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Abstract 
In this paper we examine several approaches to detecting changes in the adjustment coefficients in 
cointegrated VARs. We adopt recursive and rolling techniques as mis-specification tests for the detection of 
non-constancy and the estimation of the breakpoints. We find that inspection of the recursive eigenvalues is 
not useful to detect a break in the adjustment coefficients, whilst recursive estimation of the coefficients can 
only indicate non-constancy, but not the exact breakpoint. Rolling estimation is found to perform better in 
detecting non-constancy in the parameters and their true value after the breakpoint. However, it only 
detects a region where the break is likely to occur. To overcome the drawbacks of these techniques, we use 
an OLS-based sequential test. To assess its performance, we derive its critical values for different sample 
sizes. Monte Carlo evidence shows that the test has reasonably good power even in moderately sized 
samples and that it can be used as a graphical device, as it shows a kink at the breakpoint. As a benchmark 
we use the Kalman filter, of which we analyse the performance on the same data generating processes 
(DGP). 
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1  Introduction 
 

As a result of phenomena like oil shocks and sudden policy changes, econometric models 

with constant coefficients have been found to perform relatively poorly both for 

forecasting and policy analysis purposes. Changes in the coefficients of econometric 

models have normally described as structural breaks. Such problems have been addressed 

using models with continuous parameter changes such as the Kalman filter, outlier 

models (i.e. sudden shocks may produce outliers), switching regression models with 

abrupt or gradual switches (Markov-Switching, smooth transition models). However, 

before using any of these approaches it is customary to try to detect whether such 

structural changes have occurred. 

 

 The underlying motivation for this paper is a simple apparent contradiction, which exists 

in two major branches of the applied econometric literature. On the one hand we have a 

very large literature which attests to the pervasive presence of structural breaks in the real 

world - this is not simply the formal econometric literature (Perron 1989, Hansen 1992, 

Lumsdaine and Papell 1997, Stock and Watson 1993 among many others), but also 

includes the general world of economics (Lucas 1988) where we see such evident 

structural breaks as the creation of the European Monetary Union, the unification of 

Germany or the restructuring of the financial system which happened throughout the 

1980’s. Contradicting this, however, we find many examples of stable long-run 

relationships in the form of co-integrating vectors which appear to exist and remain stable 

despite the presence of such large changes.  

 

The contention of this paper is that these two stylised facts can be reconciled if we 

recognise that many of the most important structural changes come in the form of a 

changing causal structure. So major changes may occur while the basic long-run 

relationships remain stable. A good example of this is the European Monetary Union. 

There has been a long established relationship between national price levels and 

currencies which has been widely tested in the context of the purchasing power parity 

(PPP) hypothesis. Under floating exchange rates it is usually assumed that the exchange 
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rate will move to equalise prices between any two countries. When a monetary union is 

formed this obviously no longer happens, as the exchange rate is irrevocably fixed. 

However, since PPP does not disappear, the causal structure must change so that the price 

levels react to each other to remain in line. The long-run relationship does not change, but 

the way the system works in a causal sense does. In a modern cointegration framework 

(Johansen 1988, 1991) this is governed by the α  matrix. It is structural change in this 

part of the system which we wish to focus on in this paper. 

 

Within the cointegration framework several tests for structural change have been 

proposed. Perron (1989) first showed the importance of such tests, arguing that if there is 

a break in the deterministic trend, unit root tests tend to under-reject the null of a unit 

root. Taking the breakpoint as exogenous, he suggests a modification of the Dickey-

Fuller test with three different types of deterministic trend functions. These allow, in turn, 

for a one-off change in the intercept, a change in slope of the trend, and both of them. 

The null of a unit root is then tested against the alternative of a broken trend stationary. 

After Perron’s (1989) seminal paper several testing methods have been developed where 

the break point is assumed to be unknown. This is often referred to as an endogenous 

breakpoint. These procedures comprise recursive (using sub-samples), rolling (using a 

fixed-size window that moves along the sample), and sequential methods (including 

switching dummies in the full sample).  

 

Zivot and Andrews (1992) use a sequential unit root test, derive its distribution, and 

tabulate its critical values. Banerjee, Lumsdaine and Stock (1992) use various recursive 

and sequential tests which endogenise the breakpoint. They consider the recursive 

maximum and minimum DF test and the difference between them deriving the 

asymptotic distribution of the recursive and sequential test statistics and tabulating the 

relative critical values. Lumsdaine and Papell (1997) extend the analysis to the case of 

multiple breaks with unknown breakpoints. 

  

This set of procedures for unit root tests has been extended to the tests for cointegration. 

Here we need to distinguish between breaks in the relationships and breaks in the 
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individual variables. Gregory, Nason and Watt (1996) study the sensitivity of the ADF 

test for cointegration in the presence of a single permanent break. Using Monte Carlo 

methods they show that the presence of a break results in under-rejection of the null of no 

cointegration implying the inappropriateness of constant parameter cointegration analysis 

in such cases. A simple diagnostic test for structural change is suggested by Hao and 

Inder (1996), who extend the CUSUM test to the case of non-stationary regressors 

considering the FM-OLS residuals and replacing the error variance with the long-run 

variance estimate. They derive the asymptotic distribution of the FM-OLS based 

CUSUM test statistics and tabulate the critical values. 

 

Hansen (1992) derives the asymptotic distribution of a LM test for parameter instability 

against several alternatives in the context of cointegrated regression models. Quintos and 

Phillips (1993) develop a test for the null of parameter constancy in cointegrated 

regressions against the alternative that the coefficients follow a random walk. Gregory 

and Hansen (1996) propose several tests for the null of no cointegration against the 

alternative of cointegration in the presence of a possible break in the intercept or the 

slope coefficients in the cointegrating relation at an unknown point in time.  

 

All the testing procedures considered so far are performed within a FM-OLS environment 

and are therefore suitable for FM models or single equations. In cointegrated systems a la 

Johansen (1988, 1991) we can observe four types of structural changes of which three 

occur in the long-run structure of the model. To explain this let 

 

1.1   tktktktt XXXX εαβ ++∆Γ++∆Γ=∆ −+−−−
'

1111 ...

 

be the usual cointegrated model in error correction form where Xt is a p-dimensional 

matrix of non-stationary I(1) variables, Γi is the matrix of short-run parameters, the error 

term εt~ iidN(0,Σ), β is the cointegrating matrix and α is the matrix of adjustment 

coefficients that determines the long-run causal structure, and αβ’=Π  has reduced rank r 

< p. It is convenient to rewrite the model as  
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1.2  , tttt ZZZ εαβ ++Θ= 2
'

10

 

where Θ= (Γ1,….,Γk-1), Z0t= ∆Xt, Z1t= , Z)',...,( '
1

'
1 +−− ∆∆ ktt XX 2t=Xt-k. Using this 

parameterisation we can see, first of all, that changes may occur over time in the short-

run parameters Θ. This case does not give rise to any complications and can in general be 

dealt with by redefining Z1 and Θ. The other three types of changes have different 

implications for the statistical reliability of the model, and they concern the long-run 

parameters α and β (suitably normalised) as well as the rank of the matrix Π=αβ’.  

 

Among others, Hansen and Johansen (1999) suggest graphical procedures to evaluate the 

constancy of the long-run parameters of the model. They look at the time paths of the 

recursively estimated eigenvalues and argue that by inspecting them it is possible to 

identify the breakpoints. Furthermore, they show that fluctuation tests like the one by 

Ploberger, Kramer and Kontrus (1989) and the LM-test by Nyblom (1989) can be applied 

to test the constancy of long-run parameters in cointegrated VARs. Seo (1998) defines 

LM tests statistics for structural changes in both the cointegrating vector and the vector of 

adjustment parameters for both the cases of a known and unknown breakpoint. Using 

Monte Carlo methods he finds that the tests for structural change of the cointegrating 

vector have a non-standard distribution that is equal to the one found by Hansen (1992) 

using the FM technique. The tests on the vector of loading weights (the adjustment 

coefficients) are found to have the same asymptotic distribution for models with 

stationary variables.1   

 

Consider again the cointegrated model in error correction form which this time 

incorporates time varying α and β. 

 

1.3  , tttt ZttZZ εβα ++Θ= 2
'

10 )()(

 

                                                           
1 Similar results are obtained by Andrews and Ploberger (1994) for the test on the matrix of loading 
weights, but they find a different (even though still non-standard) distribution for the tests for constancy of  
the parameters in cointegrating relations.   
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Within this framework there are three possible types of structural change in the model: 

 

A) α(t)β (t)’ = (αβ1 I1t + αβ2 I2t +……+ αβk Ikt) 

B) α(t)β (t)’ = (α1β I1t + α2β I2t +……+ αkβ Ikt)  

C) α(t)β (t)’ = (α1β1I1t + α2β2 I2t +……+ αkβk Ikt) 

 

where Ijt (j = 1,...,k) are indicators. 

The first case amounts to a shift in the cointegrating coefficients. This may take the form 

of a shift in the parameter attached to one or more variables, and therefore a change in the 

cointegrating space, but may also take the extreme form of a breakdown of the long-run 

relationship. Case B is that of a structural break in the matrix of adjustment coefficients, 

and implies a change in the long-run causal structure of the model but not in the 

cointegrating space. A relevant example would be an attempt on the part of the monetary 

authorities to change the structure of the economy using specific policies. Case C 

involves a simultaneous shift in both the cointegrating and the adjustment coefficients. 

 

The key feature to note here is that almost all the work cited above has focused on 

analysing structural change of the form given by model A, rather than model B. Yet we 

believe structural change of the form given by B is both more empirically relevant and 

more interesting from a policy perspective. However, we have very little insight into how 

such change will affect our estimation techniques, how to detect it or what its small 

sample implications are. 

 

In this paper we concentrate on such cases and investigate, using Monte Carlo methods, 

the performance and the distribution of the full sample FIML estimates for the αs when 

there is a break in these coefficients. We will compare the performance of recursive as 

well as rolling FIML techniques for detecting such changes occurring at different points 

in time and in samples of different size. As in Hansen and Johansen (1999), we will 

regard the recursive and rolling estimation techniques as misspecification tests for the 

detection of possible instabilities in the adjustment coefficients and of the breakpoints.  
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Our Monte Carlo evidence shows that in the case of a break in the αs, recursive 

techniques like the one of Hansen and Johansen (1999) that rely upon the inspection of 

recursive eigenvalues are not very useful, as they tend to highlight any sort of problems 

that may be present in the system. Also, as the null hypothesis is that no break occurs,  

the inspection of the recursively-estimated coefficients may prove useful in showing their 

non-constancy, but still it will not be accurate enough to detect the breakpoints in 

individual replications.  

 

Rolling techniques perform relatively better in that they detect the non-constancy of the 

parameters, providing also estimates of the parameter value after the break. However, 

they are not entirely satisfactory, since they only detect the region where the break is 

likely to occur, and they are too sensitive to the size of the rolling window and the 

magnitude of the break. To overcome such a problem we try two alternative approaches, 

finding that they are more efficient in detecting the breakpoints as well as providing the 

true value of the parameters of interest after the break has occurred.  

 

The first testing procedure consists in incorporating into the system in error correction 

form a sequentially switching dummy for the speed of adjustment parameter, defined so 

that it becomes “more” statistically significant when it corresponds exactly to the break in 

the data. We will derive the critical values for the null of no break for different sample 

sizes and will examine the statistical properties of the test. We will see that such a 

technique has relatively high power, even in the case of a small break.We will then 

compare its performance to that of a time-varying version of the Kalman filter for the 

estimation of the parameters of interest, this being a well-established estimation 

methodology for detecting instabilities of parameters and breakpoints. Note also that the 

properties of the Kalman filter are such that it can be used in the case of multiple breaks 

or gradually changing coefficients.  

 

The layout of the paper is the following: In the next section we will introduce the DGPs 

used for the Monte Carlo experiment. Section 3 and 4 present a sequential test for 

structural breaks in the causality of cointegrated VARs and the Kalman filter, as they will 
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be used in our experiment. The results are discussed in section 5. A brief summary and 

final remarks conclude. 

 

2 The Monte Carlo experiment 

We have designed the DGPs according to two simple criteria: model dimension and 

breakpoint of the causal structure. For better management of the experiment and in order 

to concentrate only on the long-run causal structure of the models, we have assumed 

constant cointegrating rank and absence of breaks in the cointegrating coefficients. We 

have generated a basic cointegrated bivariate error correction model with dynamics that 

obey a simple autoregressive process of order one (AR(1)), and have examined the 

performance of the procedures under investigation allowing for the possibility of three 

different points in time where the causal structure changes2. The simulated model is of 

the following form: 

 

2.1  tttt eXXX +Π+Γ∆+=∆ −− 11µ   

 

that under cointegration can be rewritten as 

 

2.2   tttt eXXX ++Γ∆+=∆ −− 1
'

1 αβµ

 

In particular we consider the case where  

 

2.3   ;
2

1
   ,

0
25.0

   ,
3.00

03.0
,

0
0

⎥
⎦

⎤
⎢
⎣

⎡
−

=⎥
⎦

⎤
⎢
⎣

⎡−
=⎥

⎦

⎤
⎢
⎣

⎡
=Γ⎥

⎦

⎤
⎢
⎣

⎡
= βαµ

 

and allow the matrix α to switch to 

 

                                                           
2 Note that while a bivariate VECM can be useful to analyse several economic issues (i.e. interest rates 
parity, Present Value models), the simulated DGP is obviously a simple one and does not allow for 
generalisations of the results outside the context of the model itself.       
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2.4   ⎥
⎦

⎤
⎢
⎣

⎡−
=

125.0
25.0

*α

 

implying that the matrix Π=αβ′ will switch to Π*=α*β′ as follows: 

 

2.5   .
25.0125.0

50.025.0
*           ,

00
50.025.0

⎥
⎦

⎤
⎢
⎣

⎡
−

−
=Π⎥

⎦

⎤
⎢
⎣

⎡−
=Π

 

The reason for considering bivariate processes is that they are relatively easy to work 

with and are frequently used in empirical research (e.g. Purchasing Power Parity, 

Uncovered Interest Parity), while higher dimensional processes would create problems of 

experiment management and interpretation3. In each of these processes we have 

considered the simple case of a unique break, consisting of a zero loading weight 

switching to a non-zero value at some point in time4. For the FIML-based analysis and 

the Kalman filter we have generated 1000 samples of size T+50, always discarding the 

first 50 observations5. The data generating processes (DGPs) differ from each other in the 

points at which the break occurs. These are ¼, ½, and ¾ of the samples. We will 

henceforth identify these three basic DGPs as DGP1, DGP2, and DGP3 respectively. For 

each of the DGPs, four sample sizes were considered, that is T= 50, 100, 200, and 400. 

                                                           
3 Toda and Phillips (1993a,1993b) have demonstrated that, unless so-called sufficient cointegration rank 
conditions are met, the usual χ2 statistics for weak exogeneity (long-run causality) for the matrix α may be 
invalid, thus invalidating any causal inference. However, we assume that these conditions are met here as 
we simulate a model with a stable cointegrating rank. The practitioner should verify that conditions for 
sufficient cointegration are met before inferring the causal structure of the model.  
 
4 Notice that, in general an unmodelled change in the parameters of a regression model  may have some 
effect on the residuals. In our simulated DGPs this might or might not necessarily be the case, as, for 
example, residual autocorrelation is mostly associated to changes in the deterministic terms (see, e.g., 
Perron 1989), which, however, are not considered here. We assume that only a relatively small change in 
one of the adjustment coefficients has occurred. The more likely problem that this causes is that full sample 
estimates of the coefficient in question will be a weighted average of the value of the coefficient in the two 
regimes, without necessarily leaving evident traces on the residuals.     
 
5 Notice that discarding the first 50 observations has the implication that the starting value of our simulated 
random walks will be the sum of 50 iid random variables and therefore will not be zero anymore. However, 
this should not constitute a problem as in the OLS and FIML estimations we have always included an 
intercept term to account for the non-zero intercepts.  
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To derive the critical values and the statistical properties of the sequential test we have 

carried out 2500 replications.  

 

In the FIML analysis we will perform various types of estimation. Specifically, we will 

first estimate full sample models performing the usual Johansen (1988, 1991) 

cointegration test without checking the chosen of model for misspecification, obtaining 

the estimates of the parameters of interest in the models. The objective is to investigate 

the statistical properties of the FIML estimates for the loading weights in the presence of 

a unique and unmodelled permanent break for different sample sizes and breakpoints. We 

will then re-estimate the model recursively to investigate whether the FIML technique is 

able to detect the presence of the breaks via the inspection of the recursive eigenvalues 

and the recursive estimates. Furthermore, we will estimate the loading weights from the 

model in error correction form using OLS, where the cointegrating relation is the one 

obtained recursively using FIML, and we will investigate their statistical significance in 

all the recursions for all the sample sizes. Lastly, we will perform a rolling estimation of 

the cointegrating coefficients and the adjustment parameters, infer the statistical 

properties of the FIML estimator in small samples, and investigate the possibility of 

detecting the break in the DGPs using such a technique. In our experiments, the initial 

sample size for the recursive estimation is 20. For the rolling estimation the sizes of the 

moving window are 30, 40 and 50 data points. 

 

Next, we will use an OLS-based sequential test that is based on defining a sequentially 

switching dummy for the loading weights in order to detect the occurrence of a break and 

the breakpoint itself. We will also report the results obtained on the same DGPs using a 

time-varying version of the Kalman filter. The latter will be used as a benchmark to 

compare the relative performance of the sequential-test- and the FIML-based procedures 

in the case of a shift in the causality between variables in the model. These two last 

techniques are described in the following sections. 

 

All the simulations and the estimation have been carried out using codes written in 

GAUSS. 
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3 A sequential test for structural change 

Consider the following cointegrating VAR in error correction form, 

 

3.1  tktktktt eXXXX ++∆Γ++∆Γ+=∆ −+−−− )'(... 1111 βαµ  

 

where β′Xt-k is the stationary linear combination of the non-stationary levels that is 

assumed to be stable over time, and α represents the speed at which the variables in {Xt} 

adjust to disequilibrium. We consider the case where the matrix α switches over time to 

some matrix 1α . As an example consider the simple bivariate case where  

 

3.2  
1

11 1 11
1
21

,                     .
0

α α
α α

α
⎡ ⎤⎡ ⎤

= = ⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦

,  1
21 0.α ≠  

 

Such a switching may be caused by many phenomena. Consider the case of the UK 

joining the exchange rate mechanism (ERM) at some point in time. Suppose that we are 

estimating a simple model of uncovered interest parity between the rates of Germany and 

UK. Assuming that the two rates are cointegrated before and after the entry of the UK 

into the ERM, it is reasonable to expect that, from the date at which the UK joins the 

ERM, its rates start being affected by the German ones. In this case, in the UK equation, 

the coefficient of the speed of adjustment towards equilibrium (in our example α21) 

would switch from a zero to a non-zero value.  

 

The testing procedure consists in estimating such a model including a dummy that should 

be multiplied by the error correction term. This dummy variable is then switched on 

(sequentially) for sub-samples of the data. The strategy consists in observing for which 

sub-period this switching dummy is statistically “more” significant.  

 

The estimated model will be: 
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3.3 
)(

)'(*)'(... 11111

δ
βαβαµ

≥=
+++∆Γ++∆Γ+=∆ −−+−−−

tID
eXDXXXX

t

tttktktktt  

 

where δ0 ≤ δ ≤ T-δ0. In our case we take δ0=2 and T is the sample size. For fixed and 

identified β, to facilitate our task we can estimate the VECM equation by equation, so as 

to focus on one row of α at a time. 

 

For each of the αi, we consider the test statistics for the null hypothesis of no-break of the 

form 

 

3.4  || max δδ
τ t

D∈
=  

 

where tδ is the t-statistic associated with the dummy Dt. As there are no tabulated critical 

values for such a test statistics, we had to derive the 90% and 95% critical values for the 

null of no break for sample sizes of 50, 100, 200, 400, which are displayed in Table 4.6 It 

is clear that this testing technique can only be used to detect a single permanent shift in 

the coefficient to which it is attached. By contrast, when the prior is that there are 

multiple breaks and when the breakpoints are in general unknown, it could be preferable 

to use a time-varying technique such as the Kalman filter outlined below. 

 

4 Kalman filtering 

The Kalman (1960, 1963) filter technique is adopted to estimate linear models with time-

varying coefficients7. This class of models consists of two equations: the transition 

equation, describing the evolution of the state variables, and the measurement equation, 

describing how the observed data are generated from the state variables. This approach is 

extremely useful for investigating the issue of parameter constancy, because it is an 

updating method producing estimates for each time period based on the observations 
                                                           
6 It is worth highlighting that the distribution of τ depends among other things on the value of the startup 
parameter δ0. This dependence however, should disappear as T becomes larger.   
 
7 For a more detailed account of Kalman filtering, see Cuthbertson et al (1992). 
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available up to the current period. It is important to realise that recursive OLS estimation 

(or moving window OLS estimation) is not a suitable technique to use here. Recursive 

estimation is essentially a test of structural stability. We can set up as the null the 

hypothesis that the parameters are constant and see if it can be rejected through recursive 

estimation. But as the underlying assumption of OLS is always that the parameters are 

constant, recursive estimation does not provide a consistent estimate of a time-varying 

parameter. 

 

Let the Kalman Filter measurement equation be: 

 

4.1   ),0(~              t ttttt HNxy εεθ +=

 

and the transition equation be: 

 

4.2  )QN(0,~                 t1 ηηθθ ttt F += −  

 

with the initial conditions given by: 

 

4.3   ),(~ 0
2

00 PN σθθ

 

When F=I and Qt=0, the model is reduced to the standard normal OLS regression model. 

The matrices F, Ht and Qt are assumed to be known, and the problem is obtaining 

estimates of θt using information It available up to time t. The process of evaluating the 

conditional expectation of θt given It is known as filtering. The evaluation of θt given Is, 

with s>t, is instead referred to as smoothing, whereas the estimation of θt with s<t is 

called prediction. Kalman (1960) derived the basic results to obtain filtered and smoothed 

estimates of θt recursively. The prediction equation is given by: 

 

4.4    11/
ˆˆ

−− = ttt Fθθ
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and the covariance matrix is defined as: 

 

4.5   tttt QFFPP += −− '11/

 

Finally, the updating formulae are given by: 

 

4.6    )')(ˆ'(ˆˆ
1/1/1/1/ ttttttttttt HxPxxyxP +−+= −−−− θθθ

 

and 

 

4.7   P P P x xP x P x Ht t t t t t t t t t= − +− − − −/ / /
'

/' / ( '1 1 1 1 )

Before starting the estimation process, one has to specify the vector of prior coefficients 

θt and the matrix Qt. By estimating the long-run relationship in this way one obtains a 

vector containing the evolving state coefficients which show whether the relative 

importance of the factors driving the dependent variable has changed over time. 

 

In our case we start from a model in error correction form such as: 

 

4.8   tkttktktt eXXXX ++∆Γ++∆Γ+=∆ −+−−− '... 1111 βαµ , 

 

where as usual et are assumed to be iid N(0,Σ), assume the Γi and β are not time-varying, 

and estimate equation by equation each of the adjustment coefficients contained in the 

matrix tα  with the Kalman filter (so that θ in equation 4.1 and above is equal to α here), 

under the assumption that each of these coefficients follows a random walk process such 

that  

 

4.9    )N(0, is        , 2
1 Itttt συυαα += −
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Using this technique we will obtain the time path of the adjustment coefficients for all the 

DGPs considered. This should reveal changes in the values of the adjustment coefficients 

as well as the unknown breakpoints. 

 

5 Results 

We start with the FIML estimation using the whole sample. The first result concerns the 

estimates of the cointegrating coefficients denoted as β1 and β2 respectively in Table 1. 

These coefficients (standardised with respect to β1) are always estimated accurately by 

the FIML-based procedure in all the DGPs and for all the sample sizes. This indicates 

that, in the case under investigation, the presence of a break in the adjustment coefficients 

does not seem to affect the cointegration test or the estimation of the matrix of 

cointegrating coefficients. As expected, the estimates of α2 are a weighted average of the 

two values that α2 takes before and after the break. These are never too close to 0.125, 

that is the value that α2 takes after the break, and in some cases (mostly in DGP3) they 

reach numerical values close to zero.  

When it comes to accounting for breaks 8 in the long-run causality structure of a system, 

the Johansen procedure fails to do so for breaks in the three DGPs in the case of smaller 

samples (T= 50). In the case of the samples of size 100 it fails to account for the breaks in 

DGP2 and DGP3. In the case of DGP1 the hypothesis of a coefficient that is significantly 

different from zero would not be rejected. For the samples of larger dimensions (200 and 

400) the results are different depending on the point in time at which the break occurs. 

 
Table 1.              Full Sample FIML Estimates (1000 replications) 

 DGP1 DGP2 DGP3 

 Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. 

T= 50       

α1 -0.278 0.1919 -0.2663       0.056 -0.294 0.2117 

α2 0.0982 0.1105 0.0633 0.0623 0.0191 0.117 

β1 1 - 1 - 1 - 

β2 -1.9674 0.3113 -2.0089 0.1417 -1.9573 0.3775 

T= 100       

                                                           
8By failing to account for breaks in the full sample estimation, we mean that the coefficient estimates are 
distributed such that it would not be possible to reject the hypothesis of a zero coefficient.  
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α1 -0.2558 0.0375 -0.2542 0.0381 -0.2555 0.038 

α2 0.0894 0.043 0.0539 0.0411 0.0259 0.0376 

β1 1 - 1 - 1 - 

β2 -2.0096 0.0913 -2.0069 0.073 -2.0035 0.0627 

T= 200       

α1 -0.2508 0.0253 -0.2495 0.0252 -0.2508 0.0258 

α2 0.0852 1.0298 0.0523 0.0289 0.0248 0.0266 

β1 1 - 1 - 1 - 

β2 -2.0016 0.0437 -2.0036 0.0369 -2.0025 0.0319 

T= 400       

α1 -0.2495 0.0182 -0.2482 0.0183 -0.2492 0.0184 

α2 0.0845 0.0209 0.0515 0.0204 0.0241 0.0184 

β1 1 - 1 - 1 - 

β2 -2.0016 0.0247 -2.0011 0.198 -2.0006 0.017 

 

If the break occurs at ¼ of the sample as in DGP1, this is detected and the hypothesis of a 

zero coefficient on α2 would be easily rejected9. When the break occurs in the middle of 

the sample (DGP2) the results obtained are different for the two sample sizes of 200 and 

400. With a sample size of 200 we would not be able to reject the hypothesis of a zero 

coefficient on α2 at the 95% level, while the same hypothesis would be rejected for a 

sample of 400, where we would find a coefficient on α2 that is significantly different 

from zero. In the case of DGP3 the hypothesis of a non-zero coefficient would be rejected 

for both the samples of 200 and 400. All these results are reported in Table 110.  

 

Following Hansen and Johansen (1999), we consider recursive estimates of the 

eigenvalues and the coefficients for the purpose of detecting any instability of the 

coefficients and possible breakpoints. If we examine Graphs 1 and 2 for DGP2 of size 

100 it is clear that the inspection of the recursive eigenvalues does not provide any 

information on the occurrence of a break in the adjustment parameters. In fact, there is no 

change in the pattern of the eigenvalues in the graph showing the average of 1000 

                                                           
9 Notice that the rejection of the hypothesis of a zero in favour of a non-zero coefficient would not account 
for the fact that the first T/4 values are actually zero. 
10 It needs to be pointed out that these poor results are largely expected. This is because in reality we are 
estimating a misspecified model using FIML, which instead makes precise assumptions on the residuals of 
the model, so that likelihood theory is invalid.    
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replications at the points where the break occurs. The recursively estimated matrix of 

loading weights appears to be relatively more informative in terms of graphic analysis.  

 

The plot of the recursive estimates of the loading weights shows their instability over 

time. In the graph of the time path of the recursive loading weights for DGP2 as an 

average of 1000 replications and a sample of size 100, we observe a clear tendency in the 

value to increase after the breakpoint that is identifiable by a slight kink. At first sight, we 

could be tempted to conclude that the recursive estimates provide excellent results in 

terms of the detection of the break as well as the breakpoint. However, the results 

obtained in single replications (not displayed) suggest that recursive analysis is useful 

only in the detection of instability in the parameter estimates – it cannot be relied upon 

for the detection of the breakpoint because the corresponding kink is not clearly 

observable in single replications.  

 

In any case, the statistical ability of the recursive procedure in detecting the breaks is 

made doubtful by the fact that, when the α coefficients become significantly different 

from zero in statistical terms, they do so with a considerable time lag. We have obtained 

these results estimating recursively the loading weights as the coefficients attached to the 

error correction term (as obtained with recursive FIML) in a VECM using OLS. The OLS 

estimation and the inspection of the t-values for the α2 coefficient provide us with results 

that are different depending on the sample size and the breakpoint. They indicate (see 

Table 2) that, when α2 becomes significant, it does so with a delay that goes from 60 to 

100 points depending on sample size and breakpoint.  

 

Table 2             t-values of recursive estimates of α2 
DGP1 T/4 (3/8)T T/2 (5/8)T (3/4)T (7/8)T T 

T=50 - 0.849822 1.108077 1.302761 1.493226 1.632482 1.730184* 

T=100 0.266668 0.82887 1.203619 1.548965 1.826124* 2.08068** 2.34645** 

T=200 0.193132 0.957559 1.522429 2.010072** 2.435999** 2.822665** 3.17873** 

T=400 0.177762 1.253367 2.083647** 2.785881** 3.395936** 3.95377** 4.46386** 

DGP2 T/4 (3/8)T T/2 (5/8)T (3/4)T (7/8)T T 

T=50 - 0.382371 0.45922 0.687334 0.90886 1.072572 0.247567 

T=100 0.266668 0.236806 0.195866 0.615602 0.937328 1.225415 1.519585 
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T=200 0.193132 0.155975 0.150348 0.749731 1.232245 1.667304* 2.059217**

T=400 0.177762 0.152599 0.12635 0.967444 1.667098* 2.288966** 2.853594**

DGP3 T/4 (3/8)T T/2 (5/8)T (3/4)T (7/8)T T 

T=50 - 0.382371 0.332199 0.282985 0.377341 0.553404 0.739095 

T=100 0.266668 0.236806 0.195866 0.156649 0.128573 0.496831 0.811484 

T=200 0.193132 0.155975 0.150348 0.137181 0.106946 0.628267 1.062327 

T=400 0.177762 0.152599 0.12635 0.111431 0.097988 0.812283 1.428967 

* denotes a coefficient α2 significantly different from zero at 10% level 

** denotes a coefficient α2 significantly different from zero at 5% level 

T = sample size  

The bold indicates the breakpoints in the DGPs  

 

More in detail, we see that in samples of size 50 α2 is only significant at a 90% level in 

DGP1. For the samples of size 100, it is significant only in DGP1 and it starts to be so 

only when ¾ of the sample points are included. For other sample sizes the story is much 

the same, with α2 that takes values significantly different from zero after 100 points have 

been added from the recursive procedure. Notice that the α2 coefficients are never 

significant in the case of DGP3 regardless of the sample size. This implies that if we had 

a sample of 400 points with the last 100 being different from zero, and we analysed it 

using recursive methods, we would not be able to detect the presence of a break at all. 

This result highlights a critical limit of the FIML estimation even in its recursive version. 

 

To summarise, while the t-values on α2 could be used in some cases to confirm the 

presence of a break, they cannot be relied upon for the precise detection of the breakpoint 

or its magnitude. At any rate, recursive estimation is not very useful to account for a 

break in samples that are smaller than 200 and for all sample sizes when the break occurs 

at ¾ of the series. Furthermore, it is important to highlight that the graphs of the recursive 

coefficients are obtained as averages of 1000 replications, and show the breakpoints 

much more clearly than in the case of individual replications.  

 

Rolling estimation provides results that are a little more informative. Indeed (see Graphs 

3 and 4), if used graphically, the rolling procedure shows the occurrence of a break in the 

αs. Unfortunately, the estimates of the alphas are not statistically significant in the case 
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of the size of a rolling window of 30. This relatively small window, and the size of the 

break in terms of the value to which the coefficient α2 switches to, do not allow to obtain 

statistically useful results. The implication is that the inspection of the rolling coefficients 

and relative t-values from individual repetitions is not helpful (Table 3).  

 

Table 3                         t-values of rolling estimates of α2 
Size of rolling window T/4 (3/8)T T/2 (5/8)T (3/4)T (7/8)T T 

30 0.134419 0.421034 0.827222 1.20794 1.529823 1.499496 1.505702 

40 0.358436 0.582036 0.911967 1.292864 1.64591* 1.848319* 1.862825* 

50 0.500187 0.748444 0.946235 1.265746 1.510874 1.850584* 2.130953**

T = 100 

Breakpoint is at T/2 (in bold) 

* denotes a coefficient significantly different from zero at the 90% level 

** denotes a coefficient significantly different from zero at the 95% level 

 

When we use a rolling window of 40 points we get better results, in the sense that we 

observe the presence of a break in the data and we are be able to obtain coefficients that 

are significantly different from zero at the 10% level. In order to get statistically 

significant results at a conventional 5% level we should use a rolling window of at least 

50 points. This implies that, in order for the break to be detectable, it has to be larger than 

50 points, and that therefore we would need relatively large samples. Furthermore, the 

larger size of the rolling window complicates the graphic analysis in terms of the 

detection of the break points, as can be gathered from Graphs 3, 4 and 5. In empirical 

work, apart from financial series, we are rarely dealing with very large samples; given 

also the need for a relatively large minimum size of the break, the reliability of the 

technique in statistical terms is limited. Nevertheless, it seems that graphically it performs 

better than the recursive procedure in detecting the interval (even so this is sometimes a 

wide one) within which the break occurs and the value of the coefficient after the break.  

 

The sequential test represents without doubt a better alternative to the techniques 

examined so far, as it performs better with respect to the accuracy with which it detects 

both the point and the magnitude of the structural break (in terms of the value that α2 

takes after the break). In general, the test displays reasonable statistical properties. These 
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are reported in Table 4. Specifically, the power of the test is always relatively high, even 

for samples of size 100, regardless of the location of the breakpoint (however it is higher 

when the break occurs in the middle of the sample). Also the test can be considered very 

reliable for samples of 200 points. For very large samples its precision is extreme. The 

loss of power in smaller samples can be justified on the grounds of its non-standard 

distribution and the relatively high critical values for samples of 50 data points (that are 

almost the same as the ones for 100). If we use the test graphically, we can see (Graph 6) 

that the coefficient attached to the switching dummy displays a kink that allows us to 

detect the breakpoint quite accurately. Also, notice that the corresponding coefficient 

takes the value of 0.125, indicating accuracy in estimating the magnitude of the break. 

Moreover, as far as statistical significance is concerned, the coefficient attached to the 

dummy at the breakpoint is always highly significant at the 95% level in single 

replications.  

 
Table 4. Sequential test – Statistical properties based on 2500 replications 

 Critical values  
 Quantiles T=50 T=100 T=200 T=400 

 0.05 2.93 2.94 2.98 3.02 
 0.10 2.61 2.64 2.69 2.71 
  Power as percentage of rejections of the null 

DGP1 0.05 0.21 0.44 0.74 0.97 
 0.10 0.32 0.55 0.83 0.98 

DGP2 0.05 0.31 0.56 0.88 1.00 
 0.10 0.42 0.69 0.98 1.00 

DGP3 0.05 0.23 0.44 0.75 0.98 
 0.10 0.34 0.58 0.86 0.99 

 

The relatively good performance of the sequential test is only limited by the possible 

occurrence of multiple breaks. In this case the significance of the switching dummy is 

affected and the test is not very reliable. The Kalman filter may provide the solution to 

this kind of problems. In theory, the fact that we obtain the time path of the adjustment 

coefficients in a consistent way should enable us to detect the break quite accurately as 

far its timing and magnitude are concerned. The advantage of using such a technique is 

the possibility of detecting multiple breaks, as the Kalman filter is sensitive to all possible 

shifts that may occur because of its continuous updating.  

 19



 

From the results obtained we can conclude that the Kalman filter may be graphically 

useful to detect the presence of breaks and their magnitude, and that it is also very 

efficient. We can see this from the included graphs (Graphs 7 and 8) that refer to 

coefficients estimated for samples of size 100 generated according to DGP2. Here the 

breakpoints and their magnitude are graphically observable, with relatively narrow 

margins of error, as shown by the confidence interval bands. These highlight the fact that 

the coefficients estimated with such a technique will always be significantly different 

from zero after the break has occurred, suggesting a reasonable efficiency of the Kalman. 

This result applies to all the DGPs and sample sizes. 
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6 Conclusions 

In this paper we have examined, using Monte Carlo methods, several alternative 

approaches to detecting structural changes in the adjustment coefficients of cointegrated 

VARs. As in Hansen and Johansen (1999), we have adopted recursive techniques as 

misspecification tests for the detection of breaks in the α coefficients and of the 

breakpoints. The results show that the recursive eigenvalues are not able to highlight such 

a type of break, whilst the recursive coefficients only show non-constancy of the 

parameters of interest. We have then adopted a rolling FIML-based technique for the 

estimation of the model. The main result is that this technique shows more convincingly 

the non-constancy of the αs and their true value after the breakpoint. However, rather 

than a breakpoint it detects a region where the break is likely to occur.  

 

To overcome the drawbacks of these techniques, we used an OLS-based sequential test, 

which consists in incorporating a sequentially switching dummy for the speed of 

adjustment parameter such that it becomes more statistically significant when it 

corresponds to the break in the data. For this test we derived the critical values for 

different sample sizes and studied its statistical features. We found that the test has 

reasonable power at the 90% level even for relatively small samples (e.g. 100). Also, it is 

relatively efficient graphically, as it shows a kink at the breakpoint. Furthermore, at that 

point, the numerical value of the coefficient of the sequential dummy corresponds to the 

true value of the parameter after the break has occurred. The only limit to this technique 

is provided by the occurrence of multiple breaks. A possible solution to these cases is the 

use of the Kalman filter. We therefore have tested the performance of a time-varying 

version of the Kalman filter on the same DGPs, showing the graphic usefulness of such a 

technique for detecting breakpoints and the magnitude of the breaks. Regardless of the 

location of the breakpoints, this well established technique turns out to be extremely 

useful for both purposes.  
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g r a p h  1 .  R e c u r s i v e  e ig e n v a lu e s  f o r  D G P 2  o f  s i z e  1 0 0  ( a v e r a g e  o f  1 0 0 0  r e p li c a t io n s )
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graph 2. Recursive estimates of alpha2 for DG P2 of size 100 (average of 1000 replications)
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graph 3. Rolling estimates of alpha2 for DGP2 of size 100 with a rolling window of 30 (average of 1000 replications)
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graph 4. Rolling estimates of alpha2 for DGP2 of size 100 with rolling window of 40 (average of 1000 replications)
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graph 5. Rolling estimates of alpha2 for DGP2 of size 100 with rolling window of 50 (average of 1000 replications)
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g r a p h  6 .  C o e f f i c i e n t  o f  s e q u e n t ia l  d u m m y  f o r  D G P 2  o f  s iz e  1 0 0  ( a v e r a g e  o f  2 5 0 0  r e p l i c a t io n s )
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graph 7. One step ahead Kalman Filter predictions of alpha2 for DGP2 of size 100 (average of 1000 
replications)
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g r a p h  8 .  S m o o t h e d  k a lm a n  F i l t e r  e s t i m a t e s  o f  a lp h a 2  f o r  D G P 2  o f  s i z e  1 0 0  ( a v e r a g e  o f  1 0 0 0  r e p l i c a t i o n s )  
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