

doi:10.25195/2017/4422 | 1

Iraqi Journal for Computers and Informatics

Vol. [44], Issue [2], Year (2018)

A SUGGESTED SUPER SALSA STREAM CIPHER

Mohammed Salih Mahdi1 Nidaa Flaih Hassan2
1BIT Dept., Business Information College, 2Computer science Department

University of Information Technology and Communications, University of Technology

Baghdad, Iraq Baghdad, Iraq

Mohammed.salih@uoitc.edu.iq

110020@uotechnology.edu.iq

Abstract: Salsa (20) cipher is speedier than AES cipher and its

offered superior security. Salsa (8) and Salsa (12) are specified

for apps wherever the grade of security is less necessary than

speed. The concept of this research is to suggest super salsa

keystream utilizing various volumes matrices size (array (4, 4),

array (4, 8), array (4, 16)) are used to increase the complexity of

key stream and make it more reluctant to linear and differential

attacks. Furthermore, in each iteration, the diffusion of

generated keystream will increase due the effect of changing the

volume acting for one element of the array is not fixed. The

generated keys of the suggested Super SALSA keystream are

depicted as simple operations and a high hardiness randomly

keystream by exceeding the five benchmark tests. Likewise, it's

presenting a situation of equilibrium between complexity and

speed for Salsa (8, 12 and 20).

Keywords: Stream cipher, Keystream Generator Salsa (20), Super

salsa.

I. INTRODUCTION

Ciphering procedures are mostly categorized into two

forms: The 1st form is a block cipher indicates the

procedure of the cipher by splitting each original data into

sequential blocks and every block is encrypted by utilizing

identical key [1], [2]. The 2nd form is a stream cipher

indicates the procedure of the cipher by utilizing XOR

function between the original data and key random series for

getting the cipher data. The cipher and decipher procedures

of stream cipher can be exhibited in the subsequent equations

respectively [3].

Where indicates mod by 2, C [s] is indicates the cipher

data bits, K [s] is indicates the key random series bits, O [s]

is indicates the original data bits and S is 1 bit at a same

time. Focusing on eq. 1 and eq. 2, the cipher and

decipher together, required to fit to use identical seed key

to produce the identical keystream series K [s] as shown

in figure (1) [3]. The alteration of keystream series will not

let any assign a guide to the adversary to break the

cipher data by providing a style of keystream would cannot

be recurring [4], [5].

 Fig1: Stream Cipher [3]

The stream ciphers are mostly categorized into two areas:

software environment and hardware environment. It is an

obvious, the robustness of the stream ciphers according

to the keystream provider and can be evaluated in

expressions of complexity, correlation and randomness [6].

A stream cipher is the most significant encryption procedures

in pioneer scope: real time apps, military side, wireless

sensor network, strategic regions, Bluetooth and mobile

communications, etc. Because pioneer scopes have vast

resource utilization and bounded cooperating with bandwidth

[6]. In hardware, a stream cipher is mostly quicker than a

block cipher, in addition, Stream cipher more suitable when

memory is limited. Likewise, it has pros such as no error

propagation and less complexity [7]. Moreover, Stream

cipher is specified with expeditiously processing than block

ciphers [8],[9].

1. Salsa (20)

Salsa (20) is stream cipher utilized counter mode for

encryption procedure. The initial seed of Salsa (20) is an

array (4, 4) with 512 bits as illustrated in figure (2).

Fig 2: Array of Salsa (20) distribution

The basic operations in salsa (20) are "edition, XOR and

rotation" as shown in figure (3) which are applied on an

Array of Salsa (20) for 10 rounds. Each round, the Array of

Salsa (20) is changed a twice, so it's called Salsa (20). At

the end of the salsa (20), addition operation is utilized

between the final adjust of Array of Salsa (20) and the initial

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Iraqi Journal for Computers and Informatics

https://core.ac.uk/display/333817217?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

doi:10.25195/2017/4422 | 2

Iraqi Journal for Computers and Informatics

Vol. [44], Issue [2], Year (2018)

seed of Array of Salsa (20).

Fig3: Operations of Salsa (20): a. First Changing.

 b. Second Changing [10]

In each round of Salsa (20), ninety-six word operation has

done, i.e. Forty-eight word operation for first changing

followed by forty-eight word operation for second changing.

Forty-eight word operation is calculated by multiplying

sixteen word operation with three operations (addition, XOR

and rotation). For 10 rounds, the total of operations is nine

hundred and sixty word operations. At the end of the salsa

(20), nine hundred and sixty word operations plus sixteen

word operation conclude hundred and seventy-two word

operations in total for one encryption [11]

II. RELATED WORK

Many different papers are utilized to develop salsa (20), In

[12], developed a modern procedure of salsa(20) by gaining

swifter diffusion than the basic Salsa(20) according to chaos

theory. Utmost of the experiences illustrated a modern

procedure of two iterations is swifter than the basic four

iterations, however it exhibits same diffusion grade. In [13],

the array (4, 4) of Salsa (20) with 512 bits is altered to array

(3, 3) of Salsa (20) with 576 bits, i.e. Each location in the

array of Salsa (20) is utilized 64 bit words and in each

iteration, changing their locations by applying nine

operations, it led to more diffuse than the basic Salsa (20).

Many different papers utilized to broken salsa (20), In [14]

Crowley is reported attack on Salsa(20/5) by utilizing three

iterations differential with alleged 2165 attempts and his award

one thousand dollars . The adversary tries forwards on a short

known original difference upon bias bit three iterations later,

and tries two iterations backwards from a result in accordance

with estimating one hundred and sixty pertinent key bit. In

[15], reported attack on Salsa(20/6) and swifter attack on

Salsa(20/5) by utilizing four iteration differential with

alleged 2177 attempts. The adversary tries forwards on a short

known original difference upon bias bit four iterations later,

and tries two iterations backwards from a result in accordance

with estimating one hundred and sixty pertinent key bit .In

[16], reported attack on Salsa(20/7) and swifter attack on

Salsa(20/6) by utilize four iteration differential with alleged

2190 attempts. The adversary tries forwards on a short known

original difference upon bias bit four iterations later, and tries

three iterations backwards from a result in accordance with

estimating one hundred and seventy-one pertinent key bit.

In[17], reported attack on Salsa(20/8) with alleged 2249

attempts and swifter attack on Salsa(20/7) with alleged 2153

attempts. The adversary tries forwards on a short known

original difference upon bias bit four iterations later, and tries

four iterations backwards from a result in accordance with

estimating two hundred and twenty-eight pertinent key bit.

Concerning , salsa (20) that is debated at the top, the

contribution of this work is manifesting super salsa

keystream generator , the array (4, 4) of Salsa (20) with 512

bits is altered to array (4, b) of three versions of Salsa

(8/12/20) with 512 bits for presenting a situation of

equilibrium between complexity and speed. Furthermore, in

each iteration, the diffusion of generating the keystream will

increase due the effect of changing the volume acting for one

element of the array (4, b), i.e. The represented volume of

each element in the array (4, b) is not fixed.

III. A SUGGESTED SUPER SALSA STREAM CIPHER

For encrypted data, the essential basics of the salsa (20) have

been analyzed to establish the suggested Super SALSA

keystream generator. Three versions of the Super SALSA

keystream generator are suggested, these versions (8,12,20)

are utilized array with (4, b) size instead of utilizing an array

with (4, 4) size as interpreted in algorithm (1), algorithm (2)

and algorithm (3). The (4, b) size of array is ultimately

summarized into:

 b= 4 the size of the array is (4 by 4), each item in this

array is acted by 32 bits, the array consists of key (k1 to

k 8), nonce (n 1, n 2) and constant (ct1 to ct4) and

counter (cr1, cr2) as illustrated in figure (4.a).

 b = 8 the size of the array is (4 by 8), each item in this

array is acted by 16 bits, the array is consist of key (k 1

to k 16), nonce (n1 to n4) and constant (ct1 to ct8) and

counter (cr1 to cr4) as illustrated in figure (4.b).

 b= 16 the size of the array is (4 by 16), each item in this

array is acted by 8 bits and the array is consist of key (k1

to k32), nonce (n1 to n8) and constant (ct1 to ct16) and

counter (cr1 to cr8) as illustrated in figure (4.c).

In each iteration, the parameter (b) is selected according to

the super key. The super key contains set of b parameters

with versions (8,12,20) and it's generated randomly, securely

among session members.

doi:10.25195/2017/4422 | 3

Iraqi Journal for Computers and Informatics

Vol. [44], Issue [2], Year (2018)

ct1 k1 k2 k3

k4 ct2 n1 n2

cr1 cr2 ct3 k5

 k6 k7 k8 ct4
(a)

ct1 k1 k2 k3 ct5 k9 k10 k11

k4 ct2 n1 n2 k12 ct6 n3 n4

cr1 cr2 ct3 k5 cr3 cr4 ct7 k13

 k6 k7 k8 ct4 k14 k15 k16 ct8
(b)

ct1 k1 k2 k3 ct5 k9 k10 k11 ct9 k17 k18 k19 ct13 k25 k26 k27

k4 ct2 n1 n2 k12 ct6 n3 n4 k20 ct10 n5 n6 k28 ct14 n7 n8

cr1 cr2 ct3 k5 cr3 cr4 ct7 k13 cr5 cr6 ct11 k21 cr7 cr8 ct15 k29

 k6 k7 k8 ct4 k14 k15 k16 ct8 k22 k23 k24 ct12 k30 k31 k32 ct16
 (c)

Fig (4): Arrays of Super Salsa Distribution, a: Super Salsa Array (4, 4), b: Super Salsa Array (4, 8)

, c: Super Salsa Array (4, 16).

doi:10.25195/2017/4422 | 4

Iraqi Journal for Computers and Informatics

Vol. [44], Issue [2], Year (2018)

Algorithm (3): Salsa-quarter function

Input: a1, b1, c1, d1

Output: Update a1, b1, c1, d1

Begin

Step1:

 z 1 = b1 ⨁ ((a1 + d1) <<< 7)

 z 2 = c1 ⨁ ((x 1 + z 1) <<< 9)

 z 3 = d1 ⨁ ((z 1 + z 2) <<< 13)

 z 0 = a1 ⨁ ((z 2 + z 3) <<< 18)

Step2:

a1=z0

b1=z1

c1=z2

d1=z3

End

IV. RESULTS OF SUGGESTED KEYSTREAM

GENERATOR

 The suggested Super SALSA keystream generator has

been analyzed and implemented by utilizing C++. The level of

randomness of the Super SALSA keystream generated has

been estimated by checking the five benchmark tests as

interpreted in Table (1).

Table (1): Benchmarked 5-Tests Equations and Information [16]

The following steps illustrated the generated keystream of

the suggested Super SALSA keystream according to

Algorithm (1), Algorithm (2) and Algorithm (3).

 S1: Suppose the version-salsa is 8, the array of superkey is

[3,1,1,3,2,2,1,3] and the seed of keystream is

"43cb80a0","530fa20d","b7b05c9f","78bf2735","4d063cf3","d

2151f5a","544f1190","183be031","75480d5c","6c51a262","a4

7b7d1a","dc0fc344","bf615c38","63ab9b04","2ab5ba53","b85

32ed1" storing in matrix v which is represented by 128 hexa-

number that is equal to 512 bits.

 S2: According to superkey, at index 0 of superkey array is 3

in iteration 1. So, matrix v (4,4) will be converted to v v(4,16)

each item in this array is acted by 2 hexa number (8 bits) ,the

update matrix v "43","cb","80","a0","53","0f"

,"a2","0d",………… "b8","53", "2e","d1" according to

Algorithm (2)

 S3:Going to salsa-quarter function with b=16 ,so v(4,16)

converts to v(64) .At first update v4,v8,v12 and v0 by

implementing the three procedure mod 28,16;32 of suggested

Super SALSA keystream e.g. v4="53", v8="b7", v12="78"

and v0="43". According to Algorithm (3) , So, getting the

update v4 by firstly, v[0] + v[12] "43" + "78"="bb".

Secondly, rotate by 7 "bb">>>7="dd" then finally v4="53"

doi:10.25195/2017/4422 | 5

Iraqi Journal for Computers and Informatics

Vol. [44], Issue [2], Year (2018)

⨁ "dd" mod 28 update v4=" 8e" and so on form each item

in matrix v.

 S4: Next to iteration 2, According to superkey, at index 1of

superkey array is 1. So, will be converted to v(4,4) each item

in this array is acted by 8 hexa number (32 bits) and so on.

 S5: check fitness function when finishing all iteration,

already, the generated keystream is passing the five standard

criteria. So the final result in binary form:

"100010101001111100001000001010110101001100001101

0011010001111111100110100001000001100000000000010

1011001010000101110011101110000101011010010010100

0110011011000000011101110101100010011000010110000

0111010000011010000100100001101111000111011010101

1000111111000001001010001001101100100110110000101

0010101011110111111001111110111110001101110001111

0010001111100001000100101010010001110010110000011

0000000100011111001111010011100101010100010101011

1000011110110001101101101011110101011111001001001

10001100000000000001100"

The above generated keys sample of the suggested Super

SALSA keystream are depicted as simple operations and a

high hardiness randomly keystream by exceeding the five

benchmark tests as interpreted in Table (2).

Table (2): Five Benchmark Tests Performance
5 - benchmark

Tests

Test Value Threshold Test value<

Threshold

Frequency T1 2.82 3.841 pass

Serial T2 3.698 5.991 pass

Poker T3 8 24.995 pass

Runs T4 4.61 12.591 pass

Autocorrelation T5 0.336 1.96 pass

Many of superkey of Super SALSA keystream generator

has been taken in is compared with standard salsa version

(8),(12)and (20) according to time consuming and complexity

applies on 512 bits in milliseconds as showing in Table (3)

and Table (4). So, as output, the Suggested super Salsa

version of 8, 12 and 20 is greater than Standard Salsa

particularly in complexity., however super Salsa need more

time don’t exceed 60 milliseconds that indicated its good

indicator when applies on real time apps or any apps.

Table (3): time consuming and complexity of Standard Salsa
Criteria Standard Salsa

versions 8 12 20

time 20 25 29

complexity Low medium High

Table (4): time consuming and complexity of Suggested super

Salsa
Criteria Standard Salsa

versions 8 12 20

time 30 42 55

complexity medium high High

V. CONCLUSION

This paper suggests Super Salsa Keystream Generator with

robust construction, according to utilizing an array with (4, b)

size instead of utilizing an array with (4, 4) volume of salsa (8,

12, 20). Presenting a situation of equilibrium between

complexity and speed. Also, the diffusion of generating the

keystream will increase due the effect of changing the volume

acting for one element of the array (4, b) in each iteration.

When b is equal to 4 that means the size of each element is

equal to 32 bits, when b is equal to 8 that means the size of

each element is equal to 16 bits, while, b is equal to 16 that

means the size of each element is equal to 8 bits. Furthermore,

utilizing various volumes of size of matrices of super salsa is

guide to increase complexity of key stream and make it more

reluctant to linear and differential attacks. Its need for 2512

Probable keys to break super salsa, which is guided to not

utilize brute-force attacking due to its unwieldy procedure in

this situation. In addition, the randomness of the Super

SALSA keystream has successfully exceeded the five

benchmark tests.

References
[1] T. W. Cusick, C. Ding, and A. R. Renvall, Stream ciphers and number

theory, vol. 66. Elsevier, 2004.

[2] E. Bach and J. O. Shallit, Algorithmic Number Theory: Efficient

Algorithms, vol. 1. MIT press, 1996.

[3] Y. Minglin and M. Junshuang, “Stream ciphers on wireless sensor

networks,” in Measuring Technology and Mechatronics Automation

(ICMTMA), 2011 Third International Conference on, 2011, vol. 3, pp.

358–361.

[4] B. Schneier, Applied cryptography: protocols, algorithms, and source code

in C. john wiley & sons, 2007.

[5] M. Hell, T. Johansson, A. Maximov, and W. Meier, “A stream cipher

proposal: Grain-128,” in Information Theory, 2006 IEEE International

Symposium on, 2006, pp. 1614–1618.

[6] M. Shin, J. Ma, A. Mishra, and W. A. Arbaugh, “Wireless network

security and interworking,” Proc. IEEE, vol. 94, no. 2, pp. 455–466, 2006.

[7] A. Jolfaei and A. Mirghadri, “Survey: image encryption using Salsa20,”

Int. J. Comput. Sci. Issues, vol. 7, no. 5, pp. 213–220, 2010.

[8] H. Lee and K. Chen, “Pingpong-128, a new stream cipher for ubiquitous

application,” in Convergence Information Technology, 2007. International

Conference on, 2007, pp. 1893–1899.

[9] T. Good and M. Benaissa, “Hardware results for selected stream cipher

candidates,” State Art Stream Ciphers, vol. 7, pp. 191–204, 2007.

[10] D. J. Bernstein, “The Salsa20 family of stream ciphers,” in New stream

cipher designs, Springer, 2008, pp. 84–97.

[11] D. Priemuth-Schmid and A. Biryukov, “Slid pairs in Salsa20 and

Trivium,” in International Conference on Cryptology in India, 2008, pp. 1–

14.

[12] M. Almazrooie, A. Samsudin, and M. M. Singh, “Improving the

diffusion of the stream cipher salsa20 by employing a chaotic logistic

map,” J. Inf. Process. Syst., vol. 11, no. 2, pp. 310–324, 2015.

[13] A. Al-Saleh, M. Al-Ahmmad, A. Issa, and A. Al-Foudery, “Double-A --

A Salsa20 Like: The Design,” 2015 4th Int. Conf. Adv. Comput. Sci.

Appl. Technol., pp. 24–29, 2015.

[14] C. Paul, “Truncated differential cryptanalysis of five rounds of

Salsa20,” Stream Ciphers Revisit., 2006.

[15] S. Fischer, W. Meier, C. Berbain, Jean-Fran, C. Biasse, and M. J. B.

Robshaw, “Non-randomness in eSTREAM candidates Salsa20 and TSC-

4,” In INDOCRYPT, pp. 2–16, 2006.

[16] Y. Tsunoo, T. Saito, H. Kubo, T. Suzaki, and H. Nakashima,

“Differential cryptanalysis of Salsa20/8,” SASC, State Art Stream

Ciphers, 2007.

[17] J.-P. Aumasson, S. Fischer, S. Khazaei, W. Meier, and C. Rechberger,

“New features of Latin dances: analysis of Salsa, ChaCha, and Rumba,” in

International Workshop on Fast Software Encryption, 2008, pp. 470–488.

doi:10.25195/2017/4422 | 6

Iraqi Journal for Computers and Informatics

Vol. [44], Issue [2], Year (2018)

AUTHOR PROFILE

MOHAMMED SALIH MAHDI IS CURRENTLY A

PHD CANDIDATE. HIS BSC DEGREE IN HIDING

DATA IN 2010 AND HIS MSC DEGREE IN A

SECURITY OF CLOUD COMPUTING IN 2012 FROM

COMPUTER SCIENCE DEPT., AT UNIVERSITY OF

TECHNOLOGY, IRAQ, BAGHDAD. CURRENTLY.

LECTURER IN BUSINESS INFORMATION COLLEGE, UNIVERSITY

OF INFORMATION TECHNOLOGY AND COMMUNICATIONS. HIS

RESEARCH INTERESTS INCLUDE DATA MINING, ARTIFICIAL

INTELLIGENT, COMPUTER SECURITY, IMAGE PROCESSING,

DATA COMPRESSION, HEALTHCARE, MOBILE APPLICATION,

CLOUD COMPUTING, INTERNET OF THINGS, INTERNET OF

EVERYTHING.

ASSIST. PROF .DR. NIDAA F. HASSAN

RECEIVED THEMSC. AND PHD. IN COMPUTER

SCIENCE FROM UNIVERSITY OF TECHNOLOGY,

IRAQ, 1996 AND 2005 RESPECTIVELY. SHE

HAS AROUND 21 YEARS OF TEACHING EXPERIENCE. HER AREAS

OF INTEREST'S COMPUTER SECURITY AND IMAGE PROCESSING

	1. Salsa (20)
	II. Related Work
	III. A Suggested Super SALSA Stream Cipher
	IV. Results of Suggested Keystream Generator
	V. Conclusion
	Author Profile

