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Abstract

Background and Objectives

Influenza A viruses cause highly contagious diseases in a variety of hosts, including hu-

mans and pigs. To develop a vaccine that can be broadly effective against genetically diver-

gent strains of the virus, in this study we employed molecular breeding (DNA shuffling)

technology to create a panel of chimeric HA genes.

Methods and Results

Each chimeric HA gene contained genetic elements from parental swine influenza A viruses

that had a history of zoonotic transmission, and also from a 2009 pandemic virus. Each pa-

rental virus represents a major phylogenetic clade of influenza A H1N1 viruses. Nine shuf-

fled HA constructs were initially screened for immunogenicity in mice by DNA immunization,

and one chimeric HA (HA-129) was expressed on both a A/Puerto Rico/8/34 backbone with

mutations associated with a live, attenuated phenotype (PR8LAIV-129) and a A/swine/

Texas/4199-2/98 backbone (TX98-129). When delivered to mice, the PR8LAIV-129 induced

antibodies against all four parental viruses, which was similar to the breadth of immunity ob-

served when HA-129 was delivered as a DNA vaccine. This chimeric HA was then tested

as a candidate vaccine in a nursery pig model, using inactivated TX98-129 virus as the

backbone. The results demonstrate that pigs immunized with HA-129 developed antibodies
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against all four parental viruses, as well as additional primary swine H1N1 influenza virus

field isolates.

Conclusion

This study established a platform for creating novel genes of influenza viruses using a mo-

lecular breeding approach, which will have important applications toward future develop-

ment of broadly protective influenza virus vaccines.

Introduction
Influenza A viruses infect a variety of avian and mammalian hosts, including humans and pigs,
and thus pose a significant pandemic threat [1]. Vaccines against influenza viruses are available
for both pigs and humans, with human vaccines receiving annual updates based on surveillance
[2]. These vaccines are designed to limit transmission and infection with host species-restricted
variants within a single influenza A virus subtype [3,4], and they demonstrate efficacy within
their respective populations [5,6]. However, sporadic transmissions of influenza A viruses
across species barriers have been noted historically [7], with some of these events being associ-
ated with human pandemics [8,9]. Since 2009, the emergence and pandemic classification of a
triple reassortant influenza A virus (H1N1 subtype) containing swine, human and avian genet-
ic components raised greater concerns over future pandemics of swine-origin viruses. Specifi-
cally, there is a possibility that novel viruses could evolve within swine populations to yield
viruses with increased transmissibility and virulence within humans [10]. Since vaccination re-
mains the primary means for controlling seasonal influenza viruses, combining our efforts to
limit interspecies transmission events represents a potential path toward a pandemic vaccine.
A vaccine that could limit the circulation of influenza viruses among pigs, as well as prevent in-
terspecies transmission events from pigs to humans, would strengthen these efforts.

Seasonal influenza vaccines have historically demonstrated moderate effectiveness when the
circulating strains closely match the vaccine strain [6], but the success of the vaccine can be
compromised when there is not a close match [5,11]. Efforts to generate vaccines that match
circulating strains can be time-consuming [12], and in pigs the reformulation of swine influen-
za vaccines can be limited by the surveillance data available [13]. Thus, a vaccine that can in-
duce strong, broad, protective immunity toward multiple heterologous strains is urgently
needed in both pigs and humans. A previous study by our group [14] reported that multiple,
individual human influenza A virus hemagglutinins (HAs), from the H3N2 subtype, could be
delivered simultaneously to induce immunity that covered approximately 20 years of HA evo-
lution. This proof-of-concept approach showed that broad immunity can be achieved, within
an influenza A virus subtype. However, when these distinct HAs were delivered by simulta-
neously inoculating with multiple whole virus preparations, antibody titers were not detected
against all of the HAs included in the vaccine [14]. Thus, improvement on this approach
is needed.

A molecular breeding (DNA shuffling) strategy represents a novel approach to produce
broadly protective vaccines. DNA shuffling is a process of random recombination of parental
genes into novel genes, with shuffled (recombined) chimeric genes being selected for desired
properties [15–23]. The importance of this process is that molecular breeding by DNA shuf-
fling of specific genes mimics the evolution pathway and accelerates the natural process of evo-
lution for viruses, or viral proteins, in vitro [24]. In this study, we applied molecular breeding
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technology toward producing a vaccine against influenza A virus in pigs. Since the viral surface
glycoprotein HA has been the major target of most licensed influenza vaccines, we specifically
targeted the HA from the 2009 pandemic virus, as well as HAs from three additional swine in-
fluenza viruses that had a history of zoonotic transmission to humans [25,26]. These parental
influenza A H1N1 strains represent four distinct phylogenetic clades, and HA genes of these
four parental strains were used for DNA shuffling and screening to generate a panel of chimeric
influenza HA antigens. One chimeric construct, HA-129, was further presented in the context
of a traditional, whole virus vaccine backbone, and immune responses induced by this chimera
were evaluated in both mice and pigs. Results from this study suggest that chimeric HA anti-
gens generated by DNA shuffling would have potential applications as broadly protective
influenza vaccines.

Materials and Methods

Parental HA genes and viral strains
The HA genes of the four parental H1N1 influenza A viruses A/Tennessee/1-560/09 (TN09;
CY040457.1), A/New Jersey/8/1976 (NJ76; CY130118.1), A/Ohio/01/2007 (OH07; FJ986620.1),
and A/Iowa/01/2006 (IA06; FJ986618.1) were amplified by RT-PCR from stock viruses using the
Bm-HA-1F (TATTCGTCTCAGGGAGCAAAAGCAGGGG) and Bm-NS-890R (ATATCGTCT
CGTATTAGTAGAAACAAGGGTGTTTT) primers, with PCR products cloned in pHW2000
plasmid using BsmBI [27]. Additional H1N1 influenza A virus strains that were tested to demon-
strate cross reactivity include A/North Carolina/18161/2002 (NC02; CY098516.1), A/swine/Iowa/
1/1985 (IA85; CY022317.1), A/swine/Iowa/40766/1992 (IA92; KP788773), A/swine/Germany/2/
1981 (GE81; Z30276.1), and A/New Caledonia/20/99 (NC99; CY125100.1).

DNA shuffling of HA genes
The DNA shuffling of HA genes was performed as described by Soong et al [28], with minor
modifications. Briefly, DNA products of HA genes from the four parental strains (TN09, NJ76,
OH07, and IA06) were mixed equimolarly and digested with DNase I. The DNA fragments
were assembled as described previously [24], and the reassembled fragments were amplified by
PCR using the Bm-HA-1F and Bm-NS-890R primers. The PCR products were cloned into the
pHW2000 plasmid to establish the chimeric HA library.

Creation and characterization of HA-expressing virus reassortants
The 8-plasmid reverse genetics system, incorporating co-cultured 293T (American Type Cul-
ture Collection, Manassas, VA) and MDCK (ATCC) cells, was used to create reassortant virus-
es in this study. For viruses expressing the cloned parental HA genes from TN09, OH07, NJ76,
or IA06, the viruses were created using reverse genetics, with each HA incorporated into a reas-
sortant virus that derived the 7 other influenza virus genes from the A/Puerto Rico/8/34 (PR8)
donor virus [29]. Viruses rescued from 293T:MDCK cell co-cultures that expressed the desired
HA were propagated in 10-day-old embryonated chicken eggs for 72 h at 35°C and sequenced
to verify appropriate HA genotype. Similarly, when expressing the chimeric HA construct,
HA-129, within influenza viruses for vaccine creation, we used the live, attenuated influenza
virus (LAIV) PR8 (PR8LAIV) backbone for generating a candidate vaccine in mouse (PR8LAIV-
129), while the A/swine/Texas/4199-2/98 swine reverse genetics system was used for generating
a candidate inactivated influenza virus (IIV) vaccine in pigs (TX98-129) [30].

The vaccine virus rescued on the PR8LAIV backbone (PR8LAIV-129) was propagated in 10
day-old embryonated chicken eggs for 72 h at 33°C, as described previously [14,31], and the
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TX98-129 virus was propagated for 72 h at 35°C. The growth characteristics of these viruses
were determined using MDCK cells, as previously described [32]. Briefly, MDCK cell monolay-
ers (3x105 cells per well) were inoculated with influenza viruses in the presence of TPCK-tryp-
sin, and at indicated times, amounts of virus present were tested using standard methods for
calculating the median tissue culture infectious dose (TCID50) of influenza viruses [33].

Mice and immunization
Adult (6–8-week-old) female BALB/cJ mice were obtained from Harlan Laboratories (India-
napolis, IN) and housed in groups of four, with 24-hour access to food and water. All mouse
experiments were performed following the guidelines established and approved by the Animal
Care and Use committee at the University of South Dakota (Vermillion, SD). For DNA im-
munization, plasmid DNA was coupled to gold particles as described previously [34], and ad-
ministered directly to the mouse abdomen, using a Helios gene gun (Bio-Rad Laboratories,
Hercules, CA). Mice were boosted twice with a 3-week interval between inoculations. Three
weeks after the third inoculation, sera were collected and analyzed by ELISA. For whole virus
vaccination, mice that were lightly anesthetized with 2.5% isoflurane were inoculated with
1x105 TCID50 PR8LAIV-129 in a 50μl volume, and boosted with 1x105 TCID50 PR8LAIV-129 at
28 days post inoculation (dpi). Sera were collected at 21 days after the second inoculation with
whole virus. To inactivate host innate immune inhibitors of influenza virus, sera were treated
with receptor-destroying enzyme (RDE, Accurate Chemical, Westbury, NY) and heat-inacti-
vated as described previously [35].

Antibody detection by ELISA
Serum antibodies were detected using an ELISA, as described previously [14]. Briefly, 96-well
flat bottom plates (NUNC, Thermo Fisher Scientific, Waltham, MA) were coated with concen-
trated, formalin-inactivated parental viruses (1 μg HA mL−1). RDE-treated sera were serially
diluted in PBS containing 10% fetal bovine serum (FBS) (Atlanta Biologicals, Lawrenceville,
GA) and 0.05% (v/v) Tween-20 (Sigma, St. Louis, MO) (FBS-PBST). Alkaline phosphatase-
conjugated preparations of goat anti-mouse IgG (γ-specific) antibodies (Southern Biotechnolo-
gy, Inc., Birmingham, AL), diluted in FBS-PBST, were added to the plate. Plates were washed,
and 1 mg mL−1 p-nitrophenyl phosphate substrate (Sigma) in diethanolamine buffer was
added. One hour after substrate addition, the OD was detected at 405 nm using a BioTek
EL808 plate reader (BioTek Instruments, Inc., Winooski, VT). Reciprocal serum antibody titers
for individual serum samples are reported at 50% maximal binding on the individual titration
curves. Individual sera were considered positive only if their starting dilution OD405 values
were greater than 3 times the OD405 of negative control sera. Samples that did not show a de-
tectable titer at the starting serum dilution of 1:50 were assigned a titer of 50 for the purpose
of graphing.

Hemagglutination Inhibition and Microneutralization assays
Hemagglutination inhibition (HAI) assays were performed as described previously [35]. Brief-
ly, RDE-treated sera were diluted serially, and four HA units of virus were added to each well.
The virus:sera mixtures were incubated for one hour at 4°C, at which time a solution of 0.5%
solution of chicken red blood cells (Lampire Biological Laboratories, Pipersville, PA) was
added to each well. Titers are reported as the reciprocal of the final serum dilution that inhib-
ited hemagglutination. Similarly, microneutralization (MN) assays were performed as previ-
ously described [32,35], using 100 TCID50 for each virus inoculated onto confluent MDCK
monolayers. Infected MDCK cells were identified using monoclonal antibodies against the
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influenza A virus nucleoprotein, with a titer defined as the last dilution that inhibited detection
of NP below 50% of the OD490 for positive control wells, as described previously [36,37]. For
both HAI and MN assays, serum samples that did not show a detectable titer at the starting
serum dilution of 1:10 were assigned a titer of 5 for the purpose of both graphing and
statistical analyses.

Nursery pig study
Nursery pigs (3 weeks old) that were free of swine influenza virus, porcine reproductive and re-
spiratory syndrome virus, andMycoplasma hyopneumoniae were obtained. They were ran-
domly divided into three groups, and housed separately in animal isolation facilities at South
Dakota State University (SDSU). All pig experiments were performed following the guidelines
established and approved by the Animal Care and Use committee at South Dakota State Uni-
versity (Brookings, SD). In contrast to the murine model, live influenza virus was not given to
pigs, due to biosafety considerations. Therefore, TX98-129 virus was formalin-inactivated as
described previously [38], and pigs were immunized intramuscularly with 100 μg/ml of inacti-
vated virus in a 2 mL volume. As a negative control, an unvaccinated group of pigs was inocu-
lated with a similar volume of PBS. Fourteen days after primary inoculation, pigs were boosted
with the same dose of antigen, and sera were collected and analyzed at 14 days post-
secondary inoculation.

Data analysis
DNASTAR and MEGA4 were used for sequence alignment and phylogenetic analyses. Table 1
lists all the influenza virus strains from which HA genes were used for constructing the phylo-
genetic tree. Analysis of HA chimeras created by DNA shuffling was performed by using the
Salanto method (https://bitbucket.org/benderc/salanto/wiki/Home). Two way analysis of vari-
ance and nonparametric MannWhitney tests were used to analyze the data. Significant differ-
ences between groups were evaluated using Bonferroni post-tests. All statistical analyses were
performed using either JMP 5.1 (SAS Institute, Cary, NC) or GraphPad Prism version 4.00 for
Windows (GraphPad Software, San Diego California USA, www.graphpad.com).

Results

Construction and screening of chimeric HA genes
Based on the phylogenetic analysis of influenza A H1 HA genes (Fig 1), four distinct parental
influenza virus isolates were selected for generating chimeric HA constructs. Specifically, we se-
lected A/Tennessee/1-560/2009 (TN09; 2009 human pandemic vaccine strain), A/Ohio/1/2007
(OH07; zoonotic isolate), A/Iowa/1/2006 (IA06; zoonotic isolate), and A/New Jersey/8/1976
(NJ76; zoonotic isolate included in the 1976 pandemic vaccine). Each of these represents one
of the major phylogenetic clades of classical swine (α, β, and γ) and recent pandemic (pdm)
strains, as defined previously [39,40]. Since analysis of influenza virus diversity based solely on
genetic distance does not fully recapitulate the antigenic differences observed for influenza
virus HA proteins, we performed a hemagglutination inhibition (HAI) assay to evaluate anti-
bodies induced against each of the parental HA proteins expressed on a PR8 background. As
shown in Table 2, reactivity of sera against homologous HA-expressing virus was at least four-
fold higher than it was against heterologous HA-expressing viruses. The antigenic distance be-
tween the parental HA proteins was then calculated using the HAI titers, following criteria de-
scribed by Cai et al [41]. As shown in Table 3, the closest antigenic distance for any of our
selected parental HA proteins was 10-fold, which is greater than the four-fold antigenic
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difference that is used to define distinct isolates during vaccine selection. It is worth noting that
the IA06 parental HA expressed on a PR8 background induced a strong antibody response
against both the homologous HA and heterologous parental HAs (Table 2). Despite this high
immunogenicity, the antigenic distance calculated for IA06 (Table 3) still indicated distinct an-
tibody reactivity for this parental HA. Together, these data indicate that the viruses selected are
both genetically and antigenically distinct.

Subsequently, we constructed chimeric HA genes from these four parental viruses. HA
genes were molecularly bred using the DNA shuffling method. A total of 33 chimeric HA
genes were generated, and these shuffled HA constructs were cloned into the pHW2000 plas-
mid to establish an influenza HA antigen library. Using a previously created DNA shuffling
alignment analysis tool [42], these HA constructs were evaluated for representative parental
gene fragments within the chimeric sequence (Fig 2). Individual alignments were also created
to compare the HA1 region of each parental HA with the chimeric HA constructs (S1–S4 Figs),
which shows amino acids differences in the known antigenic sites and the receptor-binding site
(RBS), as defined by others [39,43–45]. Nine constructs that contain the genetic elements from
HA genes of all four parental viruses were selected for further analysis, including HA-107
(KR012992), HA-111 (KR012990), HA-113 (KR012994), HA-116 (KR012996), HA-123
(KR012995), HA-124 (KR012997), HA-126 (KR012998), HA-129 (KR012993), and HA-208
(KR012991).

Table 1. Virus Names, Subtypes and Accession Numbers Included in Phylogenetic Tree

Virus Name Accession

A/Ohio/01/2007(H1N1) FJ986620

A/swine/Minnesota/03025/2010(H1N1) HM570051

A/swine/Illinois/03037/2010(H1N1) HM754221

A/Swine/Ohio/891/01(H1N2) AF455675

A/Tennessee/1-560/2009(H1N1) CY040457

A/New Jersey/8/1976(H1N1) CY130118

A/Texas/05/2009(H1N1) FJ966959

A/California/04/2009(H1N1) FJ966082

A/Iowa/01/2006(H1N1) FJ986618

A/swine/Kentucky/02086/2008(H1N1) HM461786

A/swine/Iowa/1973(H1N1) EU139826

A/swine/Iowa/2/1987(H1N1) CY028171

A/swine/Ontario/53518/03(H1N1) DQ280219

A/swine/Minnesota/02053/2008(H1N1) CY099119

A/swine/Iowa/1/1985(H1N1) CY022317

A/Swine/North Carolina/98225/01(H1N2) AF455676

A/Swine/Iowa/930/01(H1N2) AF455679

A/swine/MN/48683/2002(H1N1) HM125974

A/swine/North Carolina/18161/2002(H1N1) CY098516

A/swine/Germany/2/1981(H1N1) Z30276

A/swine/Tennessee/49/1977(H1N1) CY022133

A/swine/Tennessee/8/1978(H1N1) CY027523

A/swine/Netherlands/12/85(H1N1) AF091317

A/South Carolina/1/18(H1N1) AF117241

A/swine/Iowa/15/1930(H1N1) EU139823

A/swine/Colorado/1/1977(H3N2) CY009300

A/swine/Iowa/40766/1992(H1N1) KP788773

doi:10.1371/journal.pone.0127649.t001
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Fig 1. Phylogenetic comparison of swine H1 influenza hemagglutinins used to create the chimeric HAs. Parental viruses included in the DNA
shuffling of chimeric HA genes are identified with colored boxes in each phylogenic clade. The phylogenetic tree was constructed using the Neighbor-Joining
method by MEGA software version 6.0. The numbers on branches are bootstrap values from 1000 replicates.

doi:10.1371/journal.pone.0127649.g001
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DNA vaccination with selected chimeric HA constructs in mice
After screening the HA composition, selected chimeric HAs were screened in mice using DNA
immunization. Serum samples collected at 14 days after a third inoculation with DNA were
tested for antibody responses using an ELISA that incorporated parental HA-expressing virus-
es as antigen. The results show that IgG antibodies against all four parental viruses were de-
tected in constructs HA-107, HA-111, HA-113, HA-116, HA-123, and HA-129 (Fig 3). Of
note, the HA-124, HA-126, and HA-208 chimeras did not induce antibodies that consistently
reacted with all four parental viruses. These data demonstrate that chimeric HA constructs cre-
ated using DNA shuffling method have the ability to induce broad antibody responses, with
some of these constructs inducing antibodies that react with all four parental HAs.

Characterization of influenza viruses expressing chimeric HA genes
Historical approaches for influenza virus vaccine development utilize the natural reassortment
properties of influenza viruses to express viral HA and NA genes on a PR8 master donor virus
backbone [46,47]. Since the majority of commercial vaccine preparations still utilize this reas-
sortment approach [48,49], we used reverse genetics to generate viruses for candidate vaccine
production [29]. Efforts to create viruses expressing these chimeric HAs yielded only the HA-
129 construct as an HA that could be expressed within a whole virus. This HA protein was ex-
pressed on both the PR8LAIV (PR8LAIV-129) and the TX98 (TX98-129) backbones, which were
further used for vaccination in mice and pigs, respectively.

Table 2. Antibody cross reactivity in sera frommice infected with recombinant viruses expressing pa-
rental or chimeric HA protein

Virus Isolate Post-Infection Sera

OH07 IA06 NJ76 TN09

PR8-OH07 1280 320 *< 80

PR8-IA06 < 5120** 320 80

PR8-NJ76 < 320 1280 <

PR8-TN09 40 160 < 320

PR8LAIV-129 80 320 160 320

*<: HI titer less than 1:40.

** A four-fold difference in antibody reactivity represents an acceptable antigenic distance for vaccine

selection [41].

doi:10.1371/journal.pone.0127649.t002

Table 3. Antigenic distance between parental H1 HA proteins.

Virus Isolate Antigenic distance

OH07 IA06 NJ76 TN09

PR8-OH07 NA* 136 256 18

PR8-IA06 136** NA 10 18

PR8-NJ76 256 18 NA 160

PR8-TN09 18 18 160 NA

*NA: Not Applicable.

**A four-fold difference represents an acceptable antigenic distance for vaccine selection [41].

doi:10.1371/journal.pone.0127649.t003
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To evaluate the in vitro properties of viruses expressing HA-129, we performed growth
characterization of PR8LAIV-129 and TX98-129 in MDCK cells. Specifically, the growth kinet-
ics of these recombinant viruses were compared with those of either PR8LAIV or TX98 in
MDCK cells. Supernatants were harvested from virus-infected cells every 12 hours for 48 hours
post-inoculation, and TCID50 values were quantified at each time point by virus titration in
separate MDCK cell monolayers. The results show that both PR8LAIV-129 and TX98-129 ex-
hibit similar growth kinetics to that of PR8LAIV (Fig 4A) and TX98 (Fig 4B), indicating that
virus growth was not inhibited by the expression of HA-129 at the surface of these viruses. Sim-
ilarly, in chicken eggs, both PR8LAIV-129 and TX98-129 grew to high titers, with TCID50 values
of 108.375mL-1 and 107.5mL-1, respectively. Together, these data indicate that candidate whole
virus vaccines expressing chimeric HAs can be propagated using either eggs or MDCK cells,
without obvious deficiencies in growth characteristics.

Fig 2. Schematic diagram of DNA shuffled chimeric HA gene sequences. Alignment of HA genes from chimeric constructs and parental viruses was
performed using clustal W (MEGA 6) and the assignment of homology between each construct and the parental viruses was determined by a DNA shuffling
alignment analysis tool (Salanto, version 2.0.2; https://bitbucket.org/benderc/salanto/wiki/Home). Different colors represent different HA gene elements from
parental virus.

doi:10.1371/journal.pone.0127649.g002
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Antibody response induced by HA-129 in animal models
Using the PR8LAIV-129 as antigen, HAI assay results show that immune sera from mice inocu-
lated with parental viruses broadly reacted with this chimeric HA-expressing virus (Table 2).
To determine whether the PR8LAIV-129 can be used to induce broad immune responses, we
thenvaccinated mice with this chimeric HA-expressing virus. Specifically, mice were immu-
nized twice with the PR8LAIV-129, and sera were collected at 21 days post-secondary inocula-
tion. Results from the HAI assay show that antibodies induced by the PR8LAIV-129 react with

Fig 3. IgG antibody response in mice immunized with plasmid DNAs expressing chimeric HA.Mice (n = 4) were vaccinated with plasmid DNAs of
chimeric HA, delivered by gene gun. Serum antibody (IgG) titers after third vaccination were evaluated by ELISA, with samples considered positive if their
initial serumOD405 was at least three times greater than the OD405 of negative control sera. Samples with antibody titers below the detectable limit of the
assay were assigned a titer of 50 for the purpose of generating graphs. Horizontal bars showmean values, and vertical error bars indicate standard deviation.

doi:10.1371/journal.pone.0127649.g003
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viruses expressing each of the four parental HAs, with maximal reactivity against the virus ex-
pressing the HA-129 itself (Fig 5). This result indicates that HA-129 is immunogenic when ex-
pressed within a whole virus, and that antibodies induced can react with all four parental
HA proteins.

To determine the immunogenicity of HA-129 in pigs, we immunized pigs with the forma-
lin-inactivated TX98-129 virus. Serum samples were collected at 14 days post-secondary im-
munization for analysis using both HAI and MN assays (Fig 6). Similar to the results observed
in mice, in both assays, immunized pigs developed increased antibody titers against the virus
expressing HA-129, in comparison to the serum HAI and MN titers in unvaccinated control
pigs. These vaccine-induced antibodies also showed reactivity against viruses expressing paren-
tal HAs from OH07, TN09, NJ76, and IA06. To further assess the breadth of immunity induced
by HA-129, additional non-parental influenza virus variants representing the major phyloge-
netic clades within the H1N1 influenza A virus subtype were also tested. These results show
that antibodies induced after vaccination with TX98-129 were significantly increased (p<0.05)
against a non-parental γ clade variant (A/swine/North Carolina/ 18161/02, NC02), two addi-
tional α clade variants, A/swine/Iowa/1/85 (IA85) and A/swine/Iowa/40766/92 (IA92), and a
virus from the Eurasian swine lineage (A/swine/Germany/2/81, GE81) [50], as detected using
both HAI and MN assays. As a comparison, serum from TX98-129-vaccinated animals did not
react with the A/New Caledonia/20/99 H1N1 virus (Fig 6), which was used here to represent

Fig 4. Comparison of growth kinetics of wild type virus with recombinant viruses expressing HA-129. (A) MDCKmonolayers were inoculated with
0.01 MOI of either wild type virus PR8LAIV or recombinant virus PR8LAIV-129. (B) MDCKmonolayers were infected with wild type virus A/swine/Texas/4199-
2/98 (H3N2) or recombinant virus TX98-129. At the 12-hour time points indicated, cell culture supernatants were collected, and virus titers were determined
using TCID50 quantitation. Error bars represent SEM, with significance between paired viruses at time points denoted by asterisks (*p<0.05 and **p<0.01,
using two-way repeated measures ANOVA with Bonferroni post-test).

doi:10.1371/journal.pone.0127649.g004

Fig 5. Serum antibody HAI titers frommice inoculated with recombinant virus PR8LAIV-129 vaccine.
Balb/c mice (n = 7) were vaccinated intranasally with PR8LAIV-129. Serum antibody titers were analyzed
using the HAI assay against the parental viruses and PR8LAIV-129 itself. HAI titers are defined as the
reciprocal of the final serum dilution where inhibition of hemagglutination was observed. Serum samples with
a titer below the detectable limit of the assay (initial serum dilution of 1:10) were assigned a value of 5 for
graphical representation and statistical analyses. HAI titers from vaccinated (color bars) and unvaccinated
(black bars) groups are presented for each HA tested (PR8LAIV-129, OH07, TN09, NJ76, and IA06).
Reactivity of antibodies induced by PR8LAIV-129 from vaccinated mice was compared with that of
unvaccinated mice (n = 7) using MannWhitney nonparametric test (*p<0.05). Bars represent mean values
for the indicated groups, with vertical error bars indicating standard deviation.

doi:10.1371/journal.pone.0127649.g005
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Fig 6. Antibody reactivity against viruses expressing parental or non-parental HAs using serum samples from pigs immunized with the TX98-129
IIV. Sera were collected at 14 days after secondary inoculation of pigs with the candidate TX98-129 IIV vaccine. (A) Serum antibody HAI titers are defined as
the reciprocal of the final serum dilution where inhibition of hemagglutination was observed. (B) Serum antibody MN titers are defined as the reciprocal of the
final serum dilution where OD490 was below 50% of positive control wells, using 100 TCID50 virus inoculum (confirmed by back-titration). In both panels,
serum samples with a titer below the detectable limit of the assay (initial serum dilution of 1:10) were assigned a value of 5 for graphical representation and
statistical analyses. Viruses expressing non-parental HA proteins are abbreviated (A/North Carolina/18161/2002: NC02; A/swine/Iowa/1/1985: IA85; A/
swine/Iowa/40766/1992: IA92; A/swine/Germany/2/1981: GE81; A/New Caledonia/20/99: NC99) and shown with clade representation. Significance
between vaccinated vs. unvaccinated for all viruses was determined using a MannWhitney nonparametric test (*p<0.05).

doi:10.1371/journal.pone.0127649.g006
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the H1N1 δ clade [39]. This result is expected, since none of the parental viruses used for crea-
tion of HA-129 was from the δ clade.

Discussion
In this study, we created a panel of chimeric HA constructs that have the ability to induce hu-
moral immunity against four genetically divergent parental HAs. The parental viruses that we
selected were isolated from zoonotic infections [25,51,52] and the 2009 pandemic cases [26].
Importantly, these viruses represent strains with the potential to cause future pandemics
through genetic mutation. Our findings demonstrate that an HA-based, broadly-protective
vaccine could be created using the DNA shuffling method, with the added benefit of incorpo-
rating these HA constructs into conventional virus vaccines that are immunogenic in both
mice and pigs. Since the molecular breeding approach mimics and accelerates the natural evo-
lutionary pathway, we hypothesize that the novel chimeric HA antigens created in this study
could induce protective immunity against the current circulating H1 viruses, and that they
may also have the ability to induce protective immunity against future emerging H1 strains.
An influenza virus pandemic can emerge at any time, and current approaches for vaccine selec-
tion and production leave us 6–9 months away from a vaccine [12,53], we may not have a vac-
cine prepared to face the first wave of the next pandemic. Our data show that chimeric HA
molecules can be constructed to improve the breadth of antibody responses within a single in-
fluenza A virus subtype (H1N1). This suggests that a vaccine developed using this approach
might be able to limit the interspecies transmission of influenza viruses between pigs and hu-
mans, to either prevent a pandemic or at least lessen its impact.

In an effort to keep the vaccine development approach clinically relevant, we used reverse
genetics to create viruses expressing chimeric HA constructs. We were able to successfully res-
cue recombinant viruses expressing the chimeric HA-129 on their surface (PR8LAIV-129 and
TX98-129), and the growth kinetics analysis showed that expression of the HA-129 on either
the PR8LAIV or the TX98 genetic backbone did not affect virus propagation. The observation
that these viruses could be propagated in eggs and MDCK cells provides a basis for future de-
velopment of inactivated and live, attenuated influenza virus vaccine preparations using con-
ventional, FDA-approved approaches for vaccine production [54]. The recombinant viruses
rescued were used to vaccinate both mice and pigs, and they induced antibody responses
against viruses expressing both parental and non-parental HAs in pigs. These data suggest that
broad, protective immunity could be induced within the swine population using this chimeric
HA construct. These results encourage our approach toward vaccinating pigs in the pre-pan-
demic phase, a practice that could be helpful for limiting interspecies transmission.

While not identical, the antibody response induced after DNA vaccination allowed us to
screen our HA constructs individually, and could also predict the breadth of humoral immuni-
ty induced by the PR8LAIV-129 in mice and TX98-129 in pigs. This approach was in contrast to
our prior attempt to induce broad immunity within an HA subtype by vaccinating with multi-
ple HAs simultaneously. Specifically, the results reported here demonstrate advantages of using
a single HA construct, instead of multiple parental HAs delivered simultaneously, especially
when attempting to deliver these HAs in the context of a PR8LAIV backbone [14]. Furthermore,
the antibody response to PR8LAIV-129 in mice correlated with the antibody response against
TX98-129 in pigs, in which significant levels of antibodies against TN09, NJ76, OH07, and
IA06 HAs were generated. In fact, based on previous reports [55,56], a HAI titer of 1:40 is con-
sidered an accepted antibody level that correlates with protective immunity in both pigs and
humans, and our TX98-129-vaccinated animals developed antibodies against all four parental
HAs that either met or exceeded this level. However, some of the serum samples from
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unvaccinated pigs showed unexpectedly high reactivity in the HAI assay, so we further ana-
lyzed the serum using MN assay to confirm that the antibodies detected by HAI were indeed
neutralizing. Similar to our results from the HAI assay, we observed significant differences in
neutralizing antibody titers when comparing vaccinated and unvaccinated serum samples by
MN. Together, our results demonstrate that DNA vaccination can be used as a tool for screen-
ing the breadth of immunity induced by chimeric HA gene constructs, and that immunity in-
duced by whole virus vaccine preparations expressing chimeric HAs in mice could predict the
performance of similar vaccines in pigs.

It is worth noting that some other HA chimeras, including HA-107, HA-111, HA-113, HA-
116 and HA-123, induced broad antibody responses against all four parental HAs, even though
we were unable to generate viable recombinant viruses when placing these HAs into the reverse
genetics system. We attempted to identify unique epitopes expressed by these chimeric HA an-
tigens using sequence alignments to analyze the amino acids difference between wild type and
the shuffled HAs (S1–S4 Figs). However, this did not provide a direct, apparent clue on specific
amino acids and/or epitopes that are associated with the increased breadth of immunity ob-
served. Future, in-depth analyses will be required to narrow down the antigenic sites expressed
by these chimeric HAs, and to identify the key amino acids/epitopes where the chimeric HA
genes are specifically mutated. These future studies could ultimately lead to the design of HA
constructs expressing critical epitopes in a manner that would allow us to create additional vac-
cines by reverse genetics, similar to the HA-129.

In addition to the effort to express novel HA epitopes within whole virus vectors, it is worth
noting that in the time since this study was initiated, the FDA has approved the use of a recom-
binant protein vaccine that incorporates the influenza HA0 (rHA0) propagated in insect cells.
This vaccine, known as FluBlok (Protein Sciences Corp., Meriden, CT), is now approved for
use in adults aged 18–49 [57]. This approval of a recombinant protein-derived HA0 increases
the potential application of our novel chimeric HA constructs as rHA0-like vaccines. This ap-
proach would increase the number of laboratory-derived chimeric HAs that could be tested
in mice, pigs, ferrets, and ultimately humans, using a FDA-approved vaccine production
technology.

The current study established a proof of concept and platform for creating novel HA genes
of influenza viruses using the molecular breeding approach, and allowed for evaluating one of
these constructs in animal models using relevant, whole virus vehicles. Importantly, the HA-
129 expressed within virus particles was immunogenic in both mice (PR8LAIV-129) and pigs
(TX98-129). Future work can be expanded to apply this molecular breeding approach either
within or between the other influenza A virus subtypes that have pandemic potential, including
H5, H7, and H9 viruses, which could have important implications in future development of
broadly protective seasonal and pandemic influenza vaccines.

Supporting Information
S1 Fig. Comparison of antigenic sites of shuffled chimeric HA sequences with OH07 HA.
Amino acids alignment comparing the individual parental HA of OH07 with chimeric HAs
created in this study. Antigenic sites Ca1, Ca2, Cb, Sa, Sb, and the receptor binding site (RBS)
were identified previously [39,43–45], and are indicated in the figure.
(PPTX)

S2 Fig. Comparison of antigenic sites of shuffled chimeric HA sequences with TN09 HA.
Amino acids alignment comparing the individual parental HA of TN09 with chimeric HAs
created in this study. Antigenic sites Ca1, Ca2, Cb, Sa, Sb, and the receptor binding site (RBS)
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were identified previously [39,43–45], and are indicated in the figure.
(PPTX)

S3 Fig. Comparison of antigenic sites of shuffled chimeric HA sequences with NJ76 HA.
Amino acids alignment comparing the individual parental HA of NJ76 with chimeric HAs cre-
ated in this study. Antigenic sites Ca1, Ca2, Cb, Sa, Sb, and the receptor binding site (RBS)
were identified previously [39,43–45], and are indicated in the figure.
(PPTX)

S4 Fig. Comparison of antigenic sites of shuffled chimeric HA sequences with IA06 HA.
Amino acids alignment comparing the individual parental HA of IA06 with chimeric HAs cre-
ated in this study. Antigenic sites Ca1, Ca2, Cb, Sa, Sb, and the receptor binding site (RBS)
were identified previously [39,43–45], and are indicated in the figure.
(PPTX)
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