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The vibrational spectral density is an important physical parameter needed to describe both linear
and non-linear spectra of multi-chromophore systems such as photosynthetic complexes. Low-
temperature techniques such as hole burning (HB) and fluorescence line narrowing are commonly
used to extract the spectral density for a given electronic transition from experimental data. We
report here that the lineshape function formula reported by Hayes et al. [J. Phys. Chem. 98, 7337
(1994)] in the mean-phonon approximation and frequently applied to analyzing HB data contains
inconsistencies in notation, leading to essentially incorrect expressions in cases of moderate and
strong electron-phonon (el-ph) coupling strengths. A corrected lineshape function L(ω) is given
that retains the computational and intuitive advantages of the expression of Hayes et al. [J. Phys.
Chem. 98, 7337 (1994)]. Although the corrected lineshape function could be used in modeling
studies of various optical spectra, we suggest that it is better to calculate the lineshape function
numerically, without introducing the mean-phonon approximation. New theoretical fits of the P870
and P960 absorption bands and frequency-dependent resonant HB spectra of Rb. sphaeroides and Rps.
viridis reaction centers are provided as examples to demonstrate the importance of correct lineshape
expressions. Comparison with the previously determined el-ph coupling parameters [Johnson et al., J.
Phys. Chem. 94, 5849 (1990); Lyle et al., ibid. 97, 6924 (1993); Reddy et al., ibid. 97, 6934 (1993)] is
also provided. The new fits lead to modified el-ph coupling strengths and different frequencies of the
special pair marker mode, ωsp, for Rb. sphaeroides that could be used in the future for more advanced
calculations of absorption and HB spectra obtained for various bacterial reaction centers. C 2015 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4913685]

I. INTRODUCTION

The rapid growth of laser-based spectroscopies over the
last several decades has enabled important developments in
almost every field of the physical sciences, from quantum
optics to the single-molecule study of biological molecules. In
biophysics, in particular, newly developed spectroscopies have
greatly increased our ability to probe the structure, dynamics,
and interactions of biomacromolecules and the ligands they
bind.

The utility of laser-based techniques is perhaps nowhere
as evident as in the study of the chlorophyll-protein complexes
involved in photosynthetic energy harvesting and transduction.
In characterizing these complex systems, complementary
techniques have been developed for different purposes.
Frequency-domain methods such as hole-burning (HB) and
fluorescence line narrowing (FLN) take advantage of the
narrow lineshapes and energetic stability offered by low-
temperatures (4–77 K) to characterize excitonic interactions
and site-specific spectroscopic characteristics which are often
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blurred by thermal motion at higher temperatures.1,2 Room
temperature time-domain measurements, in contrast, while
substantially complicated by the broad, relatively featureless,
spectral properties of higher temperature systems, offer the
essential advantage of allowing for the characterization of
samples not only under biological conditions in vitro but even
in vivo in living bacterial cells.3–5

To build a complete picture of any physical system,
one must of course be able to compare the results ob-
tained using different methods. In connecting time- and
frequency-domain spectroscopic measurements, perhaps the
most important point of comparison is the phonon spectral
density, J(ω), a frequency-domain profile which describes
how strongly a given electronic transition couples to the
vibrational motions of a pigment or its environment.6 In the
frequency domain, the spectral density determines transition
line shapes for both linear absorption experiments and non-
linear multi-dimensional methods. In the time domain, the
spectral density determines the frequency-correlation func-
tion, which in turn defines the non-linear system response.6

Low-temperature, frequency-domain methods such as HB and
FLN, which provide particularly convenient access to the
spectral density, may thus be used in conjunction with time-
domain measurements and simulations to provide a holistic
characterization of both experimental results and theoretical
predictions.

0021-9606/2015/142(9)/094111/7/$30.00 142, 094111-1 © 2015 AIP Publishing LLC
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In this light, the importance of the accurate evaluation
of the spectral density from experimental data is evident. For
this purpose, HB spectra in a variety of systems (including
various photosynthetic complexes) have often been modeled
(e.g., Refs. 7–18) by the temperature-dependent lineshape for-
mulas developed by Hayes et al.19 These formulas provide
analytical expressions for HB spectra in terms of an assumed
spectral density, allowing for the extraction of J(ω) by fitt-
ing experimental spectra against calculated lineshapes.19,20 It
has recently come to our attention while modeling transient
HB spectra in a bacterial Zn-reaction center (Zn-RC) and its
mutant (Zn-β-RC)21 that the lineshape function formulas in the
mean-phonon approximation given in Ref. 19 contain incon-
sistencies in notation, leading in some cases (i.e., for moder-
ate and strong electron-phonon (el-ph) coupling strengths) to
incorrect expressions. While for simple systems these incon-
sistencies are insignificant, for cases of strong el-ph coupl-
ing like those observed in bacterial RCs20,22 (where multiple
phonon transitions are involved) they lead to significant er-
rors.21 To clarify the situation, in this work, we derive cor-
rected lineshape formulas under the same assumptions as made
by Hayes et al.,19 while focusing on the various approxima-
tions appearing in these expressions and their physical signifi-
cance. For routine analysis of HB spectra, however, we suggest
that the lineshape should generally be evaluated numerically
without the introduction of the mean-phonon approximation.

II. DERIVATION OF LINESHAPE FORMULAS

We begin with the well-known formula describing the
absorption and fluorescence lineshape functions23

LA/F (ω) = e−S(T )
 ∞

−∞
e±i(ω−Ω0)t+G(t ;T )dt, (1)

whereΩ0 is the zero-phonon line (ZPL) frequency, and n (ω; T)
= 1

e~ω/kT−1
is the thermal occupation number at temperature

T and frequency ω. J(ω) is the spectral density referred
to in the Introduction. G(t; T) is the time-domain lineshape
function23

G (t; T) =
 ∞

−∞
e−iωt [(1 + n (ω; T)) J (ω)

+ n (−ω; T) J (−ω)] dω, (2)

and S(T) = G(0,T) is a temperature-dependent effective
Huang-Rhys factor. In the exponent of Eq. (1), “+” refers to
absorption (LA), while “–” refers to fluorescence (LF). By
definition, LA(ω −Ω0) = LF(Ω0 − ω); i.e., the two functions
are mirror images of each other around Ω0.

Although the above lineshape functions are well-known
and easily computed numerically, they are not very physically
transparent. Therefore, a more intuitive formula was obtained
by expanding the exponent inside the integral as an infinite
sum.20 Physically, this expansion allows us to divide the line-
shape into “R-phonon” profiles, i.e., separate terms corre-
sponding to transitions involving the creation or annihilation
of R phonon excitations. For arbitrary temperatures, Eq. (1)
can then be written as20,22

LA/F (ω) = e−S(T )l0 (ω −Ω0)                                
ZPL

+
∞

R=1
S(T)R e−S(T )

R!
lR (±ω − Rωm −Ω0)                                                                                                

PSB

, (3)

where +ω and −ω correspond to absorption LA(ω) and fluo-
rescence LF(ω), respectively.

The first term in this expression represents the Lorentzian
ZPL l0(ω −Ω0) which peaks at Ω0 and possesses a homoge-
neous width Γhom. The second term is the phonon sideband
(PSB), consisting of a sum over all R-phonon transitions. The
constant ωm is the peak (or mean) phonon frequency, i.e., the
peak frequency of J(ω). At low temperatures, each R-phonon
spectrum lR(±ω − Rωm −Ω0) peaks at a frequency roughly
Rωm higher (absorption) or lower (fluorescence) in frequency
than the ZPL, underscoring the physical significance of these
profiles as corresponding to the creation or annihilation of R
phonon excitations.

More explicitly, the one-phonon profile l1(ω) is the Fourier
transform of G(t; T), or in the frequency domain,

l1 (ω) = 1
S (T) [(1 + n (ω + ωm; T)) J (ω + ωm)
+ n (−ω − ωm; T) J (−ω − ωm)] . (4)

Effectively, the one-phonon profile is a temperature-weighted
spectral density function. For comparison with the work of
Hayes et al.,19 we define it here to be normalized and shifted
by the mean phonon frequency ωm so that at low temperatures
(n(ω + ωm; T) ≈ 0), its peak occurs at zero frequency; this
zero-frequency peak in l1(ω) gives rise to the one-phonon
Stokes portion of the PSB nearΩ0 + ωm in the absorption spec-
trum via the lR(ω − ωm −Ω0) term in our expansion. At high
temperatures, the n(−ω − ωm; T) term becomes significant and
gives rise to an additional anti-Stokes peak nearΩ0 − ωm in the
absorption spectrum. For R > 1, lR(ω) is the similarly shifted
and normalized Fourier transform of G(t; T)R or, equivalently,
the (R − 1)-fold convolution of l1(ω) with itself. The shape of
each lR(ω) is thus equivalently determined by either G(t; T) or
l1(ω).

Before we proceed with our derivation, it is worth pausing
to comment on the shape of the R-phonon profile lR(ω). At low
temperatures, the one-phonon profile l1(ω) closely resembles
the spectral density J(ω). Guided by the experimental work
in Refs. 8–10 and references given therein, the spectral den-
sity J(ω) is often assumed to be asymmetric with a Gaussian
shape at its low-energy wing and a Lorentzian shape at its
high-energy wing; the profile then has a peak frequency of
ωm and a width of Γ = ΓG/2 + ΓL/2. In their modeling work,
Hayes et al.19 extended this functional form to calculate the
R-phonon profile—properly an (R− 1)-fold convolution—as
a Gaussian of width

√
RΓG on the low-frequency side and a

Lorentzian of width RΓL on the high-frequency side (see Eqs.
(15a) and (15b) in Ref. 19, along with many later works7–18).
Although such a profile does provide a reasonable approxima-
tion to the true form of lR(ω) at low temperatures when the
Gaussian and Lorentzian components have similar widths, the
approximation breaks down quite seriously when ΓG is much
different from

√
RΓL (see below). As many-fold convolutions
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are trivial on a modern desktop computer, the numerical convo-
lution of the one-phonon profile is much preferable to this
approximate form.

Returning to Eq. (3), we next note that, for relatively
narrow one-phonon profiles, an additional simplifying approx-
imation can be made, where in Eqs. (2) and (4) the frequency
dependent function n(ω) is replaced by an average value n̄
= n(ωm). In this case, the expression for l1(ω) can be split up
into two terms, one proportional to J(ω + ωm) and the other
to J(−ω − ωm). The sum over R then splits into two sums,
one numbering the total number, R, of phonons involved in
the transition and the other, P = 0, . . . ,R, indicating how many
phonons are annihilated (as opposed to created) during the
transition

LA/F (ω) ≈ e−S(2n̄+1)∞

R=0

R

P=0

[S (n̄ + 1)]R−P[Sn̄]P
(R − P)!P!

× lR,P (±ω −Ω0 + (R − 2P)ωm) . (5)

For example, with three phonons created (R = 3, P = 0), the
PSB peaks at Ω0 + 3ωm. However, if two of the phonons are
annihilated (R = 3,P = 2), the corresponding transition peaks
at Ω0 − ωm and gives rise to the anti-Stokes part of the PSB.

The derivation of this expression follows almost iden-
tically to that employed by Hayes et al. (Eqs. (4)–(14) of
Ref. 19). Briefly, the time-domain lineshape function G(t; T)
is divided into creation and annihilation terms G+(t; T) and
G–(t; T):

G+ (t; T) = (1 + n̄)
 ∞

−∞
e−iωt J (ω) dω, (6a)

G− (t; T) = n̄
 ∞

−∞
e−iωt J (−ω) dω. (6b)

After expanding the exponent in Eq. (1) in a Taylor series, the
binomial formula is used to group together terms involving a
total of R factors of either G+ or G–, i.e., terms proportional to
GR−P
+ GP

− with P = 0, . . . , R. Fourier transforming these terms
back to the frequency domain gives the lineshapes lR,P(ω)
which together constitute the total absorption or fluorescence
spectrum.

Within the mean-phonon approximation, Eq. (5) is correct
as written and is in agreement with Eq. (17) of Hayes et al.19

On closer inspection, however, two important errors may be
identified in the expressions of Hayes et al.19

The first error arises in specifying the form of the indi-
vidual profiles lR,P(ω). Correctly, these terms arise as Fourier
transforms of the time-domain products GR−P

+ GP
− . In the fre-

quency domain, they thus correspond to the convolution of the
Fourier transforms of GR−P

+ and GP
− . The profile lR,P(ω) thus

corresponds to an (R − 1)-fold convolution involving R – P
occurrences of J(ω) and P occurrences of J(−ω). All profiles
may, in this case, be obtained by setting l1,0 (ω) equal to J(ω)
and convolving this function with itself R – P – 1 times and
with its reflection P – 1 times.

In contrast, Hayes et al.19 obtained the multi-phonon
profiles lR,P(ω) from the one-phonon profile by convolving
l1,0(ω) with itself |R − 2P| − 1 times. This approach is qual-
itatively incorrect: whereas the width of the lR,P(ω) should be
roughly proportional to R (the total number of convolutions),
the expressions of Hayes et al.19 indicate a width proportional

to |R − 2P|. That this result is physically incorrect may be seen
by considering the case R = 2P, i.e., to a transition involving an
equal number of creation and annihilation events. The expres-
sions of Hayes et al.,19 in this case, call for an unphysical,
infinitely sharp phonon profile; the correct lineshape has a
width roughly proportional to R, indicating the convolved
distribution of phonon frequencies which may be involved in
each creation or annihilation event.

The second serious discrepancy introduced by Hayes
et al.19 comes in their description of the Franck-Condon fac-
tors and absorption spectra of systems with discrete spectral
densities, i.e., under the assumption that J(ω) may be written
as a discrete sum of delta functions

J (ω) =
N

k=1
Skδ (ω − ωk) . (7)

Such a density might be used, for example, to model the
absorption due to a small number of high-frequency local
vibrational modes of a single pigment. Following a derivation
parallel to that used to obtain Eq. (5), one may in this case write
the absorption lineshape function as

L (ω) = e−
N
k=1 Sk(2nk+1)

×
∞

R1=0

R1
P1=0

· · ·
∞

RN=0

RN
PN=0

N
k=1

[Sk (nk+1)]Rk−Pk[Sknk]Pk

(Rk − Pk)!Pk!

× δ
(
ω −

N

k=1
(Rk − 2Pk)ωk

)
. (8)

In this case, the absorption spectrum consists of a discrete
sum of peaks occurring at any integer combination of the
peak frequencies ωk appearing in the spectral density. This
expression may be obtained directly by evaluating the Fourier
transform in Eq. (12) of Hayes et al.19 In that work, however,
an error or inconsistency in notation occurs in passing from
Eq. (12) to Eq. (13), leading to an incorrect lineshape function
reading

L (ω) = e−
N
k=1 Sk(2n̄k+1)

×
N

k=1

∞

R=0

R

P=0

[Sk (n̄k + 1)]R−P[Sk n̄k]P
(R − P)!P!

× δ
(
−E
~
−


k
ωk (R − 2P)

)
. (9)

(Hayes et al.19 refer to this as a frequency-dependent Franck-
Condon factor; it is equivalent, however, to the lineshape func-
tion for a discrete spectral density.) In this expression, the
index k enumerates a product, rather than a series of sums,
over the individual phonon modes. Apparently, the product
over k in the time-domain expression was incorrectly carried
over to the frequency domain, rather than being converted to a
convolution.

Again, Eq. (9) is easily seen to be physically incorrect,
carrying an improper dependence on the number of phonons
involved in the transition: due to the appearance of only a
single pair of indices, R and P, to count phonon numbers, all
phonon peaks are forced to appear at multiples of the summed
frequency ω1 + ω2 + ω3 + . . . + ωN , with no peaks occurring
at the fundamental frequencies ω1,ω2, . . . ,ωN . In the correct
expression, Eq. (8), the single pair of sums over R and P is
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TABLE I. Electron-phonon coupling parameters for Rb. sphaeroides, Rps. viridis, and Zn-RC. All values in units of cm−1 except S (dimensionless).

ωph ΓG
ph ΓL

ph Sph ωsp ΓL
sp Ssp Sspωsp Stot Γhom ωSDF Γinh

Original Rb. sphaeroidesa 30 30 55 1.8 115 50 1.5 173 3.3 5.75 10 992 150
Revised Rb. sphaeroidesb 28 25 30 2.1 125 30 1.3 163 3.4 5.75 10 982 140
Original Rps. viridisc 30 30 55 2.2 145 25 1.1 160 3.3 ** ** 140
Revised Rps. viridisb 25 20 30 2.0 145 30 1.1 160 3.1 5.75 9 785 140
Zn-RC Rb. sphaeroidesd 30 25 25 3.6 130 25 1.0 130 4.6 5 11 120 110

aReference 8.
bThis work.
cReference 9.
dReference 21.

replaced by a pair of sums for each of the N phonon modes,
allowing for both creation and annihilation of all phonons in
any combination.

We emphasize again that the assumptions used to derive
Eq. (8) are identical to those for Eq. (9) but that Eq. (9) is in
error. Note also that Eq. (9) cannot be corrected by replacing
the product with a single sum over k (as has sometimes been
done in the literature19,24) because in that case one still has
all terms peaking at multiples of ω1 + ω2 + ω3 + . . . + ωN .
Indeed, the product gives the correct area factors for the peaks,
but their position is wrong. The product should instead be
replaced by the convolution over k of the lineshape functions
(in this case, simply a sum of delta functions).

Finally, we should note that for modeling HB spectra,
Hayes et al.19 combine their expressions (corresponding to
Eqs. (5) and (9) in this work) to produce a “hybrid” absorption
expression involving finite-width profiles lR,P(±ω −Ω0 + (R
− 2P)ωm) with Franck-Condon factors described (incorrectly)
by Eq. (9). Such an expression might be used to model a system
with a spectral density of the form

J (ω) =


k
Sk Jk (ω − ωk) , (10)

where each Jk(ω) is a normalized profile corresponding to a
phonon mode with frequency ωk. In the case that each of the
profiles Jk(ω) are identical, the absorption lineshape can be
obtained directly from Eq. (9) by replacing the delta function
δ(ω) with the correctly convolved lineshape lR,P(ω) described
earlier in our discussion. In the case that the profiles Jk(ω)
are different from one another, a correct expression for the
corresponding lineshape lR1,P1, ... ,RN,PN

(ω)may be derived in
terms of the many-fold convolution of the various profiles and
their reflections. The expressions, however, are quite bulky and
of limited utility for more than one or two modes. Unless the
individual contributions of these terms are specifically required
for a given analysis, it seems much more feasible to calculate
the absorption spectrum directly—without imposing the mean-
phonon approximation—using the exact expressions of either
Eq. (1) or Eq. (3).

III. APPLICATION TO BACTERIAL
REACTION CENTERS

A. Calculation of HB spectra

Finally, in order to emphasize the importance of correctly
evaluating the absorption lineshape function, we apply the

expressions above to the description of various P870 and P960
absorption bands and resonant (transient) HB spectra obtained
for bacterial RCs of Rb. sphaeroides and Rps. viridis. Tran-
sient holes (T ∼ 5 K) upon selective laser excitation within
the P870 and/or P960 absorption bands are due to charge
separation and measured during the P+QA

− charge separated
state. Note that Eq. (1) can be used for arbitrary PSB shapes,
and the direct numerical approach (vide infra) can be used in
modeling of HB spectra. Very recently, we provided a critical
assessment of typical phonon spectral densities, J(ω), used
to describe linear and non-linear optical spectra in photosyn-
thetic complexes;25 see also Refs. 26 and 27 for discussion on
various functions used for spectral densities. J(ω) describes
the frequency-dependent coupling of the system to the bath and
is an important component in calculations of optical spectra
(including HB spectra) and excitation energy transfer times.
Based on the shape of experimental J(ω) obtained for several
photosynthetic complexes, we showed that many J(ω) (espe-
cially the Drude-Lorentz/constant damping Brownian oscil-
lator) display qualitatively wrong behavior when compared to
experiment.25 Therefore, we proposed that a lognormal distri-
bution, which exhibits desired attributes for a physically mean-
ingful phonon J(ω), should be used to fit experimental data,
in contrast to several commonly used spectral densities which
exhibit low frequency behavior in qualitative disagreement
with experiment. We also demonstrated that the half-Gaussian-
half-Lorentzian (G–L) J(ω) used in modeling of HB spectra
should be replaced with the lognormal function, which pro-
vides a more physically realistic fit of the high-energy side of
experimental spectral densities (e.g., FMO and CP29).25 The
absence of the long Lorentzian tail in the lognormal function
(that is present in G-L J(ω)) eliminates problems associated
with continuously increasing reorganization energy Eλ, which
is not well defined since the integral does not converge for the
Lorentzian. The lognormal form also solves problems with the
zero frequency behavior of the constant damping Brownian
oscillator J(ω), which contradicts experiment.

To make a direct comparison to the previously published
data, in this letter we describe the shapes of P870 and P960
absorption bands and transient HB spectra using both G-L and
lognormal J(ω). We anticipate that our results will provide new
insight into el-ph coupling parameters for Rb. sphaeroides and
Rps. viridis which could be used in future modeling studies
using more advanced theories. We compare el-ph coupling
parameters obtained previously for Rb. sphaeroides8,28 and
Rps. viridis,9,28 using the approach of Hayes et al.,19 with
the parameters obtained in this work (using both G-L and
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TABLE II. Electron-phonon coupling parameters for lognormal spectral densities.a

ωc σ Sph Eλ ωsp ΓL
sp Ssp Sspωsp Stot Γhom ωSDF Γinh

Rb. sphaeroides 35 0.47 1.7 82 125 30 1.5 163 3.2 5.75 10 975 150
Rps. viridis 29 0.40 1.9 60 145 30 1.2 174 3.1 5.75 9 785 140

aAll values in units of cm−1 except S and σ (dimensionless).

lognormal spectral densities). We hasten to add that in our
approach, we properly account for mixed transitions (i.e.,
multi-phonon transitions involving creation or annihilation of
phonons), as discussed above. It has been shown20,22 that in
the low temperature limit, the HB spectrum is defined by ∆A
= A(Ω, t) − A(Ω,0), where A(Ω,0) is the pre-burn absorption
spectrum, and

A (Ω, t) =


LA (ω −Ω) N (ω) e−PσφLA(ωB−ω)tdω (11)

is the post-burn absorption spectrum. In Eq. (11), ωB is the
burn/excitation frequency, P is the photon flux, t is the burn
time, N(ω) is the pre-burn site distribution function (SDF),
describing the probabilities of encountering different zero-
phonon transition frequencies, and LA(ω) is the single site
absorption profile. In the low-fluence limit, the exponent in Eq.
(11) can be expanded in a Taylor series to obtain

A (Ω, t) ≈ A (Ω,0) − Pσφt

×


LA (ω −Ω) N (ω) LA (ωB − ω) dω. (12)

For the calculations presented in this work, the absorption
lineshape function LA(ωB − ω) was calculated using Eq. (3).
As described above, the higher-order profiles lR(ω; T)were ob-
tained by numerical convolution of the one-phonon profile with
itself (R – 1 times) and with the ZPL; the sum was truncated
after a number of terms sufficient to account for 99.99% of
the total intensity of the PSB. Finally, to account for lifetime
broadening of the transition, the lineshape function LA(ω)
given by Eq. (3) was convolved with a Lorentzian lineshape
function before evaluating Eq. (12). This approach is compared
below with the mean-phonon approximation used in earlier
calculations,8,9,28 where the spectral density was split into mul-
tiple effective phonon densities and the continuous weighting
factor n(ω; T) was replaced by an effective factor n(ωk; T)
evaluated at a “mean” phonon frequency ωk near the peak
of the kth phonon density; and where in place of numerical
convolutions, multi-phonon transitions were described simply
as increasingly broadened G-L profiles.

We suggest that the approach with a lognormal spec-
tral density describes the phonon lineshape more accurately,25

although to reveal the difference between our approach and
that of Hayes et al.,19 i.e., to compare our parameters with the
previously published data,8,9,28 we also show fits and param-
eters obtained with the G-L J(ω). On the basis of previous
work,8,9,28 only two profiles corresponding to peak frequen-
cies ωph and ωsp are required to simultaneously fit the P870
and P960 absorption bands and ωB-dependent photochemical
(transient) HB spectra. Consistent with earlier assignment, we
refer to ωph as the mean (or rather peak) phonon frequency
and ωsp as the special pair marker mode.7 Special pair marker
modes are intermolecular vibrational modes localized on the

special pair.7 The lineshape for the ωph mode is described by
a Gaussian (fwhm = ΓG

ph cm−1) and Lorentzian (fwhm = ΓL
ph

cm−1) on the low- and high-energy sides, respectively, or by
the lognormal spectral density. As suggested in Refs. 8, 9,
19, and 28 a Lorentzian lineshape (fwhm = ΓL

sp cm−1) is used
for the ωsp mode. However, in contrast to previous work, the
special pair and phonon densities are combined into a single
spectral density J(ω) before the evaluation of Eq. (3), taking
into account mixed transitions (i.e., multi-phonon transitions
involving creation or annihilation of phonons from both pro-
files) directly and with no additional approximations. Using
numerical calculations (vide infra) of P870 and P960 absorp-
tion bands and resonant HB spectra, i.e., making the direct
calculation of the convoluted lR terms, new sets of parame-
ters (Huang-Rhys factors, Γinh, J(ω) parameters, etc.) for Rb.
sphaeroides and Rps. viridis have been obtained (see Tables I
and II for details).

B. Single site absorption spectra for different
Huang-Rhys factors

Comparison of single site absorption spectra (5 K) calcu-
lated with the method presented in Hayes et al.19 and this work
shows that larger deviations in calculations occur for stronger
el-ph coupling (see Figure 1). The differences between these
two methods are also more clearly visible for asymmetric

FIG. 1. Calculated single site absorption spectra (5 K) for different S values
with set parameters using the method of Hayes et al.19 (black curves) and this
work (red curves) using a G-L shape for the spectral density. ωph= 20 cm−1,
Γhom= 1 cm−1, ΓG= 20 cm−1. ΓL= 20 cm−1 for frames (a)-(c) and 60 cm−1

for frames (d)-(f).
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FIG. 2. Experimental data8 (black curves) and simulated curves using a G-L J (ω) (red curves) for Rb. sphaeroides using the method outlined in this work.
Frame (a) is the absorption spectrum for P870 while frames (b)-(d) are transient HB spectra obtained with burning frequencies of ωB= 10 953, 10 992, and
11 030 cm−1, respectively. Experimental spectra are normalized to one and calculated HB spectra are normalized to the experimental ZPH depth. The parameters
obtained from simulations are reported in Table I.

G-L spectral densities (frames (d)-(e) in Figure 1). In Figure
1, the parameter values of ωph = 20 cm−1, Γhom = 1 cm−1, ΓG
= 20 cm−1 were used with varying Huang-Rhys factors of
S = 0.3, 2, and 4. ΓL = 20 and 60 cm−1 were used to simulate
symmetric and asymmetric spectral densities, respectively. For
small el-ph coupling, the methods produce nearly identical
spectra, independent of the shape of the spectral density. How-
ever, at larger values of S (>1), the method of Ref. 19 has too
much contribution on the low energy side of the PSB and too
little contribution on the high energy tail of the PSB. This trend
is more evident for asymmetric spectral densities because of
the larger Lorentzian width at the high energy side (away from
the ZPL).

C. Theoretical fits of the absorption and HB spectra
for Rb.sphaeroides

Experimental absorption and transient HB spectra for
bacterial RCs (5 K) are simulated using the approach outlined
in this work with both G-L and lognormal J(ω). Figure 2
shows fits of experimental spectra for Rb. sphaeroides calcu-
lated numerically using a G-L spectral density. The calculated
absorption matches the experimental curve very well across
the entire band. The simulated (red curves) holes (obtained for
different burning frequencies and the same parameters as those

used in the fit of the P870 band) match the overall shape and
width of the experimental HB spectra, but display somewhat
larger burning to the high energy side of the hole. The position
of this feature is approximately 28 cm−1 away from the zero-
phonon hole (ZPH), which corresponds to ωph.

Rb. sphaeroides is used as an example while fits of Rps.
viridis spectra are not shown for brevity; however, all parame-
ters derived from simulations are given in Table I. Note that for
the G-L J(ω), our parameters are different from those reported
previously in Refs. 8, 9, and 28. A comparison of simulations
using the sets of parameters from Table I is presented in Figure
3 for Rb. sphaeroides. The most significant difference is the
Lorentzian width of the phonon spectral density (30 cm−1

compared to 55 cm−1).
While previous simulations using the expressions of

Hayes et al.19 also provided reasonable fits to the experimental
spectra, numerical calculations with these parameters (first
row of Table I) result in broadening of the hole width and
decreased intensity of the PSB and ωsp holes, as shown in
Figure 3. The differences are more pronounced when ωB is at
lower energy than the SDF maximum (frame (a)). When ωB is
at higher energy thanωSDF, the hole shapes are similar for both
sets of parameters; although the original parameters derived
using the mean-phonon approximation lead to broader spectra
due to the improper contribution of multi-phonon modes.

FIG. 3. Simulated transient HB spectra
(Rb. sphaeroides) calculated with the
method outlined in this work. Spectra
were simulated using the original (blue
curves) and modified parameters (red
curves from Figure 2) listed in Table I
ωB= 10 953, 10 992, and 11 030 cm−1

for frames (a)–(c), respectively. Spectra
are normalized to ZPH depth.
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FIG. 4. Experimental data8 (black curves) from Figure 2 fit with a lognormal
J (ω) (red curves). The parameters obtained from simulations are reported in
Table II. Frame (a) is the absorption spectrum and frame (b) shows transient
HB spectra withωB= 10 953, 10 992, and 11 030 for curves 1–3, respectively.

Figure 4 shows fits of the experimental data8 assuming a
lognormal distribution for J(ω).25 While both functional forms
of J(ω) (i.e., G-L and lognormal) fit the experimental data
reasonably well, the advantages of the lognormal distribution
(see Ref. 25) allow for more physically realistic parameters,
including well-defined Eλ, to be elucidated from simulations.
The lognormal parameters for Rb. sphaeroides and Rps. viridis
are given in Table II.

IV. CONCLUDING REMARKS

The previous derivation of the lineshape formula us-
ing the mean-phonon approximation lead to an equation
with improper description of multi-phonon modes, which
contribute significantly for systems with strong el-ph coupling,
e.g., bacterial RCs. Corrected lineshape expressions are given
here, although it is shown that direct numerical evaluation of
Eq. (3) (without introducing the mean-phonon approximation)
is preferable for calculating absorption and transient HB
spectra. Revised el-ph coupling parameters are derived from
numerical calculations to replace those found using the mean-
phonon approximation. The parameters were obtained from
simultaneous fit of transient HB spectra obtained at several
burn frequencies as well as the absorption profiles for P870
and P960 bands. Spectra are simulated assuming a lognormal
distribution for J(ω), providing a more physically meaningful
representation of el-ph coupling strength in P870 (Stot = 3.2)
and P960 (Stot = 3.1) absorption bands for bacterial RCs of Rb.
sphaeroides and Rps. viridis, respectively. The revised values
of ωsp (the special pair marker mode) for P960* and P870*
are 145 and 125 cm−1, respectively, suggesting that coupled
librational motion of the two monomers of the special pair is
likely to be a significant contributor to the dynamics.
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