 

service that receives the occupancy status from the client or the sensor and a web application that 

displays the parking slot occupancy status and also the parking history trends. The Java based web 

service is built with Spring and Hibernate to connect to the backend system which is MySQL 

database. The web service is deployed in Apache Tomcat Server. And the web application has 

front end designed using HTML5, CSS, JavaScript and jQuery. And has Ajax call to the web 

service URL. 

3.1 Spring Framework [10] 

The Spring Framework [2] is an application framework and inversion of control container 

for the Java platform. It has become popular as a replacement for, alternative to, or even addition 

to the EJB model. The Spring Framework provides about 20 modules which can be used based on 

an application requirement. The below figure shows typical Spring Framework which can be 

categorized into 4 groups: Core Container, Data Access/Integration, Web and Miscellaneous. 

 

Figure 3.1 - Spring Framework [3] 



4 
 

In brief about each, 

3.1.1 Core Container 

The Core Container consists of Beans that provide BeanFactory, Core that provides features like 

Dependency Injection and Inversion of Control, Context that provides ApplicationContext which 

is the focal point of this module, SpEL provides a powerful expression language for manipulating 

and querying an object graph at runtime. 

3.1.2 Data Access/Integration 

This module consists of JDBC that provides an abstraction layer, ORM that provides integration 

layers for Java Persistence API, Hibernate etc., OXM provides an abstraction layer that support 

Object/XML mapping implementations, Java Messaging Service which contains features for 

producing and consuming messages, and Transactions to support programmatic and declarative 

transaction management for classes that implement POJOs. 

3.1.3 Web 

This module consists of Web-Socket that provide support for two way communication between 

client and server, Web-MVC that contains MVC implementation, Web that provides basic web-

oriented integration features and Web-Portlet that provides MVC implementation for Portlet 

environment. 

3.1.4 Miscellaneous 

Some other components on Spring Architecture are AOP that provides aspect-oriented 

programming implementation, Aspects that provide integration with AspectJ which is an AOP 

framework, Instrumentation that provides class instrumentation support and class loader 

implementations, Messaging that provides support to STOMP, Test to support the testing of Spring 

Framework components with JUnit or TestNG frameworks. 

3.2 Hibernate ORM 

 Hibernate ORM (Object Relational Model) is a high performance object-relational 

persistence and query service. This eliminates the time spent on writing the native SQL queries 

and lets users to develop persistent classes using object-oriented principles. Using the metadata 

describing the mapping between the objects and the database, ORM persists the objects in a Java 

application into the tables of a relational database. 



5 
 

 

Figure 3.2 - Hibernate Architecture [4] 

The Hibernate architecture is as shown above in the figure 2.2. Let us discuss a little bit of it here.  

Hibernate [5] uses Java APIs like  

JTA (Java Transaction API) – To integrate with J2EE application servers  

JDBC (Java Database Connectivity) – Provides abstraction to allow any database with 

JDBC drivers to be supported by Hibernate. 

JNDI (Java Naming and Directory Interface) - To integrate with J2EE application servers 

Brief about core interfaces of Hibernate Framework: 

 Configuration: used to configure and bootstrap hibernate. The instance of this interface is 

used by the application to specify the location of hibernate specific mapping documents. 

 Session Factory: This delivers the session objects to hibernate application. There will be a 

single Session Factory for the whole application and it will be shared among all the threads. 

 Session: The instances of this interface are lightweight, they are not thread safe. Session 

interface is the primary interface used by hibernate applications. 



6 
 

 Transaction: The above three interfaces are mandatory, whereas this is an optional interface 

that abstracts the code from any kind of transaction implementations. 

 Query and Criteria: This allows user to perform queries and also control the flow of the 

query execution. 

3.3 JavaScript 

 The front end of the application is developed using JavaScript and jQuery [7] library of 

JavaScript [6]. It is the programming language of HTML and the Web. Smart Parking System 

application uses: 

 HTML to define the content of web page 

 CSS to specify the layout of web page 

 JavaScript to program the behavior of the web page 

And AJAX (Asynchronous JavaScript and XML) calls are made to the web service every 2 sec 

to display the latest occupancy statuses retrieving data from the database. 

3.4 Tomcat 7.0.67 Web Server 

Tomcat [8] is an open-source web server developed by the Apache Software Foundation. 

Catalina is Tomcat's servlet container, implements Sun Microsystems' specifications for Servlet 

and Java Server pages. The web application that is developed in Eclipse IDE is exported to a war 

file which is then deployed on Apache Tomcat Server. Using any web browser, we can run the 

web application that is deployed on Tomcat Server. 

  



7 
 

CHAPTER 4 – SYSTEM DESIGN 

 

4.1 System Design 

 UML diagrams are used to explain the design of the system. Once the requirement 

gathering is completed, system design is done using Unified Modeling Language (UML). UML 

plays an important role in designing object oriented software by using graphical notations to 

depict the design of the system. 

4.1.1 Use Case Diagram  

 In its simplest form, a use case can be described as a specific way of using the system 

from a user’s (actor’s) perspective. A more detailed description might characterize a use case as: 

 A pattern of behavior the system exhibits 

 A sequence of related transactions performed by an actor and the system 

 Delivering something of value to the actor 

Use Cases provide a means to: 

 Capture system requirements 

 Communicate with the end users and domain experts 

 Test the system 

The User of the system is a vehicle driver who would be searching for a vacant parking 

space, and the use cases are the sequence of actions that provide something of measurable value 

to the user like checking the parking lot for vacant spaces, checking the parking history to find 

the most occupied and less occupied parking slots. And finally after finding a vacant space, he 

can park his vehicle. 

 

 

 

 

 

 

 

 

 

 



8 
 

The below figure depicts the Use Case Diagram for the Vehicle Drivers: 

 

Figure 4.1 - Use Case Diagram for Vehicle Driver 

 

4.1.2 Class Diagram 

A class diagram is a picture for describing generic descriptions of possible systems. Class 

diagrams and collaboration diagrams are alternate representations of object models. This contain 

icons representing classes, interfaces, and their relationships. We can also create one or more class 

diagrams to depict classes contained by each package in our model; such class diagrams are 

themselves contained by the package enclosing the classes they depict; the icons representing 

logical packages and classes in class diagrams. 

 

 

 

 

 

 

 

 



9 
 

 

Below is the main class diagram for the entire application. The diagram clearly explains 

about the relationships between two or more classes and also between classes and interfaces. 

 

 

Figure 4.2 - Class Diagram for Smart Parking System 

  



10 
 

Here are the other classes and their relationships in the project: 

 DAO Classes, their attributes clearly mentioned; top section is the class or the interface name, 

below are the attributes in those particular classes. Here we have the queries required to retrieve 

or update the database. GenericDao is an interface providing basic CRUD operations. And 

GenericJpaDao is the JPA implementation of the GenericDao interface. ParkingSlotDao is an 

interface extending GenericDao interface and ParkingSlotDaoImpl is the implementation class 

for the interface. Similar with ParkingHistoryDao interface and ParkingHistoryDaoImpl class. 

 

 

 

Figure 4.3 - Class Diagram for DAO Classes 

 

 

 



11 
 

 

 

 

 Entity Classes, and their attributes; these are the classes that does Object Relational 

Mapping to the database. These classes are the mapping of the database tables using ORM. 

ParkingHistory and ParkingSlot classes are mapped to Parking History and Parking Slot 

tables in the databases. And the column values of the tables are mapped with the attributes 

of the classes. We also define the relationships between the tables in this classes. 

 

 

Figure 4.4 - Class Diagram for Entity Classes 



12 
 

 Model Classes, and their attributes; Relationship between Parking Slot table and Parking 

History table. These classes have methods that convert the Entity to Models with giving 

only the required information. 

 

Figure 4.5 - Class Diagram for Model Classes 

 

 

 

 

 

 

 



13 
 

 Service Classes, and their attributes; the main class diagram above depicts the relationships 

between these service classes and web services classes. These classes contains methods to 

retrieve the requests from the View and handle those requests by having methods to display 

current parking occupancy status of all slot ids and also parking history to generate chart. 

The response is sent back to the View (designed using JavaScript).  

 

Figure 4.6 - Class Diagram for Service Classes 

 

  



14 
 

CHAPTER 5 – IMPLEMENTATION 

 

Smart Parking System is a web application that is developed to help drivers in finding a 

vacant parking space during any time of day. The main objective of the application is to provide 

the occupancy status (vacant/occupied) of the parking spaces and also to get information about the 

parking history data on any particular date. The user is allowed to choose any date and can get the 

information related to parking spaces occupancy throughout that day. 

The main features of the application are: 

Parking Slot Occupancy: This is the first part of the application where there is a dashboard 

that has occupancy statuses of the parking slots. The dashboard is refreshed every 2 sec and the 

latest information is displayed for the user. 

Parking History Analysis: This is an extension to the application where User is able to see 

the occupancy rate of each parking lot on any particular day in the form of charts. Using this data, 

driver can choose the less occupied slot when there are more than one slot available. Also the 

parking lot owners can rent the spaces by charging based on their occupancy rates at any particular 

time of the day. 

The Smart Parking Application is developed on Eclipse IDE with STS Plugin using Java 

1.7. The user interface is designed using JavaScript and the business logic I coded in Java. The 

application also makes use of annotations in Java, especially Spring Framework and Hibernate 

annotations. The backend database is MySQL and I have used MySQL Query Browser in order to 

manage the database. The web application developed is archived to a war file and then deployed 

in Tomcat Server. The total number of lines of code breakdown with respect to language is listed 

below: 

Language Number of LOC 

Java 1677 

XML 132 

HTML5, CSS 169 

JavaScript, jQuery 164 

Total 2142 

Table 5.1 Lines of Code 

 

5.1 Output Screens 

The Graphical User Interface for this application is designed by keeping in mind that the 

application's user interface is everything that the user can see and interact with. Technologies used 

to develop this user interface are mainly JavaScript, jQuery, HTML5 and CSS. To interact with 

backend web service written in Java, jQuery methods get() and post() are mainly used. Ajax calls 

are made every 2 seconds by passing URL to be hit, and the required data from the database is 



15 
 

retrieved and passed back to the caller. Accordingly the Occupancy Status Message and 

Occupancy Indicator in the front end are updated every 2 seconds. Similar thing is with the chart 

showing the parking history. JavaScript FusionCharts are used to show the occupancy of parking 

spaces starting from zeroth hour to 24th hour. Here we can see the parking history of any day, by 

just setting the required date by using the calendar provided. 

5.1.1 Smart Parking System 

The figure 5.1 is seen when the Tomcat Server is started and then we run the application 

by calling the localhost in any browser. This screen contains a table that shows the occupancy 

status of the parking slots and a chart that depicts the parking history.  

In the table, the first column is Parking Slot Number or Id, second column is the Occupancy 

Indicator, and third column is the Occupancy Message. Occupancy Indicator have two buttons or 

LEDs red and green. Green indicates that the parking slot is vacant and red indicates that it is 

already occupied by other vehicles. The last column is to display the Occupancy Message, i.e. 

'Vacant' or 'Occupied'.  

In the chart below the table, we can see that there are Slot no’s and Slot Occupancy Status 

at particular 4 hour slot of the day. Upon hovering on the small blue bars, we can see the exact 

time when there was a vehicle in that slot. 

The User Interface of Smart Parking web application meets all the initial goals, being very 

precise and making every detail clear on screen. The UI is designed in a way where the occupancy 

statuses of parking slots are very clearly visible by just looking into the colors of the indicators. 

And further information can be seen in the Occupancy message column. And this UI can be 

extended to mobile platforms with the same design, as it is very much compatible with the mobile 

screen size as well. One can view the occupancy status in one panel and can see the parking history 

by scrolling down in the mobile screen. 

 



16 
 

 

Figure 5.1 - Smart Parking System 

  



17 
 

The figure 5.2 shows to set any date required to see the parking slot occupancy statuses on that 

day. This is an easy way to select a date by either writing the numbers manually or by using the + 

and – signs. When a date is selected, just click on Set to apply the changes. And we would be given 

the information of parking spaces on that date. 

 

 

Figure 5.2 - Smart Parking System - Set Date 

 

 



18 
 

5.1.2 Tomcat Server 

 The screenshot below (figure 5.3) shows the web service deployed on Apache Tomcat 

server. 

 

Figure 5.3 - Web Service on Tomcat Server 

 

Now when the sensor detects the presence of a vehicle, it posts data to MySQL via web service 

URL:  

http://localhost:8080/SmartParkingWS/smartParking/ParkingSlotWS/addParkingSlot/1/true 

This web service call can be executed using any client like Android phone, web browser, or any 

IoT device. 

 

 



19 
 

 

 

 

The output screenshot is shown in figure 5.4, where we can see that the occupancy status of the 

parking slot P1 is changed from Vacant to Occupied. 

 

Figure 5.4 – SPS: Change in Occupancy Status 

All the above screenshots shows a good view of the user interface of Smart Parking System. The 

goal of the UI is to clearly show the status of the parking slots. The Green and Red indicators gives 

the status in just first look. And the Occupancy Message is to precisely say the availability of the 

parking slot. 

  



20 
 

CHAPTER 6 – TESTING 

 

A process of executing a program with the explicit intention of finding errors, that is 

making the program fail. It is the process of detecting errors and performs a very critical - role for 

quality assurance, also for ensuring the reliability of software. The results of testing are used later 

on during maintenance also. 

7.1 Unit Testing 

It concentrates on each unit of the software as implemented in source code and is a white 

box oriented. Using the component level design description as a guide, important control paths are 

tested to uncover errors within the boundary of the module. In the unit testing, the steps can be 

conducted in parallel for multiple components in my project I tested all the modules individually 

related to main function codes and attacks also.  

Below are the unit test cases that are run manually: 

Test Case Expected Result Result 

After the start of Tomcat 

Server, on the load of html file 

Display correct occupancy status 

messages for all the parking slots  

Pass 

After the start of Tomcat 

Server, on the load of html file 

Display correct occupancy status 

indicators for all the parking slots 

Pass 

After the start of Tomcat 

Server, on the load of html file 

Display Red indicator for 

‘Occupied’ Status Message 

Pass 

After the start of Tomcat 

Server, on the load of html file 

Display Green indicator for 

‘Vacant’ Status Message 

Pass 

Upon receiving occupancy 

status change from client for 

parking slot 1 

Change in the parking slot 1 only, 

and should not affect other parking 

slot status messages. 

Pass 

Upon receiving occupancy 

status change from client for 

parking slot 1 

Change in the parking slot 1 only, 

and should not affect other parking 

slot status indicators. 

Pass 

Upon receiving occupancy 

status change from client for 

parking slot 2 

Change in the parking slot 2 only, 

and should not affect other parking 

slot status messages. 

Pass 

Upon receiving occupancy 

status change from client for 

parking slot 2 

Change in the parking slot 2 only, 

and should not affect other parking 

slot status indicators. 

Pass 

Upon receiving occupancy 

status change from client for 

parking slot 3 

Change in the parking slot 3 only, 

and should not affect other parking 

slot status messages. 

Pass 



21 
 

Upon receiving occupancy 

status change from client for 

parking slot 3 

Change in the parking slot 3 only, 

and should not affect other parking 

slot status indicators. 

Pass 

Upon receiving Occupancy 

Status as ‘Occupied’ 

Change Green indicator to Red 

indicator 

Pass 

Upon receiving Occupancy 

Status as ‘Occupied’ 

Change Occupancy Message from 

‘Vacant’ to ‘Occupied’ 

Pass 

Upon receiving Occupancy 

Status as ‘Vacant’ 

Change Red indicator to Green 

indicator 

Pass 

Upon receiving Occupancy 

Status as ‘Vacant’ 

Change Occupancy Message from  

‘Occupied’ to ‘Vacant’ 

Pass 

Upon loading html page Display occupancy trends of all 

parking slots in the chart at all the 

recorded timings 

Pass 

Upon a vehicle occupying a 

vacant parking slot 

Display the presence of vehicle at 

that particular time in the chart 

Pass 

Table 7.1 Unit Test Cases 

 

7.2 Integration Testing 

Here focus is on design and construction of the software architecture. Integration Testing 

is a systematic technique for constructing the program structure while at the same time 

conducting tests to uncover errors associated with interfacing. The objective is to take unit tested 

components and build a program structure that has been dictated by design. The goal here is to 

see if modules can be integrated properly, the emphasis being on testing interfaces between 

modules.  

This testing activity can be considered as testing the design and hence the emphasis on 

testing module interactions. In this project the main system is formed by integrating all the 

modules. When integrating all the modules I have checked whether the integration effects 

working of any of the services by giving different combinations of inputs with which the two 

services run perfectly before integration.  

Below are the few Integration Test Cases that are done manually: 

Test Case Expected Result Result 

After the start of Tomcat Server, 

on the load of html file 

Display correct occupancy 

status messages for all the 

parking slots and also display 

occupancy trends of all parking 

Pass 



22 
 

slots in the chart at all the 

recorded timings 

Upon receiving Occupancy 

Status as ‘Occupied’ 

Change Green indicator to Red 

indicator and change in 

Occupancy Message from 

‘Vacant’ to ‘Occupied’ 

Pass 

Upon receiving Occupancy 

Status as ‘Vacant’ 

Change Red indicator to Green 

indicator and change in 

Occupancy Message from  

‘Occupied’ to ‘Vacant’ 

Pass 

Upon a vehicle occupying a 

vacant parking slot 

Display the presence of vehicle 

at that particular time in the 

chart and also change in the 

occupancy status and message 

Pass 

Upon refreshing the html page Sync data with the database and 

update the page 

Pass 

Table 7.2 Integration Test Cases 

7.3 Validation Testing 

In this, requirements established as part of software requirement analysis are validated 

against the software that has been constructed i.e., validation succeeds when software functions 

in a manner that can reasonably expected by the customer.  

I made sure I have covered all the requirements that were discussed earlier at the start of 

the project. And also confirmed that the application works just the way it has to. 

7.4 User Testing 

 User testing is a technique used to evaluate a product by testing it on different users. This 

can be seen as inimitable practice, as it gives direct input on how real users use the system. I have 

asked couple of my friends to try installing and running this application on their machines and got 

expected results. I have also presented this application in front of my Major Professor where I only 

completed the first phase of the application that the application would display the occupancy status 

of the parking space. But later we discussed on extending the application to display parking trends 

on a chart for any given date. I successfully completed implementing that part as well and tested 

to result as expected. The application was tested in all possible aspects and got just expected 

results. 

7.5 Performance Testing 

Performance Testing is performed to determine how fast a system performs under a 

particular load. It is also used to validate and verify other attributes of the system such as 

scalability, reliability and resource usage. Load testing is primarily concerned with testing that can 

continue to operate under specific load be it large amount of data or be it numerous users. 



23 
 

I have used Apache JMeter [9] to perform load testing which can be used to test performance 

both on static as well as dynamic resources (files, Servlets, Perl Scripts, Java Objects, Databases 

and Queries, FTP Servers and more). It can be used to simulate a heavy load on a server, network 

or object to test its strength or to analyze overall performance under different load types. Using 

JMeter I have taken increased number of users while using the page with the same Ramp-Up period 

and Loop Count.  

Table below are the results of different test cases: 

No. Of Users Ramp Up Period Loop Count Throughput 

50 5 100 11,645.9/min 

100 5 100 14,889.4/min 

200 5 100 27,434.8/min 

Table 7.3 Performance Testing Analysis 

Using JMeter I have taken increased number of users while using the page with the same 

Ramp-Up period and Loop Count. We can see that with increase in the number of users, the 

throughput is increased. 

Graphical Analysis for the same test cases: 

The graphs below shows Response Times over Time. The vertical axis is the Response Time in 

milliseconds and the horizontal axis is Elapsed Time i.e. granularity/500 milliseconds. In all the 

three test cases, we can see that the Response Times over Time is a constant graph. 

Test Case 1: No. Of Users = 50 

 

Figure 7.1 - Response Time Analysis for 50 Users 



24 
 

Test Case 2: No. Of Users = 100 

 

Figure 7.2 - Response Time Analysis for 100 Users 

Test Case 3: No. Of Users = 200 

 

Figure 7.3 - Response Time Analysis for 100 Users 



25 
 

CHAPTER 7 – CONCLUSION AND FUTURE WORK 

 

7.1 Conclusion 

Smart Parking System is a solution to the existing traffic congestion, to reduce drivers’ 

frustration by providing information about the occupancy status of the parking spaces. The project 

development went smoothly while teaching me many best practices in programming using the 

current trending technologies like Spring Framework, Hibernate ORM and REST APIs. I could 

see that all the initial requirements of the project are achieved and also I tried doing minor data 

analysis on the parking spaces occupancy statuses.  

The web application is user friendly; any user can easily find the status (vacant/occupied) 

of the parking space and also can set the required date to see the parking history. Starting from 

coming up with project idea, understanding the requirements and choosing the best technologies 

for the implementation, all this gave me very good experience and exposure in development of a 

full stack web application. Upon completing this project successfully, I got familiar with Eclipse 

IDE Shortcuts, Database tools and Tomcat server usage. 

7.2 Future Work 

This application is an initial step in reaching the effective solution for the daily concern. 

This project can be extended in multiple ways: 

 To provide a central management system that make sure only authenticated information is 

sent to the Client, i.e. dealing with the security issues. 

 More analysis can be done using the parking history data by which User can get 

recommendations or suggestions on parking spaces and their availability trends. 

 And this analysis can be used while reserving a parking space by User or while renting a 

space, to decide the price of the parking space. 

 We could also do a mobile application through which driver can get the occupancy statuses 

of the parking spaces. 

 

    



26 
 

CHAPTER 8 – BIBLIOGRAPHY 

 

[1] A Reservation – based Smart Parking System by Hongwei Wang and Wenbo He – April 

01, 2016 

http://cse.unl.edu/~byrav/INFOCOM2011/workshops/papers/p701-wang.pdf 

[2] Spring Architecture – April 01, 2016 

https://sites.google.com/site/sureshdevang/why-spring-framework 

[3] Spring Framework – Architecture – April 01, 2016 

http://www.tutorialspoint.com/spring/spring_architecture.htm 

[4] Hibernate Architecture – April 02, 2016 

http://www.tutorialspoint.com/hibernate/hibernate_architecture.htm 

[5] Hibernate ORM – April 02, 2016 

http://www.javabeat.net/hibernate-interview-questions/ 

[6] JavaScript Basics – April 04, 2016 

http://www.w3schools.com/js/default.asp 

[7] JQuery Methods – April 04, 2016 

http://api.jquery.com/jquery.post/ 

[8] Apache Tomcat – April 04, 2016 

https://en.wikipedia.org/wiki/Apache_Tomcat 

[9] Apache JMeter – Performance Testing – April 9, 2016 

http://jmeter.apache.org/ 

[10] Spring Framework Introduction – April 01, 2016 

https://docs.spring.io/spring/docs/current/spring-framework-

reference/html/overview.html 

 

 

 

 

 

http://cse.unl.edu/~byrav/INFOCOM2011/workshops/papers/p701-wang.pdf
https://sites.google.com/site/sureshdevang/why-spring-framework
http://www.tutorialspoint.com/spring/spring_architecture.htm
http://www.tutorialspoint.com/hibernate/hibernate_architecture.htm
http://www.javabeat.net/hibernate-interview-questions/
http://www.w3schools.com/js/default.asp
http://api.jquery.com/jquery.post/
https://en.wikipedia.org/wiki/Apache_Tomcat
http://jmeter.apache.org/
https://docs.spring.io/spring/docs/current/spring-framework-reference/html/overview.html
https://docs.spring.io/spring/docs/current/spring-framework-reference/html/overview.html

