

48

All rights revesed©UOITC www.uoitc.edu.iq

Enhanced Levenshtein Edit Distance Method functioning

as a String-to-String Similarity Measure

Prof. Dr. Abbas M. Al-Bakry

University of Information Technology and

Communications

Baghdad, Iraq

Abbasm.albakry@uoitc.edu.iq

Marwa K. Al-Rikaby

College of Information Technology

Babylon University

Babylon, Iraq

marwaalrikaby@gmail.com

Abstract__ Levenshtein is a Minimum Edit Distance method;

it is usually used in spell checking applications for generating

candidates. The method computes the number of the required

edit operations to transform one string to another and it can

recognize three types of edit operations: deletion, insertion, and

substitution of one letter. Damerau modified the Levenshtein

method to consider another type of edit operations, the

transposition of two adjacent letters, in addition to the

considered three types. However, the modification suffers from

the time complexity which was added to the original quadratic

time complexity of the original method. In this paper, we

proposed a modification for the original Levenshtein to

consider the same four types using very small number of

matching operations which resulted in a shorter execution time

and a similarity measure is also achieved to exploit the resulted

distance from any Edit Distance method for finding the amount

of similarity between two given strings.

Keywords_ Minimum Edit Distance, Similarity, Levenshtein

method, Damerau's errors types.

I. INTRODUCTION

Spell checking and correction is a common challenge in

the area of language technology. It is one of the oldest most

researched applications, started from the 1950s, and

described as a challenge problem rather than a science. [8][4]

The spell checking task involves two main subtasks: error

detection and error correction. The first deals with detecting

mistakes in the given text (query, document, or even an

isolated word) where several approaches are invented and

varied in their efficiency and accuracy depending on the

application environment and the available resources. [9][2]

The second subtask, error correction, involves generating

the alternatives (candidates) for the misspelled word (or

token) which is previously detected as erroneous, and

suggesting those candidates as an output to the user

(sometimes, a computer). The process of generating

candidates is really a challenge problem till our days because

the generation process is fully dependent on a set of factors

like the underlying context, application environment, users'

experience, the size of the lexicon, foundation of

probabilistic and statistics information and its accuracy, and

fundamentally on the method of selecting candidates, i.e. the

way of computing the similarity (or reversely, the distance)

between the source misspelled token and every alternative

token.[6]

There are two well known types for error correction

techniques: minimum edit distance and similarity based

techniques; both of the two are usually independent of error

detection technique used in the underhand application.

In this paper we are focusing on the Levenshtein method,

which is a minimum edit distance technique, therefore, a

short overview about these techniques is shown below:

Minimum edit distance is the minimum number of

operations (insertion, deletion, substitution, and

transposition) required for editing and transforming one

string to another string. This technique is the most widely

used in correcting spelling errors. [3] It takes a given string

and matching it with a list of M words and returns the

candidates with the minimum edit distances as correction

suggestions. [1]

Different algorithms are invented in this technique field;

Levenshtein, Hamming, and the longest common

subsequence are examples of them. [1] Levenshtein

algorithm is efficient compared with other methods because:

- It works with any kind of symbols in the input strings

(binary, decimal, alphabetic ...).

- It accepts strings of different lengths (unlike

Hamming).

- It gives accurately and can specify precisely (if

preferred) what type of operation is required for

transforming between the two input strings.

The Levenshtein was proposed by the Russian Vladimir I.

Levenshtein in 1966 [6]; the algorithm computes the

difference between any two string sequences by assigning

each required edit operation a cost of 1 [10]. It is used in

many different text correction applications, such as the post

correction of Optical Character Recognition (OCR) [7], the

dictionary looking up technique for candidates generation

[5], and combined with other methods as an optimization tool

[10].

II. MOTIVATION

The obvious drawback of the Levenshtein algorithm is

that it considers only three types of edit operations; it

accounts a distance of 1 operation for each deletion,

insertion, or a substitution operation but not the transposition

of two adjacent symbols. Instead, it deals with this type of

operations as two consecutive substitution operations and

therefore accounts distance of 2 rather than 1.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Iraqi Journal for Computers and Informatics

https://core.ac.uk/display/333817246?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

49

All rights revesed©UOITC www.uoitc.edu.iq

In 1964, Damerau found in his research that the three

types of errors considered by Vladimir in addition to the

transposition error, altogether, caused 80% to 90% of

misspellings; the research accounted only misspellings with

at most one edit operation [10]. For these results, Damerau

modified Levenshtein method in the followed years to

consider all of the four types of errors. [4] Damerau's

modification added more complexity to the quadratic time

complexity method (N1*N2 is the complexity of the original

Levenshtein method, where N1 and N2 are the lengths of

String1 and String2, consecutively) because it consumes

another comparison with every matching operation in the

original algorithm to check if there is a transposition of two

adjacent symbols. Specifically, the modification of Damerau

multiplied the complexity by a factor of 2.

Typically, the algorithm is used to generate candidates

from huge sized dictionaries; however, any additional time

complexity has negative effects on the performance of the

correction system. This overhead can be reduced if the

transposition check is made with more sophisticated way

using the same idea of Levenshtein. In this paper, we've

proposed an alternative modification to the original

Levenshtein method to consider the four types of errors with

a time complexity close to the original time complexity.

III. THE LEVENSHTEIN METHOD (THE ORIGINAL

ALGORITHM)

The Levenshtein method is a minimum edit distance

technique; it receives two strings of symbols of any type as

inputs, and compares each symbol in the first string to every

symbol in the second one for checking the difference

between the two strings in terms of edit operations.

It can recognize three different types of edit operations:

insertion, deletion, and substitution. Algorithm1 shows the

method.

--- ---

1. Algorithm1: Levenshtein Edit Distance

2. Input: String1, String2

3. Output: Edit Operations Number

4. Step1: Declaration

5. distance(length of String1, Length of String2)=0, min1=0, min2=0, min3=0, cost=0

6. Step2: Calculate Distance

7. if String1 is NULL return Length of String2

8. if String2 is NULL return Length of String1

9. for each symbol x in String1 do

10. for each symbol y in String2 do

11. begin

12. if x = y

13. cost = 0

14. else

15. cost = 1

16. r=index of x, c=index of y

17. min1 = (distance(r - 1, c) + 1) // deletion

18. min2 = (distance(r, c - 1) + 1) //insertion

19. min3 = (distance(r - 1,c - 1) + cost) //substitution

20. distance(r , c)=minimum(min1 ,min2 ,min3)

21. end

22. Step3: return the value of the last cell in the distance matrix

23. return distance (Length of String1,Length of String2)

24. End.

--

The method works by examining each symbol in the first

input string (String1) against each symbol in the second input

string (String2), the matching action requires a quadratic time

complexity since it is performed by two nested loops.

Computing the distance between the two strings

"Babylon" and "Babbly on" is an example for exploring how

the method is working:

1. Define the dimensions of the distance matrix:

No. of rows= length of the first string= ||Babylon||= 7

No. of columns=length of the second string=||Babbly

on||=9

2. Initialize the first column and the first row:

Initial values of the distance matrix are:

- An additional row contains the symbols of the second

string.

- An additional column contains the symbols of the first

string.

- Additional row and column contains numbers from (0

to 9) and (0 to 7), consecutively.

 B a b b l y ˽ o n

 0 1 2 3 4 5 6 7 8 9

50

All rights revesed©UOITC www.uoitc.edu.iq

B 1

a 2

b 3

y 4

l 5

o 6

n 7

3. Start applying the matching:

 Perform the following actions on each symbol in

the first string (which represents the contents of

the most left column):

 Compare the letter "B" to every symbol in the

top row; if matched set the variable cost to

zero, otherwise set cost to one.

Since "B"="B", the cost=0

 Among the three values which stored in the

cells that are surrounding the current cell (the

cell under-consideration where we want to fill

in order to complete the distance matrix) select

the minimum according to the conditions in

the method at step2.

The three cells are: the next on the left, the next on at the

top, and the nearest at the left-top corner.

In terms of coordinates; for the cell at (i, j) select the

minimum among:

{(i-1, j)+1, (i, j-1)+1, (i-1, j-1)+cost}.

And in our example:

 B a b b l y ˽ o n

 0 1 2 3 4 5 6 7 8 9

B 1

a 2

b 3

y 4

l 5

o 6

n 7

The minimum is 0.

 B a b b l y ˽ o n

 0 1 2 3 4 5 6 7 8 9

B 1 0

a 2

b 3

y 4

l 5

o 6

n 7

 Repeat the process until filling the first row, totally.

 B a b b l y ˽ o n

 0 1 2 3 4 5 6 7 8 9

B 1 0 1 2 3 4 5 6 7 8

a 2

b 3

y 4

l 5

o 6

n 7

 The distance matrix after completing calculating the

distances row by row starting from the top row as

shown in previous steps is:

 B a b b l y ˽ o n

 0 1 2 3 4 5 6 7 8 9

B 1 0 1 2 3 4 5 6 7 8

a 2 1 0 1 2 3 4 5 6 7

b 3 2 1 0 1 2 3 4 5 6

y 4 3 2 1 1 2 2 3 4 5

l 5 4 3 2 2 1 2 3 4 5

o 6 5 4 3 3 2 2 3 3 4

n 7 6 5 4 4 3 3 3 4 3

 The distance between the input strings is the value

of the most right bottom cell (the last cell in the

matrix) which holds the number 3.

The method expressed the difference between "Babylon"

and "Babbly on" by three edit operations:

 Substituting 'y' by 'b'.

 Inserting 'y' after the 'l'

 Inserting '˽' after the inserted 'y'.

Notice, the method can indicate the difference of

substrings, but constrained by necessary starting from the

beginning of both the two strings; every (i, j) cell in the

distance matrix holds the difference between the

subsequence from the index (1 to i) from String1 and the

subsequence from the index (1 to j) from String2.

 Examples, consider the cell at (3,4) which means that the

distance between "Bab" and "Babb" is 1 (inserting 'b' at the

end); the cell at (4,4) holds a value of 1 and means that the

difference between "Baby" and "Babb" is one edit operation

(substituting 'y' by 'b').

Therefore, the type of the edit operations, if it is necessary

to be detected, is differing according to the length of the

subsequence taken from the string.

51

All rights revesed©UOITC www.uoitc.edu.iq

It is an interested feature in the Levenshtein method to

find the minimum edit distance in this flexible manner

instead of expressing the difference sequentially as: inserting

'b', substituting 'y' by 'l', substituting 'l' by 'y', and finally

inserting white space which resulting in a distance of 4.

The weakness of this method appears in cases where the

error is resulted from transposing two adjacent symbols, like

the case of the 'l' and 'y'; it accounts two consecutive

substitutions instead of one transposition. This idea is

obvious in this example:

According to Levenshtein the distance between "Babylon"

and "Bablyon" is 2 (substituting 'l' by 'y', and 'y' by 'l') but in

fact we require only one edit operation (transposing 'y' and

'l') to transform the two strings the one to the other.

 B a b l y o n

 0 1 2 3 5 6 8 9

B 1 0 1 2 3 4 5 6

a 2 1 0 1 2 3 4 5

b 3 2 1 0 1 2 3 4

y 4 3 2 1 1 1 2 3

l 5 4 3 2 1 2 2 3

o 6 5 4 3 2 2 2 3

n 7 6 5 4 3 3 3 2

In section IV, we will discuss the modification of

Damerau on this method for overcoming its weakness.

IV. DAMERAU-LEVENSHTEIN DISTANCE

The idea of Damerau [5] to check whether a transposition

is found was by matching every two consecutive symbols in

one string with the mirror of every two consecutive symbols

in the other string. In another word; to check if a symbol X

was transposed with an adjacent symbol Y, the method must

match the sequence XY with every two consecutive symbols

WZ in the other string. If YX matched WZ then a

transposition is found; otherwise, it is not.

The matching process is repeated in times equal to the

multiplication of the lengths of the two input strings because

it is associated with every basic matching operation;

therefore, the method requires longer time to find the total

distance.

--- -------------------

1. Algorithm2: Damerau-Levenshtein Distance

2. Input: String1, String2

3. Output: Damerau Edit Operations Number

4. Step1: Declaration

5. distance(length of String1,Length of String2)=0, min1=0, min2=0, min3=0, cost=0

6. Step2: Calculate Distance

7. if String1 is NULL return Length of String2

8. if String2 is NULL return Length of String1

9. for each symbol x in String1 do

10. for each symbol y in String2 do

11. begin

12. if x = y

13. cost = 0

14. else
15. cost = 1

16. r=index of x, c=index of y

17. min1 = (distance(r - 1, c) + 1) // deletion

18. min2 = (distance(r, c - 1) + 1) //insertion

19. min3 = (distance(r - 1,c - 1) + cost) //substitution

20. distance(r , c)=minimum(min1 ,min2 ,min3)

21. if not(String1 starts with x) and not (String2 starts with y) then

22. if (the symbol preceding x= y) and (the symbol preceding y=x) then

23. distance(r,c)=minimum(distance(r,c), distance(r-2,c-2)+cost)

24. end

25. Step3: return the value of the last cell in the distance matrix

26. return distance(Length of String1,Length of String2)

27. End.

--- ----------------------

Although the modification gave accurate results, it

increased the time complexity. Such additional complexity

must be avoided in situations when the method is used for

candidates generation where a source string should be

matched with every token in a huge dictionary.

V. ENHANCED LEVENSHTEIN METHOD

52

All rights revesed©UOITC www.uoitc.edu.iq

The modification on the Levenshtein method can be

performed by extending the standard matching step at

line.12 to check the foundation of a transposition case. The

idea rises from the fact that no transposition case may be

found without finding a matching success between at least

two symbols in the examined strings; and more precisely the

transposition can be discovered using minimum number of

operations by considering two facts:

- Two adjacent symbols can never be mirrored by

other two adjacent symbols in another string unless

the first symbol in the first set matches the second in

the second set.

- Instead of manipulating the transposition occurrence

separately, the algorithm can modify the under-

processing cell in the distance matrix directly and

the next matching steps will do the work.

The first point served in avoiding the trying of all

possibilities as it was presented in Damerau's modification at

lines 20 and 21 where each symbol is matched to every

symbol in the second string regardless to the availability of a

transposition operation happen by adding additional

matching statements to the original one at line 12.

On the other hand, the second point announces another

side of processing; the distance matrix is filled sequentially

row by row from the top most left corner to the bottom right

corner (where the total distance is held). Using one step to

process both cases (transposition happen case and the not

case) is a good way to minimize the number of operations

required to accurately compute the distance.

In our modification, the distance matrix is updated

directly by one step and the next steps (selecting the

minimum and filling the underhand cell) are continued

normally as it was done in the original algorithm; such

action abstracted the step at line 22 in Algorithm2 which

uses more than one operation to complete.

How modifying the Levenshtein method reduced the

time and enhanced the candidates generation process is that

the modification exploited point1 to make the algorithm

avoids checking the cases that are leading to a failure

situation, unlike Damerau-Levenshtein modification which

makes no difference between the two situations; this is

presented in lines 15 and 16.

The directly updated distance matrix (line 17) in the

enhanced algorithm has accurately adjusted the distance

without any more additional processing; it is simply an

assignment.

-- -------------------------------

1. Algorithm3: Enhanced Levenshtein Distance

2. Input: String1, String2

3. Output: Damerau Edit Operations Number

4. Step1: Declaration

5. distance(length of String1,Length of String2)=0, min1=0, min2=0, min3=0, cost=0

6. Step2: Calculate Distance

7. if String1 is NULL return Length of String2

8. if String2 is NULL return Length of String1

9. for each symbol x in String1 do

10. for each symbol y in String2 do

11. begin

12. if x = y

13. begin
14. cost = 0

15. if x is not the start symbol of String1 then

16. if (the symbol preceding x=the symbol following y) and (x is not duplicated) then

17. decrease distance (index(x)-1,index(y)) by 1 // transposed

18. end

19. else cost = 1

20. r=index of x, c=index of y

21. min1 = (distance(r - 1, c) + 1) // deletion

22. min2 = (distance(r, c - 1) + 1) //insertion

23. min3 = (distance(r - 1,c - 1) + cost) //substitution

24. distance(r , c)=minimum(min1 ,min2 ,min3)

25. end

26. Step3: return the value of the last cell in the distance matrix

27. return distance(Length of String1,Length of String2)

28. End.

--- ----

Obviously, the time complexity is related to the real

distance between the input strings. However, as the strings

becomes more different, the steps at lines 15, 16 and 17 in

Algorithm3 are rarely executed which saving time; in turn,

this property is preferred in the cases where the algorithm is

used for generating candidates.

Candidates should be as similar as possible to the source

token (usually, a mistaken word) and the relativity of the

additional steps (lines 15, 16 and 17) in the enhanced

53

All rights revesed©UOITC www.uoitc.edu.iq

algorithm made the consumed time to generate candidates is

useful (or not wasted) from the view point that those steps

are only executed when there is a matching with the source

token and they are more executed as the source word being

more matched with the target word which means that it is a

good candidate.

VI. CASE STUDY

An experiment for testing the real implementation of the

three algorithms (Levenshtein, Damerau-Levenshtein and

Enhanced-Levenshtein) and showing the variance of time

complexity, we have used an English dictionary containing

more than 3x10
5
tokens and a list of 15 misspelled words.

For each misspelled word, we have shown the average

time of finding the nearest candidates using each of the

previously mentioned three algorithms measured in seconds.

Figure.1 shows the variance in which the Damerau

modification consumed longer time than both of original and

the enhanced Levenshtein did.

Figure.1 also shows that the enhanced algorithm has a

time complexity close to (or on the boundaries of) the

original Levenshtein algorithm and this is the goal of the

modification. The enhancement performed the task of the

Damerau's modification in a time complexity closer to the

original algorithm, i.e. O(N1.N2).

Fig.1: Time complexity variance of Levenshtein, Damerau-Levenshtein, and Enhanced Levenshtein [Y axis represents the

consumed time measured in seconds, the X axis shows the samples used for testing]

VII. USING DISTANCE AS A SIMILARITY

MEASURE

Minimum Edit Distance methods count the number of

edit operations required to convert on string to another in

that they are able to find the absolute difference between

two strings and therefore they can't find the similarity

amount between them.

As an example: the distance between "a" and "b" =1, but

the similarity =0; whereas, distance between "Similar" and

"Similer" is also 1, but the similarity =6/7 which means that

there are six letters matched among seven. However, the

difference is the same from the view of Minimum Edit

Techniques, just one edit operation.

Another example showing the accuracy of selecting a

candidate for the word "correcte", both "correct" and

"corrected" are of the same distance (one edit operation:

deleting 'e' to generate the first or inserting 'd' at the end to

generate the second). This ambiguity makes ranking task

more complicated, the similarity can solve the problem by

showing how the two candidates "correct" and "corrected"

share the misspelled word "correcte" some of its letters.

"correct" shares only 7 letters, while "corrected" shares 8

letters; this variance must give the second candidate higher

ranking score because a similarity of 7/8 is smaller than the

similarity of 8/9.

Strings lengths should be taken into account when

computing the edit distance, then the resulted value is used

as a similarity measure. Since the absolute difference

between any two strings is added to the total mismatched

symbols since it is considered as the number of deleted

symbols from the shorter string. The similarity measure

must depend on the maximum length between the two.

The absolute difference is directly computed by applying

an edit distance method, in this paper the term "distance"

refers to any difference value that is received from such

methods:

Absolute_Difference=distance(St1,St2) … (1)

The relative distance is another view for the difference

where a consideration for the foundation of ration between

the number of edit operations required to make the matching

and the total letters found in both input strings.

54

All rights revesed©UOITC www.uoitc.edu.iq

Hence, relative distance is computed by:

R_Dist(St1,St2)=

Absolute_Difference / max(length(St1),length(St2)) … (2)

Relative distance is a value within the interval (0,1)

where completely different strings have a relative distance

of 1; and as its value decreases, the difference is also

decreases until reaching the value of 0 when the two strings

are identical.

Since the similarity and difference are complements to

each other, the similarity can be computed by:

Similarity (St1, St2)=1- R_Dist(St1,St2) … (3)

And the later is the measure of similarity used in the

candidates' generation for this work.

VIII. CONCLUSION

Using minimum edit distance techniques for error

correction is an efficient way specially in the fields of

isolated words correction since they are fully dependent on

performing the matching on the source word and a list of

alternatives without any considerations for further

constraints (such as context, position within sentence,

frequency, …). Levenshtein method is one of those

techniques which can identify three types of edit operations

(deletion, insertion and substitution) but not the fourth type:

the transposition of two adjacent symbols.

In this paper, a modification on the Levenshtein method

was done to complete its work within a time complexity

close to the unmodified method. Because of the algorithm

suitability, it is used for candidates generation and therefore

a modulation was required to convert the difference measure

into a similarity measure. The resulted measure is suitable

for every distance method specifically for those which work

with strings.

Although the modified method showed an accepted

execution time, it is still of a quadratic complexity. In the

future, there is a necessity for further enhancing the method

to predict the exact edit distance without performing all the

matching steps.

REFERENCES

[1] R. Mishra and N. Kaur, "A Survey of Spelling Error Detection

and Correction Techniques," International Journal of

Computer Trends and Technology, vol. 4, no. 3, pp. 372-374,

2013.

[2] Manning, Raghavan and Schútze, "An Introduction to

Information Retrieval," Cambridge University Press, 2008.

[3] L. Salifou and H. Naroua, "Design of A Spell Corrector For

Hausa Language," International Journal of Computational

Linguistics (IJCL), Volume.5 : Issue 2, pp. 14-26, 2014.

[4] F. J. Damerau, "A Technique for Computer detection and

Correction of Spelling Errors," ACM, New York, 1964.

[5] R. Haldar and D. Mukhopadhyay, "Levenshtein Distance

Technique in Dictionary Lookup Methods: An Improved

Approach," ACM, New York, 2011.

[6] V. I. Levenshtein, "BINARY CODES CAPABLE OF

CORRECTING DELETIONS, INSERTIONS, AND

REVERSALS," SOVIET PHYSICS - DOCKLADY, vol. 10,

no. 8, pp. 707 - 710, February 1966.

[7] S. Mihov, S. Koeva and others, "Precise and Efficient Text

Correction using Levenshtein Automata,Dynamic Web

Dictionaries and Optimized Correction Models," 2004.

[8] K. L. Tommi A. Pirinen, "Finite-State Spell-Checking with

Weighted Language and Error Models—Building and

Evaluating Spell-Checkers with Wikipedia as Corpus," in

proceedings of LREC 2010 workshop on creation and use of

basic lexical resources for less-resourced languages, 2010.

[9] Y. Bassil, "Parallel Spell-Checking Algorithm Based on

Yahoo! N-Grams Dataset," International Journal of Research

and Reviews in Computer Science (IJRRCS), vol. 3, no. 1, pp.

ISSN: 2079-2557, 2012.

[10] I. Setiadi, "Damerau-Levenshtein Algorithm and Bayes

Theorem for Spell Checker Optimization," Makalah IF2211

Strategi Algoritma, Bundang, 2014.

