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Plant tissues host a variety of fungi. One important group is the dark septate endophytes
(DSEs) that colonize plant roots and form characteristic intracellular structures – melanized
hyphae and microsclerotia. The DSE associations are common and frequently observed
in various biomes and plant taxa. Reviews suggest that the proportion of plant species
colonized by DSE equal that colonized by AM and microscopic studies show that the
proportion of the root system colonized by fungi DSE can equal, or even exceed, the
colonization by AM fungi. Despite the high frequency and suspected ecological importance,
the effects of DSE colonization on plant growth and performance have remained unclear.
Here, we draw from over a decade of experimentation with the obscure DSE symbiosis
and synthesize across large bodies of published and unpublished data from Arabidopsis
thaliana and Allium porrum model systems as well as from experiments that use native
plants to better resolve the host responses to DSE colonization. The data indicate similar
distribution of host responses in model and native plant studies, validating the use of model
plants for tractable dissection of DSE symbioses. The available data also permit empirical
testing of the environmental modulation of host responses to DSE colonization and refining
the “mutualism-parasitism-continuum” paradigm for DSE symbioses.These data highlight
the context dependency of the DSE symbioses: not only plant species but also ecotypes
vary in their responses to populations of conspecific DSE fungi – environmental conditions
further shift the host responses similar to those predicted based on the mutualism-
parasitism-continuum paradigm. The model systems provide several established avenues
of inquiry that permit more detailed molecular and functional dissection of fungal endophyte
symbioses, identifying thus likely mechanisms that may underlie the observed host
responses to endophyte colonization.
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INTRODUCTION
Dark septate endophyte (DSE) fungi colonize plant roots
and form characteristic structures – melanized hyphae and
microsclerotia – and often have variable effects on plant growth.
This inter- and intraspecific variability in host responses has
been hypothesized to be central to plant community struc-
turing by mycorrhizal fungi (Wilson and Hartnett, 1998;
Hartnett and Wilson, 1999; van der Heijden, 2002). Similarly, the
variability in host responses to DSE fungi may promote selection
mosaics proposed for ectomycorrhizal symbioses (Piculell et al.,
2008).

An issue that has remained under continuous debate is whether
the DSE symbiosis should be considered beneficial to the host
plant or rather as a weak parasitism (Jumpponen, 2001; Addy
et al., 2005; Mandyam and Jumpponen, 2005; Alberton et al.,
2010; Newsham, 2011; Mayerhofer et al., 2013). The general
host responses to DSE fungi have remained difficult to dis-
cern, partly because of their wide variability, partly because
of independent small studies that draw conclusions based on a
limited number of fungal individuals. Here we aim to synthe-
size various bodies of data to better resolve the host responses

to the colonization by these abundant fungi as well as to dis-
cern some abiotic controls that may lead to shifts in these
observed host responses. Results from studies that use model
and native plant systems provide unique empirical insights into
the variability in host responses to DSE fungi drawn from pop-
ulations of conspecific fungi. We argue that these data permit
empirical evaluation of the “mutualism-parasitism-continuum”
paradigm (Johnson et al., 1997; Saikkonen et al., 1998). We con-
clude by describing a general neutral null-hypothesis of host
responses to fungal symbionts applicable beyond the DSE sym-
biosis. The mutualism–parasitism paradigm has been used as
a general framework to understand the mycorrhizal symbioses
that have – similarly to DSE symbioses – been considered variable
when observed in different hosts or compared under different
abiotic conditions.

DARK SEPTATE ENDOPHYTES – WHAT ARE THEY?
Research on DSE fungal has a long history. Melin (1922) described
a melanized sterile fungus – Mycelium radicis-atrovirens – that he
isolated from ectomycorrhizal roots of conifers. These isolates col-
onized roots intracellularly, suggesting an association distinct from
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ectomycorrhizae. To emphasize the distinction from mycorrhizas,
Melin called this association a “pseudomycorrhiza.” More recently,
similar melanized root-associations have been reported from a vast
variety of host plants (>600 plant species representing >100 fam-
ilies), biomes, and ecosystems (Jumpponen and Trappe, 1998b;
Mandyam and Jumpponen, 2005; Kageyama et al., 2008). The lists
of plants with such root-colonization have been expanded with
each study that records the presence of indicative structures within
host roots (e.g., Kovacs and Szigetvari, 2002).

Dark septate endophytes are a miscellaneous group of
mainly ascomyceteous root-colonizing fungi characterized by
melanized cell walls and intracellular colonization of healthy
plants (Jumpponen and Trappe, 1998b). Early stages of intra-
cellular colonization often include non-pigmented hyphae into
which the melanins are deposited later. These difficult to
visualize hyphae (see Barrow and Aaltonen, 2001; Barrow,
2003) may also indicate different consortia of root-inhabiting
fungi altogether (Porras-Alfaro et al., 2008; Khidir et al., 2010).
In addition to potentially biome specific fungal guilds and
inconsistent semantics, the research on root-associated endo-
phytes is further burdened by lack of taxonomic cohesion,
polyphyletic evolutionary origins of the DSE fungi, and
their variable ecological or physiological functions (Caldwell
et al., 2000; Addy et al., 2005; Grünig et al., 2008). How-
ever, the DSE fungi form melanized inter- and intracellu-
lar hyphae and melanized microsclerotia that are indicative
and characteristic morphological structures in the host roots
(Jumpponen and Trappe, 1998b; Rodriguez et al., 2009; Mandyam
et al., 2010).

ABUNDANCE OF DSE FUNGI
Compared to better known mycorrhizal symbioses or the verti-
cally transmitted systemic foliar endophytes, the root-associated
fungal endophytes have received very little attention (Rodriguez
et al., 2009). This is a serious gap in our understanding of
the fungal associations, because the DSE fungi are common in
many ecosystems including those in the Antarctic, Arctic, boreal,
subtropical, and temperate regions (Mandyam and Jumppo-
nen, 2005; Kageyama et al., 2008). The research gap is further
highlighted by studies that compare host colonization by the
root endophytes and mycorrhizal fungi in various habitats. The
rare studies that estimate the root colonization by both myc-
orrhizal and endophytic fungi indicate that the DSE fungi are
possibly as abundant as mycorrhizas (Mandyam and Jumppo-
nen, 2008; Dolinar and Gaberscik, 2010; Zhang et al., 2010), if
not more so (Mandyam and Jumpponen, 2008). Despite their
apparent great abundance, functions of the DSE fungi, particu-
larly their general effects on the colonized hosts, have not been
resolved.

MUTUALISM-PARASITISM-CONTINUUM PARADIGM
The mechanisms and their magnitudes that alter interspecific
interactions are central in ecology (Thompson et al., 2001).
Research on mycorrhizal fungi has been pivotal in developing an
understanding of the variability in presumed mutualisms (Sapp,
2004). The “mutualism-parasitism-continuum” is a paradigm
established as a framework to explain why symbiotic associations

may deviate from mutualisms to parasitisms (Francis and Read,
1995; Saikkonen et al., 1998; Jones and Smith, 2004). According
to this paradigm, compatible host-fungus associations produce
host responses that are flanked at one end by obligate mutualisms
in which hosts fail to survive in absence of their fungal part-
ners and at another end by parasitisms that lead to the death
of a host plant. While the position of each compatible host-
fungus association along this continuum is interesting and perhaps
context-dependent (Karst et al., 2009), it is imperative that we
understand the underlying controls of the variability in these
symbioses. These controls include, but are not limited to, biotic
variability of the component fungi (Munkvold et al., 2004; Grünig
et al., 2008; Mandyam et al., 2012, 2013) or host plants (Jones et al.,
1990; Thomson et al., 1994; Karst et al., 2009; Hoeksema et al.,
2010) as well as abiotic variability in the availability of light or
nutrients or in the stress under which the host-fungus symbiosis
is evaluated (Johnson et al., 1997; Redman et al., 2001; Rodriguez
et al., 2008; Johnson, 2010).

We describe, reanalyze, and synthesize studies conducted uti-
lizing model plant systems and then use those data to infer general
host responses to DSE fungi. We further evaluate the applica-
bility of these model plant systems via comparisons with native
plants. Our data clearly indicate that while the host species iden-
tities are important, so are the host and fungal genotypes and
broad functional groupings (e.g., forb vs. grass; Mandyam et al.,
2012). Additional experiments indicate – consistently with predic-
tions of the mutualism-parasitism-continuum framework – that
host responses in these associations can be modulated by abiotic
conditions.

HOST RESPONSES TO DSE
The DSE fungi may either inhibit or enhance host plant growth
(Jumpponen, 2001; Mandyam and Jumpponen, 2005; Grünig
et al., 2008; Alberton et al., 2010; Newsham, 2011; Mandyam
et al., 2012, 2013; Mayerhofer et al., 2013). The mechanisms that
lead to the variable host responses are uncertain but often spec-
ulated in conjunction with inoculation experiments. Similarly
to both arbuscular mycorrhizal and ectomycorrhizal symbioses
where host responses have been considered context-dependent
(Karst et al., 2008; Hoeksema et al., 2010), host responses to DSE
fungi vary between host species and between coarse functional
groupings (Mandyam et al., 2012). In contrast to interspecific
variability, intraspecific variability is often discussed but rarely
addressed (Piculell et al., 2008; Karst et al., 2009; Mandyam et al.,
2013). Empirical evaluation of host responses within and among
species to populations of conspecific fungi allow for assessment of
intraspecific components of both hosts and fungi in DSE symbiosis
(Mandyam et al., 2013).

In addition to the inter- and intraspecific variability among
the plants (Piculell et al., 2008; Karst et al., 2009) and fun-
gal symbionts (Munkvold et al., 2004; Mandyam et al., 2012),
the potential drivers of the variable host responses – whether
negative or positive – include competition with more seri-
ous root parasites and pathogens, facilitation of host nutrient
uptake, or modulation by environmental stressors such as shade,
drought, salinity, and nutrient depletion (Johnson et al., 1997;
Kageyama et al., 2008; Rodriguez et al., 2008; Hoeksema et al.,
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2010). Endophyte competition with antagonistic fungi is evi-
denced by the upregulation of plant defense pathways as a result
of endophyte colonization (Mandyam and Jumpponen, 2014)
and may lead to growth promotion if the cost of combined
colonization is lesser than the cost of antagonist colonization
alone (Mandyam and Jumpponen, 2005). Like in mycorrhizal
symbioses (Hoeksema et al., 2010), facilitation of nutrient uptake
is supported by increases in N or P contents and concentra-
tions in the tissues of inoculated hosts (Jumpponen et al., 1998;
Newsham, 2011). While this function is attractive mechanism for
the growth stimulation in DSE symbiosis (see Newsham, 2011), it
suffers from lack of evidence for any perifungal interface through
which the nutrient exchange between the host and fungus would
take place (Yu et al., 2001). Finally, analogously to the symbio-
sis between Curvularia and Dichanthelium (Redman et al., 1999),
other endophytes – including DSE – may lead to modulation of
plant environmental tolerances (Mandyam and Jumpponen, 2005)
that may improve survival and performance during periods of
stress.

Generalizations about the functional attributes of DSE fungi
are complicated by their taxonomic diversity and the limited over-
lap in the communities across biomes (Addy et al., 2005; Kageyama
et al., 2008; Herrera et al., 2010a). Recent meta-analyses of a lim-
ited number of available studies (Alberton et al., 2010; Mayerhofer
et al., 2013) suggested that while host growth responses to colo-
nization by DSE fungi were variable, they tended to be negative.
In contrast to those meta-analyses, Newsham (2011) concluded
that the outcomes of the DSE inoculation depended on the form
of nitrogen supplied during the experiment (organic vs. inor-
ganic) highlighting again the environmental context dependency
of the symbiosis. Similarly to these conclusions, Mayerhofer et al.
(2013) underline the impact of experimental designs or conditions
that may confound the observed variability in plant responses.
Overall, the three meta-analyses on the functional attributes of
the DSE fungi indicate the difficulty of providing strong and
meaningful conclusions on the DSE symbiosis highlighting the
importance of ambitious empirical studies that evaluate broader
selections of hosts and fungi under consistent experimental con-
ditions. The difficulty of arriving at meaningful conclusions is
further exaggerated by the diversity of distinct unrelated fungi
involved in these associations. Furthermore, predictions on the
relative importance of different environmental parameters that
may modulate the host responses stem from isolated studies that
use small subsets of plants and often only one or two strains
of fungi. We urge the use of large numbers of conspecific fun-
gal strains in more ambitious tractable empirical studies that use
model plants followed by confirmatory experiments that utilize
native plants.

DEBATE ON HOST RESPONSES TO DSE COLONIZATION
Because of the contrasting results from experiments in which
host plants are inoculated with the DSE fungi, their effect on
the host performance has remained open to debate. Jumppo-
nen (2001) proposed that because these associations lead to host
responses ranging from inhibition of growth and performance
to occasionally substantial increases in growth, the DSE symbio-
sis should be considered similarly to mycorrhizal associations.

This argument relies on the “mutualism-parasitism-continuum”
paradigm. Addy et al. (2005) reviewed the fungal associations best
exemplifying the DSE symbioses and concluded that – in contrast
to Jumpponen (2001) – the DSE fungi are more appropriately
characterized as weak parasites than as mutualists within the
mutualism-parasitism-continuum. The absence of host-derived
perifungal membrane and its interfacial matrix structurally sup-
port this argument. While meta-analyses (Alberton et al., 2010;
Mayerhofer et al., 2013) that summarized results from inoculation
experiments concluded that on average the DSE tended to reduce
host growth, others (Newsham, 2011) have provided contrasting
conclusions. Perhaps the underlying reasons for these contrasts
lies indeed in the variability in the experimentation (Mayerhofer
et al., 2013).

Here, we contribute to this debate by drawing from more
than a decade of continuous research effort and synthesize large
bodies of accumulated published and unpublished data. We
include a number of concerted, uniform experiments utilizing
Allium and Arabidopsis models; complementary experiments with
native hosts; and, experiments that evaluate the environmen-
tal modulation of the symbiosis. While this synthesis focuses
explicitly on the DSE symbiosis, the neutral null hypotheses, the
population-centered approaches, and the environmental modu-
lation of the symbioses are broadly applicable to other symbiotic
systems.

MODEL PLANT RESPONSES TO INOCULATION WITH DSE
FUNGI
We define the DSE symbiosis narrowly and consider only those
species or fungal strains that form the characteristic DSE struc-
tures (i.e., intracellular microsclerotia). This approach omits
many hyaline root-associated fungi (RAF) that have been fre-
quently observed, particularly in (semi-)arid ecosystems (e.g.,
Herrera et al., 2010b). As a result, we primarily focus on Periconia
macrospinosa and its close relatives from the prairie ecosystems
(Mandyam et al., 2010) and acknowledge that our experiments
do not include other common DSE fungi such as Phialocephala
fortinii or Cadophora finlandica (formerly Phialophora finlandica)
that tend to be common in boreal/temperate forest ecosystems
(Jumpponen and Trappe, 1998b; Jumpponen, 2001; Grünig et al.,
2008).

All fungi isolated from host roots neither produce DSE struc-
tures nor stimulate host growth (Jumpponen, 2001; Kageyama
et al., 2008; Mandyam et al., 2010; Knapp et al., 2012). While some
of the fungi isolated from roots behave like pathogens (Kageyama
et al., 2008; Mandyam et al., 2010; Tellenbach et al., 2011), the
commonly isolated DSE species tend to lead to host responses that
range from growth inhibition to growth stimulation as one would
predict based on the mutualism-parasitism-continuum paradigm.
It is the heterogeneity of the fungi that can be isolated from the
roots or detected in them molecularly that presents a challenge
in the endophyte research. Isolation of fungal strains and ful-
filling the Koch’s postulates are mandatory steps to convincingly
confirm that acquired isolates are indeed responsible for produc-
ing the indicative DSE structures in the roots (Mandyam et al.,
2010; Jumpponen et al., 2011a; Knapp et al., 2012). Molecular
studies of the root-associated fungal communities particularly
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suffer from the inability to unequivocally detect endophytes
(Jumpponen et al., 2011a,b), despite their occasionally high occur-
rence in many plant species (Mandyam and Jumpponen, 2008;
Mandyam et al., 2012).

A typical experiment in which hosts have been inocu-
lated with DSE fungi includes only very few fungal strains
(e.g., Jumpponen and Trappe, 1998a; Jumpponen et al., 1998;
Newsham, 1999; Vohnik et al., 2005; Usuki and Narisawa,
2007; Hou and Guo, 2009; Yuan et al., 2010) and only
recently have more ambitious studies that include multiple hosts
and/or fungal strains emerged (see Mandyam et al., 2012, 2013;
Tellenbach and Sieber, 2013). Comparisons of conspecific indi-
viduals within common DSE species (Periconia) from tallgrass
prairie clearly indicate that inoculation with different fungal indi-
viduals leads to different host responses in model (Mandyam et al.,
2013) and non-model systems (Mandyam et al., 2012). Similarly,
host responses to Helotialean DSE fungi also differ supporting
the notion that there are differences among the DSE species
(Jumpponen and Trappe, 1998a; Jumpponen, 2001; Tellenbach
et al., 2011). While inoculation experiments may suffer from lim-
ited inferential capacity and extrapolation to natural conditions,
these controlled experiments are mandatory to better under-
stand host responses in absence of complex biotic and abiotic
interactions.

The model plant Arabidopsis thaliana is subject to col-
onization by a variety of bacterial (Bulgarelli et al., 2012)
and fungal endophytes (Garcia et al., 2013), including fungi
that occupy root and rhizosphere (Mandyam et al., 2013;
Mandyam and Jumpponen, 2014). As such, A. thaliana and its
endophytes may provide a model for exploring endophyte associ-
ations in a well-defined system (Garcia et al., 2013). Mandyam
et al. (2013) utilized a closed petri plate system that permit-
ted 6–8 weeks incubation of A. thaliana with a minimal con-
tamination risk. These experiments standardly used pairs of
experimental treatments that were either mock-inoculated with
a disk from fungal medium (fungus-free control) or inoculated

with P. macrospinosa. While such experiments are tedious to
set up and demand substantial growth room capacity, they
benefit greatly from simple statistical inference on the host
responses to the presence of the endophyte fungus. Further-
more, these experiments easily lend themselves for advanced
classroom settings. We were fortunate to conduct a total of 157
such experiments (a total of 3,140 experimental units) with the
assistance of more than thirty senior undergraduate students at
Kansas State University. These experiments lend further sup-
port to conclusions in Mandyam et al. (2013): while the model
plant responses to a population of endophytes may be vari-
able and include several examples of symbioses that enhance
host growth, on average the host responses are negative and
the host growth is inhibited relative to the fungus-free controls
(Figure 1).

While the variability in host responses to different DSE species
is expected, the intraspecific variability in host responses to inoc-
ulation has received far less attention. Published data indicate that
host responses are variable, often ranging from reduction in host
growth to significant increases in the host biomass (Fernando and
Currah, 1996; Mandyam et al., 2010, 2012). We have explored this
topic extensively using two model systems (Allium porrum and
A. thaliana; Kageyama et al., 2008; Mandyam et al., 2010, 2013):
data show substantial intraspecific variability, even when the host
genetic background is controlled (Mandyam et al., 2013). Taken
together, these data lay a unique empirical foundation that clearly
shows the dangers of making conclusions about a diverse guild of
fungi without including a broad enough sampling of individuals
drawn from a given population.

HOST CONTROL OF RESPONSES TO DSE INOCULATION
The principles that govern the assembly of host-specific endophyte
communities from the general and more diverse soil communi-
ties remain poorly understood. Yet, co-occurring, adjacent hosts
select root-associated community constituents from bulk soil so
that the endophyte communities are distinct from bulk soil, lower

FIGURE 1 | Frequency distribution of Arabidopsis responses to

inoculation in 157 experiments that paired Arabidopsis thaliana either

inoculated with Periconia macrospinosa or with sterile fungal medium

(mock-control). The experimental procedures are described in full detail in
Mandyam et al. (2013). Response (R) to inoculation indicates the difference
between the control and inoculated plants relative to control

(inoculated < control) or inoculated plants (control < inoculated; Klironomos,
2003). t -test on the mean of 157 experiments indicates that average
response to inoculation is negative (P < 0.0001) suggesting thus an overall
parasitic association. The box identifies median, quartiles and 95%
confidence intervals. Dashed line identifies the mean response across all 157
experiments.
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FIGURE 2 | Frequency distribution of responses in 17 forb and 33 grass

Periconia macrospinosa inoculation experiments. Each experiment paired
experimental units inoculated either with Periconia macrospinosa or with
sterile fungal medium (mock-control). The data were extracted from
Mandyam et al. (2010, 2012) and analyses follow those described in Mandyam
et al. (2013). Response (R) to inoculation indicates the difference between the

control and inoculated plants relative to control (inoculated < control) or
inoculated plants (control < inoculated; Klironomos, 2003). The grasses
tended to respond positively (t -test, P < 0.05), whereas the forb response did
not differ from zero. Inserts indicate the number of experiments where
significant (ANOVA, P < 0.05) positive (R > 0) or negative (R < 0) responses
were observed.

in diversity (Lundberg et al., 2012; Bodenhausen et al., 2013), and
may differ in composition among hosts. Naturally, host species
differ in their susceptibility and responses to DSE (Mandyam
et al., 2012). Although responses to root-associated endophytes
often appear context-dependent, grass hosts are more extensively
colonized in the laboratory and in the field when compared to
dicotyledonous hosts (Mandyam et al., 2012). Similarly, the grass
hosts tend to respond more positively to inoculation than forbs
(Figure 2) suggesting that host responses may correlate with
host evolutionary history or perhaps even suggest co-evolution
of grasses and the abundant DSE fungi in grassland ecosystems.

Experiments with model plants indicate that not only do the
host species differ in their responses, but also that Arabidopsis
ecotypes that have very limited genotypic variability differ in their
responses to DSE fungi (Figure 3). More importantly, it is rare that
one fungal strain leads to similar host responses across different
Arabidopsis accessions. Taken together, these findings suggest that
host responses to DSE fungi vary among fungal strains and per-
haps also among host genetic backgrounds. These findings clearly
demonstrate that growth promoting fungal strains are present
in environmental samples (Gentili and Jumpponen, 2006), but
that the host responses may depend on the host genotype and are
therefore often unpredictable.

VALIDATION OF THE MODEL SYSTEM RESULTS WITH NATIVE
PLANTS
It is arguable whether the results from model plant systems apply
to native hosts (Mandyam and Jumpponen, 2014). In addition to
the experiments exploiting model plants (Mandyam et al., 2010,
2013; Mandyam and Jumpponen, 2014), we have conducted more

limited experiments with eighteen native plant species common
in the tallgrass prairie ecosystem where the fungal strains origi-
nate (Mandyam et al., 2010, 2012). While none of these datasets is
quite as large as those accumulated with the Allium or Arabidop-
sis models, they nonetheless allow mapping of the native host
responses into the mutualism-parasitism-continuum that serves as
a central framework for this synthesis. These analyses demonstrate
that the native plants span a range of responses similar to the
model species (Figure 2), thus validating the predictions derived
from the model systems. One of the native plants (the dominant
native tallgrass prairie grass, Andropogon gerardi) allows analy-
ses focusing on the responses to different conspecific strains of
P. macrospinosa (Figure 4). These results indicate that – within
a population of native conspecific host plants, host responses to
DSE inoculation are as variable as they are in the model systems
and span a full range from parasitism to mutualism. However,
it is important to bear in mind that, across broader plant func-
tional groupings, results indicate that none of the dicotyledonous
hosts responded positively to inoculation with DSE fungi and three
responded negatively (Figure 2). In contrast, three of the eight
grass species responded positively, whereas two responded neg-
atively (Figure 2). Taken together, our observations support the
notion that grasses are more readily colonized by DSE fungi and
that they tend to derive a greater benefit from the DSE symbioses
than the forbs do.

ENVIRONMENTAL MODULATION OF THE DSE SYMBIOSIS
In mycorrhizal symbioses, the host plant tends to gain less from
trading the carbon for the mycorrhiza-derived nutrients if the
soil nutrients are in high supply (Koide, 1991; Schwartz and
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FIGURE 3 | Responses of three Arabidopsis thaliana accessions (Col-0,

Cvi-1, Kin-1) to inoculation with 25 strains of Periconia macrospinosa.

The analyses follow those described in Mandyam et al. (2013). Response (R)
to inoculation indicates the difference between the control and inoculated
plants relative to control (inoculated < control) or inoculated plants
(control < inoculated; Klironomos, 2003). Values above x-axis indicate a

positive response, values below negative. Gray arrows indicate responses
consistent across the three accessions, black arrows responses that range
from negative to positive depending on the host accession. Asterisks
indicate significant difference between the control and inoculated plants
(ANOVA, P < 0.05). Figure is redrawn from Figure 2 in Mandyam et al.
(2013).

Frontiers in Microbiology | Plant-Microbe Interaction January 2015 | Volume 5 | Article 776 | 6

http://www.frontiersin.org/Plant-Microbe_Interaction/
http://www.frontiersin.org/Plant-Microbe_Interaction/archive


Mandyam and Jumpponen Endophyte mutualism–parasitism

FIGURE 4 | Frequency distribution of Andropogon gerardi responses in

eleven Periconia macrospinosa inoculation experiments. The data were
extracted from Mandyam et al. (2010, 2012). Response (R) to inoculation
indicates the difference between the control and inoculated plants relative
to control (inoculated < control) or inoculated plants (control < inoculated;
Klironomos, 2003). Host response is marginally significantly (t -test,
P < 0.10) positive and includes one potential outlier that deviates from the
majority of experiments.

Hoeksema, 1998; Jones and Smith, 2004; Hoeksema et al., 2010).
We conducted a series of experiments, again with a large num-
bers of senior undergraduate students, in which model plant
A. thaliana responses to DSE inoculation were evaluated under
different environmental conditions. These studies indicate that
the host responses to inoculation are insensitive to the nutrient
availability (50% greater addition of Murashige and Skoog basal
salt mixture) or elevated temperatures (∼5◦C increase using a
horticultural heating mat) as inferred from the non-significant
interactions between the inoculation and environmental variable
(data not shown). In contrast – and as predicted by the mutualism-
parasitism-continuum paradigm – experiments in which energy

FIGURE 5 | Arabidopsis biomass response to inoculation with

Periconia macrospinosa and shading. A total of 160 plants were included
in paired experiments (n = 20 for each experiment), in which half were
inoculated with living fungal culture, half with fungus free medium (see
Mandyam et al., 2013 for details). Half of each inoculation treatment was
covered with commercial shade cloth and half were left uncovered. Shoot
biomass values were log10 transformed and analyzed for main effects
(shade, inoculation) and their interaction in a mixed model ANOVA, where
each paired experiment was assigned as a random effect. Significant shade
and interaction terms (ANOVA, P < 0.0001) indicate lesser biomass
accumulation in shade and suggest a greater relative cost of inoculation
under low light levels.

flow (light) into the system was controlled by shading (half of
the experimental units were individually covered with a horti-
cultural shade cloth) indicate that the relative cost of symbiosis
increases when availability of light and resultant energy is reduced
(Figure 5). These experiments utilized a petri plate design iden-
tical to those in Mandyam et al. (2013) and illustrate the ease of
conducting model plant experiments that permit testing hypothe-
ses on environmental modulation of host responses expediently
under tightly controlled experimental conditions.

THE MODEL
We propose a model that provides insight into how the host
response to DSE fungi depends on the host species or ecotype and
how these relationships respond to environmental variability. This
model can be generally utilized for evaluation of the mutualism-
parasitism-continuum paradigm. The proposed model rests on
an assumption that – overall – the host responses to conspecific
individuals drawn at random from a population of endophytic
fungi are approximately normally distributed (Figure 6). It is
of note that the larger model plant data sets generally sup-
port this assumption (Figure 1). This model also allows for
an explicit articulation of the null-hypothesis of no response to
inoculation and subsequent evaluation of this null-hypothesis.
While it is not possible to predict host’s response to any one
fungal strain/individual, the responses may range from strong
inhibition or promotion of host performance and an average
response for the population can be estimated (see Figure 1).
Analyses of the model and native plant data strongly indicate
that both positive and negative responses occur. Further, the
overall, average response to a population of fungi or across host

FIGURE 6 | Proposed model with the null hypothesis (H0) of no

response to inoculation. The black boxes show the range of responses of
the three Arabidopsis accessions (Figure 3). The green and blue boxes
identify grass and forb responses, respectively. Horizontal arrows show
predicted (dashed) or observed and supported (solid) responses to
environmental controls. The boxes identify median, quartiles and 95%
confidence intervals for three Arabidopsis accessions (Cvi-1, Col-0, and
Kin-1 from left to right), grass (green) and forb (blue) experiments. Arrows
indicate the mean response for the Arabidopsis, grass and forb
experiments; asterisks indicate when the mean is different from zero
(t -test; P < 0.05).
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ecotypes can be evaluated by testing the general null-hypothesis
that the mean host response equals zero. Average host responses
that exceed zero can be considered mutualisms, whereas a nega-
tive mean response suggests a parasitic, non-beneficial association
(Figure 6).

Our model also allows evaluation and visualization of hypothe-
ses on environmental modulation of these symbioses. The empir-
ical data presented above show that – consistently with the
mutualism–parasitism paradigm – reduction in the light levels
shift the outcome of the symbiosis toward parasitism. While there
is no empirical data to support shifts toward mutualism, increasing
nutrient depletion (e.g., P for AM symbiosis) or environmen-
tal stress (temperature in Dichanthelium–Curvularia symbiosis;
Redman et al., 1999) can be predicted to lead to a greater benefit
derived from symbiosis (Figure 6).

The empirical data and the model that we present here focus on
root-associated DSE fungi. However, the model and its predictions
are applicable more broadly to other host-fungus associations. The
general model proposed here serves as a general tool to visualize
and evaluate outcomes of symbioses when adequate numbers of
conspecifics can be drawn from a population. We envision the
use of this model and the predictions on the shifts as a result of
environmental modulation to be particularly valuable when the
outcomes of symbioses are evaluated under shifting environmen-
tal conditions. The proposed model thus allows for visualization
of the variable host responses to a population of fungi and the
modulation of these responses when the environmental conditions
change.

DISSECTING THE DSE SYMBIOSIS USING GENOMIC TOOLS
While the host growth responses to fungal inoculations have
dominated research in the past, the next-generation chip and
sequencing tools have revolutionized the depth at which the
symbioses can be queried. Transcriptome analyses of various
plant-microbe symbioses including many mutualisms [arbus-
cular mycorrhiza (AM), ectomycorrhiza (ECM), plant growth
promoting bacteria (PGPR), nitrogen fixing bacteria] have
been dissected by the use of microarrays available for model
plants (e.g., Arabidopsis, tomato, maize, wheat, Medicago, soy-
bean). Examples of such studies include AM-tomato (Fiorilli
et al., 2009; Salvioli et al., 2012); AM-Medicago (Hohnjec et al.,
2005; Küster et al., 2007); legume root nodulation – soybean-
Bradyrhizobium japonicum (Brechenmacher et al., 2008) or Med-
icago nodulation (El Yahyaoui et al., 2004; Küster et al., 2004);
ECM symbiosis (Johansson et al., 2004; Le Quéré et al., 2005);
Frankia–Alnus symbiosis (Alloisio et al., 2010); Arabidopsis–
Trichoderma sp. (Mathys et al., 2012; Morán-Diez et al., 2012;
Brotman et al., 2013); Arabidopsis-PGPR (Wang et al., 2005;
Lakshmanan et al., 2013; Spaepen et al., 2014); fungal or viral
pathogens of Arabidopsis (Postnikova and Nemchinov, 2012;
Pierce and Rey, 2013; Schuller et al., 2014); and, wheat-powdery
mildew (Xin et al., 2012) or wheat-Fusarium head blight (Golkari
et al., 2007).

Despite the availability of innumerable molecular tools for Ara-
bidopsis, its use to query root-associated, mycorrhizal symbioses
is difficult because Arabidopsis is inherently non-mycorrhizal.
However, the recent discovery of non-mycorrhizal Sebacinalean

fungal symbiosis in Arabidopsis (Weiss et al., 2011), the Arabidop-
sis mutualism with Piriformospora indica (Peskan-Berghöfer et al.,
2004), and the susceptibility of Arabidopsis to colonization of vari-
ety of endophytes (Garcia et al., 2013; Mandyam et al., 2013) have
facilitated the use of the Arabidopsis model for studying such fun-
gal symbioses. It must be kept in mind that host colonization
occurs despite a sophisticated plant immune system, likely sug-
gesting a defined discrimination against potential pathogens and
simultaneous facilitation mutualist and commensal colonization
(Lundberg et al., 2012).

The Arabidopsis–Piriformospora model has permitted the char-
acterization of unique biphasic colonization mechanism of Piri-
formospora hitherto unknown in other symbioses, extensive role of
plant hormones in defense signaling, induced systemic resistance,
mechanisms of growth promotion, and differential gene expres-
sion during colonization (see review in Mandyam and Jumpponen,
2014). This model has provided vital insights into mechanisms
that maintain this mutualism: P. indica colonization (i) induces
production of indole-3-acetaldoxime (IAOx)-derived compounds
in the early stages of colonization (Nongbri et al., 2012) and ele-
vates cellular Ca2+ for production of IAOx-derived metabolites
(Vadassery et al., 2009a); (ii) suppresses defenses involved in oxida-
tive burst by invoking the ‘PLD-PDK1-OXI1’ (phospholipase D,
3-phosphoinosilide-dependent kinase, oxidative signal inducible
1) cascade by triggering phosphatidic acid synthesis and upregu-
lating OXI1 and PDK genes (Camehl et al., 2011); (iii) upregulates
genes MDAR2 (monodehydroascorbate reductase) and DHAR5
(dehydroascorbate reductase) of the ascorbate–glutathione cycle
offering protection from oxidative burst and suppressing defense
gene expression that can shift the interaction from mutualism to
parasitism (Vadassery et al., 2009b); and, (iv) controls ethylene
signaling (Camehl et al., 2010; Khatabi et al., 2012).

Host metabolism and nutrition can also control the fun-
gal interaction with the host. The control on fungal lifestyle
and colonization strategies is exemplified by the generalist P.
indica’s symbiosis with Arabidopsis and Hordeum vulgare (barley;
Lahrmann et al., 2013). Although the symbiosis is generally ben-
eficial, P. indica maintains a predominantly biotrophic lifestyle
in Arabidopsis. Contrastingly, in Hordeum, P. indica switches
from biotrophy during early colonization phase (3 days post-
inoculation – dpi) to saprotrophy during late colonization phase
(14 dpi). The host-dependent fungal lifestyles or colonization
strategies adopted by P. indica in respective hosts are accompa-
nied by (i) cytological distinctions including the formation of
secondary thin hyphae (SH), host cell wall appositions (papillae)
and host cell death and autofluorescence in Hordeum – whereas
in Arabidopsis, SH, papillae and host cell death are absent; (ii)
transcriptional changes in P. indica with (a) larger number of
fungal genes differentially regulated during early colonization in
Arabidopsis than in Hordeum and vice-versa during late coloniza-
tion; (b) induction of larger number of fungal effectors such as
small secreted proteins (SSPs that control colonization by target-
ing host defense signal transduction and metabolism) in Hordeum
than in Arabidopsis, most of which encoded for hydrolytic enzymes
in Hordeum especially during late colonization phase; (c) lesser
expression of fungal genes involved in host cell wall and lipid
degradation in Arabidopsis than in Hordeum; (d) induction of
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fungal amino acid biosynthesis genes in Arabidopsis and cell wall
polysaccharide metabolic genes in Hordeum, coinciding with late
colonization phase; and, (iii) distinctly different fungal nitrogen
metabolism in Hordeum and Arabidopsis during late coloniza-
tion phase exemplified by (a) differences in fungal PiAMT1 (a
high-affinity ammonium transporter and downstream signaling
under N starvation) expression and (b) free amino acid levels
in the host: in Arabidopsis, low fungal PiAMT1 expression and
high free host amino acid concentrations suggest Arabidopsis sup-
ply of nitrogen – especially asparagine and glutamine – to the
fungus, whereas in Hordeum, high PiAMT1 expression and low
free host amino acid concentrations – especially asparagine and
glutamine – indicated onset of N starvation to the fungus and
coincided with the switch to saprotrophic lifestyle. RNAi silenc-
ing studies further support the conclusions of host metabolism
control on fungal lifestyles during the intracellular colonization.
Inhibition of fungal PiAMT1 expression by RNAi did not alter the
biotrophic fungal colonization in Arabidopsis symbiosis imply-
ing host nitrogen supply to fungal symbiont. In contrast, RNAi
suppressed-PiAMT1 P. indica symbiosis with Hordeum during the
late colonization was accompanied by increased fungal coloniza-
tion and increased free host amino acids resulting in a prolonged
the fungal biotrophic phase. Overall, studies by Lahrmann et al.
(2013) show that fungal nitrogen sensor (PiAMT1 specifically) is
not required for biotrophic growth but mandatory for the switch
from biotrophy to saprotrophy. These results imply that fungal
recognition of host metabolic cues to modulate lifestyle strate-
gies in a dynamic environment. As summarized in Mandyam and
Jumpponen (2014), the detailed molecular dissection of P. indica
mutualism was largely attributable to the simplicity of growing the
hosts and availability of a variety of molecular tools, mutants, and
databases for Arabidopsis.

The DSE symbiosis and its range within the mutualism-
parasitism-continuum remain unresolved; the Arabidopsis model
likely serves among the optimal candidates to shed further
light toward better resolving this symbiosis. Arabidopsis hosts
a large number of bacteria and fungi (Lundberg et al., 2012;
Bodenhausen et al., 2013; Mandyam and Jumpponen, 2014) and
forms DSE symbiosis in the laboratory, greenhouse, and field
(Mandyam et al., 2013). Preliminary analyses of the differen-
tial gene regulation of the Arabidopsis-DSE symbiosis using
Affymetrix ATH1 microarrays suggested that this interaction
is perhaps most similar to Trichoderma symbiosis and/or root
endophytes including rhizobacteria and mycorrhizae (Mandyam
and Jumpponen, 2014). These symbioses appear to share con-
siderable similarities in the types of upregulated genes and
include many involved in metabolism, hormonal control, stress,
and defenses. However, further in-depth studies similar to
those conducted with P. indica are required to further dissect
the DSE symbiosis. The studies conducted with Piriformo-
spora and model plants are likely applicable and serve as a
model to design informative new experiments to address spe-
cific aspects of other endophyte symbioses. For example, the
colonization mechanism and biotrophic lifestyle of a rice DSE
fungus Harpophora oryzae was concluded to be similar to that
of P. indica (Lahrmann et al., 2013; Su et al., 2013; Xu et al.,
2014).

The introduction of next generation sequencing (NGS) tech-
nologies has opened a great potential to expediently and cost-
effectively explore genomics and transcriptomics of non-model
plants and/or fungi. To exemplify, Sebastiana et al. (2014) used
454-pyrosequencing to analyze the transcriptome of cork oak,
Quercus suber, in symbiosis with the ectomycorrhizal fungus
Pisolithus tinctorius. They observed more than 2,000 genes that
were differentially regulated in mycorrhizal roots compared to
non-mycorrhizal controls. The fungal colonization altered root
cell wall biosynthesis (short root formation and lateral root hair
decay), altered flavonoid biosynthesis, and activated secretory
pathways. Importantly, the expression of many genes with puta-
tive roles in nutrient transfer were altered (upregulation of genes
involved in hexose transport and delivery to apoplast plus genes
involved in starch biosynthesis and metabolism; activation of
genes involved in nitrogen assimilation; upregulation of sugar
transporters; downregulation of ammonium, most amino acid
transporters, and inorganic phosphate transporters; and, upreg-
ulation of a polyamine transporter). Additionally, several plant
defense genes were differentially regulated and represented cat-
egories similar to those in other symbioses such as AM and
nitrogen fixing root nodules. Recently, additional studies uti-
lizing NGS technologies have revealed the likely evolution of
mutualistic DSE fungus (H. oryzae) from a pathogenic ances-
tor: Xu et al. (2014) found (i) genome of H. oryzae, a mutualistic
DSE of rice (Yuan et al., 2010; Su et al., 2013), to be 8% larger
than closely related plant pathogens (Magnaporthe oryzae, Mag-
naporthe poae, and Gaeumannomyces graminis); (ii) high degree
of macrosynteny between H. oryzae and M. poae or G. graminis
with ancestral state reconstruction analyses suggesting that diver-
gence of hosts resulted in differentiation among the pathogens
(M. oryzae, M. poae, G. graminis) and the endophyte (H. oryzae);
(iii) high number of transposable elements in H. oryzae likely
driving H. oryzae genome evolution; (iv) loss of 73% of genes
in ‘lipid transport and metabolism’ cluster likely required for
appressorium-mediated colonization of leaves in the endophyte
H. oryzae compared to the pathogen M. oryzae; (v) differences in
the number of G-protein-coupled receptors suggesting differing
responses of H. oryzae and M. oryzae to host extracellular sig-
nals; (vi) differences in nutritional preferences of H. oryzae and
M. oryzae with opposite expression patterns of cell wall-degrading
enzymes; (vii) differential expression of defense related-genes in H.
oryzae and M. oryzae with suppression of virulence-related genes
in H. oryzae; and, (viii) the ability of H. oryzae to trigger plant
hormone production and the resultant growth promotion. Stud-
ies such as these demonstrate the great promise that the rapidly
evolving genome and transcriptome analysis tools bear for detailed
dissection of the endophyte symbioses.

The efforts that combine model plants and genomic tools
are likely to further our understanding of DSE symbiosis and
clarify the DSE interaction with host plants with regard to the
mutualism-parasitism-continuum. Unlike AM, DSE fungi are not
phylogenetically cohesive. Thus, genomic studies with only a
handful of taxa can obfuscate their lifestyle designation. It is
important to bear in mind the diversity and complexity of the
associations included into the DSE symbioses. For example, P.
fortinii s.l-Acephala applanata complex (PAC) is the dominant
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group of DSE fungi in conifers of Northern Hemisphere (Stoyke
et al., 1992; Addy et al., 2000). In contrast, P. macrospinosa and
its close relatives are likely the most common DSE fungi in North
American and European grasslands (Mandyam et al., 2010; Knapp
et al., 2012). Including a variety of taxa and individuals from tar-
get ecosystems is the key to drawing meaningful inferences on a
broad and likely diverse guild of fungi. Collections of large num-
bers of conspecific DSE fungi from an ecosystem are valuable in
clarifying these obscure endophyte symbioses. For example, tran-
scriptome characterization and comparisons of conspecific DSE
fungi eliciting distinct growth responses on Arabidopsis ecotypes
(Mandyam et al., 2013) can provide molecular clues about the rel-
ative importance of the host and fungal genotype controls over
the outcome of symbiosis. Genomic and molecular data high-
light the host-dependent nitrogen metabolism in the control of
fungal lifestyle (Lahrmann et al., 2013). Meta-analyses have sug-
gested that nitrogen supply likely impacts the outcome of DSE
symbiosis (Newsham, 2011) and observational studies suggest
that nitrogen fertilization can affect DSE colonization in the field
(Mandyam and Jumpponen, 2008). These studies suggest com-
plex and perhaps non-additive controls of DSE symbiosis: the
outcomes are likely controlled in part by host genotype, in part
by fungal genotype (Mandyam et al., 2013), and in part by envi-
ronmental modulators. Yet, these complex systems suggest that
the combined genotypic controls may prove valuable in dissect-
ing the genomic factors involved in DSE nitrogen metabolism.
Finally, the wealth of naturally occurring pairings of DSE fungi
and host plants can provide insightful and beneficial experimental
tools to ground-truth the conclusions from model systems. The
exponential advances in NGS technologies permit the expedient
and cost-effective genomic interrogations of the DSE symbiosis in
model and non-model plants alike.

CONCLUSION
Here we present arguments based on host growth responses and
the potential for molecular dissection of an obscure endophyte
symbiosis to better elucidate the ecological and molecular drivers
underlying host responses to poorly known fungal symbionts. Our
extensive experiments with model and non-model plants indicate
a distribution of host responses to colonization and led to a pro-
posal of a null model that permits testing hypotheses on host
responses to a population of endophytic fungi as well as generat-
ing easily testable hypotheses on the shifts in these responses under
altered environmental conditions. We further highlight examples
of recent studies that have identified molecular cues and mech-
anisms underlying the host responses to fungal symbionts and
vice-versa. It is the combination of the power of simple model
systems and the ground-truthing those conclusions in relevant
native plant systems that are likely to best elucidate the drivers and
mechanisms of obscure and poorly understood symbioses. The
findings of these studies can be coupled with deep interrogations
of host and fungal transcriptomes to elucidate the mechanisms
that underlay the observed host growth responses.
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