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A Comparative Study of Two Methods for Uncertainty
Analysis in Power System State Estimation

A. K. Al-Othman and M. R. Irving

Abstract—This letter presents a comparative study between two methods
for estimating the uncertainty interval in power system state estimation.
Constrained nonlinear and linear formulations are proposed to estimate the
tightest possible upper and lower bounds on the states. The study compares
the performance of these methods in terms of estimating the bounds of the
uncertainty interval. In addition, an assessment of time performance for
both methods is carried out with varying measurement redundancy levels.

Index Terms—State estimation and measurement uncertainty.

1. INTRODUCTION

Uncertainty in power system state estimation is mainly due to
measurement inaccuracy and the network mathematical model used.
For instance, meter inaccuracies and communication errors are major
sources of measurement uncertainty. Parameter approximations in
modeling of the Pi-equivalent, such as line resistance, reactance, and
shunt capacitance, also contribute to the uncertainty in state estima-
tion. Unfortunately, the magnitudes of such errors and approximations
are not known, which, in turn, lead to uncertainty in the estimates
obtained in state estimation. Practically, error statistics are difficult
to characterize. In such circumstances, it is desirable to provide not
just a single “optimal” estimate of each state variable but also an
uncertainty range within which we can be assured that the “true”
state variable may lie with high confidence. This letter compares
two different inequality-constrained formulations for estimating the
uncertainty interval in power system state estimation. The uncertainty
in measurements is assumed to be known and bounded. Nonlinear and
linear approaches are used to obtain the tightest possible upper and
lower bounds of the states. A six-bus test system is used to check the
ability of both methods in accurately and efficiently estimating the
uncertainty interval for power system state estimation problems.

II. PROPOSED PROBLEM FORMULATION

In power system state estimation, inequality constraints are usually
needed in optimization to deal with uncertainties. In [1], an inequality
constraint is employed, in a least absolute value (LAV) estimator, for
the pseudo measurements since they are not measured, but they are
known to vary within a bounded interval. An inequality constraints
LAV estimator based on penalty functions was formulated, in [2], to es-
timate the states of external systems. An unknown-but-bounded model
was used in [3] with a reformulated constrained weighted least squares
(WLS), to handle unmeasured loads in the system. Such model is due
to Schweppe [4], who assumed that measurements errors are unknown
but fall within a bounded range. This letter, however, introduces two
double inequality-constrained formulations to estimate the uncertainty
interval of the state variables accordingly.

A. Estimation of State Bounds With a Nonlinear Method

Uncertainty intervals of the state variables can be determined by the
solution of a series of appropriately formulated optimization problems.
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Eachmeasurement, withits associated uncertainty, canbe represented by
upper and lower limits. These constraint limits define the tolerances on
the measurements (i.e., the range of values within which the true value of
the measured quantity must lie). Minimizing a particular state variable of
interest, subject to all the measurement inequality constraints, provides
the lower bound on that state variable. Similarly, maximizing that state
variable, again subject to all the measurement inequalities, provides the
upper bound for that state. In mathematical form

subject to Z' < hiz) < 2" (¢))

min x;
z

where Z' is the lower bound of the measurement vector, and Z* is the
upper bound, with
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where 7 is the transducer tolerance. The tolerance describes the de-
terministic uncertainty of each measurement. It represents the overall
accuracy of the meter and can usually be provided by the manufacturer.
Different values for the elements of positive and negative tolerances are
permissible, so a transducer can be specified to have asymmetric accu-
racy if required (e.g., an accuracy from —3% to +5% of the nominal
value).

B. Estimation of State Bounds With a Linear Method

Alternatively, (1) may be linearized about a suitable point # (which,
in this case, can be provided by the WLS estimate), and then, a series of
linear programs may be solved to obtain updates dx; to the uncertainty
bounds on the state variables. For instance, the incremental change to
the lower bound for the ¢th state can be computed by solving the fol-
lowing linear programming (LP) problem:

IIAliIl da; subject to Az < JAz < A 4)

where .J is the Jacobian of h(z) evaluated at &, and Azl and Az" are
vectors of the incremental changes to the measurement of the lower and
upper bounds, respectively, which are computed in the following form:

Al =2 — h(&) (5)
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Once dz™ and dz~ (vectors of upper and lower updates) are known,
the bounds on # are simply found as

£l (7
iz (8)

where 2 is the estimate obtained by unconstrained WLS.

III. RESULTS AND ANALYSIS

This section presents some typical results obtained by applying the
proposed methods to the six-bus test network. The computation of all
state variables will be shown to illustrate the concepts. However, for im-
proved computational efficiency, only the variables of present interest
to the power system operator would need to be computed.

The nonlinear problems have been solved by the function finincon
incorporated in the MATLABf 6.1 optimization toolbox. The linear
programs have been solved by the function linprog.
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TABLE 1

ESTIMATED STATE VARIABLES OF THE SIX-BUS SYSTEM

LP-(luwer bound) LP+(upper bound) SQP-(lower bound) SQP+(upper bound)
Bus #

[V[(pw) | 8(rad) | [V|(pu) | 8(rad) | |V|(pu) | S(rad) | [V|(pu) | 8(rad)
1 1.0175 0 1.0825 0 1.0175 0 1.0825 0
2 1.0175 | -0.0912 1.0825 | -0.0388 | 1.0175 -0.0905 1.0825 | -0.0380
3 1.0375 -0.1082 1.1025 | -0.0431 1.0375 -0.1082 1.1025 | -0.0431
4 0.9539 | -0.0888 1.0190 | -0.0571 | 0.9539 -0.0890 1.0190 | -0.0572
5 0.9471 -0.1169 1.0122 | -0.0654 | 0.9471 -0.1179 1.0122 | -0.0663
6 0.9689 -0.1367 1.0340 | -0.0717 | 0.9689 -0.1367 1.0340 | -0.0717
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Fig. 1. Estimated states for the six-bus system redundancy = 2.

TABLE 1I
EXECUTION TIME OF WLS-LP AND SQP (CPU: PEN 4, 1.7 GHZ)

# of measurements CPU time
Linear (WLS-LP) Non-Linear(SQP)
23(redundancy = 2) 0.201 sec 10.725 sec
67 (Full) 0.270 sec 15.743 sec

Table I presents results obtained by both methods, when applied to the
six-bus network. For the nonlinear method, the upper and lower un-
certainty bounds of the state variables are found using (1)—(3) with
7 = 3%. The same tolerance was also used for the linear formulation.
A WLS estimator was used to compute the (center point) estimated
states. Then, (4)—(8) are used to find the upper and lower bounds. It is
apparent that both formulations provide almost identical estimates. The
sesults of Table I are illustrated in Fig. 1. We also notice that the solu-
tion obtained by WLS is strictly bounded by the solution of sequential
quadratic programming (SQP) and WLS-LP.

Table II shows the execution time for both methods with different
redundancy levels. A redundancy ~ 2 and full set of measurements are
used. Clearly, the linear (WLS-LP) outperforms the nonlinear method
in these tests. The WLS, however, is known to give deceptive results in
the case where contaminated measurements are used. In this situation, a
robust estimator, such as least median squares (LMS) and least trimmed
squares (LTS), may be used for accurate estimation of the center point
[5]. It is important to stress that proposed formulations assume that the
transducer tolerances T must be known and fixed. Practically, this is not
necessarily guaranteed, because such tolerances will become unknown
as instruments age under the action of various unknown processes, and
systematic recalibration procedures are rarely done in the field. That is

due to massive amounts of meters, which, in turn, lead to maintenance
being impractical and extremely expensive [6].

IV. CONCLUSIONS

Two formulations of uncertainty analysis in power system state esti-
mation are presented in this study. The uncertainty is modeled via de-
terministic upper and lower bounds on measurement errors, which take
into account known meter accuracies. Both methods provided almost
identical estimates when applied to the six-bus test system. It is con-
cluded from execution time analysis that WLS-LP is faster than SQP
and more appropriate for uncertainty interval estimation in larger power
networks.
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