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Abstract
Intrinsically disordered proteins (IDPs) are frequently associated with human diseases such

as cancers, and about one-fourth of disease-associated missense mutations have been

mapped into predicted disordered regions. Understanding how these mutations affect the

structure-function relationship of IDPs is a formidable task that requires detailed characteri-

zation of the disordered conformational ensembles. Implicit solvent coupled with enhanced

sampling has been proposed to provide a balance between accuracy and efficiency neces-

sary for systematic and comparative assessments of the effects of mutations as well as

post-translational modifications on IDP structure and interaction. Here, we utilize a recently

developed replica exchange with guided annealing enhanced sampling technique to calcu-

late well-converged atomistic conformational ensembles of the intrinsically disordered

transactivation domain (TAD) of tumor suppressor p53 and several cancer-associated mu-

tants in implicit solvent. The simulations are critically assessed by quantitative comparisons

with several types of experimental data that provide structural information on both second-

ary and tertiary levels. The results show that the calculated ensembles reproduce local

structural features of wild-type p53-TAD and the effects of K24N mutation quantitatively. On

the tertiary level, the simulated ensembles are overly compact, even though they appear to

recapitulate the overall features of transient long-range contacts qualitatively. A key finding

is that, while p53-TAD and its cancer mutants sample a similar set of conformational states,

cancer mutants could introduce both local and long-range structural modulations to poten-

tially perturb the balance of p53 binding to various regulatory proteins and further alter how

this balance is regulated by multisite phosphorylation of p53-TAD. The current study clearly

demonstrates the promise of atomistic simulations for detailed characterization of IDP con-

formations, and at the same time reveals important limitations in the current implicit solvent

protein force field that must be sufficiently addressed for reliable description of long-range

structural features of the disordered ensembles.
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Author Summary

Tumor suppressor p53 is the most frequently mutated protein in human cancers. Clinical
studies have suggested that the type of p53 mutation can be linked to cancer prognosis, re-
sponse to drug treatment, and patient survival. It is thus crucial to understand the molecu-
lar basis of p53 inactivation by various types of mutations, so as to understand the
biological outcomes and assess potential cancer intervention strategies. Here, we utilize a
recently developed replica exchange with guided annealing enhanced sampling technique
to calculate well-converged atomistic conformational ensembles of the intrinsically disor-
dered transactivation domain (TAD) of tumor suppressor p53 and several cancer-associat-
ed mutants in an implicit solvent protein force field. The calculated ensembles are in
quantitative agreement with several types of existing NMR data on the wild-type protein
and the K24N mutant. The results suggest that, while all sequences sample a similar set of
conformational substates, cancer mutants could introduce both local and long-range
structural modulations and in turn perturb the balance of p53 binding to various regulato-
ry proteins and further alter how this balance is regulated by multisite phosphorylation of
p53-TAD. The study also reveals important limitations in implicit solvent for simulations
of disordered proteins like p53-TAD.

Introduction
Cellular signaling and regulation are frequently mediated by proteins that, in part or as a
whole, lack stable structures under physiological conditions [1–3]. Such intrinsically disordered
proteins (IDPs) are over-represented in disease pathways [4,5]. About ~25% of disease- associ-
ated missense mutations can be mapped into predicted disordered regions [6] (although cancer
mutations appear to prefer ordered regions [7]). Many disease mutations in disordered regions
have been predicted to alter the residual structure level [8], which could potentially perturb in-
teraction networks and lead to mis-signaling and mis-regulation. Establishing the biophysical
basis of how disease mutants affect the “structure”-function relationship of IDPs is a formida-
ble task. It requires detailed characterization of the disordered conformational ensembles,
which are not amenable to traditional structural determination using either X-ray crystallogra-
phy or nuclear magnetic resonance (NMR) spectroscopy [9–11]. For disordered protein states,
only ensemble-averaged properties are generally measured [12,13], and single-molecule tech-
niques are often limited by low spatial resolution and labeling complications [14–16]. Recover-
ing the underlying structural heterogeneity using ensemble-averaged properties is
fundamentally underdetermined; there is not sufficient constraint (or information) to uniquely
define the structure ensemble based on averaged properties alone. A possible strategy to over-
come this fundamental limitation is to leverage significant recent advances in physics-based
protein force fields and enhanced sampling techniques to calculate de novo structural ensem-
bles [10,17]. Structural data from NMR and other biophysical experiments can be then used
for independent validation, but not as structural restraints during the ensemble calculation.
This strategy has proven effective enough to provide useful insights on studies of several rela-
tively small IDPs [18–23]. An important caveat is, however, de novo ensembles will inevitably
contain artifacts due to persisting limitations in the current protein force fields as well as con-
formational sampling capability. Nonetheless, certain systematic artifacts could be suppressed
by examining how the calculated ensembles depend on sequence variations, post-translational
modifications, and/or solution conditions [23,24].
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To assess the efficacy of atomistic simulations for understanding the mutant-structure-
function relationship of IDPs, we exploit the intrinsically disordered transactivation domain
(TAD) of the tumor suppressor p53 and its cancer-associated mutations as a model system of
great biological and biomedical significance. p53 is the most frequently mutated protein in can-
cer [25,26]. The p53 levels are kept low in unstressed cells through continuous proteasomal
degradation. Cellular stresses such as DNA damage, initiate a cascade of phosphorylation
events that stabilize and activate the p53 protein [27]. Accumulation of activated p53 induces
the transcription of genes involved in cell cycle arrest and apoptosis, thus suppressing cell
transformation and tumor formation [28]. Most human cancers exhibit defects in the p53-sig-
naling pathway, over 50% of which involve inactivated p53 due to various mutations [29,30].
Clinical studies of breast cancer have indicated that the type of p53 mutation can be linked to
cancer prognosis and response to drug [31]. It is thus crucial to determine the molecular basis
of p53 inactivation by various types of mutations, so as to understand the biological conse-
quences and predict potential treatment responses and patient survival.

The p53 protein contains several distinct functional domains (Fig 1A). The core DBD do-
main binds to the regulatory regions of target genes, and the terminal domains interact with
many proteins that together tightly regulate the p53 protein level, localization, oligomerization
and activity [26]. The primary focus of existing structural and functional studies has been on
cancer mutants in DBD [32], which harbors over 80% of p53 cancer mutations including estab-
lished cancer “hot spots” [33]. Aided by several crystal structures [34,35], the molecular basis
for p53 inactivation of DBD cancer mutants can be understood in terms of either disrupting
DNA contacts, perturbing the structure of DNA-binding interface, or affecting the DBD stabil-
ity [32]. In contrast, very little is known about the structural and functional impacts of cancer
mutants in the regulatory domains and particularly TAD. This could be attributed to much
lower prevalence, and thus perceived importance, of cancer mutants outside of DBD (e.g., ~1
per residue in TAD vs. ~6 per residue in DBD) [33]. Nonetheless, TAD cancer mutants appear
to be frequently associated with some cancers. Two out of the thee documented female genital
cancers contain mutants in TAD (E17D and K24N); over 5% nasal cavity, tonsil, salivary gland
and parotid gland cancers involve mutated TAD (statistics extracted from the IRAC TP53 mu-
tation database, version R15 [33]). At present, available functional knowledge of all known
TAD cancer mutants (see Fig 1A) largely comes from a single yeast-based transcriptional activ-
ity essay study of all possible point mutations in the entire coding region of p53 gene [36] (with
a few exceptions [30,33]). Moreover, no structural or molecular interaction data is available on
any TAD cancer mutants except K24N [37].

A key complication in molecular studies of p53 TAD cancer mutants is that, in contrast to
DBD with a stable fold, TAD is an IDP and must be described by heterogeneous structure en-
sembles [38–43]. In this work, we exploit the recently developed replica exchange with guided
annealing (RE-GA) enhanced sampling technique [44,45] to calculate disordered ensembles of
p53-TAD at atomistic level and examine how cancer-associated mutations could modulate the
disordered ensembles to potentially disturb p53’s interactions with key regulatory proteins.
RE-GA extends the popular temperature replica exchange (T-RE) method by introducing an-
nealing cycles, during which the temperature exchange attempt patterns are modified for a se-
lected replica to guide its diffusion through the temperature ladder more rapidly. The GA
cycles help to overcome the limitation of RE in accelerating entropically limited cooperative
conformational transitions [46–48], albeit at the expense of compromising the detailed bal-
ance for systems with large activation enthalpies [44]. For IDPs with relatively small confor-
mational transition barriers, numerical experiments and atomistic simulations of a small
28-residue IDP have demonstrated that RE-GA introduces minimal conformational biases
and could generate converged ensembles with 3–5 fold speedup compared to T-RE [44]. The
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convergence of RE-GA simulations will be carefully examined by comparing results from in-
dependent simulations initiated from contrasting structures. The quality of simulated ensem-
bles will be critically assessed by direct comparison with a wide range of existing data that
provide structural information on both the secondary and tertiary levels for the wild-type pro-
tein and one of its mutants [37,39,40,43]. Further analysis of all resulting atomistic ensembles
will then be performed to obtain a preliminary understanding of how cancer-associated muta-
tions may introduce both local and long-range structural changes in unbound p53-TAD,
which could have functional consequences on how p53-TAD may differentially interact with
key regulatory pathways and on how these differential interactions may be regulated through
multi-site phosphorylations.

Results

Convergence of the simulated ensembles
The convergence of the simulated ensembles has been evaluated by examining the self-conver-
gence of various one-dimensional and multi-dimensional distributions, and more critically by
comparing the results derived from independent control and folding runs that were initiated
from contrasting initial structures. As shown in Fig 2 for the wild-type p53-TAD, the residue
helicity profiles calculated using various 80-ns segments quickly reach stationary states, show-
ing very small differences between profiles calculated using data from 40–120 ns or 120–200 ns
of the simulations (Fig 2A). The simulated ensembles for all five p53-TAD cancer mutants dis-
play similar convergence behaviors (see S1 Fig). Importantly, the profiles calculated using the

Fig 1. Domain structures of A) p53, and B) CREB-binding protein (CBP). Also shown in A) include: the sequence of p53-TAD (in bold fonts with
phosphorylation sites marked in red), known cancer mutants (in light fonts below the sequence; three additional mutants, P60L/S/Q, are not shown), and its
key interaction partners to be studied. Both TAD sub-domains, TAD1 (1–40) and TAD2 (41–61), contain short helices (pα1, pα2) that form upon specific
binding to various targets. Four separate CBP domains (colored in grey) can interact with p53-TAD. Abbreviations: TAD: transactivation domain (1–61); P-
rich: proline rich region; DBD: DNA-binding domain (102–292); TD: tetramerization domain (325–356); NRD: negative regulatory domain; TAZ1 (340–439) &
TAZ2 (1764–1855): cysteine-histidine-rich regions; KIX (586–572), NCBD: nuclear receptor coactivator binding domain (2059–2117).

doi:10.1371/journal.pcbi.1004247.g001
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last 80-ns segments of the control and folding runs agree very well, with an overall RMSD of
0.014. Similar observations can be made on comparing various distributions of 1D residue-
residue distances (e.g., Fig 2B, red and black traces). The simulated ensembles also appear to
converge well on level of two—dimensional distributions, which is very difficult to achieve for
IDPs of the size of p53-TAD. S2 Fig illustrates that helical substate distributions largely stabi-
lize by the end of 200-ns RE-GA simulations for both the wild-type p53-TAD and its cancer
mutants and that the final distributions from the control and folding runs are largely consis-
tent. Furthermore, as shown in Fig 3, the structural ensembles derived from the control and
folding simulations of the wild-type protein contain essentially identical sets of long-range con-
tacts and with largely similar probabilities. The correlation coefficient of the two contact maps
is 0.91 and the RMSD is 0.016. The level of convergence observed here for local and long-range
structural properties of a 61-residue IDP is noteworthy. It provides a solid basis for detecting
potentially subtle structural impacts of cancer-associated mutations.

Fig 2. A) Averaged residue helicity profiles calculated using different 80-ns segments of the control and folding RE-GA simulations of wild-type
p53-TAD. B) Probability distributions between termini and D21-K/N24 calculated from the last 80-ns of RE-GA simulations of the wild-type p53-TAD and two
cancer-associated mutants. The inter-residue distances were calculated as the distances between corresponding CA atoms.

doi:10.1371/journal.pcbi.1004247.g002
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Comparison with NMR: Local structural propensities and long-range
ordering
The quality of the simulated ensembles has been assessed by comparing to existing experimental
data that provide structural information on both the secondary and tertiary levels [37–40,43].
As shown in Fig 4A, the simulated helicity profile for the wild-type p53-TAD is highly consis-
tent with NMR secondary chemical shift and NOE analysis[38], predicting three partial helices
in the same regions that show significant negative secondary chemical shifts, namely residues
18–27, 40–44 and 48–52. These are also the same regions where short helices have been ob-
served when p53-TAD is bound to various targets (see Fig 1A). The partial helices spanning res-
idues 40–44 and 48–52 have been generally classified as turns I and II in previous NMR studies
[38]. Nonetheless, continual sequential dNN NOEs have been detected in both regions, which
support the presence of residual helices [38]. The most recent NMR analysis has estimated that
the average helicity in residues 17–29 is about 11.2% [37], which is quantitative agreement with
the calculated value of ~10±1% in residues 18–27 from the simulations. Furthermore, as shown
in Fig 4B, the theoretical RDC profiles derived from the simulated ensembles agree very well
with the experimental one measured at 800 MHz [39]. For disordered protein states, RDC has
been shown to be mainly sensitive to local secondary structures, particularly partial helices
[39,49]. The agreement between calculated and measured RDC profiles thus further supports
the notion that local structural properties of the simulated ensembles are most likely realistic.

Fig 3. Probabilities of long-range contacts calculated from the last 80-ns segments of the folding
(upper half) and control (lower half) RE-GA simulations. Contours are drawn from 0.06 with an
equidistant increment of 0.04. Residues are considered to be in contact if the minimal heavy atom distance is
no greater than 4.2 Å. The correlation efficient of two contacts is 0.91 and the RMSD is 0.016.

doi:10.1371/journal.pcbi.1004247.g003
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Long-range tertiary structural properties of the simulated ensembles have been examined
based on their ability to reproduce the experimental PRE effects [42]. PRE coupled with site-di-
rected spin-labeling techniques is one of the most powerful techniques for characterizing tran-
sient long-range contacts of disordered proteins [51–53]. Relaxation enhancement of a given
proton depends sensitively on its distance from the unpaired electron of the paramagnetic spin
label, with an r-6 dependence. PRE is thus uniquely suitable for detecting weakly populated
transient contacts. At the same time, dominated by contributions from compact conformers,
PRE is insensitive to members of the ensemble with large electron-nuclear distances. This
property renders it generally unfeasible to calculate reliable structural ensembles for disordered
protein states based on the PRE distances alone [54]. Nonetheless, the ability of PRE experi-
ments to provide ensemble-averaged distance information between site-specific spin labels and
all protons in the protein is extremely valuable for global validation of atomistic ensembles
from de novo simulations. Fig 5 compares the theoretical PRE profiles calculated from the last
80-ns of the folding RE-GA simulation of wild-type p53-TAD with experimental results previ-
ously measured for four site-specific spin labels[43]. A key observation is that the theoretical
profiles do not reach the 1.0 (no broadening) limit in any case. This suggests that the atomistic

Fig 4. A) Comparison of the average residue helicity profile with the secondary Hα chemical shifts for
the wild-type p53-TAD[38]. The uncertainties of the average residue helicities were estimated as the
difference between values calculated from the folding and control RE-GA runs (see Fig 2A). The reference
random coil values were taken from statistics of the BMRB database[50]. B) Back-calculated RDC profiles in
comparison with the experimental one[39]. Note that the calculated profiles were globally scaled to best
reproduce the experimental values.

doi:10.1371/journal.pcbi.1004247.g004
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ensemble is overly compact, likely due to the known tendency of the GBSW/SA implicit force
field to over-stabilize intra-peptide interactions [55,56]. Indeed, the end-to-end distance of the
simulated ensemble (Fig 2B) appears substantially under-estimated compared to the single
molecule FRET data [40]. Nonetheless, the calculated PRE profiles display fine features that ap-
pear to resemble the experimental ones. The simulations predict stronger PRE broadening in
similar regions detected experimentally for all four spin-labeling sites located strategically to
cover the whole sequence. The overall correlation coefficient of the theoretical and experimen-
tal PRE effects is about 0.5, which is far from ideal but nonetheless meaningful. The implication
is that, despite clear over-compaction, transient long-range contacts in the simulated ensem-
bles are likely genuine, albeit likely with systematically elevated or skewed probabilities.

We note that it is highly nontrivial for de novo atomistic simulations to generate well-con-
verged ensembles for a 61-residue IDP like p53-TAD with non-trivial structures and achieve a
high level of agreement with NMR on both secondary and long-range structural features.

Fig 5. Comparison of theoretical (red traces) and experimental (black bars) PRE effects induced by four site-specific spin labels. The theoretical
profiles were calculated from the last 80-ns of the folding simulation of wild-type p53-TAD. The experimental profiles were extracted from the Supplementary
Materials of Stancik et al. (2008) [43]. The correlation coefficient between the theoretical and experimental profiles is 0.5.

doi:10.1371/journal.pcbi.1004247.g005
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Implicit treatment of solvent environment is critical to reduce the computational cost, as also
demonstrated quite extensively for other long IDPs [57–60]. The tendency of GBSW/SA to
over stabilize collapsed structures, however, has hindered the ability of traditional T-RE simu-
lations to generated converged ensembles for long IDPs, requiring us to adopt the RE-GA en-
hanced sampling here. With compromised detailed balance due to the GA cycles, the
probabilities of high energy states tend to be over estimated when separated by large energy
barriers [44]. Taken together, long-range structure features predicted by the current simula-
tions should be considered qualitative at best. We note that several recently developed enhance
sampling techniques may allow one to overcome the sampling limitation without compromis-
ing the detailed balance [61,62]. It should also be emphasized that agreement on average prop-
erties itself as discussed above does not establish the reliability of the whole ensemble, due to
the under-determined nature of calculating heterogeneous structure ensembles. An essential
validation will be the atomistic simulation’s ability to recapitulate the affects of mutations or
post-translational modifications on the conformational properties. As will be discussed below,
the latter appears to be the case for the K24N mutant.

Mutant modulation of p53-TAD local and long-range conformations
In Fig 6, we first examine the effects of cancer-associated mutations on residue helical propen-
sities of p53-TAD. Clearly, all cancer-associated mutants contain residual helices in the same
regions as observed for the wild-type protein. However, the mutations appear to frequently
modulate average helical propensities. Most effects are local. For example, the largest effects of
replacing Trp53 with the helix breaking Gly residue are observed near residue 53, where the
peak residue helicity is reduced from ~8% (black trace) to ~3% (purple trace). K24N mutation
mainly reduces the helicity in residues 18–27, from an average of ~10% to ~5%. We note that
the predicted helicity reduction of K24N is in quantitative agreement with NMR secondary
chemical shift analysis [37]. The effect of K24N mutation may be attributed to direct disruption
of the Asp21-Lys24 salt bridge, which has been suggested to stabilize the local partial helices
[38]. As shown in Fig 2B, the probability of forming contacts between residues 21 and 24

Fig 6. Residue helicity profiles for the wild-type p53-TAD and five cancer mutants, derived from the
last 80-ns segments of the RE-GA simulations. Estimated uncertainties are similar for all profiles and only
shown for the wild-type for clarity.

doi:10.1371/journal.pcbi.1004247.g006
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is ~50% lower for K24N mutant than the wild type (green trace). On the helical substate level,
while all p53-TAD sequences simulated here apparently sample a similar, if not identical, set of
partial helices (Fig 7), their occupancies appear to be sensitive to mutations. We note that the
convergence of helical substate distributions is more limited compared to average residue heli-
city profiles (S2 Fig). Nonetheless, the level of redistribution of among helical sub-states due to
mutation appears significant. In particular, the differences between distributions calculated
from folding and control RE-GA simulations of the wild-type sequence are considerably
smaller than those between the wild-type and mutant distributions (S2 Fig). On the tertiary
level, all sequences are extremely heterogeneous. Clustering analysis with 5 Å Cα RMSD cutoff

Fig 7. Distributions of helical substates of the wild-type p53-TAD and five cancer mutants, calculated from the last 80-ns of folding RE-GA
simulations. Contours are drawn 0.001, 0.002, 0.004, 0.008, 0.012, 0.024 and 0.048.

doi:10.1371/journal.pcbi.1004247.g007
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leads to numerous small clusters for all ensembles, with very few clusters occupied over 1%
(see S3–S8 Figs). Using larger cutoff values reduces the total number of clusters identified but
no dominant clusters would emerge. Interestingly, on average all p53-TAD constructs simulat-
ed here appear to sample similar sets of long-range residue-residue contacts, even though can-
cer mutants do clearly impact their prevalence in the disordered ensemble (see Fig 8).

Intriguingly, several cancer mutants are predicted to lead to helicity changes in regions se-
quentially distal from the mutation sites. For example, besides significantly reducing the local
helical propensity, W53G also leads a slight decrease in helicity within residues 18–27 (Fig 6,
purple trace). The most striking case is N29K/N30D, which reduces average residue helicities
in the distal regions of residues 40–44 and 48–52 by ~50%, but has minimal impact in the local
region of residues 18–27 (blue trace). This is a potentially important observation, and suggests
that long-range coupling exists among various residual structures of p53-TAD. The predicted

Fig 8. Average contact probabilities derived from RE-GA simulations of the wild-type p53-TAD (black contours), K24N (red; lower half), and N29K/
N30D (violet; upper half).

doi:10.1371/journal.pcbi.1004247.g008
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long-range coupling is not likely an artifact of over compaction due to limitations of GBSW/
SA. Similar long-range coupling in p53-TAD dynamics has been detected in a recent flores-
cence quenching study of p53-TAD [41]. The existence of transient long-range contacts be-
tween residual helices is also evident in PRE experiments[43]. As shown in Fig 5, paramagnetic
spin labeling at E28C leads to strong broadening around residues 43–47 and 52–54. Converse-
ly, labeling at A39C leads to significant broadening around residues 18–27. Interestingly, com-
paring the contact probability maps (Fig 8) suggests that both K24N and N29K/N30D appear
to weaken long-range contacts between the N- and C-terminal segments compared to the wild
type p53-TAD (Fig 8, circled areas). These segments of substantial helical propensities are re-
sponsible for p53’s specific interactions with numerous regulatory proteins (e.g., see Fig 1A).
At present, little concrete biophysical data is available on how TAD cancer mutants may per-
turb p53’s interaction with various regulatory proteins. The only molecular data available is
that K24N does not significantly affect MDM2 binding due to an apparent enthalpy-entropy
compensation[37], but its impacts on binding to CBP domains are not known. It is plausible
the resulting structural changes in the disordered ensembles could have impacts on molecular
interactions of p53 as well as their post-translational regulation.

Discussion
The p53 protein level and activity are tightly regulated through coordinated interactions of
TAD with negative regulators MDM2 andMDMX (mouse double minute 2 and 4) and the gen-
eral transcriptional coactivators CBP and p300 [63] (see Fig 1B). Unphosphorylated p53-TAD
binds to MDM2 with sub-micromolar affinity, which promotes polyubiquitination and degra-
dation of p53 through MDM2’s E3 ubiquitin ligase activity[64,65]. Recent NMR and calorime-
try studies showed that multisite phosphorylation of TAD reduced binding to MDM2 (by up to
24X, or ΔΔG ~ −1.9 kcal/mol), and at the same time provided graded enhancement of binding
to CBP/p300 domains (by up to 80X, or ΔΔG ~ +2.6 kcal/mol)[66–68]. These effects together
dramatically shift the balance towards favoring binding to CBP/p300, up to 1000-fold. The grad-
ed dependence on the extent of p53 phosphorylation provides a mechanism for gradually in-
creasing p53 response under prolonged genotoxic stress[69]. Nonetheless, precisely how
phosphorylation regulates the binding affinities is not entirely clear. Phosphorylation may sim-
ply provide a new interaction site and/or disrupt the binding interface. However, available struc-
tures of complexes involving p53-TAD[70–73] show that TAD interacts with other proteins
mainly via two short helices (see Fig 1A). The simple interaction or interface interruption mech-
anism thus cannot explain the effects of phosphorylation at several sites outside of the helical
segments. Instead, the unbound state of p53-TADmust also be considered. Specifically, the dis-
ordered ensemble of free TAD is highly susceptible to post-translational modifications, which
could alter the level of residual structures and modulate the entropy cost of folding upon specific
binding to regulate the binding affinity. Such a mechanism has been demonstrated in our previ-
ous study of the CREB/CBP interaction[19]. The molecular mechanism of p53 activation by
multisite phosphorylation is highly relevant for understanding how TAD cancer mutants may
alter the spectrum of target gene transactivation[74] and contribute to the gradient of p53
tumor suppression function in cancers[75]. In particular, the current simulations strongly sup-
port that TAD cancer mutants can significantly modulate the unbound conformational ensem-
bles, which could in turn disturb the balance between binding to MDM2 and CBP and further
alter how the balance is regulated by multisite phosphorylation of TAD. Establishing the func-
tional implications of the predicted cancer mutant modulation of the disordered ensembles will
require additional experimental characterization of TAD cancer mutant structural properties as
well as new biochemical and biophysical measurements of p53 binding thermodynamics with

Disordered Conformations of p53-TAD Cancer Mutants

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004247 April 21, 2015 12 / 19



key regulatory proteins. The success of the current simulations demonstrates the feasibility and
promise of combining advanced sampling techniques and modern atomistic force fields, partic-
ularly with implicit solvent, for effective IDP simulations. Coupled with appropriate structural
and biophysical experiments, de novo atomistic simulations could provide a general framework
for comparatively assessing the effects of disease-related mutations as well as post-translational
modifications on IDP structure and interaction. At the same time, important limitations remain
in implicit solvent protein force fields, and the simulated ensembles are overly compact. This
has proven to be a key artifact that not only severely hinders our ability to generate highly con-
verged ensembles but also greatly compromises reliable interpretation of predicted structural
impacts of mutations. The current study thus also underpins the importance of continual devel-
opment and optimization of implicit solvent protein force fields.

Methods

RE-GA implicit solvent simulations
Fully extended and helical conformations of the wild-type p53-TAD (residues 1–61: MEEPQ
SDPSV EPPLS QETFS DLWKL LPENN VLSPLP SQAM DDLM LSPDDI EQWFT EDPGP D)
were first generated using CHARMM [76,77]. Both termini were neutralized. These initial con-
formations were then used to initiate two independent RE-GA simulations (referred to as fold-
ing and control runs, respectively) in the GBSW/SA implicit solvent [78–80]. The GBSW/SA
force field is based on the CHARMM22/CMAP protein force field [81–84], and has been previ-
ously optimized for simulation of conformational equilibria of small peptides. Despite several
existing limitations [55,56], it has been reasonably successful in simulating the disordered en-
sembles of several IDPs [18–20] and unstable protein states [85–87]. The SHAKE algorithm
[88] was applied to fix lengths of all hydrogen-involving bonds, and the dynamics time step
was 2 fs. The nonbonded interactions were cut off at 16 Å, and the salt concentration was set to
0.1 M in GBSW. All RE-GA simulations were performed using the Multi-scale Modeling Tools
in Structural Biology (MMTSB) Toolset [89] together with CHARMM. Each RE-GA run in-
volved 16 replicas distributed exponentially between 300 and 500 K. Temperature exchanges
were attempted every 2 ps. The replica occupying the lowest temperature was selected to un-
dergo GA every 2000 RE cycles after the completion of the previous GA cycle [44]. The total
length of all RE-GA simulations was 200 ns per replica, which proved sufficient for achieving
excellent convergence in the calculated ensembles (see Results). The exchange acceptance ra-
tios were about 25%. Additional 200-ns RE-GA simulations were initiated from fully extended
conformations for five selected cancer-associated mutants of p53-TAD. E17D and K24N are
frequently associated with female genital cancers [33]; D49Y and W53G are predicted to cause
the largest changes in the disorder tendency based on metaPrDOS sequence analysis [90] and
are associated with brain and bladder cancers, respectively [91,92]; and N29K/N30D is only
complex cancer mutant known[33] and is associated with breast cancers [93].

Structural, clustering and NMR analysis
Structural ensembles were constructed by collecting conformations sampled at 300 K during the
RE-GA simulations. All subsequent structural and clustering analysis was performed using a
combination of CHARMM, the MMTSB toolset and in-house scripts. Molecular visualization
was generated using VMD [94]. For clustering analysis, the simulated ensembles were first
under-sampled by only including snapshots sampled every 20 ps during the last 80 ns of each
RE-GA simulations. The resulting 4000-member ensembles were clustered using the fixed radius
clustering algorithm as implemented in the MMTSB/enscluster.pl tool (with—kclust option),
with a cutoff radius of 5 Å Cα root-mean-square distance (RMSD).
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Theoretical residual dipolar coupling (RDC) values were computed from the simulated en-
sembles using the PALES software [95], and the final ensemble-averaged RDC profiles were
uniformly scaled to best reproduce the experimental data [39]. The theoretical paramagnetic
relaxation enhancement (PRE) broadenings of several previously characterized sites of spin-
label attachment (D7C, E28C, A39C and D61C)[37] were calculated for the wild-type
p53-TAD. The theoretical ratios of 1H-15N HSQC peak intensities in the paramagnetic and
diamagnetic samples were calculated as peak intensities in the paramagnetic sample, Iox and

the diamagnetic sample Ired were calculated theoretically using the equation
Iox
Ired

¼ R2 expð�R
sp
2
tÞ

R2þR
sp
2

with Rsp
2 ¼ K

r6
4tC þ 3tC

1þo2
Ht2

C

� �
[96]. Here r is the ensemble-averaged residue-spin label distance,

and K = 1.23×10-32 cm6s-2 for the interaction between a single electron and proton. The simu-
lations did not include actual MTSL spin label used in NMR experiments [43]. Therefore, Cα-
Cα distances were calculated to approximate the actual electron-proton separations. Consistent
with the experimental work [43], Larmor frequency ωH = 600 MHz, the average correlation
time τC for the electron-nuclear dipole-dipole interaction is set to 3.3 ns, the average R2 relaxa-
tion time in absence of the paramagnetic center is set to 16 s-1, and the duration of the INEPT
delay is set to t = 9.8 ms.

Supporting Information
S1 Fig. Self convergence of the structural ensembles of all five p53-TAD cancer mutants.
(TIF)

S2 Fig. Convergence of the distributions of helical substates of A) wild-type p53-TAD fold-
ing run, B) wild-type p53-TAD control run, C) p53-TAD K24N, and D) p53-TAD N29K/
N30D. See Fig 7 caption for details of the contour plots.
(TIF)

S3 Fig. Centroids of the top four clusters from the last 80-ns of folding RE-GA simulation
of the wild-type p53 TAD. A total of 315 clusters is identified in the 4000-member ensemble.
The total populations of clusters of various size ranges (besides the top four clusters) are: 40–
49: 6.9%, 30–39: 20.4%, 20–29: 25%, 10–19: 23.5%, and<10: 17.5%.
(TIF)

S4 Fig. Centroids of the top four clusters from the last 80-ns of folding RE-GA simulation
of p53 TAD K24N. A total of 313 clusters is identified in the 4000-member ensemble. The
total populations of clusters of various size ranges (besides the top four clusters) are: 50–59:
3.6%, 40–49: 14.4%, 30–39: 14.9%, 20–29: 17.7%, 10–19: 27.5%, and<10: 14.7%.
(TIF)

S5 Fig. Centroids of the top four clusters from the last 80-ns of folding RE-GA simulation
of p53 TADW53G. A total of 343 clusters is identified in the 4000-member ensemble. The
total populations of clusters of various size ranges (besides the top four clusters) are: 50–79:
5.7%, 40–49: 4.1%, 30–39: 16.9%, 20–29: 21.9%, 10–19: 24.9%, and<10: 17.9%.
(TIF)

S6 Fig. Centroids of the top four clusters from the last 80-ns of folding RE-GA simulation
of p53 TAD D49Y. A total of 319 clusters is identified in the 4000-member ensemble. The
total populations of clusters of various size ranges (besides the top four clusters) are: 50–59:
2.7%, 40–49: 13.5%, 30–39: 12.2%, 20–29: 23%, 10–19: 27%, and<10: 14.6%.
(TIF)
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S7 Fig. Centroids of the top three clusters from the last 80-ns of folding RE-GA simulation
of p53 TAD E17D. A total of 328 clusters is identified in the 4000-member ensemble. The
total populations of clusters of various size ranges (besides the top three clusters) are: 40–49:
17.5%, 30–39: 12.8%, 20–29: 19.2%, 10–19: 26.2%, and<10: 19%.
(TIF)

S8 Fig. Centroids of the top four clusters from the last 80-ns of folding RE-GA simulation
of p53 TAD N29K/N30D. A total of 312 clusters is identified in the 4000-member ensemble.
The total populations of clusters of various size ranges (besides the top four clusters) are:>50:
7.5%, 40–49: 15.2%, 30–39: 9.4%, 20–29: 19.8%, 10–19: 24%, and<10: 16.9%.
(TIF)
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