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The American University in Cairo 

Abstract 

School of Sciences and Engineering 

Electronics and Communications Engineering Department 

Master of Science 

Improved Fault-Tolerant PMU Placement using Algebraic Connectivity of 

Graphs 

By Mahmoud El Hosainy 

Due to perpetual and innovative technological advancements, the need for reliable and 

stable power generation and transmission has been increasing dramatically over the 

years. Smart grids use advanced technologies to provide self-monitoring, self-checking 

and self-healing power networks, including smart metering devices capable of 

providing accurate measurements of the network’s power components. Among the 

most important metering devices in this context are “Phasor Measurement Units 

(PMUs)”. PMUs are metering devices that provide synchronized measurements of 

voltage, current and phase angle differences using signals from the GPS satellites.  

However, due to the high cost of such advanced metering devices, studies were 

performed to determine the minimum number of PMUs required and their strategic 

placements in the power networks to provide full system observability. 

In this thesis, we consider fault-tolerant PMU placement aiming to minimize the 

number of PMUs while maintaining system observability under various contingencies. 

Conventionally, the optimal number of PMUs in a system is determined based on the 

system’s connectivity matrix under no contingency. This thesis considers fault- tolerant 

PMU placement under single and double branch failures. We propose algebraic 

connectivity, or Fiedler value, to identify the worst- case branch failures in terms of 

connectivity degradation. The proposed PMU placement accounts for this worst-case 

and covers a large percentage of other single and double branch failures. Furthermore, 



 V 

we propose the usage of Fiedler vector to provide a PMU placement that would ensure 

that the system remains fully observable during system partitioning into separate sub-

systems. 

The resulting placements are compared with those obtained without considering 

connectivity degradation or system partitioning in terms of the percentages of 

observable systems during any single and double branch failures. The proposed PMU 

placements have increased percentages of fully observable systems in the event of any 

single or double branch failures compared to non—contingency based placement, with 

a reasonable increase in number of PMUs, and for some placement approaches no 

increase in PMUs is needed for providing a higher percentage of fully observable 

systems.  
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Chapter 1 

Introduction 

Power failure is a serious problem facing many countries around the world in 21st 

century. This causes financial losses for power companies estimated to be billions of 

dollars, as well as inconvenience to private and business customers. This maybe due to 

the low investment in the infrastructure and maintenance of power systems. Also, 

power transmission and distribution system become overloaded by the continuous 

increase in electricity consumption. 

  

 In order to make the power systems more reliable, stable, and controllable; state 

estimation of the transmission network is necessary [1]. The Phasor Measurement Unit 

(PMU) is a device responsible for the detection of voltage and current waveforms that 

are synchronized with a clocking signal obtained continuously from the global 

positioning system (GPS) satellite. Integrated with the GPS receiver [2], the base station 

housing the Phasor Data Concentrator (PDC), which is responsible for analyzing the 

PMU data, is able to receive the synchronous data from each PMU in real time 

 

1.1 Historical Overview 

 

Traditionally, power networks were monitored via the measurement of the phase angle 

between the voltage phases and current phases [3]. This is based on the fact that the 

sine of the angle difference between voltages at the two terminals of a distribution line 

is indicative of the power flow in this line.  

 

Following huge losses in the Northeast blackout [4], in addition to the conventional 

method [5], supervisory control and data acquisition (SCADA) system were used to 

measure phasors by means of remote terminal units (RTUs). Primarily used in the 

industrial sector, SCADA system uses programmable logic controllers (PLCs) and 

RTUs as microcomputers capable of gathering information from a variety of 

information gathering technologies such as end devices, sensors, factory 

machinery,…etc. and then transmit the gathered data to central computers in the 
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network’s backbone that have SCADA system software installed. The SCADA software 

in turn sorts, processes and displays the collected data using the programmed user 

interface to help operators interpret and analyze the data to make important decisions. 

Following the same principle used in industrial applications but on a larger scale, 

SCADA system was then used to collect data from power grids relating to the voltages, 

currents, frequencies and power flow through the system at different locations in the 

network; and sends the data to centralized locations where the operators can monitor 

the performance of the power grid. Thus, problems related to the operation of the power 

network are identifiable. However, these calculations are elaborate and cannot be 

performed in real-time. Thus, a new concept was introduced to face this problem, called 

static state estimation (will be discussed in section 1.3.2). 

 

In the 1980s, a communication channel was implied in the phase angle measurement 

equipment to enable the synchronization of the reference signals. This channel was 

based on LORAN-C (a navigation system with the receiver able to determine its 

position through low frequency radio signals), The Geostationary Operational 

Environmental Satellite (GOES) satellite transmissions and radio transmissions of low 

frequency time signal utilized mainly by the Swiss time reference system (HBG) [4]. 

However, this communication channel faced the problem of zero crossing of the phase 

voltage, thus researchers measured local phase angle with respect to the time reference 

(accurate only in the order of 40 microseconds). This signifies that these devices cannot 

be suitable for monitoring power networks in time synchronization. 

 

In 1990s, GPS was implied in the novel phase angle measurement equipment “PMU” 

[6]. Since transmission of high frequency signals to the control stations is provided 

through the presence of 24 satellites orbit at a height of twelve thousand miles from the 

earth, continuous and synchronized monitoring of the state of power systems is 

available. This overcomes the communication channel’s problem having high precision 

time, ranging from 1 to 10 nanoseconds [7]. Also, GPS receiver supplies a unique pulse 

signal in one-second intervals. Furthermore, devices are less likely to be influenced by 

weather conditions and/or geography. Thus, installing GPS receivers into various 

devices can allow for real-time synchronization of power status and fault analysis [8].  
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1.2 Phasor Measurements  

 

  Figure 1.1 Sinusoidal waveform and its phasor representation 

A phasor represents a sinusoidally varying quantity (current or voltage) by means of a 

line rotating about a point in a plane. The length of this line represents the magnitude 

of this quantity, and the angle between this line and a reference line represents the 

phase of this quantity. In Figure 1.1, the distance between two sinusoidal peaks of the 

signals is defined as the phase angle (Φ). Also, it can be converted to an angular 

measurement in the phasor representation. 

 

The PMU receives the waveforms of the current and voltage from standard Current 

Transformer (CT) and Potential Transformer (PT) respectively (Figure 1.2). These 

analogue signals are isolated, filtered and sampled by means of anti-aliasing filters. 

These analogue signals are then transformed into digital output by mean of 

Analogue/Digital (A/D) converter. By means of GPS receiver clocks and phase locked 

oscillator, these signals are synchronized from different locations, covering all the 

power network. Then, the phasor microprocessor calculates from these sampled data 

the local positive sequence, fundamental frequency, voltage, and current phasors by the 

recursive Discrete Fourier Transform (DFT) algorithm. Finally, synchronized phasors 

are exported via the standard communications ports or modems. 
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Figure 1.2 Phasor Measurement Unit [9] and its function block diagram [10] 

 

Thus, by operating PMU program, PMU allows for real time monitoring of the status 

of the power network providing information of pre-fault or post-fault conditions. For 

example, it can be inferred from Figure 1.3 that a signal decay on the transmission line 

is responsible for the difference between Signal #1 and Signal #2 amplitudes. In Figure 

1.3, the distance between the sinusoidal peak of the signal and the time reference (Y-

axis) is defined as the phase angle (). 
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Figure 1.3 Signals received by PMUs 

1.3 Example of PMU Usages 

 

Thanks to the integration of phasor technology and the PMU device into electric power 

networks, power networks have become more controllable, stable, and reliable. In this 

section, we will focus on the advantages of integrating PMUs in power networks.  

 

1.3.1 State Estimation 

 

State estimation of power network functions is based on the scheduling generation and 

interchange; monitoring outages and scheduling alternatives; supervising scheduled 

outages; scheduling frequency and time corrections; coordinating bias settings; and 

emergency restoration of system [4]. This can be achieved either by state estimation 

algorithms [11], or by means of PMUs with extreme precision, time synchronization, 

and excellent performance. Measuring state estimation is achieved through complex 

bus voltages [12] that enable the estimation of bus voltage magnitudes and angles by 

using line flow measurement (both real and reactive power).  

Thus, using the bad data processing technique, detection, identification, and correction 

of measurement errors is possible [13, 14] either as part of the state estimation process 

or as a post-estimation procedure. However, this necessitates a well-designed 

measurement system in order to detect errors in both redundant and critical 

measurements. Errors in redundant measurements can be statistically detected, 
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however, errors in critical measurements cannot be detected (since the system becomes 

unobservable by removing this measurement from the measurement system). Thus, any 

critical measurement must be observed by multiple measurement devices to be able to 

detect any error by bad data processing. This can be achieved by adding extra PMUs to 

the conventional measurements, hence, all bad data in the system become detectable 

[15].  

 

1.3.2 Static state estimation 

 

Static state estimation is a prediction method of the future behavior of a power network 

(e.g. one minute period) based on its present condition. This can be achieved by 

calculating the static and dynamic behaviors from the information gathered by PMUs. 

This allows the network operators to take the necessary measurements to deal with the 

problem before it happens. For example, if there is no change in the system during the 

monitoring period; the operator recognizes that there is a possibility of losing the static 

stability. 

 

1.3.3 Fault Detection 

 

Faults occurring in the overhead transmission line can be either permanent or temporary 

fault [16, 17]. Permanent fault may occur following a break in transmission line or a 

power generator malfunction, this makes a huge difference in signal during the pre-

fault and post-fault moment. This can be easily located by detection devices.  

While the temporary fault may occur following insulator flashover, this may lead to full 

insulator breakdown when occurring frequently. This emphasizes the importance of 

PMU-based fault location technique [18-20]. This is achieved through monitoring the 

synchronized fault voltages, calculating the line currents between these nodes, and 

forming node injection currents at two terminals of the faulted line. Thus, calculation 

of fault nodes or fault locations can be inferred.  

 

1.3.4 Wide Area Monitoring System (WAMS) 

 

Nowadays, WAMS is considered the most advanced method to detect and avoid 

pervasive blackout. It aims to maintain the dynamic stability in the overhead 



 7 

transmission line network, based on the PMU [21]. This is implemented by 

synchronizing and recording the acquired data from systems in distributed locations 

through new computing and communication technology. Upon their delivery to the 

central control station, these data are measured and analyzed from any point of the 

power network.  

 

In addition to its ability to monitor the static stability of the network (as traditional 

SCADA), WAMS enables the controllers to recognize unusual activities within the 

power network such as instability in the network voltage, to analyze the network 

oscillation, and to perform time-stamp for fault localization. 

 

1.4 Thesis Objectives and Description 

 

The optimal PMU placement is a complex optimization task for power system 

networks. In this thesis, the main objective is to use the theory of algebraic connectivity 

of graphs, also known as Fiedler value [22], to design a “fault-tolerant” PMU placement 

algorithm capable of achieving full system observability in the case of system 

breakdown caused by worst-case single and certain other single and multiple branch 

failures. By modelling the grid as a connected graph, and using tools from the algebraic 

connectivity of graphs, we are able to identify the most critical branches, whose failure 

would lead to the worst case degradation in connectivity and thus have a negative 

impact on the ability of the system to remain observable. By identifying the branches, 

a PMU placement done using various techniques to provide and maintain full system 

observability in the case of the failure of the selected branches specifically, as well as 

increasing the system reliability by achieving a higher percentage of fully observable 

systems in the case of any single or multiple branch failures that can occur in the grid. 

Furthermore, a variation to the proposed improved PMU placement is discussed such 

as incorporating branch failure contingency based on the system’s Fiedler value with 

other types of contingencies. An extension to the use of the algebraic connectivity of 

graphs is also demonstrated by utilizing the concept of the Fiedler vector to generate a 

fault-tolerant PMU placement designed to maintain full observability in the case of 

system partitioning caused by the failure of the minimum number of branches in the 

grid. The Institute of Electrical and Electronics Engineers (IEEE) 7, 14, 30, 57 and 118 
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bus test systems will be used to examine the proposed methods adequately and each 

result will be compared to existing methods. 

 

The outlines of this thesis are as follows: 

Chapter 1: A historical overview of PMU Technology is introduced, and the application 

of the PMU, for both state estimation and fault detection, is discussed in detail. The 

outlines of the thesis are also presented in this chapter. 

 

Chapter 2: This chapter reviews the existing optimized PMU placement methods. The 

existing methods can be presented in three categories, namely: Heuristic Method, Meta-

Heuristic Method; and Deterministic Method. Furthermore, the chapter reviews 

different contingencies that can be included when deciding on the optimal placement. 

 

Chapter 3: This chapter reviews the most commonly used contingencies and constraints 

that can be used to enhance the performance of the system in terms of guaranteeing 

observability under various conditions. Also, the principles of graph theory and the 

algebraic connectivity of graphs, also known as Fiedler Value, shall be described. 

Furthermore, the incorporation of the algebraic connectivity of graphs with the 

formulation of the optimal PMU placement problem is be justified. 

 

Chapter 4: This chapter presents the proposed method, adding a contingency constraint 

representing the use of algebraic connectivity of graphs, also known as Fiedler value, 

to the optimal PMU placement problem to provide the improved fault-tolerant 

placement of PMUs. This novel method shall be compared to other basic fault-tolerant 

solutions for the optimal PMU placement problem guarding against branch failures. 

The results are examined using IEEE 7-bus, IEEE 14-bus, IEEE 30-bus, IEEE 57-bus 

and IEEE 118-bus systems. The results obtained using the proposed approaches are 

tabulated, and a comparison of the total number of PMUs needed to achieve a fault-

tolerant and fully observable system is presented for each approach, followed by a 

comprehensive discussion of the corresponding results. 

 

Chapter 5: In this chapter, a brief summary of the thesis is outlined, incorporating the 

main achievement of the proposed improved PMU placement methodologies utilizing 
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the different approaches to the algebraic connectivity of graphs. The resultant 

approachs’ ability to achieve guarantee a fault-tolerant system in the case of single and 

double branch failures is summarized. Furthermore, the chapter concludes with a brief 

discussion of possible additions and modifications to be implemented in future works 

in the field of PMU placement. 
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Chapter 2 

Literature Review  

As discussed in Chapter 1, network full observability is crucial for preventing blackouts 

and having reliable, controllable, and stable system. Hence, some rules were formulated 

in order to analyze the network observability in the light of the branch current and node 

voltage laws.  

2.1 The Rules of Network Observability  

Rule 1: The voltage phasor of PMU-installed buses and all their incident branches are 

directly measured by the PMU. These measurements are known as ‘direct 

measurements’. For example, in Figure 2.1, upon installing a PMU on Bus D, the  

following parameters can be measured directly: voltage in bus D (VD); current in lines 

AD, BD, and CD (IAD, IBD and ICD). 

 

Figure 2.1 The first network observability rule 

 

Rule 2: By applying Ohm’s law, if the voltage phasor at one end of branch current is 

known as well as resistivity/ impedance of AD, BD, and CD transmission lines (RAD + 

jXAD, RBD + jXBD, RCD + jXCD), the voltage phasor at the other end of this branch can 

be calculated by equations 2.1 to 2.3. These measurements are known as ‘pseudo 

measurements’. 
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𝑉𝐴 = 𝑉𝐷 + 𝐼𝐴𝐷(𝑅𝐴𝐷 + 𝑗𝑋𝐴𝐷)      (2.1) 

𝑉𝐵 = 𝑉𝐷 − 𝐼𝐵𝐷(𝑅𝐵𝐷 + 𝑗𝑋𝐵𝐷)      (2.2) 

𝑉𝐶 = 𝑉𝐷 − 𝐼𝐶𝐷(𝑅𝐶𝐷 + 𝑗𝑋𝐶𝐷)      (2.3) 

 

Rule 3: By applying Ohm’s law, if the voltages at both ends of a branch are known, 

the branch current can be computed by equations 2.4 to 2.7.  These measurements are 

known as ‘pseudo measurements’. 

 

𝑉𝐷 = 𝑉𝐴 − 𝐼𝐴𝐷(𝑅𝐴𝐷 + 𝑗𝑋𝐴𝐷)      (2.4) 

𝑉𝐷 = 𝑉𝐵 + 𝐼𝐵𝐷(𝑅𝐵𝐷 + 𝑗𝑋𝐵𝐷)      (2.5) 

𝑉𝐷 = 𝑉𝐶 + 𝐼𝐶𝐷(𝑅𝐶𝐷 + 𝑗𝑋𝐶𝐷)      (2.6) 

𝐼𝐴𝐷 = 𝐼𝐵𝐷 + 𝐼𝐶𝐷       (2.7) 

 

 

 

Figure 2.2 The third observability rule 

 

For example, in Figure 2.2, PMUs on Buses A, B, and C measure their voltages, while 

the currents in AD, BD, and CD branches and Bus D voltage can be calculated.  

2.2 Optimal PMU Placement problem formulation 

Since any critical measurement must be observed by multiple measurement devices to 

be able to detect any error by bad data processing, adding extra PMUs makes the 

system more detectable [15, 23, 24]. This is why Phadke A. G. suggested that adding 
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PMUs in all substations can significantly improve network reliability [1]. However, 

adding PMU device costs $19,000 USD, hence, it is very costly to install PMUs in all 

locations [25]. This necessitates good planning to reduce the unit fees and 

maintenance costs. This can be achieved through minimizing the number of PMUs to 

be installed while having a completely topologically observable system. This is 

known as “Optimal PMU Placement (OPP) problem”. 

PMU placement problem is formulated as follows:  

Minimize  ∑𝑥𝑘

𝑁

𝑘=1

                                                    (2.8) 

Subject to 

A. X ≥  B                   (2.9) 

where N is the number of buses in a given system, X is a vector whose elements 𝑥𝑘 is 

a binary value representing the presence of a PMU at bus k so that 𝑥𝑘 is equal to 1 if 

there is a PMU at bus k and equal to zero otherwise, A is the binary connectivity matrix 

of the system in question and B is an observability column vector with number of 

elements equal to N with values representing the degree of observability of each bus. 

The binary connectivity matrix A in (2.9) is defined as  

𝐴𝑖𝑗 = {
1,
1,
0,
     

𝑖 = 𝑗
buses 𝑖 and 𝑗 are connected

otherwise

 

The sum of the elements of vector X represents the total number of PMUs that are 

needed to achieve the full system observability. The objective function represents PMU 

installations that can be extended to consider PMU installation costs. In such a case, 𝑥𝑘 

will be replaced by 𝑐𝑘𝑥𝑘 where 𝑐𝑘 is the installation cost at bus k. However, employing 

𝑐𝑘𝑥𝑘 in the objective function has no effect on the linear format of proposed model. 

 

Due to its combinatorial nature, it is very difficult to solve the optimal PMU placement 

problem especially for large networks. This is why several approaches have been 

proposed solve this OPP problem. In the sequel, we will give a quick overview of the 
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techniques that have been proposed to solve this problem, such as: Heuristic methods, 

Meta-Heuristic methods and Deterministic methods [26] (Table 2.1). 

 

Table 2.1 Examples of Optimal PMU Placement (OPP) Methods and algorithms [26] 

Heuristic method Meta-Heuristic method Deterministic methods 

Depth-First Search 

algorithm (DFS) [27, 28] 

Domination set 

 [29, 30] 

Greedy algorithm  

[31] 

Genetic Algorithms (GA) 

[32, 33]  

Particle Swarm Optimization 

(PSO) 

[34-36] 

Integer Linear Programming  

(ILP) 

[37-39] 

Binary Search Algorithm (BSA) 

[40] 

 

2.3 Heuristic method / Approximation algorithm 

 

Heuristic method is a rapid method for solving OPP problems using reduced 

computational time and memory space, thus, it is regarded as practical but not optimal. 

It is useful when optimal solutions cannot be achieved in reasonable time [41].  

 

2.3.1 Depth First Search algorithm (DFS) 

As a criterion for placing PMUs, DFS installs PMUs on the branches with the largest 

number of connected branches (if they are many with the same number, one must be 

chosen randomly).  

Then, this algorithm expands from the nodes on which PMU is placed to the nodes 

connected to PMU-placed nodes (with pseudo-measurement voltage) through the 

measurement of current branches, or the pseudo-measurement of branches connecting 

two nodes of known voltages, and then to all the nodes (Figure 2.3). These expanded 

nodes create a metrical tree; and observability is only reached if the tree contains all the 

nodes.  

https://en.wikipedia.org/wiki/Algorithm
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Figure 2.3 Flowchart of Depth First Algorithm [27] 

The main disadvantage of DFS is that it takes only into consideration the expanding 

depth, and this leads to increased unwanted redundant measurements. 

2.3.2 Domination set 

Domination set is a set of electrical nodes/buses on which PMU is placed that dominates 

other electrical nodes for observing the full power system [29]. Full observability is 

only achieved if every electrical node is either included in the dominating set or 

adjacent to one or more electrical nodes in the dominating set [42]. The aim is to map 

the smallest dominating set [39]. For example, the optimal PMU location (nodes with 

black color) identified by the domination set of a 6-bus system is shown in Figure 2.4. 

This system is fully observable as explained in Table 2.2. 

 

Figure 2.4 6-bus system with Domination Set 
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Table 2.2 Connectivity of 6-bus system 

Bus Degrees Connectivity 

1 2 Bus 2, Bus 3 

2 3 Bus 1, Bus 3, Bus 4 

3 3 Bus 1,Bus 2, Bus 5 

4 3 Bus 2,Bus 5,Bus 6 

5 2 Bus 4,Bus 3 

6 1 Bus 4 

 

2.3.3 Greedy algorithm 

As criterion for placing PMUs, Greedy algorithm installs at each stage PMUs at the 

nodes/ buses with the largest number of uncovered buses (Figure 2.5). Lacking 

sophisticated optimization algorithms, Greedy algorithm is regarded as fast, easy 

(minimizing the computational efforts), and adaptable method [43].  

 

Figure 2.5 Greedy algorithm [44] 
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2.4 Meta-heuristic methods 

As a way to improve the heuristic method, meta-heuristic iterative local method was 

proposed. It involves intelligent search processes dealing with discrete variables and 

non-continuous cost functions [45]. Basically, it is based on two stages: stage-I is 

concerned by the topological observability, while stage-II is concerned by the numerical 

observability. This is achieved through combining randomized and local optimization 

algorithms, thus the computational burden of meta-heuristic methods is high.  

 

2.4.1 Genetic Algorithm (GA) 

Inspired by the evolution of the living beings (reproduction, natural selection and 

diversity of the species), GA is regarded as direct, and parallel method. 

 

GA is based on the random generation of an initial population of individuals/ 

chromosomes; the assignment of a certain fitness value (by means of selection operator) 

to each of these individuals during each iteration step/generation [46]. By this way, 

individuals are selected, then offspring candidates are produced and this process is 

repeated with these candidates as the next generation of parents. Thus, each individual 

is chosen the expected number of times and is approximately proportional to its relative 

performance in population.  

 

Genetic algorithms use two operators: crossover and mutation. 

 Crossover takes two individuals/ parents, and by combining parts of them, it 

produces one or two new individuals / offspring. Simply, a random crossover point 

is selected, then the operator exchanges substrings before and after this point.  

 Mutation is regarded as an arbitrary modification that can prevent premature 

convergence by randomly sampling new points in the search space.  

 

2.4.2 Particle Swarm Optimization (PSO) 

Regarded as an artificial intelligence (AI) technique, PSO can be applied for extremely 

difficult numeric maximization and minimization problems. It is based on having a 

population of solutions/ particles, and iteratively trying to improve their measure of 

https://en.wikipedia.org/wiki/Iterative_method
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quality (minimal PMUs with full observability of system) moving them around in 

the search-space (different PMU positions). This can be achieved by applying 

simple mathematical formulae over the particle's position and velocity. Searching for 

better positions, each particle is moving according to its local best known position, and 

is guided toward the best known positions in the search-space leading to the best 

solution.  

 

2.5 Deterministic methods 

Deterministic algorithms are considered as the most practical method thanks to their 

efficiency on real machines. Hence, they are the most studied and familiar kind of 

algorithms [47]. They predict the behavior given a certain parameter by means of a 

mathematical function, where an initial state of a system is used to determine the next 

state until a desired outcome is reached. 

 

2.5.1 Integer Linear Programming (ILP) 

ILP is an algorithm aiming to find the minimum solution (number of PMUs) to a 

function given certain constraints (all variables should be integer). These constraints 

are expressed as linear equalities or inequalities. 

OPP can be expressed by Integer Linear Programing as follows: 

Minimize       ∑𝑥𝑘

𝑁

𝑘=1

                                                        (2.10)  

Subject to  

A.X ≥ B             (2.11) 

where N is the number of buses in a given system, X is a vector whose elements 𝑥𝑘 is 

a binary value representing the presence of a PMU at bus k so that 𝑥𝑘 is equal to 1 if 

there is a PMU at bus k and equal to zero otherwise, A is the binary connectivity matrix 

of the system in question and B is an observability column vector with number of 

elements equal to N with values representing the degree of observability of each bus. 

In addition to the monitoring of network full observability, Integer Linear Programming 

https://en.wikipedia.org/wiki/Optimization_(mathematics)#Concepts_and_notation
https://en.wikipedia.org/wiki/Formula
https://en.wikipedia.org/wiki/Position_(vector)
https://en.wikipedia.org/wiki/Velocity
https://en.wikipedia.org/wiki/Function_(mathematics)
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takes into consideration different contingencies in power networks (such as 

measurement losses and branch failures) as constraints to the minimization function 

[37]. Thus, each required PMU is comprehensively studied in each scenario. 

 

2.5.2 Binary Search Algorithm (BSA) 

BSA takes into consideration all the possible combinations of PMUs location (Nsol) and 

narrows them down to the optimal solution by means of the binary search formulation  

[40, 48]. Nsol can be calculated as follows: 

𝑁𝑠𝑜𝑙 = (
𝑃

𝑁𝑃𝑀𝑈
) =  

𝑃!

𝑁𝑃𝑀𝑈! (𝑃 − 𝑁𝑃𝑀𝑈)!
                                (2.12) 

NPMU = [(N + s/2)/3]                                                    (2.13) 

where P is the total number of candidate buses for a PMU placement; NPMU is the 

initial number of PMUs; N is the total number of buses in the system; and s is the 

number of unknown power injections.   

From (2.13), increasing the total number of buses in the power system increases the 

computational time in a non-linear relationship. Hence, in attempt to reduce it, a 

theoretical upper bound of the minimum number of PMUs needed to make the system 

observable is defined by (2.14) [37]. 

 

𝑁𝑃𝑀𝑈
𝑢𝑏 = [

𝑁+𝑠 2⁄

3
]     (2.14) 

 

If all the combinations of PMU locations does not lead to fully observable system, one 

more PMU must be added (NPMU= (NPMU+1)). However, if all the combinations of PMU 

locations lead to fully observable system, one PMU must be removed (NPMU= (NPMU-

1)) [40]. The search is repeated until having the minimum number of PMUs necessary 

for making the system fully observable. Thus, exhaustive testing for all combinations 

of (NPMU-1) must be performed before concluding that NPMU is the minimum number 

of PMUs (Figure 2.6). 
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Figure 2.6 Binary search algorithm to determine the minimum number of PMUs 

required to make the system observable [40]. 

 

BSA can be used for assessing the complete observability of the system under normal 

operating conditions, or the outage of a single transmission line or a single PMU.   
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Chapter 3 

PMU placement with contingencies 

Most of the reported approaches for solving the optimal PMU placement problem 

ignore the power system contingencies. These contingencies take into account the 

losses of measurements and/or branch failures[49]. Thus, incorporating contingencies 

in the optimal PMU placement problem will account for more reliable results and 

ensure network observability. This was used for conventional measurement devices 

[50-52].  Also, taking into account single line contingencies, Milosevic model found 

observable network solutions [33]. Some problems faced PMU placement with 

contingencies such as being computationally expensive as the case of using heuristic 

approach during single measurement losses and line contingencies [53], or being time 

consuming as the case of considering single branch failures in Chakrabarti model [40]. 

Other models had considered PMU outages but branch failure contingencies were not 

incorporated [39]; while others consider both the outages of single lines and PMUs 

[38]. With the objective of minimizing the cost function, the following sections will 

present the different contingencies that can be taken into account, such as the effect of 

zero injection buses, loss of measurement contingency, branch failure contingency, 

measurement limitations.  

3.1 Effect of Zero-Injection Buses  

In any power network configuration, power is either injected, consumed or transmitted 

through the network. Buses that are responsible to transmit power through the network 

transmission lines without injecting or consuming power are called “zero injection 

buses”. As such as per Kirchhoff’s Current Law (KCL), the directional sum of the 

current transmitted through zero injection buses is equal to zero. Furthermore, by 

knowing the value and direction of all currents passing through a zero injection bus 

except one, the value and direction of the unknown current is identifiable. Assuming 

the resistance of all transmission lines connected to the zero injection bus is known, the 

voltage at the bus connected to the zero injection bus through the transmission line with 

the unmeasured current can also be identified, allowing that bus to be observable even 

when the current transmitted through the zero injection bus is unknown. 
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The zero-injection bus rules for assessing the network observability are:  

1) When buses, which are incident to an observable zero-injection bus, are all 

observable except one, the unobservable bus will also be identified as observable 

by applying the KCL at zero-injection bus. 

 

2) When buses incident to an unobservable zero-injection bus are all observable, the 

zero-injection bus will also be identified as observable by applying the KCL at 

zero-injection bus. 

Thus, a single unobservable bus among a zero-injection bus and its incident buses can 

be made observable by making the others observable [54]. 

Using this simplification, the proposed objective function formulation considering the 

effect of zero-injection buses is presented as  

𝑓𝑖 ≥ 1, ∀𝑖 ∈ 𝐼      (3.1) 

𝑓𝑖 =  ∑ 𝑎𝑖𝑗𝑥𝑗 + ∑𝑎𝑖𝑗𝑧𝑗𝑦𝑖𝑗 , ∀𝑖 ∈ 𝐼                                (3.2)

𝑗 ∈ 𝐼𝑗 ∈ 𝐼

 

Expression (3.6) is the same as (3.3) with auxiliary binary variables yij added to zero-

injection buses and those incident to zero-injection buses. Parameter zj is a binary 

parameter that is equal to 1 if bus j is a zero-injection bus and 0 otherwise.  

 ∑𝑎𝑖𝑗𝑦𝑖𝑗 = 𝑧𝑗 , ∀𝑖 ∈ 𝐼                                                       (3.3)

𝑖 ∈ 𝐼

 

When bus j is a zero-injection bus, the right hand side of (3.3) is equal to one. Therefore, 

exactly one auxiliary variable of buses which are incident to bus j or the auxiliary 

variable of bus j, would be equal to 1. When bus j is a nonzero-injection bus, the right 

hand side of (3.3) is zero. So all auxiliary variables of buses which are incident to bus 

j would be equal to zero. Thus, (3.2) and (3.3) together ensure that one of the buses 

which are incident to a zero-injection bus, or the zero-injection bus itself, will be 

observable when the others buses are observable.  

Obviously, all zero-injection buses would have at least one auxiliary variable. For each 
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non zero-injection bus, the number of auxiliary variables is equal to the number of zero-

injection buses that are incident to that bus. While for each zero-injection bus, the 

number of auxiliary variables is equal to the number of zero-injection buses that are 

incident to that bus plus one.  

Applying this model on nine-bus network necessitates the installation of two PMUs at 

buses 5 and 8 (Figure 3.1). 

 

Figure 3.1. 9-bus system with PMU placement indicating zero injection effect.  

In this case, installing PMU at bus 5 makes buses 4 and 6 observable; and installing 

PMU at bus 8 makes buses 2, 7, and 9 observable. Also, based on the zero injection 

effect of bus 4 and 6, buses 1 and 3 became also observable. This indicates that the 

network is entirely observable.  

3.2 No PMU at Zero-Injection Buses  

PMUs at zero-injection buses measure current phasors of corresponding lines; so the 

KCL at zero-injection bus provides no additional information but will help find the 

optimal solution. While removing PMUs from zero-injection buses will reduce the 

search space and enhance the solution speed.  

The lack of PMUs at zero-injection buses is enforced by adding the following 

constraint:  

𝑧𝑗𝑥𝑗 = 0, ∀𝑗 ∈ 𝐼    (3.4) 
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Constraint (3.4) states that when no PMU is placed at zero-injection buses, where zj is 

equal to 1, the value of xj would be zero. While at other buses, where zj is zero, the 

value of xj could be either zero or one.  

 

Figure 3.2. 9-bus system with no PMU placement at zero injection buses. 

Applying this model on nine-bus network necessitates the installation of three PMUs 

at buses 5, 7, and 9. By this way, buses 4, 6, and 8 are observable; and buses 1, 2, and 

3 are made observable through the zero- injection effect of buses 4, 8, and 6. 

3.3 Loss of measurement contingency  

The aim of this contingency is to make sure that all buses will remain observable even 

in case of unexpected failure of a single PMU either due to device or communication 

link failures [55]. In (3.2), the loss of single measurement can be modeled by modifying 

the inequality.  

𝑓𝑖 + ∑𝑎𝑖𝑗𝑦𝑖𝑗  ≥ 2, ∀𝑖 ∈ 𝐼

𝑗 ∈𝐼

                               (3.5) 

Here, if bus i is not observable by zero-injection buses, 

∑𝑎𝑖𝑗𝑦𝑖𝑗 = 0

𝑗 ∈ 𝐼

 

Thus, 𝑓𝑖 ≥ 2 indicates that bus i needs at least two observability sources. However, if 
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bus i is observable by a zero-injection bus, 

∑𝑎𝑖𝑗𝑦𝑖𝑗 = 1

𝑗 ∈1

 

Thus, the observability of bus i would be robust for any loss of PMUs buses.  

Applying this model on nine-bus network necessitates the installation of four PMUs at 

buses 4, 5, 7, and 8. 

 

Figure 3.3. 9-bus system optimal PMU placement guarding against single loss of 

measurements. 

Buses 4,5,7,8 are observable by means of their associated PMUs; and buses 1, 6, 2, and 

9 are observable since they are adjacent to observable buses. Also, through the zero-

injection effect of bus 6, bus 3 is also observable. Since buses (5, 6, and 7), and (4, 9, 

and 8) are observable during any single PMU outages, buses 3, 1, and 2 are also 

observable during any such conditions. If any of the PMUs is lost, the buses will still 

be observable by considering the three other PMUs.  

3.4 Branch Failure Contingency  

In order to consider branch failure contingency, the connectivity parameters, auxiliary 

variables, and observability functions are replaced outage of line k set of constraints 

(𝑘 ∈ 𝐾). 
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    𝑓𝑖
𝑘 ≥ 1, ∀𝑖 ∈ 𝐼,          ∀𝜅 ∈ 𝐾       (3.6) 

𝑓𝑖
𝑘 =  ∑𝑎𝑖𝑗

𝑘 𝑥𝑗 + ∑𝑎𝑖𝑗
𝑘 𝑧𝑗𝑦𝑖𝑗

𝑘

𝑗 ∈1𝑗 ∈1

, ∀𝑖 ∈ 𝐼, ∀𝜅 ∈ 𝐾                    (3.7) 

∑𝑎𝑖𝑗
𝑘 𝑦𝑖𝑗

𝑘

𝑖 ∈ 𝐼

= 𝑧𝑗 ,          ∀𝑗 ∈ 𝐼, ∀𝜅 ∈ 𝐾                (3.8) 

The binary connectivity parameter when line k is out is defined as follows:  

 𝑎𝑖𝑗
𝑘 = {

0,
𝑎𝑖𝑗 ,
                     line 𝑘 is between buses 𝑖 and 𝑗

Otherwise
    (3.9) 

Applying this model on nine-bus network necessitates the installation of four PMUs at 

buses 1, 2, 3, and 6.  

 

Figure 3.4. 9-bus system optimal PMU placement guarding against single branch 

failure. 

Here, buses 1, 2, 3, and 6 are observable by means of their associated PMUs; buses 4, 

5, 7, and 8 are observable by the PMU installed at bus 1, 6, and 2. Bus 4 has then 

redundant measurements by the PMU installed at bus 1 and by its zero-injection effect. 

Thus, when line 1 - 4 is on outage, bus 4 is made observable by its zero-injection effect. 

This is the same case with bus 5, and 7. Thus, when line 5–6 is on outage, it is made 

observable by zero-injection effect of bus 6. Also, when line 6–7 is on outage, it is made 

observable by the zero-injection of bus 8. Again, when line 2-7 is on outage, bus 8 is 

made observable by its zero-injection effect. Moreover, when either line 4–9 or line 8–
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9 is on outage, bus 9 is made observable by the zero-injection of buses 4 and 8. 

Therefore, these four PMUs maintain the network observability during any single 

branch failures. 

3.5 Measurement Limitations  

The aim of this contingency is to take into consideration the extensive set of 

communication equipment required to communicate PMU measured data to a control 

center. Usually multi-channel PMUs are installed at buses with several measurements 

[9], [26]. We consider the effect of limited communication on PMU placements by 

substituting ∑𝑎𝑖𝑗𝑥𝑗 with ∑𝑎𝑖𝑗𝑤𝑖𝑗𝑥𝑗 in (3.3) and (3.6). 

𝑓𝑖 = ∑𝑎𝑖𝑗𝑤𝑖𝑗𝑥𝑗 , ∀𝑖 ∈ 𝐼

𝑗 ∈1

                                   (3.10) 

∑𝑎𝑖𝑗𝑤𝑖𝑗  ≤  𝑤𝑗
𝑚𝑎𝑥, ∀𝑗 ∈ 𝐼

𝑖 ∈1

                              (3.11) 

    𝑤𝑖𝑗  ≤  𝑥𝑗 , ∀𝑖, 𝑗 ∈ 𝐼    (3.12) 

In (3.11), the binary variable 𝑤𝑖𝑗 represents the measurement at bus i using a PMU 

placed at bus j; and is considered as another constraint in order to limit the number of 

measurements associated with bus j.  

As per (3.12), if a PMU is placed, the related binary measurement variables will be 

either zero or one; while if no PMU is installed, associated binary measurement 

variables will be zero. 

In order to convert non-linear expression (𝑤𝑖𝑗𝑥𝑗) to linear one, the nonlinear variable 

𝑟𝑖𝑗 is expressed as a set of three linear inequalities with binary variables (as shown in 

(3.13) – (3.16)). 

     𝑟𝑖𝑗 = 𝑤𝑖𝑗𝑥𝑗    (3.13) 

     𝑟𝑖𝑗 ≤ 𝑥𝑗    (3.14) 

     𝑟𝑖𝑗 ≤ 𝑤𝑖𝑗    (3.15) 
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     𝑟𝑖𝑗 ≥ 𝑥𝑗 + 𝑤𝑖𝑗 − 1   (3.16) 

Applying this model on nine-bus network necessitates the installation of three PMUs 

at buses 5, 7, and 9 so that each PMU measures its own voltage phasor and one current 

phasor associated with the lines incident to that bus. This ensures that each PMU has at 

most two measurements.  

 

Figure 3.5. 9-bus system optimal PMU placement considering measurement 

limitations. 

Here, buses 4, 6, and 8 are observable directly and buses 1, 2, and 3 are observable by 

the zero-injection of buses 4, 8, and 6, respectively.  

When comparing Figures 3.2 and 3.5, it is obvious that the observability zone of each 

PMU is restricted by limited measurements. 

To summarize the conclusions derived from IEEE standard test systems (Table 3.1), 

. All buses must be observable by at least one source.  

. According to the rules of zero-injection buses, three sources of observability are 

available (observability by PMUs, observability associated with the lines incident to 

that bus having PMU, and observability by zero injection effect). 

. According to the rules of loss of measurement, all buses must have redundant 

measurements so they remain observable even if there is a single measurement loss. 

. According to the branch failure rules, buses must be observable by means of other 

sources in case of branch failure.  
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Table 3.1. PMU placement buses for the IEEE standard test systems 

Test 

system 

Base case 

state 

No PMU at 

zero injection 
Branch failure 

Loss of 

measurement 

Branch failure or 

loss of measurement 

IEEE 

14-bus 

2,6,9 2,6,9 1,3,6,8,9,11,13 2,4,5,6,9,10,13 1,2,4,6,8,9,10,13 

IEEE 

30-bus 

3,5,10,12,18, 

24,27 

1,2,10,12,18,24, 

29 

1,3,5,10,11,13, 

14,15,16,19,23, 

26,30 

1,3,5,7,10,12,13, 

15,16,19,20,24, 

25,27,29 

1,3,5,7,10,11,12, 

13,15,16,19,20, 

23,24,26,27,30 

IEEE 

39-bus 

3,8,11,16,20, 

23,25,29 

3,8,12,16,20, 

23,25,29 

3,8,16,24,26,28, 

30,31,32,33,34, 

35,36,37,38 

3,6,8,9,12,14,16, 

18,20,21,23,25, 

26,29,34,36,37,38 

3,6,8,9,10,16,18, 

20,21,23,25,26, 

29,30,31,32,33, 

34,35,36,37,38 

IEEE 

57-bus 

1,4,13,20,25, 

29,32,38,51, 

54,56 

1,6,13,19,25, 

29,32,38,51, 

54,56 

1,2,6,12,14,19, 

21,27,29,30,32, 

33,41,44,49,51, 

53,55,56 

1,2,4,6,9,12,14, 

19,20,24,25,27, 

29,30,32,33,38, 

39,41,44,46,50, 

51,53,54,56 

1,2,4,6,9,12,14, 

19,20,24,25,27, 

29,30,32,33,36, 

38,41,44,46,50, 

51,53,54,56 

IEEE 

118-

bus 

3,9,11,12,17, 

21,25,28,34, 

37,40,45,49, 

53,56,62,72, 

75,77,80,85, 

86,90,94,102, 

105,110,114 

3,8,11,12,17, 

21,25,28,34, 

35,40,45,49, 

53,56,62,72, 

75,77,80,85, 

86,90,94,102, 

105,110,114 

1,6,10,11,12,15, 

17,19,21,23,26, 

27,29,34,35,39, 

41,44,46,49,51, 

53,56,57,59,61, 

67,72,73,74,75, 

76,78,80,83,85, 

87,89,91,92,94, 

96,100,101,105, 

107,109,11,112, 

113,114,116,117 

1,3,5,7,9,10,11, 

12,15,17,19,21, 

22,26,27,28,29, 

32,34,35,37,40, 

41,43,45,46,49, 

50,51,52,54,56, 

59,62,66,68,70, 

71,72,75,76,77, 

79,80,83,85,86, 

87,89,90,92,94, 

96,100,101,105, 

106,108,110,111, 

112,114,117 

1,3,5,7,8,10,11, 

12,15,17,19,21, 

22,24,25,27,28, 

29,32,34,35,37, 

40,41,44,45,46, 

49,50,51,52,54, 

56,59,62,66,68, 

72,73,74,75,76, 

77,78,80,83,85, 

86,87,89,90,92, 

94,96,100,101, 

105,107,109,110, 

111,112,115,116,117 

 

In the following chapters, this thesis will present further enhancement on solving the 

optimal PMU placement problem in the event of branch failures by using Algebraic 

connectivity of graphs (Fiedler value) to identify the worst- case single branch failure 

in terms of connectivity degradation.  
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Chapter 4 

PMU Placement using Algebraic Connectivity of 

Graphs 

4.1 Algebraic Connectivity of Graphs 

Let G be a graph and let N  denote the set of nodes and L the set of links, with N = |N| 

nodes and L = |L| links, respectively. The Laplacian matrix of G with N nodes is an N 

x N matrix Q =  - A where  = diag(Di), Di is the nodal degree of node i  N and A 

is the adjacency matrix of G.  The eigenvalues of Q are called the Laplacian 

eigenvalues. The Laplacian eigenvalues are all real and non-negative [56]: they are all 

contained in the interval [0, min{N, 2Dmax}], where Dmax is the maximum nodal degree 

of G. The set of all N Laplacian eigenvalues N = 0  N-1  ...  1 is called the 

Laplacian spectrum of G. The second smallest Laplacian eigenvalue N-1 of Q is known 

as the algebraic connectivity [57].  

Algebraic connectivity = min
𝑥⊥1
𝑥≠0

𝑥𝑇 𝐿(𝐺)𝑥

𝑥𝑇𝑥
 [58] 

where 0 = (0,0,……0)T, and 1=  (1,1,….1)T is an eigenvector of eigenvalue = 0. It is 

the only eigenvector if the graph Gn is connected. If Gn has Cm components, there 

should be Cm orthogonal eigenvectors each having non-negative elements where a 

positive entry indicates that the corresponding node belongs to the graph components 

derived by eigenvectors. 

Unlike the traditional connectivity, the algebraic connectivity is dependent on the 

number of vertices, as well as the way in which vertices are connected. In random 

graphs, the algebraic connectivity decreases with the number of vertices, and increases 

with the average degree [59].  

 

Algebraic connectivity is of great interest because of the following inequality 

developed by Fiedler: 2(G)  (G)  (G) [60] which states that the algebraic 

connectivity of a graph G is less than or equal to the node connectivity which is less 

https://en.wikipedia.org/wiki/Random_graph
https://en.wikipedia.org/wiki/Random_graph
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than or equal to the edge connectivity [57]. Algebraic connectivity for certain types of 

networks is inversely proportional to node-connectivity and edge-connectivity.  

Algebraic connectivity is considered one of the most popular eigenvalues of the 

Laplacian of a graph [57]. Considered as a good parameter to measure how well a graph 

is connected, algebraic connectivity accompanied by a measure of link density 

(interconnectedness of nodes) are basic measures of the robustness of a graph G. The 

denser the connections, the less vulnerable the network is to being disconnected. The 

algebraic connectivity must be greater than zero if G is connected. This is a corollary 

to the fact that the multiplicity of the eigenvalue 0 of Q is the number of disconnected 

components of G [57]. Whereas, if algebraic connectivity tends to be 1, the network 

tends to be fully connected. An example of algebraic connectivity based on the 

complexity of graph connection is shown in Figure 4.1. By applying that concept to the 

power grid and the rules of network observability previously explained, it can be 

deduced that the more connected a network is, the more observable it can be with fewer 

number of PMUs. 

(A)                  (B)  

Figure 4.1 Graph with algebraic connectivity (A) 0.9249, (B) 0.1531 

Applications of algebraic connectivity are diverse. It is used for surveys and books [56, 

57, 61-67]; for application on trees [68-74]; for the study of the asymptotic behavior of 

algebraic connectivity for random graphs [75, 76]. Moreover, the algebraic connectivity 

is relevant for graph theory problems such as: the expanding properties of graphs, 

weighted graphs, absolute algebraic connectivity, isoperimetric number, genus and 

other invariants of a graph [56, 63, 77-83]; for the theory of elasticity [76]; for the 
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correspondence between continuous and discrete mathematics [84]; for the 

investigation of a bandwidth-type problem using the spectral parameter [56]; and for 

the combinatorial optimization problems: the problem of certain flowing process, the 

maximum cut problem and the traveling salesman problem [56, 79, 82, 85-89]. It is 

noteworthy that the most important application of algebraic connectivity is to the 

robustness of a graph since the larger the algebraic connectivity is, the more difficult it 

is to cut a graph into independent components ; whereas the node and the link 

connectivity (algebraic connectivity’s classical upper bound) quantify the extent to 

which a graph can accommodate to node and link failures [57]. 

Due to its importance, Ghosh and Boyd [90] describe a method to maximize the 

algebraic connectivity over the convex hull of the Laplacian of graphs in a particular 

family which is a convex optimization problem. The eigenvectors corresponding to the 

algebraic connectivity are called Fiedler vectors [68-70]. These Fiedler vectors are used 

in algorithms for distributed memory parallel processors [91]. In graph theory, Fiedler 

vectors are used to determine the minimum number of edges in a graph that would 

partition the graph into subgraphs if removed [92]. The concept of graph partitioning 

using Fiedler vector is to separate the positive and negative value elements of the vector 

so that each subset represent a subgraph separated from the other set by removing the 

connecting edges between the two subgraphs. 

By analyzing a connected system of buses as a graph, where its bus elements are the 

vertices and its branches are the edges connecting them, algebraic connectivity of 

graphs can be used to determine the level of connectivity of the system. Furthermore, 

Fiedler value can be used to identify branches that would have significant effects on 

the connectivity of a system and thus on its level of observability. By identifying such 

branches, we can determine an improved PMU placement for the tested system to 

ensure full observability even during the event of the failure of the branch singled out 

by the algebraic connectivity of graphs value [93]. 

4.2 Proposed PMU Placement Formulation 

Integer linear programming (ILP) is used to obtain the minimal number of PMUs 

needed to achieve full system observability as well as the specific buses where the 

PMUs shall be installed. As a start, a binary connectivity matrix A shall be built to 
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represent the topological connections of the system with elements based on the rules 

and criteria explained in Chapter 3 of the thesis. As an example, the connectivity matrix 

for IEEE 7-bus system, shown in Figure 4.2, is described by the following matrix. 

𝐀 =

(

 
 
 
 

1 1 0 0 0 0 0
1 1 1 0 0 1 1
0 1 1 1 0 1 0
0 0 1 1 1 0 1
0 0 0 1 1 0 0
0 1 1 0 0 1 0
0 1 0 1 0 0 1)

 
 
 
 

.             (4.1) 

 

Figure 4.2 IEEE 7-bus system 

To identify bus locations where PMUs should be installed, we seek the vector X: 

[𝐗]𝑖 = 𝑥𝑖 = {
  1   
0
𝑖𝑓 𝑃𝑀𝑈 𝑖𝑠 𝑖𝑛𝑠𝑡𝑎𝑙𝑙𝑒𝑑 𝑎𝑡 𝑏𝑢𝑠 𝑖

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
               (4.2) 

Since the purpose of solving the optimal placement problem is to minimize the number 

of PMUs installed on buses in the system, the objective function can be written as 

follows: 

𝐦𝐢𝐧
𝑿
 ∑𝑥𝑖

𝑁

𝑖=1

 

subject to 𝐀. 𝐗 ≥ 𝐁                                 (4.3) 

where N is the number of buses and the vector B is an observability column vector with 

number of elements equal to N with values representing the degree of observability of 

each bus. In the mentioned objective function, the cost of all PMUs is assumed to be 

equal. The lowest acceptable value for each observability vector element is 1, which 

indicates that the respective bus is observable through at least one PMU. For a bus to 
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be observable through more than one PMU, the corresponding value in the 

observability vector B shall be set to a value higher than one. Optimal PMU placement 

under normal conditions for several systems without any contingencies can be viewed 

in Table 4.1 below. This data is going to serve as a control with which all subsequent 

proposed approaches using algebraic connectivity of graphs shall be compared in terms 

of performance. The highest performance PMU placement shall be the one which offers 

the highest percentage of fully observable systems in the event of any single branch 

failure and any double branch failure combinations. 

Table 4.1 Optimal PMU Placement Under Normal Conditions 

Test System 
PMU Placement 

No. of PMUs PMU Location 

IEEE 7-bus system 2 2,4 

IEEE 14-bus system 4 2,6,7,9 

IEEE 30-bus system 10 1,2,6,9,10,12,15,19,25,27 

IEEE 57-bus system 17 1,4,9,20,24,27,29,30,32,36,38,39, 

41,45,46,51,54 

IEEE 118-bus system 32 

1,5,9,12,13,17,21,23,26,28, 

34,37,41,45,49,53,56,62,63,68, 

71,75,77,80,85,86,90,94,101,105, 

110,114 

 

After the formulation of the optimal PMU placement problem using integer linear 

programming, the following step will be to incorporate the concept of algebraic 

connectivity to determine the branch failures to be taken into account as contingencies. 

Using the concept of Fiedler value as discussed in Chapter 3, it is possible to take a 

variety of branch failure contingencies, not only that of a single branch failure 

corresponding to Fiedler value. All simulations presented in this thesis is performed 

using MATLAB computer program. 

4.3 Improved PMU Placement using Different Approaches 

In the following sections, different approaches to determine branch failures shall be 

discussed including single branch failure using Fiedler value as a tool to select the 

branch whose failure causes the highest degradation in grid connectivity. We also 
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present the results for another approach where the branch to be accounted for its failure 

is selected using the third lowest eigenvalue of the Laplacian matrix which is the second 

lowest Fiedler value and compare the level of system observability of that case with 

that corresponding to Fiedler value. Furthermore, Fiedler value can also be used to 

determine more than just one branch failure affecting the system degradation, pushing 

the criteria to detect multiple branch failures that would have the greatest impact on 

system connectivity and whether those failures occur at the same time or 

simultaneously. 

4.3.1 Approach 1 - PMU Placement to Overcome Single Branch Failure 

corresponding to the Lowest Fiedler Value 

As explained in Chapter 3, Fiedler value is used to determine the level of connectivity 

of a system. As such, it can be used to identify the branch with the greatest impact on 

system connectivity providing a worst case event of system degradation by removing 

single branches one at a time from any given system and calculating the algebraic 

connectivity of that system. 

After repeating the process for each branch in the system, a set of Fiedler values will 

be obtained, each value corresponding to a single branch failure in the system. Based 

on the concept of Fiedler value, we can deduce that the lowest Fiedler value in the set 

obtained corresponds to the single branch failure that has the worst impact on system 

connectivity, and in turn the improved PMU placement should include a contingency 

constraint to ensure full system observability even during the case of the single branch 

failure corresponding to the calculated lowest Fiedler value. A flow chart detailing the 

algorithm for the proposed approach is shown in Figure 4.3.  
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Figure 4.3 Flowchart of the algorithm used for Approach 1 

Based on the optimal PMU placement problem formula taking into account single 

branch failure contingency corresponding to the lowest Fiedler value, Table 4.2 below 

presents the number of PMUs and their locations in the IEEE 7-bus, IEEE 14-bus, IEEE 

30-bus, IEEE 57-bus and IEEE 118 systems to achieve full system observability. 
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Table 4.2 Improved PMU Placement Covering Single Branch Failure Corresponding 

to Lowest Fiedler Value 

Test System 
PMU Placement 

No. of PMUs PMU Location 

IEEE 7 bus system 3 2,3,5 

IEEE 14 bus system 4 2,6,8,9 

IEEE 30 bus system 10 1,2,6,10,11,12,15,19,25,27 

IEEE 57 bus system 25 
1,4,6,9,15,19,20,22,24, 

28,29,30,32,33,34,36,37, 

38,41,46,47,50,53,54,56 

IEEE 118 bus system 38 

2,5,9,11,12,15,17,21,23,25, 

28,29,30,34,37,40,45,49, 

52,56,62,63,64,68,70,71, 

75,77,80,85,87,90,91,94, 

101,105,110,114 

After obtaining the improved PMU placement using the mentioned approach, the next 

step is to compare the resultant PMU placement with that of the optimal PMU 

placement done under normal conditions without any contingency consideration. The 

comparison shall be based on the percentage of fully observable systems during any 

single or double branch failure combinations that each placement can achieve. The 

results are presented in Figure (4.4 A and B) below. 
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(B) 

Figure 4.4 Performance of PMU Placement Approach 1 for (A) All Single Branch 

Failures and (B) All Double Branch Failure Combinations 

As evident in the results plotted above, the proposed system provides a higher 

percentage of fully observable systems in the event of both any single branch failure 

as well as any double branch failure combination while at the same time taking into 

consideration the failure of the branch with the highest impact on system connectivity. 

Furthermore, regarding the improved PMU placement for the IEEE 14-bus system 

and IEEE 30-bus system, the results show that proposed PMU placement method 

provides a higher percentage of fully observable systems for all single and double 

branch failures than the PMU placement method under normal conditions without the 

need of installing additional PMUs. The number of PMUs calculated by the proposed 

approach is compared to the number of PMUs required under normal conditions and 

to the number of PMUs that guarantees 100% of fully observable systems during any 

single branch failure that can occur by guaranteeing that each bus is observable by at 

least two PMUs is shown in Table 4.3. 
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Table 4.3 Number of PMUs required to maintain full observability in case of single 

branch failure as per Approach 1  

Test System 

No. of PMUs 

determined by 

Approach 1 

No. of PMUs where 

every bus is 

observable by 2 PMUs 

IEEE 7-bus system 3 5 

IEEE 14-bus system 4 7 

IEEE 30-bus system 10 14 

IEEE 57-bus system 25 31 

IEEE 118-bus 

system 
38 50 

While able to guarantee observability in the case of any single branch failure, the 

normal approach utilizing at least two PMUs to observe every bus requires a high 

number of PMUs to maintain observability. 

4.3.2 Approach 2 - PMU Placement to Overcome Single Branch Failure 

corresponding to the Second Lowest Fiedler Value 

In this approach, the effect of the single branch failure corresponding to the second 

lowest Fiedler value shall be studied. As explained previously, single branches shall 

be removed from a given system one at a time and the Fiedler value for the resultant 

system shall be calculated. After determining the required branch, the removal of 

which would result in a system with the second lowest Fiedler value, it is removed 

from the system and the optimal PMU placement problem is solved. A flow chart 

detailing the algorithm for the proposed approach is shown in Figure 4.5. 
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Figure 4.5 Flowchart of the algorithm used for Approach 2 
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The number of PMUs and their bus placement is demonstrated in Table 4.4 below. 

Table 4.4 Improved PMU Placement Covering Single Branch Failure Corresponding 

to the Second Lowest Fiedler Value 

Test System 
PMU placement 

No. of PMUs PMU Location 

IEEE 7 bus system 3 1,2,4 

IEEE 14 bus 

system 
4 2,6,7,9 

IEEE 30 bus 

system 
11 1,2,6,9,10,12,13,15,19,25,27 

IEEE 57 bus 

system 
23 

1,4,6,9,15,19,20,22,24,25,28,29,32,34, 

37,38,41,46,47,50,53,54,56 

IEEE 118 bus 

system 
36 

2,5,9,11,12,15,17,21,25,28,29, 

34,37,40,45,49,52,56,62,64,68, 

72,73,75,77,80,85,86,90,91,94, 

101,102,105,110,114 

After obtaining the improved PMU placement using the mentioned approach, the next 

step is to compare the resultant PMU placement with that of the optimal PMU 

placement done under normal conditions without any contingency consideration. The 

comparison shall be based on the percentage of fully observable systems during any 

single or double branch failure combinations that each placement can achieve. The 

results are presented in Figure (4.6 A and B) below. 
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(A) 

 

(B) 

Figure 4.6 Performance of PMU Placement Approach 2 for (A) All Single Branch 

Failures and (B) All Double Branch Failure Combinations 

As evident in the results plotted above, the proposed system, while not as high 

performance as that of the PMU placement calculated using Fiedler value, still 

provides a higher percentage of fully observable systems in the event of both any 

single branch failure as well as any double branch failure combination while at the 

same time taking into consideration the failure of the branch with the second highest 

impact on system connectivity. However, this approach can be used to enhance the 

solution to the optimal PMU placement problem by incorporating the approach of 

PMU placement using the second lowest Fiedler value with the previous approach 

which takes into consideration the actual Fiedler value when solving the optimal 

PMU placement problem. The number of PMUs calculated by the proposed approach 

is compared to the number of PMUs required under normal conditions and to the 

number of PMUs that guarantees 100% of fully observable systems during any single 

branch failure that can occur by guaranteeing that each bus is observable by at least 

two PMUs is shown in Table 4.5. 
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Table 4.5 Number of PMUs required to maintain full observability in case of single 

branch failure as per Approach 2  

Test System 

No. of PMUs 

determined by 

Approach 2 

No. of PMUs where 

every bus is 

observable by 2 PMUs 

IEEE 7-bus system 3 5 

IEEE 14-bus system 4 7 

IEEE 30-bus system 11 14 

IEEE 57-bus system 23 31 

IEEE 118-bus 

system 
36 50 

While able to guarantee observability in the case of any single branch failure, the 

normal approach utilizing at least two PMUs to observe every bus requires a high 

number of PMUs to maintain observability. 

4.3.3 Approach 3 - PMU Placement to Overcome Double Branch Failure 

corresponding to the Lowest Fiedler value and the Second Lowest Fiedler 

Value 

In this approach, the effect of the double branch failure corresponding to both the 

lowest Fiedler value and the second lowest Fiedler value shall be studied. As per 

established protocol, after determining the two branches in a system where the 

removal of which would cause the greatest impact of system connectivity, both 

branches are removed and the optimal PMU placement problem is solved. A flow 

chart detailing the algorithm for the proposed approach is shown in Figure 4.7. 
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Figure 4.7 Flowchart of the algorithm used for Approach 3 
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The number of PMUs and their bus placement is demonstrated in Table 4.6 below. 

Table 4.6 Improved PMU Placement Covering Double Branch Failure Corresponding 

to the Lowest Fiedler value and the Second Lowest Fiedler Value 

Test System 
PMU placement 

No. of PMUs PMU Location 

IEEE 7 bus system 4 1,2,3,5 

IEEE 14 bus 

system 
4 2,6,8,9 

IEEE 30 bus 

system 
11 1,2,6,10,11,12,13,15,19,25,27 

IEEE 57 bus 

system 
24 

1,4,6,9,15,19,20,22,24,26,28,29,30,33, 

34,37,38,41,46,47,50,53,54,56 

IEEE 118 bus 

system 
36 

2,5,9,11,12,15,17,21,25,28,29, 

34,37,40,45,49,52,56,62,64,68, 

72,73,75,77,80,85,87,90,91,94, 

101,102,105,110,114 

 

After obtaining the improved PMU placement using the mentioned approach, the next 

step is to compare the resultant PMU placement with that of the optimal PMU 

placement done under normal conditions without any contingency consideration. The 

comparison shall be based on the percentage of fully observable systems during any 

single or double branch failure combinations that each placement can achieve. The 

results are presented in Figure (4.8 A and B) below. 
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(A) 

 

(B) 

Figure 4.8 Performance of PMU Placement Approach 3 for (A) All Single Branch 

Failures and (B) All Double Branch Failure Combinations 

As evident in the results plotted above, the proposed system provides a higher 

percentage of fully observable systems in the event of both any single branch failure 

as well as any double branch failure combination while at the same time taking into 

consideration the double branch failure with the highest impact on system 

connectivity as indicated by the lowest and second lowest Fiedler values. . The 

number of PMUs calculated by the proposed approach is compared to the number of 

PMUs required under normal conditions and to the number of PMUs that guarantees 

100% of fully observable systems during any single branch failure that can occur by 

guaranteeing that each bus is observable by at least two PMUs is shown in Table 4.7. 

 

 

 

 

 

57.14
58.95

61.95 61.21
63.91

83.93

63.68
66.95

80.49

68.16

50

55

60

65

70

75

80

85

90

IEEE 7-bus systems IEEE 14-bus
systems

IEEE 30-bus
systems

IEEE 57-bus
systems

IEEE 118-bus
systems

P
er

ce
n

ta
ge

Bus Systems

PMU Placement under normal conditions (without considering double branch failure)



 46 

Table 4.7 Number of PMUs required to maintain full observability in case of double 

branch failure as per Approach 3  

Test System 

No. of PMUs 

determined by 

Approach 3 

No. of PMUs where 

every bus is 

observable by 2 PMUs 

IEEE 7-bus system 4 5 

IEEE 14-bus system 4 7 

IEEE 30-bus system 11 14 

IEEE 57-bus system 24 31 

IEEE 118-bus 

system 
36 50 

While able to guarantee observability in the case of any single branch failure, the 

normal approach utilizing at least two PMUs to observe every bus requires a high 

number of PMUs to maintain observability. 

4.3.4 Approach 4 - PMU Placement to Overcome Double Branch Failure 

corresponding to the Lowest Fiedler value 

In this approach, the effect of the double branch failure corresponding to the lowest 

Fiedler value shall be studied. The methodology used to determine single branch failure 

corresponding to the lowest Fiedler value will be used in this approach. However 

instead of eliminating just single branches one at a time and calculating the resultant 

Fiedler values, in this case all double branch failure combinations will be examined, 

each time calculating the corresponding Fiedler value. The number of double branch 

failure combinations can be expressed as n choose 2 combinations, where n is the total 

number of branches in the system. 

The PMU placement problem shall be solved based on eliminating the two branches 

with the lowest corresponding Fiedler and solving the optimal PMU placement problem 

with those branches excluded from the system. A flow chart detailing the algorithm for 

the proposed approach is shown in Figure 4.9. 
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Figure 4.9 Flowchart of the algorithm used for Approach 4 
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The number of PMUs and their bus placement is demonstrated in Table 4.8 below. 

Table 4.8 Improved PMU Placement Covering Double Branch Failure Corresponding 

to the Lowest Fiedler value 

Test System 
PMU placement 

No. of PMUs PMU Location 

IEEE 7 bus system 3 1,2,4 

IEEE 14 bus system 5 2,6,7,10,13 

IEEE 30 bus system 11 
1,2,6,9,10,12,15, 

18,20,25,27 

IEEE 57 bus system 25 

1,4,6,9,14,19,20,22,26,29,30, 

32,33,34,36,37,41,44,45,48,50, 

51,53,54,56 

IEEE 118 bus system 38 

2,5,9,11,12,15,17,21,23,25,28,29, 

30,34,37,40,45,49,52,56,62,63, 

64,68,70,71,75,77,80,85,87,90, 

91,94,101,105,110,114 

After obtaining the improved PMU placement using the mentioned approach, the next 

step is to compare the resultant PMU placement with that of the optimal PMU 

placement done under normal conditions without any contingency consideration. The 

comparison shall be based on the percentage of fully observable systems during any 

single or double branch failure combinations that each placement can achieve. The 

results are presented in Figure (4.10 A and B) below. 
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(B) 

Figure 4.10 Performance of PMU Placement Approach 4 for (A) All Single Branch 

Failures and (B) All Double Branch Failure Combinations 

As evident in the results plotted above, the proposed system provides a higher 

percentage of fully observable systems in the event of both any single branch failure 

as well as any double branch failure combination while at the same time taking into 

consideration the double branch failure with the highest impact on system 

connectivity as indicated by the lowest Fiedler value. Furthermore, regarding the 

improved PMU placement for the IEEE 14-bus system and IEEE 57-bus system, the 

results show that proposed PMU placement method provides a significantly higher 

percentage of fully observable systems for all single and double branch failures than 

the PMU placement method under normal conditions with only a minor increase in 

the required number of PMUs. The number of PMUs calculated by the proposed 

approach is compared to the number of PMUs required under normal conditions and 

to the number of PMUs that guarantees 100% of fully observable systems during any 

single branch failure that can occur by guaranteeing that each bus is observable by at 

least two PMUs is shown in Table 4.9. 
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Table 4.9 Number of PMUs required to maintain full observability in case of double 

branch failure as per Approach 4  

Test System 

No. of PMUs 

determined by 

Approach 4 

No. of PMUs where 

every bus is 

observable by 2 PMUs 

IEEE 7-bus system 3 5 

IEEE 14-bus system 5 7 

IEEE 30-bus system 11 14 

IEEE 57-bus system 25 31 

IEEE 118-bus 

system 
38 50 

While able to guarantee observability in the case of any single branch failure, the 

normal approach utilizing at least two PMUs to observe every bus requires a high 

number of PMUs to maintain observability. 

4.3.5 Approach 5 - PMU Placement to Overcome System Partitioning 

corresponding to Fiedler Vector 

In the discussed approaches above, the lowest algebraic connectivity of graphs for a 

given connected system was used to identify the single or double branch failures that 

would have the worst impact on the system connectivity and thus its observability. In 

the event of failure of the branches deduced from the algebraic connectivity, the system 

connectivity would be affected but still remain connected to a certain degree. 

The concept of Fiedler vector is a more severe approach to system connectivity as it 

can be used as explained previously to identify the specific number of branches that 

would cause partitioning of the system thus resulting in two separate subsystems [94]. 

In the following approach, Fiedler vector of a system is used to identify the minimum 

number of branches the failure of which would cause system partitioning and aid in 

providing a fault tolerant improved PMU placement that would guarantee full system 

observability even in the event of partitioning of the system. Based on the sign of the 

elements of the Fiedler vector of a system, the resultant subsystems can be identified. 
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By comparing the connections of these systems with the original connectivity matrix, 

the number and location of the branches to be severed can be deduced, thus improved 

PMU placement can be generated to overcome the failure of those branches by deleting 

the elements in the system’s original connectivity matrix and solving the optimal 

placement problem for the resultant matrix. 

Using the IEEE 7-bus system as an example to this approach, the Fiedler vector for 

such a system is [-0.5579, -0.2273, -0.0582, 0.29, 0.7117, -0.2029, 0.0445]. As it is 

observed from the Fiedler vector, two subsets can be formed from the resultant vector, 

the elements of which represent the buses in the IEEE 7-bus system, based on the sign 

on each vector element. In this case, the two subsets are {-0.5579, -0.2273, -0.0582, -

0.2029} and {0.29, 0.7117, 0.0445}. Using the corresponding element number in the 

Fiedler vector, two subsets including the elements’ orders in the vector can be created 

{1, 2, 3, 6} and {4, 5, 7}. The IEEE 7-bus system can then be modified to display the 

connections of each subset individually by removing all other branches in the system 

connecting both subsets, thus creating two sub-systems. The resultant system 

representation is shown in Figure 4.7 below. 

 

Figure 4.11 IEEE 7-bus system partitioned to two sub-systems 

As shown in the figure above, by defining the two subsets as per Fiedler vector values, 

the branches between buses 3 and 4; and 2 and 7 were deleted to create the partitioned 

sub-systems. To obtain the improved PMU placement to overcome such partitioning, 

the connectivity matrix of the IEEE 7-bus system is modified to omit the branch 

connection between the sub-systems and the modified matrix is used to obtain the 

PMU’s number and location in the system. A flow chart detailing the algorithm for the 

proposed approach is shown in Figure 4.12. 
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Figure 4.12 Figure 4.9 Flowchart of the algorithm used for Approach 5 
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The improved PMU placement in case of system partitioning for the IEEE 7-bus, IEEE 

14-bus, IEEE 30-bus, IEEE 57-bus and IEEE 118 systems is presented in Table 4.10 

below. 

Table 4.10 Improved PMU Placement in case of System Partitioning 

Test System 

PMU placement 

No. of branch 

failures 
No. of PMUs PMU Location 

IEEE 7 bus 

system 
2 2 2,4 

IEEE 14 bus 

system 
3 4 2,7,11,13 

IEEE 30 bus 

system 
11 13 

1,2,6,9,10,12,16,19,23,24, 

25,27,28 

IEEE 57 bus 

system 
15 27 

1,4,8,10,11,13,19,20,23,25, 

26,29,30,32,36,37,44,45,46, 

47,49,51,52,53,54,55,56 

IEEE 118 

bus system 
11 37 

2,5,9,10,12,15,17,21,23,28, 

29,30,34,37,40,45,49,52, 

56,62,64,68,71,75,77,80,85, 

86,87,89,92,94,100,105,110, 

114,115 

After obtaining the improved PMU placement using the mentioned approach, the next 

step is to check the percentage of fully observable systems in the case of any single or 

double branch failures that can occur in the system. The results are presented below in 

Figure (4.13 A and B). 
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(B) 

Figure 4.13 Performance of PMU Placement Approach 5 for (A) All Single Branch 

Failures and (B) All Double Branch Failure Combinations 

As evident in the results plotted above, the proposed system provides a higher 

percentage of fully observable systems for the IEEE 30-bus, IEEE 57-bus and IEEE 

118-bus systems and maintaining the same percentage of fully observable systems in 

the case of the smaller test systems in the event of both any single branch failure as 

well as any double branch failure combination while at the same time taking into 

consideration the possibility of complete system partitioning. The number of PMUs 

calculated by the proposed approach is compared to the number of PMUs required 

under normal conditions and to the number of PMUs that guarantees 100% of fully 

observable systems during any single branch failure that can occur by guaranteeing 

that each bus is observable by at least two PMUs is shown in Table 4.11. 
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Table 4.11 Number of PMUs required to maintain full observability in case system 

partitioning as per Approach 5  

Test System 

No. of PMUs 

determined by 

Approach 5 

No. of PMUs where 

every bus is 

observable by 2 PMUs 

IEEE 7-bus system 3 5 

IEEE 14-bus system 5 7 

IEEE 30-bus system 11 14 

IEEE 57-bus system 25 31 

IEEE 118-bus 

system 
38 50 

While able to guarantee observability in the case of any single branch failure, the 

normal approach utilizing at least two PMUs to observe every bus requires a high 

number of PMUs to maintain observability. 

4.3.6 Approach 6 - PMU Placement to Overcome Single Branch Failure 

corresponding to the Lowest Fiedler value coupled with Zero Injection Effect 

In this approach, the effect of the single branch failure corresponding to the lowest 

Fiedler value while also taking into consideration the effect of zero injection buses shall 

be studied. As explained in Chapter 3, taking into consideration the effect of zero 

injection buses under normal conditions (without taking into consideration fault 

tolerance against any single branch failure) decreases the number of PMUs that are 

needed to be installed in a system to provide full observability by taking advantage of 

the indirect measurement using KCL. For the 9-bus test system used to explain the 

effect of zero injection buses in Chapter 3, below in Table 4.11 the number of PMUs 

required for full system observability under normal conditions is presented, with and 

without taking into consideration the zero injection effect. 
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Table 4.12 Optimal PMU Placement with and without Zero Injection Effect 

Test System 

PMU placement without 

considering zero injection effect 

PMU placement considering 

zero injection effect 

No. of PMUs PMU Location No. of PMUs PMU Location 

9-bus test 

system 
3 4,6,8 2 6,9 

As expected, while considering the effect of zero injection buses on the improved 

PMU placement, the number of PMUs required to achieve full observability is lower 

than when not considering the effect of zero injection buses. Next, the effect of the 

single branch failure contingency corresponding to the lowest Fiedler value shall be 

studied with and without the consideration of the effect of zero injection buses. The 

improved PMU placement for both approaches in presented in Table 4.12 below. 

Table 4.13 Improved PMU Placement to Overcome Single Branch Failure 

corresponding to the Lowest Fiedler Value with and without Zero Injection Effect 

Test System 

PMU placement without 

considering zero injection effect 

PMU placement considering 

zero injection effect 

No. of PMUs PMU Location No. of PMUs PMU Location 

9-bus test 

system 
4 2,4,6,9 3 2,6,9 

While both approaches demonstrate the need for an additional PMU to overcome 

single branch failure corresponding to Fiedler value, the approach taking zero 

injection effect into consideration still provides the required system observability with 

fewer PMUs. However, the advantage of considering the effect of zero injection buses 

is only due to the fact that buses connected to the zero injection bus can be observable 

in the case that the zero injection bus and every other bus connected to it is observable 

through KCL. That advantage relies heavily on the ability of the system to stay 

connected and in the event of branch failures the level of observability could be 

greatly reduced. The percentage of fully observable systems in the case of any single 
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or double branch failures for the PMU placement presented above is demonstrated in 

Figure 4.14. 

 

Figure 4.14 Performance of PMU Placement Approach 6 in case of Single and Double 

Branch Failures 

As evident, the improved PMU placement approach taking into consideration the zero 

injection effect has a somewhat poor performance, especially in the case of 

contingency against any double branch failure, as the main advantage of KCL is 

challenged by the removal of branches from the system. 
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Chapter 5 

Conclusion and Future Work 

In this thesis, a fault-tolerant PMU placement methodologies based on tools from the 

algebraic connectivity of graphs is proposed. By describing the smart grid as a graph, 

the branch whose failure will have the highest effect on the system connectivity based 

on the lowest Fiedler value can be identified. With the understanding that the grid 

observability is directly related to the graph connectivity, the PMU placement 

problem can be formulated to make sure that the system will be fully observable 

under the failure of the branch that has the highest effect on the grid connectivity. 

Furthermore, the approach is further enhanced by taking into consideration the effect 

of the second lowest Fiedler value of a system as a standalone concept to identify 

single branch failures as well as incorporating the concept with the actual lowest 

Fiedler value to identify the double branch failure with the highest effect on the 

system connectivity. 

As expected, comparing the proposed PMU placement with the PMU placement 

under normal conditions (without considering the effect of single or double branch 

failures), the results show a superiority in the performance of the proposed PMU 

placement in terms of the percentages of fully observable systems in case of any 

single or double branch failures with a reasonable increase in number of PMUs used. 

Furthermore, in some cases an increase in performance is obtainable by providing an 

alternate distribution of PMUs without increasing the number of PMUs to be installed 

in the system providing a net gain of performance at no additional cost. 

In addition to using the concept of Fiedler value to determine improved PMU 

placement, the concept of using the Fiedler vector of a system is proposed to identify 

the branches in any given system whose failure would result in a complete system 

partitioning and propose an improved PMU placement approach to provide a 

contingency for that occurrence. The performance of the approach is also tested 

against conventional PMU placement in terms of evaluating the percentage of fully 

observable system in case of any single or double branch failure that could occur in 

the system. 
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Fiedler value and Fiedler vector to identify branch failures can be used in tandem with 

other contingencies such as the ones explained in Chapter 3. As an example of the 

effect of such contingency merger to determine the optimal PMU placement, the 

effect of zero injection buses was added as a constraint to the optimal PMU placement 

problem to overcome single branch failure corresponding to the lowest Fiedler value 

of the system. The performance of such merger of contingencies was reviewed in 

terms of the percentage of systems that remain fully observable in the event of any 

single branch failure. As it was demonstrated, the effect of zero injection buses 

contingency on improved PMU placement did not provide a decent performance as it 

was only able to fully observe a small percentage of systems in the event of any 

double branch failure. A further deduction can be interpreted in this area that not all 

contingency considerations provide an overall increase in performance. 

Further exploration is possible where more contingencies can be taken into 

consideration, such as limited number of PMU channels, different probabilities of 

branch failures, etc. Furthermore, Fiedler value can be used to determine more than 

double branch failure contingencies as any number of branches can be removed and 

the optimal PMU placement problem can be solved accordingly.  

In addition, the effect of more than one additional contingency to the branch failures 

corresponding to Fiedler value can be used. For example in addition to using Fiedler 

value, the optimal PMU placement problem can be solved while considering the 

effect of measurement loss as well as limited or different PMU channel capacity. 

While it may not guarantee a higher performance like the case of combining the effect 

of zero injection buses with branch failures, it still presents an opportunity to further 

study the different effects of different combination of contingencies. 

The work into using Fiedler vector to determine branch failure contingencies can also 

be enhanced by studying the effect of partitioning the system into more than two 

subsystems, while also studying those subsystems individually as if they were their 

own systems. This way all contingencies can be studied further as presented in this 

thesis but while incorporating the effect of Fiedler vector at the beginning. 
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