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ABSTRACT 

This paper introduces a multivariate long-memory model with structural breaks. In the 
proposed framework, time series exhibit possibly fractional orders of integration which 
are allowed to be different in each subsample. The break date is endogenously 
determined using a procedure which minimises the residual sum of squares (RSS). 
Monte Carlo experiments show that this method for detecting breaks performs well in 
large samples. As an illustration, we estimate a trivariate VAR including prices, 
employment and GDP in both the US and Mexico. For the subsample preceding the 
break our findings are similar to those of earlier studies based on a standard VAR 
approach in both countries, in the sense that the variables exhibit integer degrees of 
integration. On the contrary, the series are found to be fractionally integrated after the 
break, with the fractional differencing parameters being higher than 1 in the case of 
Mexico. 
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1. Introduction 

Mandelbrot (1969) and Mandelbrot and van Ness (1968) found that, although many 

time series exhibit a persistent trend-cyclical behaviour over a certain time span, when 

the same data are examined for a longer period, the persistent behaviour tends to 

disappear. This phenomenon was first noticed in a hydrological context, and called the 

Hurst effect, in honour of the hydrologist Hurst, (Hurst, 1951, 1957), who, when 

studying the records on the level of the river Nile, noticed this pattern in its behaviour. 

In particular, he observed that the autocorrelations took far longer to decay to zero than 

the exponential rate associated with other classic models such as Auto-Regressive 

Moving Average (ARMA) ones. This type of process is characterised by long memory, 

with significant time dependence even between distant observations.  

Two alternative definitions of long memory can be provided. Given a discrete 

covariance stationary time series, {xt, t = 0, ±1, …}, with autocorrelation function E[(xt 

- Ext) (xt-j - Ext)] = γj, according to McLeod and Hipel (1978) the process exhibits long 

memory if: 

∑
−=

∞→

T

Tj
jT γlim  

is infinite. The second definition is based on the frequency domain. Assuming that{xt} 

has a continuous spectral distribution, so that it has a spectral density function f(λ), one 

can say that {xt} displays the property of long memory if f(λ) has a pole at some 

frequency λ0 in the interval [0, π). A model with the above features is the Fractional 

Gaussian Noise one, analysed in Mandelbrot and van Ness (1968). Another simple 

model, very popular among time series analysts, is the fractionally integrated or I(d) 

one, where the number of differences required to obtain I(0) stationarity is not 

necessarily an integer, but might be instead any real value. Accordingly, one can define 

{xt} as an I(d) process if: 
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where L is the lag-operator (i.e., Lxt = xt-1); d can be any real value, and ut is I(0), 

defined as a covariance-stationary process with spectral density function that is positive 

and finite at any frequency. Note that the fractional differencing polynomial in (1) can 

be expressed in terms of its Binomial expansion, such that, for all real d, 
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implying that the higher the parameter d is, the higher the level of association will be 

between the observations. These processes were introduced by Granger (1980, 1981), 

Granger and Joyeux (1980) and Hosking (1981), and they were theoretically justified in 

terms of aggregation of autoregressive (AR) processes with random heterogeneous 

coefficients by Robinson (1978) and Granger (1980). Parke (1999) justifies fractional 

integration with an error duration model, while Diebold and Inoue (2001) relates 

fractional integration with regime-switching models (see Baillie, 1996, for an extensive 

review of I(d) processes).1

 Most of the literature on the estimation and testing of I(d) models focuses on the 

univariate case. Parametric methods can be found in Fox and Taqqu (1986), Dahlhaus 

(1989), Sowell (1992b), Robinson (1994), etc. Semiparametric approaches are followed 

by Geweke and Porter-Hudak (1983), Robinson (1995), Velasco (1999), Shimotsu and 

Phillips (2005), etc. By contrast, the literature on multivariate models is rather limited: 

                                                 
1 Empirical applications of fractional integration to macro series can be found in Diebold and Rudebusch 
(1989), Sowell (1992a) and Gil-Alana and Robinson (1997) among others.  
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Gil-Alana (2003a,b) extends the univariate tests of Robinson (1994) in the frequency 

domain, while Nielsen (2005) proposes similar tests in the time domain. 

 In this paper we add to the multivariate literature by proposing a multivariate 

procedure for estimating the fractional differencing parameters in the presence of 

structural breaks. For simplicity we focus on the case of a single break, though the 

analysis can be easily extended to multiple breaks. More specifically, our contribution is 

twofold. Firstly, we consider a more general (fractional) VAR model, which includes as 

a special case the standard VAR specification when the orders of integration are equal 

to 0 or 1. Secondly, we allow for endogenously determined breaks. The layout of the 

paper is as follows. Section 2 describes the statistical model and outlines the parameter 

estimation procedure. Section 3 contains the Monte Carlo simulation results. An 

empirical application is carried out in Section 4, while Section 5 concludes the paper. 

 

2. The statistical model 

We start by analysing the case of a single break. Specifically, we consider a model of 

the form: 

,T,...,2,1t,uyD btt
a ==    (2) 

,T,...,1Tt,uyD btt
b +==    (3) 

where yt is the (nx1) vector of observed data; ut is a (nx1) vector of I(0) processes2; Da 

and Db are (nxn) diagonal matrices with ith elements  and 

respectively; T

a
idL)1( −

b
idL)1( − b is the break date. The procedure minimises the residual sum of 

squares for a grid of values of the fractional differencing parameters and , i, j = 1, 

…, n. Thus, for a given partition, T

a
id b

jd

b, and given initial values of the fractional 
                                                 
2 An I(0) vector process is defined as a covariance stationary process with spectral density matrix that is 
finite and positive definite. 
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Then, the estimated break date, , is such that kT̂

)T(RSSminargT̂ im...,,1ik == , 

where the minimisation is done over all partitions T1, T2, …, Tm, such that Ti - Ti-1 ≥ 

|εT|. Hence, the estimated fractionally differencing parameters associated to the 

estimated k-partition are: 

})T̂{d̂d̂ k
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i

a
i
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for i, j  = 1, 2, … n. 

 Clearly, the model can be extended to the case of multiple breaks by considering 

the following specification: 

,T...,,1Tt,uyD j1jtt
j +== −  

for j = 1, …, m+1, T0 = 0 and Tm+1 = T, with the parameter m representing the number 

of breaks. The break dates (T1, …, Tm) are treated as unknown and for i = 1, …, m, we 

have λi = Ti/T, with λ1 < … < λm < 1. Following the same approach as in the previous 

case, for each j-partition, {T1, …Tj}, denoted {Tj}, the estimates of the djs are obtained 

by minimising the sum of squared residuals in the d-differenced models, i.e., 
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where  denotes the resulting estimates. Substituting into the new objective 

function and denoting the sum of squared residuals as RSS

)T(d̂ j

T(T1, …, Tm), the estimated 

break dates (  are obtained as follows )ˆ...,,ˆ,ˆ 21 mTTT

)T,...,T(RSSmin m1T)T...,,T,T( m21
 

where the minimisation is again obtained over all partitions (T1, …, Tm). 

 

3. A Monte Carlo simulation study 

The data generating process is a trivariate model given by: 
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with white noise ut, and initially (in Table 1) we assume that 0.2; 0.4; 

0.3, while 0.6; 0.9 and 1.4. Thus, the orders of integration are 

higher in the second subsample for the three series, which are stationary before the 

break, occurring at T

=ad1 =ad 2

=ad3 =bd1 =bd 2 =bd3

b = T/2, and nonstationary afterwards. To conduct this experiment, 

we generate Gaussian series using the routines GASDEV and RAN3 of Press, Flannery, 

Teukolsky and Wetterling (1986), with sample sizes T = 100, 200, 300, 500 and 1000. 

The number of replications is 1000 in each case. 

 We followed the procedure described in Section 2 for a grid of values of the d’s 

from 0 to 2 with 0.2 increments and estimated break dates T* = T/10, T/10 + 1, …, 
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9T/10 – 1 and 9T/10. Table 1 reports the percentage of cases corresponding to the 

minimum RSS. In order to save space we only display cases with a probability higher 

than 0.01. 

 It can be seen that all such probabilities correspond to the values T* = T/2 - 2, 

T/2 – 1, T/2, T/2 + 1 and T/2 + 2, the highest probability mass being concentrated 

around the true break date T/2. If T = 100, the probability of correctly determining the 

break date along with the six fractional differencing parameters is very small (0.031), 

though it is the highest of all cases. This indicates that, for this small size, the 

probabilities are spread widely across all cases. When increasing the sample size, the 

probabilities corresponding to the true cases substantially increase, being equal to 

14.6% with T = 200; 33.8% with T = 300; 77.6% if T = 500 and higher than 90% with 

T = 1000. 

 

INSERT TABLES 1 –  3 ABOUT HERE  

 

 Table 2 displays similar results for a model with da = [0.8, 1.2, 0.6]T and db = 

[0.2, 0.4, 0.2]T and the break occurring at T/4. The probabilities of correctly determining 

the break date along with the fractional differencing parameters are slightly smaller than 

before, though again increasing with the sample size. However, the probability mass 

around the true break is now higher: even for a sample size of T = 100 the percentage 

around T/4 is 0.750. 

 In Table 3 we combine stationary and nonstationary processes for each 

subsample, da = [0.6, 0.3, 0.5]T, db = [0.2, 0.9, 0.5]T and Tb = 3T/4. The results are 

similar to those presented in Table 2, with the highest probabilities corresponding to the 

true model in all cases, and increasing with T. 
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 In Table 4 we extend the model to allow for weak parametric autocorrelation, 

and consider the model in (4) and (5) with da = [0.2, 0.4, 0.3]T, and db = [0.6, 0.9, 1.4]T, 

Tb = T/2, and ut following a VAR(1) process of the form: 
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with white noise εt. 

 

INSERT TABLE 4 ABOUT HERE 

 

 It is apparent that in this case, if the sample size is small (T = 100), the 

probability of correctly determining the break date and the fractional differencing 

parameters is negligible (smaller than 0.01), though the probability mass around the true 

break date is 44.8%. If T = 200 the probability around the true values is still small 

(5.2%), though it is the highest of all. As in the previous cases, when increasing T, the 

probabilities around the true values also increase, and, if T = 1000, the true probability 

is around 75.7%, while the probabilities for the remaining cases never exceed 5%. 

 

4. An empirical application 

In this section we apply the procedure outlined above to analyse the linkages between 

prices (inflation), employment and GDP in the US and Mexico in a fractional 

multivariate model allowing for a single, endogenously determined break. We choose 
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these two countries as representative of the G-7 and emerging economies respectively, 

and as they most likely exhibit breaks at different points in time. 

Two types of models are estimated in the existing literature. The first is the 

standard VAR, namely, 
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where integer degrees of differentiation d1, d2 and d3 are implicitly assumed. In other 

words, the series are individually pre-tested using classical methods (Dickey and Fuller, 

1979; Phillips and Perron, 1988; etc.) to determine if they should be included in (6) in 

levels (d = 0) or in first differences (d = 1) (Sims, 1980). Examples of this type of 

analysis are the papers of Debenedictis (1997), Aucremanne and Wouters (1999), Claus 

(2000), Canova (2002), etc. 

The second approach is based on cointegration, assuming that there are some 

common trends implying I(0) equilibrium relationships between the variables 

(Johansen, 1988, 1991). Here the implicit assumption is again that at least two of the 

series are nonstationary I(1). Papers along these lines include those of Cameron, Hum 

and Simpson (1996), Pétursson and Slok (2001) and Reade (2005). The present study 

falls within the first category, since it is a generalisation of the VAR model to the 

fractional VAR case including a structural break as well. 

 

4.1 The US case 

The series analysed in this subsection are the Consumer Price Index (for all urban 

consumers, all items), and civilian employment (sixteen years and over), both obtained 
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from the U.S. Department of Labor (Bureau of Labour Statistics), and GDP, provided 

by the U.S. Department of Commerce (Bureau of Economic Analysis), all quarterly, 

seasonally adjusted, for the time period 1948q1 2006q2. All series in the estimated 

model are in logs. 

 

INSERT TABLE 5 ABOUT HERE 

 

 We perform the procedure described in Section 2 for values of (da, db) in (4) and 

(5) in the interval -2 to 2, with 0.01 increments, and estimated break date T* = T/10, 

T/10 + 1, …,  9T/10 – 1, 9T/10.3  Table 5 reports the results based on white noise 

disturbances. It can be seen that the break takes place at 1974Q4 (1975Q1), which 

corresponds to the first OPEC oil price shock. In the first subsample the order of 

integration of the three series is 1 or close to 1 – more precisely, the order of integration 

of CPI and GDP (d2 and d3 respectively) is exactly equal to 1, whilst it is 1.01 for 

employment (d1). However, after the break, the three orders of integration are much 

higher than 1, ranging from 1.45 (CPI) to 1.52 (GDP). Therefore, there is a substantial 

increase in the degree of persistence of the three series after the break. Confidence 

intervals for the estimated fractional differencing parameters can be obtained using 

boostrapping methods, although they are highly computationally expensive. Instead, we 

have computed Gil-Alana’s (2003a,b) multivariate version of the univariate tests of 

Robinson (1994) for each subsample, which enables us to obtain confidence intervals 

for the fractional differencing parameters. The 95% confidence intervals are also 

displayed in Table 5. As expected, the unit root null hypothesis cannot be rejected for 

                                                 
3 Following standard practice, we have not considered 10% of the observations at both ends of the 
sample. 

 9



any of the three series in the first subsample, though this hypothesis is decisively 

rejected after the break. 

 

INSERT TABLE 6 ABOUT HERE 

 

Table 6 shows the results with VAR (1) disturbances. The break again occurs at 

1974Q4 (1975Q1), but now in the first subsample the three orders of integration are 0 or 

close to 0 and the null hypothesis of I(0) cannot be rejected for any series. This is 

clearly because the time dependence is now captured by the VAR coefficients, which 

are close to 1 in all cases. After the break, the values of the d parameters range between 

0 and 1, and the two I(0) and I(1) hypotheses are rejected in the cases of employment 

and GDP. Specifically, the values are 0.66 for employment; 0.25 for CPI and 0.43 for 

GDP. Therefore, in both cases (whether with white noise or autocorrelated 

disturbances), we observe an increase in the degree of persistence after the break in 

1975. 

 

4.2 The Mexican case 

We analyse the same variables also for Mexico, more specifically consumer price index 

(1970 = 100), economically active population (EAP, in thousand values), and GDP 

(million 1970 PPP$), annually, from 1900 to 2000. The data are taken from the Oxford 

Latin American Economic History Database, Latin American Centre at Oxford 

University (http://oxlad.qeh.ox.ac.uk). Similarly to the US case, the series are log-

transformed. 

 Tables 7 and 8 are similar to Tables 5 and 6 above but refer to the Mexican case, 

that is, they correspond to the estimated multivariate fractional models with a single 
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break for the two cases of white noise and VAR(1) disturbances respectively. It can be 

seen that, if ut is specified as a white noise, the break occurs in 1959, whilst the break 

date is 1962 with autocorrelated disturbances.  

 

INSERT TABLES 7 AND 8 ABOUT HERE 

 

 The results based on white noise disturbances are very similar to the US ones. 

Before the break, the orders of integration are close to 1 for the three series: 1.06 for 

prices, 0.97 for employment, and 0.99 for GDP and the unit root cannot be rejected for 

any of the series. However, after the break, they are significantly above 1, ranging from 

1.37 (GDP) to 1.77 (employment), and the unit root null hypothesis is rejected for the 

three series. If a VAR(1) structure is incorporated into the model, they are around 0 

before the break, once more reflecting the competition with the VAR parameters in 

capturing nonstationarity, while, after the break, the corresponding values are strictly 

above 1 for all three series considered.4

Overall, in the subsample before the break, the results for the three series in the 

two countries are consistent with the standard approach employed in the literature, that 

is, the series are found to be either I(1) (if no autocorrelation is allowed for) or I(0) 

(when modelling the disturbances as VAR(1) processes). However, after the breaks, the 

series are clearly fractionally integrated: for the US, the values range between 1 and 2 

without autocorrelation in the disturbances, and lie between 0 and 1 with autocorrelated 

ut. In Mexico, though, regardless of whether or not autocorrelation is allowed for, the 

series are in all cases I(d) with d lying between 1 and 2. 

 

                                                 
4 Note, however, that the null hypothesis of a unit root cannot be rejected for any of the series in the 
second subsample. 
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5. Conclusions 

This paper introduces a multivariate long-memory model with structural breaks. In the 

proposed framework, time series exhibit possibly fractional orders of integration which 

are allowed to be different in each subsample. The break point is endogenously 

determined using a procedure which minimises the residual sum of squares (RSS).  

Monte Carlo experiments show that this method for detecting the break performs well in 

large samples. Both the multivariate fractional nature of the suggested model, and the 

endogenous determination of breaks represent innovative features of the present study 

compared to earlier ones, which are based on standard VAR models with or without 

structural breaks (e.g., McConnell and Perez-Quiros, 2000; Chauvet and Potter, 2001; 

Kim, Nelson and Piger, 2001, etc.) 

As an illustration, we apply our procedure to estimate a trivariate VAR including 

prices, employment and GDP both in the US and Mexico. For the subsample preceding 

the break our findings are similar to those of earlier studies based on a standard VAR 

approach in both countries, in the sense that the variables exhibit integer degrees of 

integration. On the contrary, the series are found to be fractionally integrated after the 

break, with the fractional differencing parameters being higher than 1 for the three 

series in the case of Mexico. 

 The present study can be extended in several ways. First, deterministic 

components like intercepts, linear trends or even non-linear structures (Caporale and 

Gil-Alana, 2007) can be included in the regression models, therefore allowing for 

fractionally integrated regression errors. Moreover, allowance can be made for multiple 

breaks, though, given the long memory characteristic of the processes analysed here, a 

long span of data would be required. Finally, the fractional polynomials used in the 

model specification adopted in this paper imply the existence of a pole or singularity in 
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the spectral density function at the zero frequency - this can clearly be generalised to the 

case of a pole at a frequency other than zero for some or all series considered. This 

could also lead to the analysis of seasonal multivariate fractional models, which to date 

have not been extensively investigated. 
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TABLE 1 
Probabilities of detecting the true break date in a model with Tb = T/2 and da = [0.2, 0.4, 

0.3]T and db = [0.6, 0.9, 1.4] T

First subsample Second subsample Sample size 
T/2 d1 d2 d3 d1 d2 d3 100 200 300 500 1000 

T/2-2 0.2 0.4 0.3 0.6 0.9 1.4 ----- 0.014 0.026 0.018 0.003
0.2 0.4 0.1 0.6 0.9 1.4 ----- ----- 0.010 ----- ----- T/2-1 
0.2 0.4 0.3 0.6 0.9 1.4 0.010 0.031 0.052 0.036 0.022
0.0 0.4 0.3 0.6 0.9 1.4 0.016 0.017 0.035 0.013 ----- 
0.2 0.2 0.1 0.6 0.9 1.4 ----- 0.010 ----- ----- ----- 
0.2 0.2 0.3 0.6 0.9 1.4 0.014 0.029 0.021 0.016 ----- 
0.2 0.4 0.1 0.6 0.9 1.4 0.014 0.017 0.020 0.007 ----- 
0.2 0.4 0.3 0.4 0.9 1.4 0.011 0.024 0.017 0.006 ----- 
0.2 0.4 0.3 0.6 0.7 1.4 0.016 0.020 0.016 0.011 ----- 
0.2 0.4 0.3 0.6 0.9 1.2 0.011 0.019 0.030 0.011 ----- 
0.2 0.4 0.3 0.6 0.9 1.4 0.031 0.146 0.338 0.776 0.913
0.2 0.4 0.3 0.6 0.9 1.6 ----- 0.025 0.020 ----- ----- 
0.2 0.4 0.3 0.6 1.1 1.4 0.012 0.017 0.013 0.013 ----- 
0.2 0.4 0.3 0.8 0.9 1.4 ----- 0.014 0.019 0.013 ----- 
0.2 0.4 0.5 0.6 0.9 1.4 ----- 0.026 0.019 0.011 ----- 
0.2 0.6 0.3 0.6 0.9 1.4 0.012 0.017 0.014 0.003 ----- 

 
 
 
 
 
 
 

T/2 

0.4 0.4 0.3 0.6 0.9 1.4 ----- 0.021 0.014 ----- ----- 
T/2+1 0.2 0.4 0.3 0.6 0.9 1.4 ----- 0.023 0.050 0.033 0.012
T/2+2 0.2 0.4 0.3 0.6 0.9 1.4 ----- 0.015 0.040 0.033 0.009

Percentage of cases with the break at T/2 - 2 0.081 0.072 0.051 0.032 0.003
Percentage of cases with the break at T/2 - 1 0.140 0.113 0.102 0.056 0.025

Percentage of cases with the break at T/2 0.599 0.648 0.710 0.942 0.951
Percentage of cases with the break at T/2 + 1 0.102 0.092 0.082 0.045 0.012
Percentage of cases with the break at T/2 + 2 0.079 0.075 0.055 0.015 0.009
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TABLE 2 
Probabilities of detecting the true break date in a model with Tb = T/4 and da = [0.8, 1.2, 

0.6] T and db = [0.2, 0.4, 0.2] T

First subsample Second subsample Sample size 
T/4-1 d1 d2 d3 d1 d2 d3 100 200 300 500 1000 

0.6 1.0 0.4 0.2 0.4 0.2 0.011 0.009 ----- ----- ----- 
0.6 1.0 0.6 0.2 0.4 0.0 0.010 ----- ----- ----- ----- 
0.6 1.0 0.6 0.2 0.4 0.2 0.018 0.016 0.016 ----- ----- 
0.6 1.0 0.8 0.2 0.4 0.2 0.015 ----- ----- ----- ----- 
0.6 1.2 0.4 0.2 0.4 0.2 0.015 0.015 0.011 ----- ----- 
0.8 1.2 0.8 0.2 0.4 0.2 0.020 0.056 0.073 0.053 0.024
0.6 1.2 0.8 0.2 0.4 0.2 0.010 0.010 0.017 ----- ----- 
0.6 1.4 0.4 0.2 0.4 0.2 0.012 ----- ----- ----- ----- 
0.6 1.4 0.6 0.2 0.4 0.2 ----- 0.013 0.013 ----- ----- 
0.8 1.4 0.8 0.2 0.4 0.2 0.010 ----- ----- ----- ----- 
0.8 1.0 0.4 0.2 0.4 0.2 0.016 0.022 0.015 ----- ----- 
0.8 1.0 0.6 0.2 0.4 0.2 0.018 0.053 0.064 0.061 0.025
0.8 1.0 0.8 0.2 0.4 0.2 0.015 0.017 0.011 ----- ----- 
0.8 1.2 0.4 0.0 0.4 0.2 ----- 0.010 ----- ----- ----- 
0.8 1.2 0.4 0.2 0.4 0.2 0.021 0.060 0.077 0.054 0.026
0.8 1.2 0.6 0.0 0.4 0.2 0.010 0.012 0.013 ----- ----- 
0.8 1.2 0.6 0.2 0.2 0.2 ----- 0.011 ----- ----- ----- 
0.8 1.2 0.6 0.2 0.4 0.0 ----- 0.012 0.015 ----- ----- 
0.8 1.2 0.6 0.2 0.4 0.2 0.020 0.136 0.287 0.565 0.847
0.8 1.2 0.6 0.2 0.6 0.4 ----- 0.014 ----- ----- ----- 
0.8 1.2 0.6 0.2 0.6 0.2 ----- ----- 0.013 0.011 ----- 
0.8 1.2 0.6 0.4 0.4 0.2 ----- 0.013 ----- ----- ----- 
0.8 1.2 0.8 0.2 0.4 0.2 0.014 0.049 0.044 0.042 0.024
0.8 1.4 0.4 0.2 0.4 0.2 0.012 0.013 0.010 ----- ----- 
0.8 1.2 0.8 0.2 0.4 0.2 0.014 0.029 0.040 0.048 0019 
1.0 1.0 0.4 0.2 0.4 0.2 0.011 ----- ----- ----- ----- 
1.0 1.0 0.6 0.2 0.4 0.2 ---- 0.017 ----- ----- ----- 
1.0 1.2 0.4 0.2 0.4 0.2 0.011 ----- 0.013 ----- ----- 
1.0 1.2 0.6 0.2 0.4 0.2 0.016 0.033 0.061 0.045 0.024
1.0 1.2 0.8 0.2 0.4 0.2 0.014 0.016 0.013 ----- ----- 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

T/4 

1.0 1.4 0.4 0.2 0.4 0.2 0.010 ----- ----- ----- ----- 
Percentage of cases with the break at T/4 - 2 0.017 0.005 0.003 0.002 0.000
Percentage of cases with the break at T/4 - 1 0.013 0.005 0.003 0.005 0.001

Percentage of cases with the break at T/4 0.750 0.878 0.983 0.992 0.998
Percentage of cases with the break at T/4 + 1 0.013 0.007 0.004 0.001 0.001
Percentage of cases with the break at T/4 + 2 0.007 0.0067 0.004 0.000 0.000
 
 
 
 
 

 19



 
 

 

TABLE 3 
Probabilities of detecting the true break in a model with Tb = 3T/4 and da = [0.6, 0.3, 0.5]T 

and db = [0.2, 0.9, 0.5] T

First subsample Second subsample Sample size 
 d1 d2 d3 D1 d2 d3 100 200 300 500 1000 

3T/4-2 0.6 0.3 0.5 0.2 0.9 0.5 ----- ----- 0.016 0.030 0.031
3T/4-1 0.6 0.3 0.5 0.2 0.9 0.5 ----- ----- 0.023 0.033 0.056

0.4 0.1 0.4 0.2 0.9 0.5 ----- 0.014 0.012 ----- ----- 
0.6 0.3 0.5 0.0 0.7 0.3 0.010 ----- ----- ----- ----- 
0.6 0.3 0.5 0.0 0.7 0.5 0.017 0.022 0.013 ----- ----- 
0.6 0.3 0.5 0.0 0.9 0.3 0.015 0.050 0.041 0.050 0.019
0.6 0.3 0.5 0.0 0.9 0.5 0.012 0.012 0.010 ----- ----- 
0.6 0.3 0.5 0.0 1.1 0.3 ----- 0.014 0.012 ----- ----- 
0.6 0.3 0.5 0.0 1.1 0.7 ----- 0.016 ----- ----- ----- 
0.6 0.3 0.5 0.2 0.7 0.5 0.010 0.040 0.56 0.040 0.020
0.6 0.3 0.5 0.2 0.7 0.7 ----- 0.017 ----- ----- 0.021
0.6 0.3 0.5 0.2 0.9 0.3 0.011 0.036 0.058 0.046 ----- 
0.6 0.3 0.5 0.2 0.9 0.5 0.019 0.100 0.202 0.522 0.759
0.6 0.3 0.5 0.2 0.9 0.7 ----- 0.026 0.036 0.050 0.012
0.6 0.3 0.5 0.2 1.1 0.3 0.011 0.012 0.015 ----- ----- 
0.6 0.3 0.5 0.2 1.1 0.5 0.010 0.031 0.037 0.045 0.013
0.6 0.3 0.5 0.2 1.1 0.7 ----- ----- 0.010 ----- ----- 
0.6 0.3 0.5 0.4 0.9 0.3 0.010 ----- 0.013 ----- ----- 
0.6 0.3 0.5 0.4 0.9 0.5 ----- 0.032 0.028 ----- 0.023
0.6 0.3 0.5 0.4 0.9 0.7 ----- 0.011 ----- ----- ----- 
0.6 0.3 0.5 0.4 0.9 0.7 ----- ----- 0.034 ----- ----- 
0.6 0.3 0.5 0.4 1.1 0.3 ----- ----- 0.013 ----- ----- 
0.6 0.3 0.7 0.2 0.9 0.5 ----- 0.013 ----- ----- ----- 

 
 
 
 
 
 
 
 
 
 
 

3T/4 

0.8 0.3 0.5 0.2 0.9 0.5 ----- 0.010 ----- ----- ----- 
0.6 0.3 0.5 0.2 0.7 0.5 ----- ----- 0.011 ----- ----- 3T/4+1 
0.6 0.3 0.5 0.2 0.9 0.5 ----- 0.017 0.022 0.037 0.059

3T/4+2 0.6 0.3 0.5 0.2 0.9 0.5 ----- ----- 0.011 0.024 ----- 
Percentage of cases with the break at 3T/4 - 2 0.074 0.061 0.053 0.032 0.037
Percentage of cases with the break at 3T/4 - 1 0.108 0.084 0.084 0.044 0.071

Percentage of cases with the break at 3T/4 0.654 0.715 0.730 0.864 0.871
Percentage of cases with the break at 3T/4 + 1 0.093 0.085 0.076 0.034 0.065
Percentage of cases with the break at 3T/4 + 2 0.069 0.055 0.057 0.016 0.056
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TABLE 4 
Probabilities of detecting the true break date in a model with Tb = T/2 and da = [0.2, 0.4, 

0.3] T and db = [0.6, 0.9, 1.4] T and a VAR(1) structure for the d-differenced process 
First subsample Second subsample Sample size 

T/2 d1 d2 d3 d1 d2 d3 100 200 300 500 1000 
T/2-1 0.2 0.4 0.3 0.6 0.9 1.4 ----- ----- 0.010 0.023 0.052

0.0 0.2 0.1 0.4 0.7 1.2 0.024 0.012 ----- ----- ----- 
0.0 0.2 0.1 0.4 0.7 1.4 0.015 ----- ----- ----- ----- 
0.0 0.2 0.1 0.6 0.7 1.2 0.016 ----- ----- ----- ----- 
0.0 0.2 0.1 0.6 0.9 1.4 0.011 0.035 0.026 0.020 ----- 
0.0 0.2 0.3 0.4 0.7 1.2 0.012 0.012 0.010 ----- ----- 
0.0 0.2 0.3 0.4 0.7 1.4 ----- 0.011 ----- ----- ----- 
0.0 0.2 0.3 0.6 0.9 1.4 ----- 0.018 0.026 0.018 ----- 
0.0 0.4 0.1 0.6 0.7 1.2 0.010 ----- ----- ----- ----- 
0.0 0.4 0.1 0.6 0.9 1.4 ----- 0.017 0.023 0.013 ----- 
0.0 0.4 0.3 0.4 0.7 1.2 0.013 0.017 ----- ----- ----- 
0.0 0.4 0.3 0.6 0.9 1.4 ----- 0.029 0.032 0.047 ----- 
0.2 0.2 0.1 0.6 0.9 1.4 ----- 0.011 0.011 0.011 ----- 
0.2 0.2 0.3 0.4 0.7 1.2 0.014 0.013 ----- ----- ----- 
0.2 0.2 0.3 0.4 0.7 1.4 0.012 ----- ----- ----- ----- 
0.2 0.2 0.3 0.6 0.9 1.4 0.010 0.038 0.057 0.089 0.044
0.2 0.4 0.1 0.6 0.9 1.4 ----- 0.014 ----- 0.010 ----- 
0.2 0.4 0.3 0.4 0.7 1.2 ----- 0.014 0.032 0.027 ----- 
0.2 0.4 0.3 0.4 0.7 1.4 ---- 0.012 0.016 0.012 ----- 
0.2 0.4 0.3 0.6 0.7 1.2 ----- ----- 0.015 ----- ----- 
0.2 0.4 0.3 0.6 0.9 1.4 ----- 0.052 0.161 0.422 0.757
0.2 0.4 0.3 0.6 0.9 1.6 ----- ----- 0.011 ----- ----- 
0.2 0.4 0.3 0.8 1.1 1.6 ----- ----- ----- 0.013 ----- 
0.2 0.4 0.5 0.6 0.9 1.4 ----- ----- 0.011 0.019 ----- 
0.2 0.6 0.3 0.4 0.7 1.2 ----- 0.011 ----- ----- ----- 
0.2 0.6 0.3 0.6 0.9 1.4 ----- 0.025 0.042 0.052 0.018
0.4 0.4 0.3 0.6 0.9 1.4 ----- ----- 0.021 0.015 ----- 
0.4 0.4 0.5 0.6 0.9 1.4 ----- ----- 0.015 ----- ----- 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

T/2 

0.4 0.6 0.3 0.6 0.9 1.4 ----- ----- 0.015 ----- ----- 
T/2+1 0.2 0.4 0.3 0.6 0.9 1.4 ----- ----- 0.010 0.017 0.031
T/2+2 0.2 0.4 0.3 0.6 0.9 1.4 ----- ----- ----- ----- 0.025

Percentage of cases with the break at T/2 - 2 0.032 0.012 0.015 0.016 0.012
Percentage of cases with the break at T/2 - 1 0.068 0.046 0.061 0.046 0.060

Percentage of cases with the break at T/2 0.448 0.582 0.658 0.879 0.865
Percentage of cases with the break at T/2 + 1 0.037 0.042 0.043 0.042 0.038
Percentage of cases with the break at T/2 + 2 0.015 0.018 0.023 0.020 0.026
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TABLE  5 

Estimated model using white noise disturbances. The US case 

First subsample Second  subsample 

d1 d2 d3

Break date
d1 d2 d3

1.01 
(0.84, 1.32) 

1.00 
(0.81, 1.26) 

1.00 
(0.80, 1.30)

1974Q4 1.50 
(1.21, 1.72)

1.45 
(1.14, 1.65) 

1.52 
(1.19, 1.77)

d1 is the order of integration of employment; d2 is the order of integration of CPI, and d3 is the order of 
integration of GDP. 
 

 

TABLE  6 

Estimated model using VAR(1) disturbances. The US case 

First subsample Second  subsample 

d1 d2 d3

Break date
d1 d2 d3

0.02 
(-0.31, 0.43) 

0.00 
(-0.37, 0.55) 

0.00 
(-0.22, 0.51)

1974Q4 0.66 
(0.44, 0.98) 

0.25 
(-0.11, 0.43) 

0.43 
(0.11, 0.69) 

VAR(1) coefficients  VAR(1) coefficients 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−

−

008.1071.0102.0
067.0968.0372.0
032.0025.0908.0

 

 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−−
−

−

065.1043.0019.0
288.0806.0224.0
125.0063.0524.0
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TABLE  7 

Estimated model using white noise disturbances. The Mexican case 

First subsample Second  subsample 

d1 d2 d3

Break date
d1 d2 d3

1.06 
(0.90, 1.21) 

0.97 
(0.88, 1.16) 

0.99 
(0.78, 1.23)

1959 1.52 
(1.30, 1.81)

1.77 
(1.37, 1.98) 

1.37 
(1.03, 1.54)

 

 

TABLE  8 

Estimated model using VAR(1) disturbances. The Mexican case 

First subsample Second  subsample 

d1 d2 d3

Break date
d1 d2 d3

0.13 
(-0.32, 0.39) 

0.03 
(-0.31, 0.27) 

0.00 
(-0.41, 0.37)

1962 1.20 
(0.98, 1.34) 

1.15 
(0.92, 1.44) 

1.18 
(0.99, 1.40) 

VAR(1) coefficients  VAR(1) coefficients 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−

−

827.0025.0577.0
548.0781.0408.0

099.0046.0914.0
 

 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−
−

080.0025.0452.0
876.1620.0176.6
101.0024.0477.0
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