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ABSTRACT 
OF THE THESIS OF 

Hoda Ahmed Ahmed Abdelsalam Elbanna   for   Master of Science 

       Major: Electronics Engineering 

       The American University in Cairo  

Title: A programmable receiver front-end for multi-band multi-standard applications 

Supervisor: Prof. Yehea Ismail          Co-Supervisor: Prof. Emad Hegazi, Dr.Hassan 

Mostafa 

Nowadays, wireless communication devices need a compact wireless receiver, so 

that it can access all the available services at any time and at any location with minimum 

power consumption and compact area. The desire for covering all the service 

specifications tremendously increases the demand for multi-band/multi-standard wireless 

receivers. A reconfigurable receiver comes to give a hand. In this work, a universal 

programmable multi-band multi-standard receiver using CMOS technology is proposed. 

The receiver aims to target LTE specifications on the frequency range (700MHz-2.4GHz) 

as a case study to prove the concept of supporting multi-bands. The receiver is tested over 

three different frequencies 500MHz, 1GHz and 2GHz to prove its programmability.  

Sampling receivers and impedance translation technique are the main factors to approach 

the desired programmable receiver front-end. The receiver uses a quadrature band-pass 

charge sampling filter programmed via its controlling clocks. It forms the signal path 

which selects the signal, down-converts it to IF frequency and subsamples the signal 

decreasing the sampling frequency of the proceeding ADC. By adjusting the controlling 

clocks of the switches, the filter center frequency is maintained at the desired frequency.  

A time varying matching network based on impedance translation technique is used for 

multi-frequencies matching and further selectivity enhancing the receiver’s linearity. The 

receiver front-end architecture achieves a NF of (7: 9) dB, a gain of (23: 28) dB, an out-

of-band IIP3 of (-1.9 : -5.5) dBm and an in-band IIP3 of (-1.9 : -5.7) dBm across the 

tested frequencies. The design is tested across process corners. The layout of the design 

occupies 0.45mm
2
. The design is tested post layout to prove its reliability.  
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1. Introduction 

1.1. Motivation 

The demand for multi-band multi-standard receivers used for soft-ware defined 

radio applications [1] has been increasing for over a decade. The conventional receivers 

require narrow band selective filter with off chip components such as SAW filter and 

passive LC matching network with inductors and capacitors. These components are 

inherently narrow band and hard to tune [2, 3]. Filtering limits the blockers and hence 

relaxes the linearity requirements. Eliminating the off-chip band pass selective filter 

implies high linearity requirements.  Different ideas are proposed in the literature for 

receiving several widely spaced bands. Multi-path narrow-band front-end architecture is 

one of the well-known receivers where one path is powered on at a time [4, 5]. This 

design consumes large area on/off chip and large power consumption. Wideband 

receivers [6, 7] and sampling receivers [8, 9& 10] also come to offer a solution, however 

they have moderate linearity and poor matching. Another idea is to transfer the signal 

sampling and analog-to-digital (A/D) interface from the baseband to RF side, in order to 

enable further signal processing to take place in the digital domain. Digital signal 

processing allows elimination of the non-idealities of analog signal processing, such as 

device noise and non-linearity. However, this dictates a high speed ADC in the receiver’s 

front-end with high sampling frequency and large dynamic range. This requires tough 

specifications of the ADC design and consumes very high power. Connecting the antenna 

directly to a CMOS passive mixer without LNA [11, 12] can provide significant benefits, 

such as achieving extremely low power consumption and increasing the tuning range and 

linearity. However they have low in-band linearity and high power consumption.  
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1.2. Objective 

The objective of this work is to implement a programmable receiver front-end 

architecture with high linearity to compensate for the eliminated off-chip band pass filter. 

The idea of charge sampling proves to be a good proposal for the receiver front-end 

signal path. It gives gain to the signal, has good linearity and low noise figure, it 

subsamples the signal and down-converts it to low IF frequency. By adjusting the 

controlling clocks of the sampler, the receiver is able to support certain frequency band.  

The usage of time-varying matching network satisfies good tunable matching with further 

selectivity enhancing the receiver’s linearity. The proposed receiver front-end 

architecture targets LTE specifications on the band of (700MHz – 2.4GHz) as a case 

study. The receiver front-end architecture programmability should be tested, in order to 

prove its capability of supporting multi bands of frequencies.  The design is tested at 

three frequencies 500M, 1G and 2G.  

 

1.3. Thesis Organization 

Chapter one includes an introduction to multi-band multi-standard receivers, its 

role in wireless communication and the objective of this research. Chapter two gives an 

overview on the existing receiver architectures, the main specifications of any receiver 

and LTE standard (the targeted case study) specifications. Chapter three describes the 

proposed receiver architecture, explains the idea of charge sampling and the time varying 

matching network. Afterwards, it analyzes the architecture regarding its noise, linearity, 

input power matching and programmability. VerilogA language is used for behavioral 

modeling of the architecture. Chapter four shows the circuit implementation of the charge 

sampling filter (the transconductor and the switches), the matching network and the 

digital circuitry generating the controlling clocks of both the sampler and the matching 

network. The pre layout simulation results of the design at typical conditions as well as 

across process corners are shown in chapter five. The layout of the design and post layout 

simulations is presented in Chapter six. Finally the conclusion is shown. 
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2. Wireless receivers background 

2.1. Specifications of receivers 

Gain, NF, in-band, out-of-band linearity and input matching are the most 

important performance metrics that define the RF performance of the receiver. There is a 

clear trade-off between these parameters with respect to each other and with respect to 

area and power consumption. The target of any receiver is to achieve the specifications of 

the desired standards with reasonable area and power. 

2.1.1. RF gain 

The gain can be voltage or power gain. In case of having the input and the output 

on the same chip, the voltage gain is considered. Any receiver should be able to amplify 

the signal to be represented at the output with reasonable amplitude, also it should have 

low noise figure with relaxing the noise specs of the following blocks. Usually LNA 

exists at the beginning of any receiver, in order to amplify the signal with low noise. 

2.1.2. Noise Figure (NF) 

NF is defined as the ratio of the signal to noise ratio (SNR) at the input to that at 

the output, accordingly NF is representing the noise added to the input referred noise 

floor. NF formula is given in Eqn.2.1  

 

 

(2.1) 

where, output_noise  is representing the output integrated noise in dB, B is the 

bandwidth, Gain is the gain of the receiver in dB, K is Boltzmann constant and T is the 

absolute temperature in Kelvin. (KT) is the thermal noise floor in dBm/Hz and it is equal 

to -174 dBm/Hz at the room temperature. 

The above equation can represent DSB NF or SSB NF according to the definition 

of the receiver’s gain and output noise. Both the signal and the image bands can be folded 

on the same IF frequency. If the output noise and the gain result from both the signal and 

the image, then the NF in the equation is representing DSB NF. If the output noise and 

)log(10)log(10_ KTGainBnoiseoutputNF 
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the gain result from only one side band, then the NF is representing SSB NF. The SSB 

NF is 3 dB higher than DSB NF. 

2.1.3. Linearity 

Linearity requirements of the receiver are characterized by many parameters; 

P1dB compression point, third order intermodulation product (IIP3), Blocker Dynamic 

Range (BDR) and Spurious Free Dynamic Range (SFDR).  

P1dB is the input power at which the output power decreases by 1 dB less than 

the expected output power of the receiver. The expected output power is the product of 

the input power multiplied by the receiver gain. Fig.2.1 is showing P1dB representation. 

IIP3 results due to the products of two input blockers. If there are two input 

blockers at f1 and f2 with the receiver’s non linearity shown in Eqn. 2.2 & 2.3, they can 

intermodulate resulting in in-band intermodulation products at the frequencies of (2f2-f1) 

and (2f1-f2) which lie within the input frequency band. IIP3 is defined as the input power 

value at which the input power is equal to the power of the intermodulation products, 

while OIP3 is the output intermodulation product .It is equal to IIP3 multiplied by the 

receiver’s gain. 

 

 

(2.2) 

 

(2.3) 

 

cVbVaV ininout  )()( 2

ctwVbtwVtwVaVout  ))sin(())sin()sin(( 11

2
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Fig. 2.1 P1dB compression point curve 

 

Fig.2.2 shows the scenario when one of the intermodulation product frequencies 

overlap with the signal band.  This leads to distortion of the desired signal. IIP3 formula 

is given in Eqn.2.4; where Pin is the power of the input signal.  PIM3 is the input referred 

power of the third order intermodulation component, it is the output power of one of the 

two components (2f2-f1) or (2f1-f2) in dBm minus the receiver’s gain. 

 

 

(2.4) 

Another important definition for linearity measurement is the dynamic range, 

which is the ratio between the strongest and the weakest signals the receiver can process. 

Spurious free dynamic range (SFDR) and the blocking dynamic range (BDR) are 

important for any receiver. The lower limit is set by the sensitivity. The upper limit in 

case of SFDR is set by the maximum receiver input level at a two tone test for which the 

third-order intermodulation product is below the noise floor. For BDR calculation; the 

upper limit is the P1dB compression point. The equations of the SFDR and BDR are 

shown in Eqns. 2.5 & 2.6 respectively. 

 

 (2.5) 
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 (2.6) 

 

 

Fig.  2.2 IIP3 curve 

2.1.4. Power matching 

Any receiver front-end should include matching network in order to match the 

input power, accordingly most of the carried power passes in the receiver. Matching is 

measured by S11 which is the reflection coefficient at the antenna side. Fig.2.3 shows the 

two-port network and Eqn.2.7 is showing the s-parameters matrix. Eqn.2.8, 2.9 and 2.10 

shows the definition of S11 (input reflection coefficient at port 1 at a2=0). 

 

Fig.  2.3Two port network with the propagating waves 

 

 

(2.7) 

 
(2.8) 
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(2.9) 

 

 

(2.10) 

 

 

2.2. Receivers architectures 

Receivers are divided in to two main categories; narrow band receivers and wide-

band receivers. Narrow band receivers are based on the conventional receiver design 

including highly selective band pass filter, LNA and mixers like Super heterodyne, zero 

IF receiver and low IF receivers. Wide band receivers include multiple parallel narrow 

band receiver front-ends, wide-band receiver front-end using wide-band LNA, sampling 

receivers and receivers based on mixer first technique. 

2.2.1. Narrow band receivers 

Narrow band receivers are based on the conventional receiver architecture 

composed of BPF, LNA and mixer. They include super heterodyne receiver, Zero IF 

Receiver and Low IF receiver. 

2.2.1.1. Super heterodyne receiver 

Super heterodyne receiver architecture [13, 14] is shown in Fig.2.4. RF filter is 

used to attenuate the out-of-band blockers and the image. A narrow-band front-end LNA 

with a matching network of passive components is used to provide the signal with gain 

and with low noise. An external image reject filter is used to attenuate the image 

frequency. The mixer down converts the signal from RF frequency to IF frequency. Off 

chip IF filter is used to select the desired channel. 

1

1
1

a

b


0

1

1
11 2
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Fig.  2.4Super heterodyne receiver 

2.2.1.2. Zero IF receiver  

Zero IF receiver [3], [15] block diagram is shown in Fig.2.5. The small size and 

low cost high on-chip integration degree give zero IF receivers a great importance. Here, 

RF frequency is down-converted directly to base band. The image reject filter is 

eliminated as the image frequency is also zero. Channel selection is performed through 

LP filters. This has several advantages; there is no need for high Q image-reject filter, 

moreover the IF SAW channel select filter is replaced with low pass filter at base band. 

The problem is the DC offset [16], it results from the LO leakage from the LO port to the 

mixer RF input. This leakage is down converted to DC; this is called self-mixing, this 

unwanted DC offset can saturate the following stages. Another problem is the flicker 

noise at low frequencies (1/f noise of the mixer) [17]. 

 

Fig.  2.5 Zero IF receiver 
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2.2.1.3. Low IF receiver 

In this receiver [15, 18, 19] shown in Fig.2.6; the RF frequency is down-

converted to low IF frequency (few mega hertz). This is better than zero IF receiver in 

avoiding the problems of DC offset and flicker noise. Using I/Q image reject mixer with 

a poly-phase filter with low Q instead of high Q IR (Image rejection) filter is also counted 

as an advantage. 

 

Fig.  2.6 Low IF receiver 

2.2.2. Wide-band receivers 

These receivers are able to support many frequency bands, they include multiple 

parallel narrow-band receiver front-ends, wide-band receivers using wide-band LTE, 

sampling receivers and receivers based on mixer first technique. 

2.2.2.1. Multiple parallel narrow-band front-ends 

This is based on implementing multiple front-ends [4], [5] as shown in Fig.2.7. 

Each of them is powered on at a time and responsible to support a certain frequency 

band. However it consumes large on/ off chip area. 
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Fig.  2.7 Multiple Parallel narrow-band receiver front-ends 

2.2.2.2. Wide-band receiver front-end 

Wide-band receiver front-ends are based on implementing wide-band LNAs [6, 

7], this is to support multi-bands with achieving the required specs. They provide 

moderate linearity and poor matching as the matching should be held at wide-band. 

2.2.2.3. Sampling receivers 

The conventional receiver front-end is replaced by another structure which 

samples the signal at RF frequency, down converts it to IF frequency or base band 

frequency to be processed in the base band. This gives good Noise Figure. However it 

has poor matching and moderate linearity [8, 9, 10]. The structure of sampling receivers 

is shown in Fig.2.8 [9].  

 

Fig.  2.8  Sampling Receiver Front-End 
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2.2.2.4. Mixer first receiver architecture 

In this architecture shown in Fig.2.9 [20]; the LNA is translated to the base band 

side. It depends on impedance translation technique [11, 12]. The impedance effect in the 

base-band side is translated to the RF side. Resistances and capacitances giving low pass 

filter response in the base-band side results in band pass filter around the LO frequency in 

the RF side. This provides matching and filtering at the tuned LO frequency, accordingly, 

it leads to low NF, good matching and high out of band linearity at this frequency. 

However it has large power consumption and poor in band linearity. 

 

 

Fig.  2.9 Mixer first receiver 

 

2.3. The targeted case study (LTE Specifications) 

In this work, LTE is targeted as a case study to prove the concept of supporting 

multi frequency bands. LTE is chosen as a proof of concept as it is the most popular 

standard nowadays; also it covers multi frequency bands.  

The LTE standard frequency bands ranges from 700MHz to 2.4GHz and the 

advanced LTE reaches till 6GHz. The uplink and down link frequency bands are shown 

in Table 2-1 [21]. The LTE channel bandwidth can be 1.4MHz, 3MHz, 5MHz, 10MHz, 
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15MHz and 20MHz. It should be noted that for a receiver to be able to support LTE 

standard, it should achieve LTE specifications of noise figure, out-of-band and in-band 

linearity on the whole frequency range (for all LTE bands). 

2.3.1. Noise Figure 

Noise Figure = 174 + pinmin – 10log(BW) - SNRmin, where 174 dBm is the noise 

floor, Pinmin is the required minimum sensitivity; Table 2-2 [22] is showing the minimum 

sensitivity for different channel bandwidth, BW is the channel bandwidth and SNRmin is 

the minimum signal to noise ratio.  

For 10MHz channel bandwidth, Pinmin = -94 dBm with considering the SNR = 

1dB, the noise figure can be calculated to be 9dB [23], with considering a margin for the 

insertion loss of the duplexer and RF module, the required NF can range from 7-9 dB. 

 

Table 2-1LTE up link and down link bands 

                                 

Table  2-2 minimum sensitivity for different frequency bands 
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2.3.2. Out-of-band linearity 

Out-of-band linearity is measured by the out-of-band intermodulation products; it 

depends on the transmitter leakage in case of FDD (Frequency division multiplexing) as 

well as maximum input power at the antenna in case of TDD (time division 

multiplexing). The interferers are located further than the desired band by more than 

20MHz. 

The interferer signals power ranges from -44dBm to -15 dBm according to the 

offset frequency. The interferer power is -44 dBm for 15MHz- 60MHz offset, -30 dBm 

for 60MHz- 80MHz offset and -15 dBm for offset greater than 85MHz [24].The 

transmitter leakage depends on the transmitted signal power and the duplexer isolation. 

Out-of-band intercept point (IIP3) is calculated as -10 dBm for 10MHz channel 

bandwidth for FDD, assuming the Tx leakage of -30 dBm for 10MHz channel bandwidth 

till -6 dBm for 1.4MHz channel bandwidth [23]. 

Out-of-band intercept point (IIP3) is calculated for TDD assuming the maximum 

input power level at the antenna of -25 dBm and giving room of 12 dB, P1dB is -13dBm 

and IIP3 is higher than P1dB by 10dB, so IIP3 should be -3 dBm. For FDD depending on 

duplexer isolation of 50 dB and transmitter leakage power of 23 dBm and a room of 10 

dB, P1dB is calculated as the transmitted power subtracted from it the duplexer isolation 

to be -16 dBm and IIP3 is higher by 10 dB to be -6 dBm[25]. 

2.3.3. In-band linearity 

In-band linearity is measured by in-band intermodulation products, it results from 

cross modulation of other channels on the same band and CW interferers in the same 

band.  The interferers are located at frequencies away from the desired band by less than 

20MHz. 

As shown in Table 2-3 [22], for 10MHz channel bandwidth, the interferers are 

CW signal of -46 dBm located at (
𝐵𝑊

2
+  7.5𝑀𝐻𝑧) away from the desired signal. The 

modulated signal of bandwidth 5MHz has power equals to -46 dBm at double the 

frequency of CW. 
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In-band IIP3 can be calculated as 
1

2
 (3Pint – PIMD3 ) , Pint = -46 dBm, for PIMD3, it 

can be calculated based on Eqn.2.11 [24] or Eqn.2.12 [23].  By using Eqn2.11 for a 

10MHz channel BW with substituting for the noise floor of -104 dBm for a 10MHz 

channel BW, Rx margin of 6 dB for a 10MHz channel BW and the modulated channel 

bandwidth of 5MHz; the PIMD3 is calculated to be -102.24 dBm accordingly IIP3 is -17.88 

dBm [24]. By using Eqn2.12 [23] for a 10MHz channel BW with substituting for the 

maximum input power of -88 dBm which is the sensitivity level added to it 6dB (the Rx 

margin), SNRmin of 1 dB and 3
rd

 order intermediation contribution to SNDR of 0.25; the 

PIMD3 is calculated to be -95 dBm accordingly the IIP3 is -21.5 dBm [23].  

 

           
Table  2-3interferers and blockers for different channel bandwidths 

 

 

10log10(10
𝑛𝑜𝑖𝑠𝑒 _𝑓𝑙𝑜𝑜𝑟 + 𝑅𝑥  𝑚𝑎𝑟𝑔𝑖𝑛

10 −  10
𝑛𝑜𝑖𝑠𝑒 _𝑓𝑙𝑜𝑜𝑟

10  ) -10log10(
𝑡𝑎𝑟𝑔𝑒𝑡𝑒𝑑  𝑐𝑎𝑛𝑛𝑒𝑙  𝐵𝑊

 𝑚𝑜𝑑𝑢𝑙𝑎𝑡𝑒𝑑  𝑐𝑎𝑛𝑛𝑒𝑙  𝐵𝑊
 ) 

(2.11) 

 

 

 

 

PIMD3 =  (𝑠𝑒𝑛𝑖𝑠𝑡𝑖𝑣𝑖𝑡𝑦_level+Rx_margin)+10log10(3
rd

 order intermediation 

contribution to SNDR) - SNRmin 
(2.12) 
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3. The proposed receiver front-end architecture 
 

3.1. Structure of the proposed architecture 
 

The proposed architecture block diagram is shown in Fig.3.1. A single path of the 

quadrature charge sampling filter and the matching network are shown. The filter center 

frequency is adjusted through its controlling clocks. It provides high linearity, low noise figure, 

image rejection, sub sampling, down-conversion to IF frequency and gives gain to the signal at 

the desired frequency. It is composed of a transconductor (Gm) converting the input 

differential RF voltage to current, which will be integrated on the sampling capacitances. 

A time varying matching network is used for tunable matching and selectivity. Adjusting 

the controlling clocks determines the frequency at which the matching will be held.  

 

Fig. 3.1The block diagram of the proposed Receiver front-end architecture 
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3.2. Charge sampler 

3.2.1. Charge sampling technique 

Current sampling gains more interest than voltage sampling, because it has lower 

noise figure and better selective anti-aliasing filtering effect. 

Integrating the current in certain time interval Ti (the integration time) on a 

sampling capacitance, then sampling the resulting voltage to the output in the output 

phase gives a low pass sinc filter response shown in Fig.3.2 [26] with notches at 

multiples of (
1

𝑇𝑖
), where Ti is the sample integration time. In Fig.3.3; the input voltage is 

converted to current by the trans-conductor (Gm).It is then integrated on the sampling 

capacitance when the clock integ is ON. Afterwards, the resulting voltage is sampled to 

the output when the clock out is ON. Finally the sampling capacitance is discharged. 

Fig.3.4 is showing the waveforms controlling the switches 

 

Fig.  3.2 LPF Sinc Filter response 
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Fig.  3.3 Charge sampling technique 
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Fig.  3.4 Controlling clocks of the charge sampler 

The transfer function of the resulting sinc low pass filter response is given in Eqn. 

3.1 [26, 27]. This gives dc voltage gain of
Gm Ti

Cs
, where Gm is the transconductance, Cs is 

the sampling capacitance and Ti is the integration time. For an optimal anti-aliasing 

filtering effect, the sampling time of the sampler should be equal to the integration time 

to have the filter’s notches at multiples of the sampling frequency. The sampling time 

should count for the sampling-to-output and discharging phases durations in addition to 

the integration time this puts restrictions on the minimum sampling frequency. Time-

interleaved integrating operation, shown in Fig.3.5, gives a hand to solve this problem. 

This is done by having the first channel in the integration phase, while having the second 

channel in the sampling-to-output and the discharging phases and vice versa as shown in 

Fig.3.6. 
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Fig. 3.5 Time interleaved integrating operation
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Fig.  3.6 Controlling clocks of time interleaved integration operation 

3.2.2. FIR filtering effect 

Integrating successive N current samples on the sampling capacitance in the 

integration phase, then sampling them to the output at the sampling rate fs, gives 

additional FIR filtering response with sampling frequency fsFIR. The sampling period of 

this FIR filter is Tf, which is the time difference between two successive samples. The 

output sampled voltage on the capacitance is read out after the accumulation of the N 

current samples [26, 27]. The resulting FIR filter response shown in Fig.3.7 [26] has 

notches on multiples of (1/NTf). Fig.3.8 is showing the controlling clocks of a charge-
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domian filter with embedded FIR filtering response. The transfer function of charge-

domain FIR sampling filter is shown in Eqn.3.2 [26]. The DC voltage gain of the charge-

sampling FIR filter response is 

N Gm Ti

Cs
 
 

 

Fig. 3.7 FIR charge sampling sinc filter response

 

 

Fig.  3.8Controlling clocks for FIR charge sampling filte  

 

3.2.3. Quadrature band-pass charge sampling FIR filter 

Multiplying the impulse response of the FIR LPF by 𝑒
𝑗𝑛𝜋

2  translates it to a band-

pass FIR filter centered on fc= 
1

4𝑇𝑓
 [26, 27], where Tf is the time between two successive 

samples. This is implemented by multiplying the integrated samples by successive 

sequences of +1,+j,-1 and –j , which means that the real channel samples are multiplied 

by successive sequences of +1,0,-1 and 0 , whereas the imaginary channel samples are 

H(f) = 
Vout (f)

V in (f)
=  

Gm

Cs
 .

1−e−j2πfTi

j2πf
 . hK

N−1
K=0 . z−K|z=ej2πfTf           (3.2) 
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multiplied by 0,+1,0 and -1. The current samples are integrated alternately on the real and 

imaginary channels sampling capacitances. The negative sign is implemented by cross 

coupling the positive and negative signal paths with a pair of additional switches. The 

implementation of this quadrature band-pass FIR filter is shown in Fig.3.9. The 

controlling clocks of the sampler are shown in Fig.3.10. This quadrature band-pass filter 

shown in Fig.3.11 [26] down-converts the signal to low IF frequency or to DC (the band-

pass filter frequency acts as LO frequency), subsamples the signal and provides good 

image rejection as it has notch at –fc suppressing the image band. The DC voltage gain of 

the band-pass filter at fc is 
2 2 𝐺𝑚𝑁𝑇𝑖

𝜋𝐶𝑠
 .  
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Fig.  3.9 The implementation of the band-pass charge sampler 
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Fig.  3.10The controlling clocks of the band-pass FIR charge sampler 

 

Fig.  3.11The frequency response of the quadrature band-pass FIR charge sampler 

3.2.4. The used time-interleaved quadrature band-pass FIR charge sampling 

In the proposed architecture, two time interleaved channels of a quadrature 

band-pass FIR filter are used to form the receiver signal path. It down-converts the 

signal to IF frequency, provides good image rejection, sub-samples the signal 

decreasing the sampling frequency of the following ADC to
1

𝑁𝑇𝑓
. It also has good anti-

aliasing effect by placing the filter’s notches on multiples of the sampling frequency 

and has low noise figure with good linearity. Fig.3.12 is showing the used time 

interleaved quadrature band-pass FIR filter. The clocks controlling the two channels 

at 2GHz, where Ti is 125 psec are shown in Fig.3.13; here Tf (the time between two 
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successive integrated samples) is equal to the integration time (Ti). At each channel, 8 

current samples of successive sequences of +1, +j,-1 and –j are integrated on the 

sampling capacitances to the output. 
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Fig.  3.12 The time-interleaved quadrature band-pass charge sampler 
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                                                                  (a) 

 

                                                                   (b) 

Fig.  3.13a&b The controlling clocks of the first channel of the band-pass charge sampler 

and the second channel respectively 
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3.3. Time varying matching network 
In conventional receivers, passive network of inductors and capacitors is used for 

this purpose. The problem showed up in multi-band multi-standard receivers as these 

components are inherently narrow band. To have the matching guaranteed at different 

frequencies, the matching network should be tunable. Since, passive networks are hard to 

tune, in this architecture; a programmable matching network based on impedance 

translation technique is used.  

3.3.1. Impedance translation technique 

The matching network shown in Fig.3.14 [20] is based on implementing the 

matching network in the base-band side and translating its effect to the RF side. The 

design consists of bi-directional passive switches controlled by 25% duty-cycle non-

overlapping clocks and followed by parallel combination of resistance and capacitance. 

The low pass filter (LPF) effect of the resistance with the capacitance in the base-band 

side is translated to band-pass filter centered at the LO frequency in the RF side 

providing more selectivity enhancing the receiver’s linearity. 

 

Fig.  3.14 Matching network based on impedance translation technique 

The impedance seen by the antenna is shown in Fig.3.15, where Rsw is the switch 

resistance,  (ˠRb) is the scaled version of the base-band resistance,  Rb is the base band 

resistance, ˠ counts for the translation effect and  Rsh is the resistance counting for the 
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harmonic re-radiation effect. The base-band voltage is remixed with LO odd harmonics 

and re-radiated to the antenna, this is considered as losses represented by a shunt 

resistance in parallel with Rb. As the radiations increase, the shunt resistance value 

decreases and its effect becomes more severe. The usage of quadrature clocks eliminates 

the image of each harmonic. This indicates that in order to make the matching controlled 

by the base-band resistance (Rb) value, the switch resistance Rsw should be much smaller 

than Rb and Rsh should be much higher than Rb. Controlling the base-band resistance 

value does control the matching. The capacitance value controls the selectivity of the 

translated band-pass filter. As the capacitance increases, the band-width of the translated 

band-pass filter decreases, increasing its selectivity.  

Rsw

ˠRb Rsh

 

Fig.  3.15 The input impedance seen by the antenna 

3.3.2. Final matching network 

The final matching network used is shown in Fig.3.16 [20], [28]. The base-band 

resistance is implemented by a resistance wrapped around an amplifier, in order to 

decrease its noise contribution by the gain value of the amplifier given that the amplifier 

is designed with low noise. This configuration matches the real part of the antenna 

impedance. The cress-crossed feed-back resistance between the in-phase and quadrature 

channels is counting for the matching of the imaginary part of the impedance. The 

imaginary part is resulting from the effect of the base-band capacitance, the parasitics of 

the pads and the bond wires at the antenna side. These parasitics lead to shifting of the 

matching notch from the desired frequency. 
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Fig.  3.16 The final matching network 

3.4. Programmability analysis 
Programmability is achieved easily here as both blocks, the quadrature band-pass 

FIR charge sampling filter and the matching network, are controlled by the driving 

clocks. 

For the charge sampling filter; by adjusting the sample integration time (Ti), the 

band-pass FIR charge sampling filter center frequency (fc =
1

4𝑇𝑖
) is controlled to be 

maintained at the desired Local oscillator frequency.  

Controlling the number of integrated samples determines the position of the 

filter’s notches and the bandwidth of the signal pass band. It affects the sampler’s gain, 

consequently affecting the receiver’s noise figure (NF) and linearity. 

By adjusting the LO frequency of the controlling clocks of the matching network, 

the tunable matching and selective BPF are settled at the desired LO frequency. By 

tuning the base-band resistance (Rb), the complex part matching resistance (Rfc) and the 

capacitance value,  power matching, noise figure matching and selectivity can be 

controlled. 
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3.5. Noise analysis 
The noise of the band-pass FIR charge sampling filter is added to that of the time 

varying matching network. The noise of the band-pass FIR charge sampling filter results 

from the transconductor (Gm) noise (producing both flicker and thermal noise) and the 

switches thermal noise, the main contributor is the transconductor. The total noise figure 

is also affected by the receiver’s gain which implies the effect of the transconductance 

value (Gm), N (number of integrated samples) and Cs ( the sampling capacitance). 

The noise of the time varying matching network includes the noise of the base-

band resistances divided by the amplifier’s gain value, in addition to the switches and 

amplifier noise, also the shunt resistance effect losses deteriorates the total Noise Figure 

(NF). The resistances and capacitances in the matching network are chosen based on 

trade off between the power matching resistance and noise figure matching resistance. 

The resulting noise figure has a bell shape. High noise figure at low frequencies 

occurs due to the flicker noise of the trans-conductor with small contribution of the 

amplifier in the matching network, and then the noise decreases to the value of the 

thermal noise of the charge sampler that is added to that of the matching network. 

Finally, the noise figure increases at higher frequencies, due to the matching network 

parasitics. These parasitics will affect the higher harmonics decreasing the value of Zsh.  

3.6. Linearity analysis 
The quadrature band-pass FIR charge sampling filter provides good in-band and 

out-of-band linearity. The main contributor is the transconductor. Linearity is much more 

improved due to the matching network selectivity. The capacitance in the matching 

network controls its selectivity, so consequently it affects the receiver’s linearity. As the 

capacitance increases; the receiver is able to achieve better linearity. 

3.7. Power matching analysis 
The matching ideally is controlled by the resistances and capacitances of the 

matching network, but practically the impedance seen by the antenna is a parallel 

combination of the matching network translated impedance and the trans-conductor input 

impedance. The transconductor input impedance should be large enough, to make the 

matching controlled by the matching network. The base-band resistance value (Rb) 
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controls the S11 magnitude, the base-band capacitance (Cl) controls the bandwidth of the 

matching and Rfc controls the position of the matching treating the problem of slide 

shifting from the LO frequency due to the parasitic effect. The matching network 

parameters are chosen based on a tradeoff between power matching and noise figure 

matching. 

 

3.8. VerilogA modeling of the architecture 
The architecture is behaviorally modeled using verilogA to check its functionality 

and ability to achieve the required specs. Each block is represented by a verilogA model.  

The parameters of the transconductor, integrating switches, discharging switches 

and sampling-to-output switches are shown in Table 3-1.The sampling capacitance is 

chosen to be 65fF. The number of integrated samples (N) is chosen to be 8 based on a 

trade-off between noise figure and linearity.  

Block Gm 

(S) 

Output 

current noise 

(A
2
 /Hz) 

ON 

resistanse 

(Ω) 

OFF 

resistance 

(Ω) 

IIp3 

(dBm) 

Transconductor 50m 3.3136*10
-22 

- - -8 

Integration_switches - 3.3136*10
-22

 50 1G -10 

Discharging_switches - 1.3807*10
-22

 120 10G 25 

Sampling to output switches  2.549*10
-22

 65 1G 0 

Table  3-1 Charge sampler model parameters 

Modeling of the matching network includes the model of the switches, where the 

most important property of the switches to be modeled is its bidirectional nature. The 

representing parameters are the switch resistances of 20Ω and the noise current of each 

switch of 8.284*10
-22

 A
2
/Hz. The amplifier is represented by gain of 40 dB (relation 

between the input voltage and the output voltage) and its noise of 3.3136*10
-19

 V
2
/Hz. 
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The base band resistance (Rb) is 25KΩ, the complex part matching resistance (Rfc) is 

76KΩ and the base band capacitance (Cl) is 10pF. 

For 2GHz input frequency, The PAC gain of the receiver shown in Fig.3.17 is 57 

dB as calculated from Eqn.3.3. S11 of the receiver is less than -10 dB at 2GHz as shown 

in Fig.3.18 and noise figure is shown in Fig.3.19. It doesn’t have the expected bell shape 

as the model is counting only for the thermal noise. The IIP3 for two input signals of 

frequencies 2.1GHz and 2.12GHz is -1.7dBm as shown in Fig.3.20. The P1dB (1dB 

compression point) for an input frequency of 2.1GHz is -10.5 dBm as shown in Fig.3.21. 

Table 3-2 is summarizing the model’s results. 

 

 

Fig.  3.17 The PAC gain at 2GHz input frequency 

PAC Gain = 
2 2 𝐺𝑚𝑁𝑇𝑖

𝜋𝐶𝑠
  =  

2 2 ∗50∗10−3∗8∗125∗10−12

𝜋∗62.5∗10−15                      (3.3) 
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Fig.  3.18S11 at 2GHz 

 

Fig.  3.19 Noise Figure at 2GHz 

 

Fig.  3.20IIp3 for inputs at 2.1GHz and 2.12GHz 
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Fig.  3.21P1dB for an input of 2.1GHz frequency 

 

specs  

Gain (dB) 57 

S11 (dB) -10 

NF (dB) 7.8 

IIP3 (dBm) -1.7 

P1dB (dBm) -10.5 

Table  3-2 The behavioral model results 
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4. Circuit implementation 

 

4.1. The charge sampler transconductor and switches design 
The transconductor is designed with low noise, high linearity, high output 

resistance and low output capacitance. This is to let the current pass in the integrating 

switches instead of being lost in the trans-conductor output impedance. Folded cascode 

trans-conductor shown in Fig.4.1with its common mode feed-back (CMFB) circuit is 

chosen for its high linearity and high output resistance. The DC current consumption of 

the Gm is 7.5mA for high linearity and low noise. The input differential pair should have 

high gm to supply sufficient current to the integrating switches of the sampler for a proper 

gain to achieve low total Noise Figure and high linearity. The large devices in the design are 

distributed to many fingers (90 to 140) to be easily matched in the layout.  

 

Fig. 4.1Transconductor circuit design 
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The transconductor is designed with good linearity, the linearity is tested at the 

three targeted frequency bands.  It has IIP3 of -6.4 dBm for input frequencies of 2.1GHz 

and 2.12GHz as shown in Fig.4.2, IIP3 of -8 dBm for input frequencies of 1.1GHz and 

1.12GHz as shown in Fig.4.3 and IIP3 of -11dBm for input frequencies of 550MHz and 

570MHz as shown in Fig.4.4.For P1dB , it has -18dBm for input frequency of 2.1GHz as 

shown in Fig.4.5 , -20dBm for input frequency of 1.1GHz as shown in Fig.4.6 and -21 

dBm for 550MHz input as shown in Fig.4.7. 

 

 

Fig.  4.2 IIP3 for two signals of 2.1GHz and 2.12GHz frequencies 
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Fig.  4.3 IIP3 for two signals of 1.1GHz and 1.12GHz frequencies 

 
Fig.  4.4 IIP3 for two signals of 550MHz and 570MHz frequencies 

-50 -40 -30 -20 -10 0 10
-120

-100

-80

-60

-40

-20

0

20

pin (dBm)

p
o

u
t 

(d
B

m
)

Gm IIP3 for two input frequencies of 1.1GHz and 1.12GHz

 

 

P1dB

P3dB

IIP3 = -8 dBm

-50 -40 -30 -20 -10 0 10
-120

-100

-80

-60

-40

-20

0

20

pin (dBm)

p
o

u
t 

(d
B

m
)

Gm IIP3 for two input frequencies of 550MHz and 570MHz

 

 

P1dB

P3dB

IIP3 = -8.5 dBm



35 
 

 

Fig.  4.5 P1dB for input frequency of 2.1GHz 

 

 

 

      
Fig.  4.6 P1dB for input frequency of 1.1GHz 
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Fig.  4.7 P1dB for input frequency of 550MHz 

The transconductor is designed with low noise especially at the targeted 

frequency range from 500MHz to 3GHz, that’s why the corner frequency of it is less than 

100MHz. The noise analysis of the transconductor is shown in Fig.4.8. The graph is 

zoomed on the targeted band (500MHz – 3GHz) in Fig.4.9. The output noise of the 

transconductor at 2GHz is 294 aV
2
/Hz, 484 aV

2
/Hz at 1GHz and 585 aV

2
/Hz at 500MHz. 

     
Fig.  4.8 The transconductor output-noise versus frequency 
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Fig.  4.9 The transconductor output noise zooming on (500MHz – 3GHz) 

The sampler’s switches are I/O devices for its better linearity and low on 

resistance, this is to allow most of the current to pass in the switches. The sizes of the 

switches are chosen so that they have low on resistance and low drain and source 

capacitance.  

At low frequencies, the current is distributed between the trans-conductor output 

resistance and the integrating switch resistance [29]. At moderate frequencies, the current 

distribution is based on the combination of the transconductor output 

resistances/capacitances and the switch resistance/capacitance series with the sampling 

capacitance. At high frequencies, most of the current is passing in the integrating switch 

path, as long as the sampling capacitance is much higher than the trans-conductor output 

capacitance. The trans-conductor output resistance and capacitance (the sizes of the 

devices at the output node), the switch on resistance and capacitance (the sizes of the 

switches) and the sampling capacitance are chosen so that the AC current passing in the 

switches integrated on the sampling capacitance is high enough sufficient for the desired 

gain on the frequency range from 500MHz to 3GHz based on the required noise figure 

and linearity specs. It is obvious that the sampling capacitance determines the amount of 

current passing in the integrating switch and at the same time the gain equation is 

function of it, so its value will be chosen based on a tradeoff between both. The AC 
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current passing in the switches and integrated on the sampling capacitors is shown in 

Fig.4.10. 

Fig.  4.10 The AC integrated current 

4.2.  Time varying matching network 
The matching network with the amplifiers is shown in Fig.4.11. The 

switches widths are chosen large enough to decrease the switch resistance (Rsw), this is to 

make the impedance matching controlled by adjusting the base-band resistance. The 

base-band resistance is represented by the resistance Rb divided by the amplifier gain (A). 

The sizes of the switches, the base-band resistances and the amplifier gain are chosen 

based on trade-off between the matching (S11) and the noise figure (NF). The base-band 

resistance should be adjusted to be within the value of power matching and Noise Figure 

matching. 
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Fig.  4.11The schematic of the matching network and its amplifiers 

 

4.3. The digital circuitry generating the charge sampler’s controlling 

clocks 
The controlling clocks shown in Fig 3.13a & b reveals the need for four non-

overlapping clocks delayed with Tf with respect to each other to control one channel 

integration switches. Each clock has two successive pulses of width equal to the 

integration time (Ti) with time difference of 3Ti in between in one half of the sampling 

period, then zero in the other half. While another two clocks each of one pulse of width 

equal to Ti for the output sampling and discharging phases are on at this time. The circuit 

is tested at 1GHz frequency standard which means clk and clk_bar are 2GHz frequency 

as shown in Fig 4.13. 

The circuit includes a divider with two successive differential flip flops, one 

controlled by clk and the other is controlled by clk_bar .The output of the second flip flop 

is fed back to the input of the first flip-flop as shown in Fig.4.12 to generate 4 90° phase-

shifted 50% duty-cycle clocks (Q1, Q1_bar, Q2 and Q2_bar) of half the clk frequency 

shown in Fig.4.14.The in-phase clocks (Q1&Q1_bar) clocks are ANDed with clk_bar 
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and the quadrature clock cycles (Q2 & Q2_bar) are  ANDed with clk resulting in 4 90° 

phase-shifted 25% duty cycle clocks (out1,out2, out3 & out4) shown in Fig.4.15. Q1 & 

Q1_bar are the controlling clocks of the successive differential divider generating 4 90° 

phase-shifted 50% duty-cycle clocks( Q3, Q3_bar,Q4 and Q4_bar) shown in Fig.4.16 of 

half the controlling clock Q1frequency. The quadrature clocks (Q4 & Q4_bar) are the 

controlling clocks of the following divider generating 4 90° phase-shifted 50% duty-cycle 

clocks( Q7, Q7_bar,Q8 and Q8_bar) shown in Fig.4.17 of half the controlling clock Q4 

frequency. The frequency of the clocks Q8 and Q8_bar is equal to the sampling 

frequency, so by ANDing each of them with each clock of (out1, out2, out3 & out4), the 

required integration pulses of the first channel (imagn, realn, imagp and realp) and that 

of the second channel (imagn_interleaved, realn_interleaved, imagp_interleaved and 

realp_interleaved) can be obtained as shown in Fig.4.18& 4.19. 

For the first channel; the output sampling clock is generated by ANDing the clock 

realn_interleaved with Q3 whereas, the discharging clock is generated by ANDing 

realn_interleaved with Q3_bar. Fig.4.20 is showing the sampling-to-output and 

discharging pulses of the first channel. 

For the second channel; the sampling-to-output clock is generated by ANDing 

realn with Q3 and whereas, the discharging clock is generated by ANDing realn with 

Q3_bar. Fig.4.21 is showing the sampling-to-output and discharging pulses of the second 

channel. 

Buffers of cascaded inverters are added between different blocks to buffer the 

output of each, as the output of each block will be loaded by the capacitance of the 

following block. The addition of buffers with minimum sizes makes each block see small 

load capacitance which doesn’t affect the performance. The block diagram generating the 

integration, sampling-to-output and discharging clocks is shown in Fig.4.22. 
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Fig.  4.12 The divider with 2 successive flip-flops feed-backed to each other 

 

Fig.  4.13 clk and clk_bar 
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Fig.  4.14Quadrature 50% duty cycle Q1,Q2,Q1_bar and Q2_bar 

 

Fig.  4.15Non-overlapping 25% duty-cycle clocks out1,out2,out3 and out4 

 

Fig.  4.16Qudrature 50% duty-cycle Q3,Q3_bar,Q4 and Q4_bar 
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Fig.  4.17Quadrature 50% duty-cycle clocks Q7,Q7_bar,Q8 and Q8_bar 

 

Fig.  4.18The integration pulses of the first channel 

 

Fig.  4.19The integration pulses of the second channel 
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Fig.  4.20The sampling-to-output and discharging clocks of the first channel 

 

 

Fig.  4.21The sampling-to-output and discharging clocks of the second channel 
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Fig.  4.22The block diagram of the digital circuitry generating the integration clocks of 

one channel 
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4.4. The digital circuitry generating the MN controlling clocks 
The matching network needs four non-overlapping 25% duty cycle clocks with 

LO frequency. The circuit includes a divider with two successive differential flip flops, 

one controlled by clk_MN and the other is controlled by clk_bar_MN .The output of the 

second one is fed back to the input of the first flip-flop as shown in fig.4.12 to generate 4 

90° phase-shifted 50% duty-cycle clocks (Q1_MN, Q1_bar_MN,Q2_MN and 

Q2_bar_MN) of half the clk_MN frequency shown in Fig.4.23. The controlling clocks 

here are of 2GHz frequency, as the clk_MN frequency is double the Local oscillator (LO) 

frequency. The in-phase clocks (Q1_MN& Q1_bar_MN) clocks are ANDed with the 

controlling clk_bar_MN  and the quadrature clock cycles (Q2_MN & Q2_bar_MN) are  

ANDed with clk_MN resulting in 4 90° phase-shifted 25% duty cycle clocks (oLO1, LO2, 

LO3 and LO4) shown in Fig.4.24. The block diagram of the digital circuit is shown in 

Fig.4.25. 

 

Fig.  4.23The quadrature 50% duty-cycle (Q1_MN,Q1_bar_MN,Q2_MN and 

Q2_bar_MN 

 

Fig.  4.24Non-overlapping 25% duty-cycle clocks (out1_MN,out2_MN,out3_MN and 

out4_MN 
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Fig.  4.25The digital circuitry generating the MN controlling clocks 
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5. Pre layout simulation results of the proposed architecture 
The architecture is tested over three different frequencies (500MHz, 1GHz and 

2GHz) to prove its programmability and capability of achieving the required specs of 

linearity, noise figure, gain and matching of the targeted standards on different frequency 

bands. 

5.1. Noise Figure results 
Noise Figure has a bell shape, NF is high at low frequencies due to flicker noise 

which is dominated by the transconductor (Gm) noise then NF decreases due to thermal 

noise of the charge sampler added to that of the matching network, finally NF increases 

again at high frequencies due to the increase of the parasitcs effect at these frequencies. 

We are interested in the middle region as the targeted IF frequency is 10MHz. 

Targeting LTE standard as a case study; the required noise figure is 9dB as shown 

in chapter2 which implies that the noise figure at all frequencies should be less than or 

equal 9dB. 

5.1.1. Noise Figure at 2GHz 

Fig.5.1 is showing the noise figure of the architecture versus the output frequency 

(1MHz to 100MHz) for input frequencies from 2.001GHz to 2.1GHz. NF @ 10MHz (the 

targeted IF frequency) is 7.8 dB. 

 

Fig. 5.1 Noise Figure at input frequencies (2.001GHz – 2.1GHz) 
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5.1.2. Noise Figure at 1GHz 

Fig.5.2 is showing the noise figure of the architecture versus the output frequency 

(1MHz to 100MHz) for input frequencies from 1.001GHz to 1.1GHz. NF @ 10MHz (the 

targeted IF frequency) is 7.9 dB. 

 

Fig.  5.2Noise Figure at input frequencies (1.001GHz – 1.1GHz) 

5.1.3. Noise Figure at 500MHz 

Fig.5.3 is showing the noise figure of the architecture versus the output frequency 

(1MHz to 100MHz) for input frequencies from 501MHz to 600MHz. NF @ 10MHz (the 

targeted IF frequency) is 9 dB. 

 

Fig.  5.3Noise Figure at input frequencies (501MHz – 600MHz) 
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5.2. Linearity results 
The linearity of any block is represented by P1dB and IIP3; the design should 

provide good linearity indicated by the values of P1dB and IIP3 at different frequencies. 

The linearity is mainly dominated by the charge sampler especially the trans-

conductor should provide high linearity and it’s enhanced by the time varying matching 

network due to its further selectivity. 

Linearity can be out of band linearity and in band linearity; out of band linearity is 

when the blocker signals are outside the desired band to be received (> 20MHz) and in 

band linearity is when the blocker signals are within the desired band (< 20MHz). 

5.2.1. Out- of-band P1dB and IIP3 for 2GHz frequency band 

Out-of-band P1dB of the architecture is -12 dBm for input blocker of frequency 

2.1GHz as shown in Fig.5.4. 

 

Fig.  5.4 Out-of-band P1dB for input signal of 2.1GHz 
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Out-of-band IIP3 is tested for two input signals of frequencies of 2.1GHz and 

2.12GHz  giving third order intermodulation component at 80MHz resulting in out-of-

band IIP3 of -1.9 dBm as shown in Fig.5.5. 

 

Fig.  5.5Out of band IIP3 for input signals with frequencies of 2.1GHz and 2.12GHz 

5.2.2. Out- of-band P1dB and IIP3 for 1GHz frequency band 

Out-of-band P1dB of the architecture is -14 dBm for input blocker of frequency 

1.1GHz as shown in Fig.5.6. 

 

Fig.  5.6 Out-of-band P1dB for input signal with frequency 1.1GHz 
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Out-of-band IIP3 is tested for two input signals of frequencies of 1.1GHz and 

1.12GHz  giving third order intermodulation component at 80MHz resulting in out-of-

band IIP3 of -3 dBm as shown in Fig.5.7. 

 

Fig.  5.7Out-of-band IIP3 for input signals with frequencies 1.1GHz and 1.12GHz 

5.2.3. Out- of-band P1dB and IIP3 for 500MHz frequency band 

Out-of-band P1dB of the architecture is -16 dBm for input blocker of frequency 

550MHz as shown in Fig.5.8. 

 

Fig.  5.8Out-of-band P1dB for input signal with frequency 500MHz 

-50 -40 -30 -20 -10 0 10
-140

-120

-100

-80

-60

-40

-20

0

20

pin (dBm)

p
o

u
t 

(d
B

m
)

 

 

P1dB

P3dB

IIP3 = -3dBm

-30 -25 -20 -15 -10 -5 0 5
-15

-10

-5

0

5

10

pin (dBm)

p
o

u
t 

(d
B

m
)

P1dB = -16dBm



53 
 

Out-of-band IIP3 is tested for two input signals of frequencies of 550MHz and 

570MHz  giving third order intermodulation component at 30MHz resulting in out-of-

band IIP3 of -5.652 dBm as shown in Fig.5.9 

 

Fig.  5.9 Out-of-band IIP3 for input signals with frequencies of 550MHz and 570MHz 

5.2.4. In-band P1dB and IIP3 for 2GHz frequency band 

In-band P1dB of the architecture is -13.5 dBm for input blocker of frequency 

2.001GHz as shown in Fig.5.10. 

 

Fig.  5.10 In-band P1dB for input signal of frequency 2.001GHz 
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In-band IIP3 is tested for two input signals of frequencies of 2.001GHz and 

2.003GHz  giving third order intermodulation component at 5MHz resulting in in-band 

IIP3 of -1.45 dBm as shown in Fig.5.11. 

 

Fig.  5.11 In-band IIP3 for input signals with frequencies of 2.001GHz and 2.003GHz 

5.2.5. In-band P1dB and IIP3 for 1GHz frequency band 

In-band P1dB of the architecture is -16.5 dBm for input blocker of frequency 

1.001GHz as shown in Fig.5.12. 

 

Fig.  5.12In-band P1dB for input signal of frequency 1.001GHz 
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In-band IIP3 is tested for two input signals of frequencies of 1.001GHz and 

1.003GHz  giving third order intermodulation component at 5MHz resulting in in-band 

IIP3 of -4.3497 dBm as shown in Fig.5.13. 

 

Fig.  5.13 In-band IIP3 for input signals with frequencies of 1.001GHz and 1.003GHz 

5.2.6. In-band P1dB and IIP3 for 500MHz frequency band 

In-band P1dB of the architecture is -18 dBm for input blocker of frequency 

501MHz as shown in Fig.5.14. 

 

Fig.  5.14In-band P1dB for input signal of frequency 501MHz 
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In-band IIP3 is tested for two input signals of frequencies of 501MHz and 

503MHz  giving third order intermodulation component at 5MHz resulting in in-band 

IIP3 of -5.75897 dBm as shown in Fig.5.15. 

 

Fig.  5.15 In-band IIP3 for input signals with frequencies of 501MHz and 503MHz. 
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5.3.1. The PAC gain for 2GHz frequency band 

Fig.5.16 shows the PAC gain of the proposed receiver front-end versus the output 

frequency for input frequency from (2GHz to 10GHz). As it is obvious from the 

figure below, the DC gain is 23.5 dB and the notches are at multiples of 
1

8𝑇𝑖
  (

1

8𝑇𝑖
 = 

1GHz). 

 

Fig.  5.16 PAC gain for input frequency from 2GHz to 10GHz 
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Fig.  5.17PAC gain for input frequency from 1GHz to 10GHz 

 

5.3.3. The PAC gain for 500MHz frequency band 

Fig.5.18 shows the PAC gain of the proposed receiver front-end versus the output 

frequency for input frequency from (500MHz to 5GHz). As it is obvious from the figure 

below, the DC gain is 25 dB and the notches are at multiples of 
1

8𝑇𝑖
  (

1

8𝑇𝑖
 = 250MHz). 

 

Fig.  5.18 PAC Gain for input frequency of 500MHz to 5GHz 
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5.4. Input power matching 
The matching is ideally controlled by the translated impedance of the time 

varying matching network. The matching network parameters are chosen based on a 

trade-off between the matching and noise figure. Rfc is 500Ω, Rb= 90KΩ and cap=45pF. 

In reality the impedance seen by the antenna is the translated impedance of the time 

varying matching network in parallel with the transconductor input impedance. In order 

to have the matching controlled by the time varying matching network the transconductor 

have to be designed with high input impedance. Matching is indicated by S11. 

 

5.4.1. S11 for 2GHz frequency band 

As shown in Fig.5.19, the S11 of the proposed receiver front-end architecture at 

2GHz is -10 dB indicating good matching at this frequency. 

 

Fig.  5.19 S11 at input frequencies from 1.5GHz to 2.5GHz 
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5.4.2. S11 for 1GHz frequency band 

As shown in Fig.5.20, the S11 of the proposed receiver front-end architecture at 

1GHz is -10 dB indicating good matching at this frequency. 

 

Fig.  5.20 S11 at input frequencies from 500MHz to 1.5GHz 

5.4.3. S11 for 500MHz frequency band 

As shown in Fig.5.21, the S11 of the proposed receiver front-end architecture at 500MHz 

is -10 dB indicating good matching at this frequency. 

 

Fig.  5.21S11 at input frequencies from 0 to 1GHz 
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5.5. Corners analysis 
 

The design is implemented on Global Foundries (GF) kit; this kit has different 

corner analysis, in addition to the well known process corners fast-fast (ff), slow-slow 

(ss), fast-slow(fs) and slow-fast (sf)  (the first adjective is describing pmos and the second 

one is describing nmos) there is a third letter which can be g standing for global process 

variations determined by random distributions which gives the same results as that of the 

normal well known process corners, p standing for passive mismatch determined by 

random distributions with a unique set of values for each instance of the model or f 

standing for FET doping and geometric mismatch effects determined by random 

distributions with a unique set of values for each instance of the model. The results across 

all process corners are shown in this section. 

5.5.1. Noise Figure at 2GHz across all process corners 

 

In this section, the noise figure of the proposed architecture for input frequency of 

2GHz is shown across all the process corners in three different conditions f, p and g. The 

most effective condition on the noise figure for this design is f as the design is differential 

afterwards,  the p condition.  

5.5.1.1.  Noise Figure at 2GHz at fff, ffp and ffg corners 

 

The noise figure of the proposed architecture at 2GHz at fast-fast (ff) process 

corner with the three different flavors fff,ffg and ffp is shown in Fig.5.22. NF at 10MHz 

(the targeted IF frequency) at fff  is 9.4 dB, at ffp is 8.2dB and at ffg is 8.2dB.  
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Fig. 5.22Noise figure at 2GHz at fff,ffg and ffp 

5.5.1.2.  Noise Figure at 2GHz at ssf, ssp and ssg corners 

The noise figure of the proposed architecture at 2GHz at slow-slow (ss) process 

corner with the three different flavors ssf,ssg and ssp is shown in Fig.5.23. NF at 10MHz 

(the targeted IF frequency) at ssf  is 8.3 dB, at ssp is 7.7dB and at ssg is 7.6 dB. 

 

Fig.  5.23Noise figure at 2GHz at ssf,ssg and ssp 
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5.5.1.3. Noise Figure at 2GHz at fsfand fsg 

The noise figure of the proposed architecture at 2GHz at fast-slow (fs) process 

corner with the two different flavors fsf and fsg is shown in Fig.5.24. NF at 10MHz (the 

targeted IF frequency) at fsf is 7.6 dB and at fsg is 7.7 dB. 

 

Fig.  5.24 Noise figure at 2GHz at fsf and fsg 

5.5.1.4. Noise Figure at 2GHz at sff and sfg 

The noise figure of the proposed architecture at 2GHz at slow-fast (sf) process 

corner with the two different flavors sff and sfg is shown in Fig.5.25. NF at 10MHz (the 

targeted IF frequency)  at sff is 8.6 dB and at sfg is 8.7 dB 

 

Fig.  5.25NF at 2GHz at sff and sfg 
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5.5.2. Out-of-band P1dB and IIP3 at 2GHz at all process corners 

In this section, the out-of-band P1dB of the proposed architecture for input 

frequency of 2.1GHz and out-of-band IIP3 for two input frequencies of 2.1GHz and 

2.12GHz are shown across all process corners in three different conditions f, p and g.  

5.5.2.1. Out-of-band P1dB and IIP3 at 2GHz at fff, ffp and ffg 

 

Out-of-band IIP3 of the proposed architecture for input frequencies of 2.1GHz 

and 2.12GHz is -2.94998 dBm at fff, -2.15825 dBm at ffp and -1.86815 dBm at ffg as 

shown in Fig.5.26. 

 

Fig.  5.26Out-of-band IIP3 for two input frequencies of 2.1GHz and 2.12GHz at fff,ffp 

and ffg. 
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Fig.  5.27 Out-of-band P1dB for input frequency of 2.1GHz at fff,ffp and ffg. 

5.5.2.2. Out-of-band P1dB and IIP3 at 2GHz at ssf, ssp and ssg 

Out-of-band IIP3 of the proposed architecture for two input frequencies of 

2.1GHz and 2.12GHz is -6.5 dBm at ssf, -5.2 dBm at ssp and -4 dBm at ssg as shown in 

Fig.5.28. 

 

Fig.  5.28 Out-of-band IIP3 for two inputs of frequencies 2.1GHz and 2.12GHz at ssf, ssp 

and ssg 
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Out-of-band P1dB of the proposed architecture for an input frequency of 2.1GHz is 

-14.7 dBm at ssf, -14.5 dBm at ssp and -14 dBm at ssg as shown in Fig.5.29. 

 

Fig.  5.29 Out-of-band P1dB for input frequency of 2.1GHz at ssf, ssp and ssg 

5.5.2.3. Out-of-band P1dB and IIP3 at 2GHz at fsf  and fsg 

Out-of-band IIP3 of the proposed architecture for input frequencies of 2.1GHz 
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Fig.  5.30 Out-of-band IIP3 for input frequencies of 2.1GHz and 2.12GHz  at fsf and fsg 
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Out-of-band P1dB of the proposed architecture for an input frequency of 2.1GHz 

is -14.278 dBm at fsf and -13.53 dBm at fsg as shown in Fig.5.31. 

 

Fig.  5.31Out-of-band P1dB for input frequency of 2.1 GHz at fsf and fsg 

5.5.2.4. Out-of-band P1dB  and IIP3 at 2GHz at sff  and sfg 

Out-of-band IIP3 of the proposed architecture for input frequencies of 2.1GHz 

and 2.12GHz  is -2.128 dBm at sff and -2.462 dBm at sfg as shown in Fig.5.32. 

 

Fig.  5.32 Out-of-band IIP3 for two inputs of 2.1GHz and 2.12GHz at sff and sfg 
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Out-of-band P1dB of the proposed architecture for an input frequency of 2.1GHz 

is -12 dBm at sff and -12.334 dBm at sfg as shown in Fig.5.33. 

 

Fig.  5.33 Out-of-band P1dB for input frequency of 2.1GHz at sff and sfg 

5.5.3. Matching for 2GHz input at all process corners 

In this section, S11 of the proposed architecture for input frequency of 2GHz is 

shown across all process corners in three different conditions f, p and g.  

5.5.3.1. S11 for 2GHz input frequency at fff, ffp and ffg 

S11 of the proposed architecture at 2GHz is -11.5 dB at fff, -11 dB at ffp and -10 

dB at ffg as shown in Fig.5.34. 

 

Fig.  5.34 S11 at 2GHz at fff,ffp and ffg. 
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5.5.3.2. S11 for 2GHz input frequency at ssf, ssp and ssg 

S11 of the proposed architecture at 2GHz is -9 dB at ssf, -9.5 dB at ssp and -10 

dB at ssg as shown in Fig.5.35. 

 

Fig.  5.35S11 at 2GHz at ssf,ssp and ssg. 

5.5.3.3. S11 for 2GHz input frequency at fsf and fsg 

S11 of the proposed architecture at 2GHz is -10 dB at fsf and -10 dB at fsg as 

shown in Fig.5.36. 

 

Fig.  5.36 S11 at 2GHz at fsf and fsg. 
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5.5.3.4. S11 for 2GHz input frequency at sff and sfg 

S11 of the proposed architecture at 2GHz is -10 dB at sff and -10 dB at sfg as 

shown in Fig.5.37. 

 

Fig.  5.37S11 at 2GHz at sff and sfg. 
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Fig.  5.38In-band IIP3 for input frequencies of 2.001GHz and 2.003GHz at fff, ffg and ffp 
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In-band P1dB of the proposed architecture for input frequency of 2.001GHz is -14 dBm 

at fff, -12.9 at ffp and -12.5 dBm at ffg as shown in Fig.5.39. 

 

Fig.  5.39In-band P1dB for input frequencies of 2.001GHz and 2.003GHz at fff, ffg and 

ffp 

5.5.4.2. In-band P1dB and IIP3 for 2GHz input frequency at ssf, ssg and 
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In-band IIP3 of the proposed architecture for inputs of 2.001GHz and 2.003GHz 

is -9.358 dBm at ssf, -7 dBm at ssp and -4.916 dBm at ssg as shown in Fig.5.40. 

        
Fig.  5.40 In-band IIP3 for input frequencies of 2.001GHz and 2.003GHz at ssf, ssg and 

ssp 
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In-band P1dB of the proposed architecture for input frequency of 2.001GHz is -17 

dBm at ssf, -16.8at ssp and -16 dBm at ssg as shown in Fig.5.41. 

 

Fig.  5.41In-band P1dB frequency for input of 2.001GHz at ssf, ssg and ssp 
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Fig.  5.42In-band IIP3 for input frequencies of 2.001GHz and 2.003GHz at fsf and fsg 

In-band P1dB of the proposed architecture for input frequency of 2.001GHz is -17.162 

dBm at fsf and -16.018 dBm at fsg as shown in Fig.5.43. 

 

Fig.  5.43 In-band P1dB for input frequency of 2.001GHz at fsf and fsg 

5.5.5. Noise Figure for 1GHz frequency at all process corners 

In this section, Noise figure of the proposed architecture for input frequency of 

1GHz is shown at all the process corners in three different conditions f, p and g.  
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5.5.5.1. NF for 1GHz input at fff, ffg and ffp corners 

The noise figure of the proposed architecture at 1GHz at fast-fast (ff) process 

corner with the three different flavors fff,ffg and ffp is shown in Fig.5.44. NF at 10MHz 

(the targeted IF frequency) at fff  is 8.7 dB, at ffp is 8.6dB and at ffg is 8.5dB.  

 

Fig.  5.44NF for input frequencies from 1.001Ghz to 1.1GHz at fff, ffg anf ffp 

5.5.5.2. NF for 1GHz input frequency at ssf, ssp and ssg 

The noise figure of the proposed architecture at 1GHz at slow-slow (ss) process 

corner with the three different flavors ssf,ssg and ssp is shown in Fig.5.45. NF at 10MHz 

(the targeted IF frequency) at ssf is 8.17 dB, at ssp is 7.3 dB and at ssg is 7.4 dB.  

 

Fig.  5.45NF for input frequencies from 1.001GHz to 1.1GHz at ssf, ssp and ssg 
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5.5.5.3. NF for 1GHz input frequency at fsf and fsg 

The noise figure of the proposed architecture at 1GHz at fast-slow (fs) process corner 

with the two different flavors fsf and fsg is shown in Fig.5.46. NF at 10MHz (the targeted 

IF frequency) at fsf  is 7.4 dB and at fsg is 7.4 dB. 

 

Fig.  5.46NF for input frequencies from 1.001GHz to 1.1GHz at fsf and fsg 

5.5.5.4 NF for 1GHz input frequency at sff and sfg 

The noise figure of the proposed architecture at 1GHz at slow-fast (sf) process corner 

with the two different flavors sff and sfg is shown in Fig.5.47. NF at 10MHz (the targeted 

IF frequency) at sff  is 9 dB and at sfg is 8.9 dB. 

 

Fig.  5.47NF for input frequencies from 1.001GHz to 1.1GHz at sff and sfg 
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5.5.6. S11 for 1GHz frequency at all process corners 

 

S11 of the proposed architecture for 1GHz frequency input at all process corners 

is shown in this section. 

5.5.6.1. S11 for 1GHz input frequency at fff, ffp and ffg 

S11 of the proposed architecture at 1GHz is -10.3 dB at fff, -10 dB at ffp and -10 

dB at ffg as shown in Fig.5.48. 

 

Fig.  5.48S11 for input frequency of 1GHz at fff, ffp and ffg 

 

5.5.6.2. S11 for 1GHz input frequency at ssf, ssp and ssg 

S11 of the proposed architecture at 1GHz is -9 dB at ssf, -9 dB at ssp and -9 dB at 

ssg as shown in Fig.5.49. 
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Fig.  5.49S11 for input frequency of 1GHz at ssf, ssp and ssg 

5.5.6.3. S11 for 1GHz input frequency at fsf and fsg 

S11 of the proposed architecture at 1GHz is -9 dB at fsf and -9 dB at fsg as shown in 

Fig.5.50. 

 

Fig.  5.50S11 for input frequency of 1GHz at fsf and fsg 

5.5.6.4. S11 for 1GHz input frequency at sff and sfg 

S11 of the proposed architecture at 1GHz is -10 dB at sff and -9.5 dB at sfg as shown 

in Fig.5.51. 
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Fig.  5.51S11 for input frequency of 1GHz at sff and sfg 

5.5.7. Out-of-band IIP3 and P1dB for 1GHz input at all process corners 

In this section, the out-of -band P1dB of the proposed architecture for input 

frequency of 1.1GHz and out of band IIP3 for two input frequencies of 1.1GHz and 1.12 

GHz are shown at all the process corners in three different conditions f, p or g.  

5.5.7.1. Out-of -band P1dB and IIP3 for 1GHz input frequency at fff, ffg 

and ffp  

Out-of-band IIP3 of the proposed architecture for inputs of 1.1 GHz and 1.12GHz 

is -4.495 dBm at fff, -3.847 dBm at ffp and -3.264 dBm at ffg as shown in Fig.5.52. 

 

Fig.  5.52 IIP3 for input frequencies of 1.1GHz and 1.12 GHz at fff, ffp and ffg 
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Out-of-band P1dB of the proposed architecture for input frequency  of 1.1 GHz   

is -13.342 dBm at fff, -12.976 dBm at ffp and -12.799 dBm at ffg as shown in Fig.5.53. 

 

Fig.  5.53Out-of-band P1dB for input frequency of 1.1GHz at fff, ffp and ffg 

5.5.7.2. Out-of -band P1dB and IIP3 for 1GHz input frequency at ssf, ssg 

and ssp 

Out-of-band IIP3 of the proposed architecture for inputs of 1.1 GHz and 1.12GHz 

is -10 dBm at ssf, -8.935 dBm at ssp and -7.361 dBm at ssg as shown in Fig.5.54. 

 

Fig.  5.54Out-of-band IIP3 for input frequencies of 1.1GHz and 1.12GHz at ssf, ssp and 

ssg 

Out-of-band P1dB of the proposed architecture for input frequency of 1.1 GHz   is 

-17.5 dBm at ssf, -17.3 dBm at ssp and -17 dBm at ssg as shown in Fig.5.55. 
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Fig.  5.55Out-of-band P1dB for input frequency of 1.1GHz at ssf, ssp and ssg 

5.5.7.3. Out-of -band P1dB and IIP3 for 1GHz input frequency at sff and 

sfg 

Out-of-band IIP3 of the proposed architecture for inputs of 1.1 GHz and 1.12 

GHz is -4 dBm at sff and -4.247 dBm at sfg as shown in Fig.5.56. 

 

Fig.  5.56Out-of-band IIP3 for input frequencies of 1.1GHz and 1.12GHz at sff and sfg 

Out-of-bandP1dB of the proposed architecture for input frequency of 1.1 GHz   is 

-13.569 dBm at sff and -14.056 dBm at sfg as shown in Fig.5.57. 
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Fig.  5.57Out-of-band P1dB for input frequency of 1.1GHz at sff and sfg 

5.5.7.4. Out-of-band P1dB and IIP3 for 1GHz input frequency at fsf and fsg 

Out-of-band IIP3 of the proposed architecture for inputs of 1.1 GHz and 1.12GHz 

is -8.064 dBm at fsf and -5.631 dBm at fsg as shown in Fig.5.58. 

 

Fig. 5.58Out of band IIP3 for input frequencies of 1.1GHz and 1.12GHz at fsf and fsg 
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Out-of-bandP1dB of the proposed architecture for input frequency of 1.1 GHz   is 

-17.679 dBm at fsf and -16.543 dBm at fsg as shown in Fig.5.59. 

Fig. 5.59Out-of-band P1dB for input frequency of 1.1GHz at fsf and fsg 

5.5.8. In -band P1dB and IIP3 for 1GHz input frequency at all process corners 

In this section, the in-band P1dB of the proposed architecture for input frequency 

of 1.001GHz and in band IIP3 for two input frequencies of 1.001GHz and 1.003 GHz are 

shown across all the process corners in three different conditions f, p and g.  

5.5.8.1. In-band P1dB and IIP3 for 1GHz input frequency at fff, ffp and ffg 

In-band IIP3 of the proposed architecture for inputs of 1.001 GHz and 1.003GHz 

is -5.365 dBm at fff, -4.786 dBm at ffp and -4.227 dBm at ffg as shown in Fig.5.60. 
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Fig. 5.60In band IIP3 for input frequencies of 1.001GHz and 1.003GHz at fff, ffp and ffg 

In-band P1dB of the proposed architecture for input frequency of 1.001 GHz is -

14.962dBm at fff, -14.447 dBm at ffp and -14.543 dBm at ffg as shown in Fig.5.61. 

 

Fig. 5.61In band P1dB for input frequency of 1.001GHz at fff, ffp and ffg 

5.5.8.2. In -band P1dB and IIP3 for 1GHz input frequency at ssf, ssp and 

ssg 

In-band IIP3 of the proposed architecture for inputs of 1.001 GHz and 1.003GHz 

is -12.323 dBm at fff, -12.27 dBm at ffp and -10.58 dBm at ffg as shown in Fig.5.62. 
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Fig. 5.62In band IIP3 for input frequencies of 1.001GHz and 1.003GHz at ssf, ssp and ssg 

In-band P1dB of the proposed architecture for input of 1.001 GHz is -19.971dBm 

at ssf, -20.507 dBm at ssp and -19.883dBm at ssg as shown in Fig.5.63. 

 

Fig. 5.63In band P1dB for input frequency of 1.001GHz at ssf, ssp and ssg 

5.5.8.3. In-band P1dB and IIP3 for 1GHz input frequency at fsf and fsg 

In-band IIP3 of the proposed architecture for inputs of 1.001 GHz and 1.003GHz 

is -12.96 dBm at fsf and -9.596 dBm at fsg as shown in Fig.5.64. 
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Fig. 5.64In band IIP3 for input frequencies of 1.001GHz and 1.003GHz at fsf and fsg 

In-band P1dB of the proposed architecture for input of 1.001 GHz is -21.317 dBm 

at fsf and -20.252 dBm at fsg as shown in Fig.5.65. 

 

Fig. 5.65In band P1dB for input frequency of 1.001GHz at fsf and fsg 
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5.5.8.4. In -band P1dB and IIP3 for 1GHz input frequency at sff  and sfg 

In-band IIP3 of the proposed architecture for inputs of 1.001 GHz and 1.003GHz 

is -4.459 dBm at sff and -4.977 dBm at sfg as shown in Fig.5.66. 

 

Fig. 5.66In band IIP3 for input frequencies of 1.001GHz and 1.003GHz at sff and sfg 

In-band P1dB of the proposed architecture for input of 1.001 GHz is -14.682 dBm 

at sff and -15.446 dBm at sfg as shown in Fig.5.67. 

Fig. 5.67In band P1dB for input frequency of 1.001GHz at sff and sfg 
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6. Layout and post layout simulations 
 

In this chapter the layout of the design with its blocks are shown and each block is 

tested post layout with the rest of the blocks in schematic view due to the difficulty of 

simulating the whole system post layout.  The layout of the whole design is shown in 

Fig.6.1. It consumes 0.45mm
2 

(870u X 540u). 

First the layout of different blocks is shown then testing the transconductor post 

layout with the integration switches and matching network in schematic views after that 

the integration switches and the matching network are post layout with the transconductor 

in schematic view. Each time NF, S11, in band and out of band IIP3 are measured. 

 

Fig. 6.1 The whole design layout 
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6.1. Layout of different blocks 

6.1.1. Layout of the transconductor (Gm) 

Layout of the transconductor is shown in Fig.6.2, the design is differential so 

matching is very important, that’s why large width transistors are divided to many fingers 

and they are inter-digitated. 

What affects the design here is the parasitic resistance as most of the current is 

lost in it, so the routing is done using thick metal. The area of the transconductor is (116u 

* 45u). 

 

Fig. 6.2 Layout of the transconductor (Gm) 

 

6.1.2. Layout of the integration, sampling-to-output and discharging switches 

with the sampling capacitances 

The layout of the integration, sampling-to-output, discharging switches and the 

sampling capacitances is shown in Fig.6.3 The area of this block is (307u*75u). The 

sampling capacitance using mim caps consumes most of the area. 

 



89 
 

 

Fig. 6.3 Layout of the integration switches 

6.1.3. Layout of the matching network (MN) 

The sizes of the matching network switches increase after layout as the effective 

base band resistance after layout increases due to the effect of the parasitic resistance, so 

the width of the transistors increases to consequently reduces the switch resistance to 

compensate this effect. The layout of the matching network is shown in Fig.6.4. The area 

of the matching network is (715u * 217u), the base band capacitance using mim caps 

consume most of the area. 
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 6.4 Layout of the matching network 

6.1.4.  Layout of the digital circuitry 
The layout of the digital circuitry generating the charge sampler’s and the time 

varying matching network clocks is shown in Fig.6.5. The circuit generating the 

matching network clocks is made of short length devices so it is easier in supporting 

higher frequencies than that is generating the charge sampler’s clocks which are made of 

I/O devices. Due to the effect of the parasitic capacitance, the sizes of the transistors 

increase after layout in order to be able to drive the proceeding stages. 
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 6.5 Layout of the digital circuitry 

 

6.2. Post layout simulation of different blocks 
In this section each block is tested post layout with the other blocks in schematic 

view and that is due to the difficulty of simulating the whole system post layout and the 

specs of noise figure, matching, in band and out of band linearity are checked at each 

time. 

6.2.1. Post layout simulation of transconductor (Gm) 

Testing the transconductor post layout with the integration switches and the 

matching network in schematic views for two different frequency bands 1GHz and 2GHz  

results in noise figure of 8.3 dB as shown in Fig.6.6, S11 of -11.5 dB as shown in Fig.6.7 

at 2GHz frequency band, out-of-band IIP3 of -4.436 dBm for input frequencies of 

2.1GHz and 2.12GHz as shown in Fig.6.8 and in-band IIP3 of  -7.18 dBm for input 

frequencies of 2.001GHz and 2.003GHz as shown in Fig.6.9, NF of 8.5 dB as shown in 

Fig.6.10, S11 of -10 dB as shown in Fig.6.11 at 1GHz, out-of-band IIP3 of -7.992 dBm 

for input frequencies of 1.1GHz and 1.12GHz as shown in Fig.6.12 and in-band IIP3 of -

10 dBm for input frequencies of 1.001GHz and 1.003GHz  as shown in Fig.6.13. 
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Fig. 6.6 Noise Figure at 2GHz with Gm post layout 

 

 

 

 

Fig. 6.7 S11 at 2GHz with Gm post layout 
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Fig. 6.8 Out-of-band IIP3 for input frequencies of 2.1GHz and 2.12GHz with Gm post 

layout 

 

 

 

Fig. 6.9 In-band IIP3 for input frequencies of 2.001GHz and 2.003GHz with Gm post 

layout 
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Fig. 6.10 Noise Figure at 1GHz with Gm post layout 

 

 

 

 

Fig. 6.11 S11 at 1GHz with Gm post layout 
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Fig. 6.12 Out-of-band IIP3 for input frequencies of 1.1GHz and 1.12GHz with Gm post 

layout 

 

Fig. 6.13 In-band IIP3 for input frequencies of 1.001GHz and 1.003 GHz with Gm post 

layout 

6.2.2. Post layout simulation of the integration switches and matching 

network 

Testing  the switches and matching network post layout with the transconductor in 

schematic view results in Noise Figure of 7.9 dB as shown in Fig.6.14  and S11 of -9 dB 

as shown in Fig.6.15 at 2GHz frequency band, out-of-band IIP3 of  -5.706 dBm for input 

frequencies of 2.1GHz and 2.12GHz as shown in Fig.6.16 and in-band IIP3 of -5.235 
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dBm for input frequencies of 2.001GHz and 2.003 GHz as shown in Fig.6.17, noise 

figure of 8.3 dB as shown in Fig.6.18 and S11 of -9 dB as shown in Fig.6.19 at 1GHz 

frequency band, out-of-band IIP3 of -7.429 dBm for input frequencies of 1.1GHz and 

1.12GHz as shown in Fig.6.20 and in-band IIP3 of -8.665 dBm for input frequencies of 

1.001GHz and 1.003GHz as shown in Fig.6.21. 

 

Fig. 6.14 Noise Figure at 2GHz with switches and matching network post layout 

 

Fig. 6.15 S11 at 2GHz with switches and matching network post layout 
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Fig. 6.16 Out-of-band IIP3 for input frequencies of 2.1GHz and 2.12GHz with switches 

and MN post layout 

 

 

 

 

Fig. 6.17 In-band IIP3 for input frequencies of 2.001GHz and 2.003 GHz with switches 

and matching network post layout 
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Fig. 6.18 Noise Figure at 1GHz with switches and matching network post layout 

 

 

 

 

 

Fig. 6.19 S11 at 1GHz with switches and matching network post layout 
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Fig. 6.20 Out-of-band IIP3 for input frequencies of 1.1GHz and 1.12GHz with switches 

and MN post layout 

 

 

Fig. 6.21 In-band IIP3 for input frequencies of 1.001GHz and 1.003 GHz with switches 

and matching network post layout 
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6.3. Comparison between pre and post layout simulations 
Pre and post layout results for 2GHz frequency are compared in Table 6-1 and for 

1GHz frequency are compared in Table 6-2. As it is clear from the comparison below; the 

noise figure with post layout transconductor increases due to the decrease of the current 

consumed in it due to the effect of the parasitic resistances. Linearity also depends on the 

passing current that’s why it decreases with the post layout transconductor. For post 

layout switches and the matching network, the matching is affected due to the effect of 

the parasitic resistances and capacitances and also the linearity is deteriorated as the 

matching network selectivity will be affected with the parasitic resistances and 

capacitances. 

 

 All schematic Gm post layout + 

rest schematic 

Integration_switches 

+ MN post layout 

NF (dB) 7.8 8.3 7.9 

S11 (dB) -10 -11.5 -9 

Out of band IIP3 

(dBm) 

-1.9 -4.436 -5.706 

In band IIP3 (dBm) -1.45 -7.18 -5.235 

Table 6-1 Comparison between pre and post layout simulations at 2GHz 

 

 

 All schematic Gm post layout + 

rest schematic 

Integration_switches 

+ MN post layout 

NF (dB) 7.9 8.5 8.3 

S11 (dB) -10 -10 -9 

Out of band IIP3 

(dBm) 

-3 -7.992 -7.429 

In band IIP3 (dBm) -4.349 -10 -8.665 

Table 6-2 Comparison between pre and post layout simulations at 1GHz 
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7. Conclusion 
 

The aim of this work is to implement a programmable receiver front end 

controlled by adjusting the controlling clocks of the receiver’s blocks to be able to 

receive different frequency bands. By controlling the clocks of the charge sampler (the 

integration pulse width) and the clocks of the time varying matching network, the 

receiver is able to receive a certain frequency band. 

The proposed front-end architecture target is to achieve LTE specifications of 

noise figure, in band and out of band linearity on the frequency range of (700MHz – 

2.4GHz) as a case study. The architecture is tested over three different frequencies 

500MHz, 1GHz and 2GHz and the receiver’s specs are checked at each frequency to 

prove the programmability of the proposed architecture. 

This receiver solves the problem of moderate linearity and poor matching in 

sampling receivers and wide-band receivers. 

 The receiver achieves better linearity than the other wide-band designs as in this 

design; the receiver’s linearity is controlled by the transconductor and is more enhanced 

by the time varying matching network selectivity.   

This design has better matching than other designs. Matching is based on a 

programmable matching network instead of a wide-band one. Good matching can be held 

at multi-bands.  

Targeting other wireless communications standards is considered as a future 

work. This design can receive any frequency band of any standard. By adjusting the 

controlling clocks of the design, the band pass filter response and the matching are held at 

the desired frequency. By adjusting the number of integrated samples (N), the sampling 

capacitance (Cs), the receiver’s gain is controlled consequently the receiver’s noise and 

linearity according to the required specs. Adjusting the resistances and capacitances 

values in the matching network controls the matching, noise and linearity due to its 

further selectivity. 
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