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Abstract: The current and future direction of aquatic ecological research leans toward addressing questions
that cover multiple scales and levels of complexity. Historically, the ability to do comparative aquatic research
across large spatial and temporal scales has been impeded by a lack of comparable measurements, standard
methods, and a well organized data management and retrieval system. The National Ecological Observatory
Network (NEON) is the first continental-scale ecological observation system designed to collect and provide
freely available data on the drivers and responses of ecological change. In this paper, we describe past and
present attempts to work across multiple scales in aquatic ecology, and the potential use of NEON aquatics data
and infrastructure by researchers to integrate and expand ecological research programs and address novel
ecological questions.
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The greatest challenge faced by ecological researchers is
the ability to detect drivers and responses to environ-
mental change across large spatial and temporal scales.
Aquatic systems are intimately linked to the surrounding
terrestrial environment (Hynes 1975), so they are excel-
lent indicators of changes occurring within and across
atmospheric, terrestrial, and aquatic boundaries (Wil-
liamson et al. 2009). However, integration of landscape
processes requires that ecologists can understand, detect,
and predict how large-scale changes will affect aquatic
processes and alter ecosystem structure, function, and ser-
vices (e.g., drinking water, sport fisheries).

The International Biological Program (IBP; 1964–1974;
Table 1) was the first large-scale, long-term ecological re-
search program after the International Geophysical Year
effort (1957–1958). The IBP supported collection and dis-
tribution of scientific data globally, united scientists, and
promoted ‘Big Science,’ and encouraged work across na-

tions and disciplines to address ecological questions span-
ning greater spatial and temporal scales than previously
considered. The IBP ended in 1974 after failing to create
an organized data-management system and comprehen-
sive biological models (Aranova et al. 2010). However, the
program highlighted the need to evaluate long-term eco-
logical change. The US National Science Foundation (NSF)
later initiated the Long-Term Ecological Research (LTER)
program (Table 1), designed to capture long-term changes
across multiple spatial scales (Hobbie et al. 2003). In 1963,
Hubbard Brook researchers used a small watershed ap-
proach to study nutrient retention, fluxes, and cycling (Bor-
mann and Likens 1969, Likens et al. 1977) and presented
streams as indicators of whole-ecosystem function. In
1968, the Experimental Lakes Area (ELA), a long-termmon-
itoring and ecosystem-scale lake experiment was established
(Johnson and Vallentyne 1971) to evaluate whole-system
function.
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Ecosystem variability makes it necessary to incorporate
heterogeneity in hydrologic (Beven et al. 1988, McDonnell
et al. 2007), habitat (Palmer and Poff 1997), or landscape
patterns (Scarsbrook and Townsend 1993, Huryn et al.
2005) in aquatic ecosystem studies to transition from small,
patch-scale studies to large, watershed analyses (Allan and
Johnson 1997, Fisher et al. 1998). Integrating variability and
heterogeneity into predictive modeling (McClain et al.
2003) is essential in addressing the “Grand Challenges in
Environmental Sciences” and predicting responses to change
acrossmultiple scales (NRC 2001).

Temporal and spatial variability of ecosystems have
long been pivotal foci in ecology (Hobbie et al. 2003). Spa-

tial variability at the landscape scale has been addressed by
using geomorphologic and environmental gradients to
predict community structure and function (Hynes 1975,
Vannote et al. 1980), habitat templates based on physical
characteristics of watersheds (e.g., slope, canopy cover;
Frissell et al. 1986), and gradients of environmental se-
verity (Southwood 1988). Within ecosystems, the effects of
top-down and bottom-up control on stream or lake eco-
system structure (Carpenter et al. 1987, 2001, Pace et al.
1999) and function (Paine 1980, Power et al. 1988,
Rosemond et al. 2001) are well documented. However,
studies done at larger spatial and temporal scales, such as
the US Geological Survey (USGS) National Water-Quality

Table 1. Examples of large-scale aquatic ecological programs. Chl = chlorophyll a, EMAP = Ecological Monitoring and Assessment
Program, EPA = US Environmental Protection Agency, GLEON = Global Lake Ecological Observatory Network, IBP = International
Biological Program, LTER = Long-Term Ecological Research, NARS = National Aquatic Resource Surveys, NAWQA = National
Water-Quality Assessment, NSF = National Science Foundation, OECD = Organization for Economic Co-Operation and Develop-
ment, PI = principal investigator, USGS = US Geological Survey, WISE = Water Information System for Europe.

Program Location Impact Duration Key data

IBP North America,
Europe, Australia

5 biome studies, tracers for
nutrient and energy-flow
experiments

1964–1974 Grassland Biome Project,
Eastern Deciduous Forest
Biome Project

OECD
eutrophication
modeling

18 countries (US,
Canada, Australia,
Japan, and 14
western European
countries); lakes and
reservoirs, mostly
temperate zone,
some alpine, arctic,
and subtropical

International effort to establish a
basis to control eutrophication
of inland waters and to develop
guidelines for fixing nutrient
loading criteria compatible
with water-use objectives;
P-loading reduction;
eutrophication management
strategies

1970s Relationships between nutrient
loading and water-quality
metrics (chl, Secchi depth,
O2 depletion); predictive
eutrophication relationship
models

LTER network Continental US, Alaska,
Caribbean and Pacific
Islands, Antarctica

Wide variety of projects from
nutrient addition to ecosystem
function

1980–present NSF-funded, PI-driven
research projects and
publications

GLEON Lakes worldwide
(6 continents)

Grassroots network of ecologists
and limnologists, network of
instrument platforms and sensors
around the world, connected
by cyberinfrastructure

2005–present International sensor-derived
data sets, web portal

EMAP Continental US, Alaska,
Hawaii, Puerto Rico,
Pacific Islands

Assess status and trends of
US streams, ecological
risk assessment

1990–2006
(rolled into
NARS in 2006)

Rapid Bioassessment
Protocols

EPA NARS Continental US, Alaska,
Hawaii, Puerto Rico,
Pacific Islands

First large-scale study using
statistically valid survey
techniques; standardized field
and laboratory methods to yield
unbiased estimates of the
condition of rivers and streams,
lakes, wetlands, and coastal
waters

2006–present Includes National Rivers
and Streams Assessment
and National Lakes
Assessment

USGS NAWQA Continental US Provide information on the
condition and sustainability
of our nation’s water supply

1991–present Comparable information on
water resources in 60 river
basins and aquifers

WISE Europe Web portal to bring together
water-research data

2007–present Interactive public
access to data
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Assessment (NAWQA; Hirsch et al. 1988), US Environ-
mental Protection Agency (EPA) Environmental Monitor-
ing and Assessment (EMAP; Messer et al. 1991), and
National Aquatic Resource Surveys (NARS) programs
(Table 1), tend to concentrate on stream health and moni-
toring rather than on questions of ecosystem structure or
function.

International-scale programs and portals, such as the
Organization for Economic Co-Operation and Develop-
ment (OECD; Vollenweider and Kerekes 1982), Global
Lakes Observatory Network (GLEON; Weathers et al.
2013), and Water Information System for Europe (WISE),
merge global data, but lack consistency in sampling de-
sign, data collection, and quality control (Table 1). NSF-
funded collaborative research projects have also worked
at large scales (e.g., Lotic Intersite Nitrogen eXperiment
[LINX]; Peterson et al. 2001, Mulholland et al. 2008) and
have spearheaded standardized, network experimentation
studies (e.g., STReam Experimental Observatory Network
[STREON]; Utz et al. 2013). Researchers in many of these
programs evaluate aquatic ecosystems across time or
space, but their ability to expand data to multiple scales is
limited because many programs are site-specific (LTER,
ELA), lack temporal coverage (NARS, LINX), or lack con-
sistent methods (LTER, GLEON).

The current direction of ecological research is to ad-
dress questions covering multiple scales and levels of
complexity. This approach requires sampling strategies
designed for comparability and extrapolation across dis-
parate ecosystems and regions coupled with the ability
to identify processes affecting regime shifts within sites
(Heffernan et al. 2014, Rüegg et al. 2014). Missing ele-
ments from previous work needed to answer large-scale
ecological questions include well organized data manage-
ment and retrieval systems capable of sharing real-time
data (Aronova et al. 2010), comparable measurements
and standard methods over various scales (Johnson et al.
2010), and the ability to scale to regional, continental, and
global scales.

The National Ecological Observatory Network (NEON)
is the first continental-scale ecological observation system
designed to collect data focused on drivers of (i.e., climate
change, land use, invasive species) and responses to (i.e.,
biodiversity, biogeochemistry, ecohydrology, infectious dis-
ease) change needed to address the “Grand Challenges in
Environmental Sciences” (NRC 2001). NEON’s goal is to
enable understanding and forecasting of the effects of
large-scale changes on natural resources over long time
periods by combining site-based data (terrestrial, atmo-
spheric, and aquatic instrumentation and field sampling)
with remotely sensed data (airborne observations) to pro-
vide a range of scaled data products. Data will be collected
at 106 sites across 20 ecoclimatic domains, 19 of which
contain aquatic sites, delineated to maximize the repre-
sentation of continental-scale environmental variability
(Keller et al. 2008). Thirty-six of these sites are aquatic

(29 streams/large rivers and 7 ponds/lakes), and 10 of 36
include downstream STREON sites (Fig. 1; Utz et al. 2013).
NEON sites include ‘core’ sites, at which data will be gath-
ered over a period of 30 y, and ‘relocatable’ sites, which will
change every 5 to 7 y to capture changing ecological phe-
nomena across gradients. Data collected at NEON aquatic
sites encompass physical, hydrogeological, chemical, and
biological variables. Data collection combines continuously
monitoring instrumentation with field observations (Utz
et al. 2013). All NEON data are open access and avail-
able via a web portal immediately after analysis and rig-
orous quality assurance/quality control validation (Taylor
and Loescher 2013).

In this BRIDGES cluster, we explore cases in which
NEON aquatics data and infrastructure can be used to
expand ecological research programs and questions across
multiple scales, from small to large watershed studies (see
below, Sobczak and Raymond 2015). McDowell (2015) dis-
cusses the challenges and opportunities of such a research
platform. We focus on 2 Grand Challenges: biodiversity
(aquatic microbial ecology) and ecohydrology (large river
ecology) to illustrate the breadth of potential uses and how
researchers can build on the NEON platform at multiple
scales.

STREAM MICROBIAL ECOLOGY
The microbiota of stream ecosystems drive nutrient-

cycling dynamics with a disproportionally strong influ-
ence at the landscape scale (Hynes 1975, Fisher et al.
1998). Streams are conduits of water, organic C, and nu-
trients across the landscape and are prominent locations
of microbially mediated C and nutrient processing, up-
take, and transport (Vannote et al. 1980, Peterson et al.
2001, Mulholland et al. 2008). The importance of hetero-
trophic microbial C cycling in streams is well established.
Microbiota can contribute 22 to 27% of total leaf mass
loss directly (Hieber and Gessner 2002). Indirectly, mi-
crobiota feed invertebrates that cause physical loss of
coarse organic material (Hall and Meyer 1998). When
considering all ecosystem components, microbial trans-
formations of C are a main contributor to whole-stream
respiration and C flow to higher trophic levels (Lindeman
1942, Meyer 1994, Tank et al. 2010), and whole-stream
respiration strongly affects nutrient uptake and export
(Fellows et al. 2006, Valett et al. 2008).

Stream ecologists have a history of interest in micro-
bial processes and of presenting and testing concepts
that link biodiversity and ecosystem processes at organis-
mal, reach, and landscape scales. However, little research
has been done on the microbial biodiversity of stream
habitats, despite widespread use of molecular methods to
evaluate microbial structure and function in ecosystems
(Findlay 2010). Current advances in molecular methods
will enable researchers to quickly fill gaps in baseline de-
scriptive data and to move toward testing hypotheses re-
lating microbial biodiversity to stream ecosystem processes.
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Microbial diversity is relatively understudied in stream
habitats, but numerous individual surveys or experiments
have addressed microbial diversity in stream ecosystems.
A full review of these studies is beyond the scope of our
paper, but we take this opportunity to mention several
studies that are of general interest. The stream water col-
umn carries a dynamic assemblage of terrestrially derived
and aquatic bacterial taxa that may track seasonal and
event-driven water chemistry (Bell et al. 1982, Crump
et al. 2012). Epilithic biofilm diversity also varies tempo-
rally, by season (Hullar et al. 2006), and via successional
dynamics (Besemer et al. 2007). Successional patterns
also occur on leaf biofilms as decomposition progresses
(Suberkropp et al. 1983, Gessner et al. 1993, Wymore
et al. 2013). Biofilm assemblages differ among leaf, rock,
sediment, and water-column habitats, even within the

same stream reach (Hullar et al. 2006, Beier et al. 2008,
Larouche et al. 2012). Microbial diversity is correlated
with ecosystem functions, e.g., bacterial productivity or
nutrient uptake (Judd et al. 2006, Adams et al. 2010).
Experimental studies are less common than descriptive
studies, but they indicate increasing epilithic bacterial di-
versity and faster biofilm C uptake in response to increas-
ingly heterogeneous bed flow dynamics (Singer et al.
2010). When aquatic ecosystems are altered, microbial
diversity and activity may respond dramatically; e.g., the
sediment bacterial community can differ downstream of a
wastewater treatment plant (Wakelin et al. 2008), drought
can have lasting impacts on stream sediment bacterial
diversity (Rees et al. 2006), and fungal communities can
be homogenized following exposure to heavy metal con-
tamination (Sridhar et al. 2008). Microbes are diverse and

Figure 1. Map of National Ecological Observatory Network (NEON) North American domains and associated candidate aquatic
sites. Site numbers correspond to site names, as follows: 1. West Branch Bigelow Brook, Massachusetts, 2. Sawmill Brook, Mas-
sachusetts, 3. Mill Run, Virginia*, 4. Posey Creek, Virginia, 5. Suggs Lake, Florida, 6. Barco Lake, Florida, 7. Ichawaynochaway
Creek, Georgia, 8. Rio Cupeyes, Puerto Rico*, 9. Rio Guilarte, Puerto Rico, 10. Crampton Lake, Wisconsin, 11. Pickerel Creek,
Wisconsin, 12. Kings Creek, Kansas*, 13. McDowell Creek, Kansas, 14. LeConte Creek, Tennessee, 15. Walker Branch, Tennessee*, 16.
Black Warrior River, Alabama, 17. Lower Tombigbee River, Alabama, 18. Mayfield Creek, Alabama*, 19. Prairie Pothole, North Dakota,
20. Prairie Lake, North Dakota. 21. Arikaree River, Colorado, 22. South Pond, Oklahoma, 23. Pringle Creek, Texas, 24. Bozeman Creek,
Montana, 25. Blacktail Deer Creek, Wyoming, 26. West Saint Louis Creek, Colorado, 27. Como Creek, Colorado, 28. Sycamore Creek,
Arizona*, 29. Red Butte Creek, Utah, 30. East Branch Planting Creek, Oregon, 31. McRae Creek, Oregon*, 32. Providence Creek,
California, 33. Convict Creek, California*, 34. Toolik Lake, Alaska, 35. Oksrukuyik Creek, Alaska*, 36. Caribou Creek, Alaska*.
* indicates colocated NEON Aquatic and STReam Experimental Observatory Network (STREON) sites.
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dynamic. Therefore, they are responsive to factors that
threaten streams at reach and landscape scales; e.g., chan-
nel engineering, altered flow regime, temperature, pH,
and water chemistry (Malmqvist and Rundle 2002).

The NEON platform will enable evaluation of multi-
scale stream ecosystem dynamics in space and time. For
example, microbial diversity data collected during the
STREON whole-stream nutrient addition will be useful
in identifying when and where microbial diversity is most
sensitive to nutrient addition. Experiments have been
done to test effects of elevated nutrient concentration on
microbial diversity, but their results differ. A clear shift
in bacterial assemblage composition toward dominance
of certain taxa caused a decrease in biofilm diversity af-
ter dissolved nutrient concentrations were doubled (Van
Horn et al. 2011). Added nutrients can also influence fun-
gal diversity (Gulis and Suberkropp 2003). However, in-
creased organic C may have a stronger effect than in-
creased inorganic nutrients on microbial communities
(Olapade and Leff 2006), and inorganic nutrient effects
may be secondary to seasonal heterogeneity (Olapade and
Leff 2005) or even undetectable (Findlay and Sinsabaugh
2003). In sum, effects of nutrient addition on stream mi-
crobial communities can be site or time specific. How-
ever, context-specific effects are difficult to tease apart
because studies are typically site specific and not com-
parable because of inconsistent methods across diverse
sites and times. Microbial diversity data collected dur-
ing the STREON whole-stream nutrient-addition experi-
ments will allow scientists to move beyond site-specific
interpretation.

Overall, the NEON project and STREON experiment
will provide data on microbial abundance and diversity
from dominant substrates in streams across the USA—a
valuable resource. Collection and analysis of these data
with standardized methods at multiple sites and numer-
ous time points at each site will enable researchers to
address questions about microbial biogeography and
temporal variability. Furthermore, concurrent data on
stream physiochemical factors, abundance, diversity of
higher trophic levels, and whole-stream ecosystem pro-
cessing rates (e.g., dissolved organic matter flux; Sobczak
and Raymond 2015), will enable researchers to link mi-
crobial diversity and microbial processes within a whole-
stream ecosystem context (Findlay 2010).

Studying and interpreting the role of microbial life at
stream reach and landscape scales are challenging, but
the opportunities presented by this type of research are
exciting. Microbial life is a key component of the organic-
matter and nutrient-cycling processes, food webs, and
biodiversity of aquatic ecosystems, and microbial diver-
sity data collected as part of the NEON aquatics program
are an example of the potential to inform mechanistic
hypotheses of aquatic ecosystem function at multiple spa-
tial and temporal scales (McDowell 2015).

LARGE RIVER ECOLOGY
The NEON aquatics program is focused primarily on

wadeable streams, but the design also includes 3 non-
wadeable sites, 2 of which are on large rivers in Alabama,
USA. These sites are nested within the Mobile River
drainage basin along a hydrogeomorphic gradient in
river size from a wadeable stream site (Site 18; Fig. 1) to
the Black Warrior–Tombigbee River system (Sites 16
and 17; Fig. 1). Allocation of NEON resources to these
systems is in recognition of the need to document the
influence of climate change, landuse alteration, and
aquatic invasive species along an ecohydrologic gradient.
The reasons for studying large rivers have become so di-
verse and of interest for such a wide range of applications
that use of the NEON infrastructure to support long-
term data collection on large rivers is particularly timely.

Advances in data collection using continuously moni-
toring sensors deployed on buoys or other stationary
structures for water monitoring will allow researchers to
circumvent some of the previous limitations of sampling
large rivers and increase the temporal resolution of mea-
surements (Cohen et al. 2013). NEON is collaborating
with the US Army Corps of Engineers in placing sensors
at the Alabama River sites near USGS gauging stations
for real-time discharge monitoring. NEON instrumenta-
tion will provide long-term measurements of surface-
water variables (water temperature, dissolved O2, turbidity,
pH, conductivity, chlorophyll a, NO3

–, and fluorescent
dissolved organic matter) that have never been measured
continuously, in full, for multiple years in a large US river.
In addition, surface-water and sediment chemistry, river
bathymetry, and biotic community dynamics (fish, macro-
invertebrates, algae, and prokaryotes) will be measured at
various time scales.

In all, the NEON large-river sampling design provides
researchers with an opportunity to broaden the spatial
scale at which stream theory is tested by making ecologi-
cal measurements concurrently along a hydrologic gra-
dient. The sites along this gradient experience similar
geochemical and climatological conditions, but may re-
spond differently to disturbance events (e.g., invasive
species, floods, landuse change) or seasonality because of
differences in geomorphic structure associated with the
widening and deepening of larger river channels. This
approach has been particularly successful in free-flowing
rivers, where it has been used to test conceptual models,
such as the River Continuum Concept (RCC; Vannote
et al. 1980), the Flood Pulse Concept (FPC; Junk et al.
1989), and stoichiometric theory (Elser et al. 1996). Re-
searchers have challenged these current paradigms in
river ecology, finding either little support for patterns
predicted by the RCC for the downstream portions of a
river network (Huryn et al. 2002) or suggesting modifica-
tions of FPC to increase global applicability (Puckridge
et al. 1998). Also in contrast to predicted patterns (Alexan-
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der et al. 2000), Tank et al. (2008) found an unexpectedly
large influence of biota on N retention in downstream
reaches in nutrient uptake kinetics along a gradient from
low- to high-order rivers in a single watershed.

Variation in ecological processes along a large river is
a response to a hierarchically structured set of variables
that are directly or indirectly controlled by variation in
geomorphic structure, including water depth and veloc-
ity, sediment particle size, and abundance of planktonic
algal cells or suspended sediment. These variables can
constrain microbial community structure at broad spatial
scales (Tatariw et al. 2013), and control the supply of
labile organic matter in river C pools (Mortillaro et al.
2012). Spatial variation along large rivers is coupled with
facets of flow regime that can be complex and system
specific. These factors make it difficult to link life-history
traits with alterations in hydrologic variables without
high-frequency measurements (Puckridge et al. 1998).
Cohen et al. (2013) required very high temporal resolu-
tion of river data (on the scale of minutes) to distinguish
between biotic and abiotic mechanisms of nutrient re-
tention in a Florida river, suggesting that NEON’s con-
tinuous monitoring on the Black Warrior–Tombigbee
River system is a strong approach for documenting the
influence of multiple variables on ecosystem processes.

Our challenge as a scientific community is to test and
expand basic theory to generate new ideas regarding the
ecology of large, heavily modified rivers (Stanley et al.
2010). Measurements of C cycling and foodweb structure
in impounded rivers have highlighted regional-scale con-
trol of floodplain and planktonic subsidies created by
anthropogenic alterations in geomorphic form (Thomas
et al. 2005, Hoeinghaus et al. 2007, Ochs et al. 2010,
2013, Castello et al. 2013). NEON’s river monitoring pro-
gram will document variability in material loadings and
faunal population structure, allowing researchers to con-
trast patterns in free-flowing streams with those of man-
aged systems. These data will be available for validation
of river modeling efforts, such as that of Global NEWS 2
(Mayorga et al. 2010), which link biological processes in
river networks to coastal estuaries. This linkage is critical
for addressing concerns related to eutrophication and de-
clining commercial fisheries, and governmental moni-
toring agencies are making a strong plea for increased
collaborative efforts to address applied research questions
with a cohesive, broad-scale sampling design (McCain
2013). Data collected at the NEON river locations will be
similar to those used in other ecosystems for flood-hazard
assessment, estimating foodweb structure, and identifying
sources of suspended solids to assess abatement strate-
gies. Thus, NEON data will contribute to watershed man-
agement decisions (Ghizzoni et al. 2012, Turner and
Edwards 2012, Westhorpe and Mitrovic 2012, Zhang
et al. 2012, Saintilan et al. 2013).

The NEON sampling effort in large rivers can be con-
sidered a scaffold upon which researchers can build their
own program for answering a variety of research ques-
tions. Current interest in large-river ecology includes par-
titioning sediment-associated and water-column metabolic
activity, determining the fate of primary production in the
water column, linking river geomorphic structure to nutri-
ent cycling, and considering the role of hydrologic reten-
tion in influencing pelagic microorganisms. In addition
to these current questions, NEON’s large-river sampling
design could be used to inform yet-unconsidered, future
research efforts.

Conclusion
NEON is a comprehensive platform that provides new

opportunities for implementing research that spans spa-
tial and temporal scales. Information collected at NEON
aquatic sites can be linked with atmospheric, terrestrial,
and airborne observations, documenting ecological change
in a more comprehensive manner than is often possible
within individual research programs. Access to NEON
sites, instrumentation, and data will provide a mechanism
for linking stream ecosystem structure and function with
landscape and climatic drivers (Sobczak and Raymond
2015). The addition of the NEON platform as an open-
source tool will provide researchers with unprecedented
access to high-quality data generated using standardized
collection methods across various scales. These data will
enable researchers to answer novel ecological questions
and integrate their own research into the NEON platform.
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