
American University in Cairo American University in Cairo

AUC Knowledge Fountain AUC Knowledge Fountain

Archived Theses and Dissertations

6-1-2005

Parallel versus iterated: comparing population oriented and Parallel versus iterated: comparing population oriented and

chained sequential simulated annealing approaches to cost-chained sequential simulated annealing approaches to cost-

based abduction based abduction

Heba Amer

Follow this and additional works at: https://fount.aucegypt.edu/retro_etds

Recommended Citation Recommended Citation

APA Citation
Amer, H. (2005).Parallel versus iterated: comparing population oriented and chained sequential simulated
annealing approaches to cost-based abduction [Master’s thesis, the American University in Cairo]. AUC
Knowledge Fountain.
https://fount.aucegypt.edu/retro_etds/2376

MLA Citation
Amer, Heba. Parallel versus iterated: comparing population oriented and chained sequential simulated
annealing approaches to cost-based abduction. 2005. American University in Cairo, Master's thesis. AUC
Knowledge Fountain.
https://fount.aucegypt.edu/retro_etds/2376

This Thesis is brought to you for free and open access by AUC Knowledge Fountain. It has been accepted for
inclusion in Archived Theses and Dissertations by an authorized administrator of AUC Knowledge Fountain. For
more information, please contact mark.muehlhaeusler@aucegypt.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AUC Knowledge Fountain (American Univ. in Cairo)

https://core.ac.uk/display/333726801?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://fount.aucegypt.edu/
https://fount.aucegypt.edu/retro_etds
https://fount.aucegypt.edu/retro_etds?utm_source=fount.aucegypt.edu%2Fretro_etds%2F2376&utm_medium=PDF&utm_campaign=PDFCoverPages
https://fount.aucegypt.edu/retro_etds/2376?utm_source=fount.aucegypt.edu%2Fretro_etds%2F2376&utm_medium=PDF&utm_campaign=PDFCoverPages
https://fount.aucegypt.edu/retro_etds/2376?utm_source=fount.aucegypt.edu%2Fretro_etds%2F2376&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:mark.muehlhaeusler@aucegypt.edu

The American University in Cairo

School of Science and Engineering

Parallel Versus Iterated: Comparing

Population Oriented and Chained

Sequential Simulated Annealing

Approaches to Cost-Based Abduction

A Thesis Submitted to

The Department of Computer Science

in partial fulfillment of the requirement for

the degree of Masters of Science

by

Heba Abdallah Amer

B. Sc. In Computer Science, AUC, Feb, 1997

Under the supervision of Dr. Ashraf Abdelbar

July, 2004

 iii

DEDICATION

To my husband. Thank you for everything.

 iv

ACKNOWLEDGEMENTS

First of all, I would like to say “الحمد الله ” for everything.

 I would like to express my gratitude to my supervisor Dr. Ashraf Abdelbar for

his continuous support and guidance throughout my thesis work. I would also like to

thank my examiners Dr. Ahmed Rafea, Dr. Awad Khalil and the external examiner

Dr. Ismail Amr Ismail for their time and effort to evaluate this thesis and their helpful

comments.

 In addition, I thank all my friends without whom I could have never passed

through all this. Thanks for your continuous support and encouragement. Thank you,

Hoda Khalil, for believing in me, even when I didn’t believe in myself. Thank you,

AUC Freshmen Advisors, for your encouragement and kindness every morning.

Thank you ITWorx people for your emotional support and encouragement. Thank you

my colleagues, computer science graduate students for your help and support and

wish you the best of luck.

 I also would like to thank ITWorx Egypt for allowing me to do the testing

using their machines. I thank the engineers at the AUC labs for their help and support

during the testing and results phase.

 Lastly, I would like to thank my family. I would like to thank my mom for her

continuous support and pushing. Thank you my husband for all the efforts you did

and for supporting me in every way possible. I would like to thank my daughter for

always trying to cheer me up. Finally, I would like to thank all my big family,

brothers and sisters and relatives, for all the help and support they consistently give.

 v

ABSTRACT

 Stochastic search techniques are used to solve NP-hard combinatorial

optimization problems. Simulated annealing, genetic algorithms and hybridization of

both, all attempt to find the best solution with minimal cost and time. Guided

Evolutionary Simulated Annealing is one technique of such hybridization. It is based

on evolutionary programming where a number of simulated annealing chains are

working in a generation to find the optimum solution for a problem. Abduction is the

problem of finding the best explanation to a given set of observations. In AI, this has

been modeled by a set of hypotheses that need to be assumed to prove the observation

or goal. Cost-Based Abduction (CBA) associates a cost to each hypothesis. It is an

example of an NP-hard problem, where the objective is to minimize the cost of the

assumed hypotheses to prove the goal. Analyzing the search space of a problem is one

way of understanding its nature and categorizing it into straightforward, misleading or

difficult for genetic algorithms. Fitness-Distance Correlation and Fitness-Distance

plots are helpful tools in such analysis. This thesis examines solving the CBA

problem using Simulated Annealing and Guided Evolutionary Simulated Annealing

and analyses the Fitness-Distance landscape of some Cost-Based abduction problem

instances.

 vi

TABLE OF CONTENTS

LIST OF TABLES ... VIII
LIST OF FIGURES .. IX
LIST OF ACRONYMS .. XI
CHAPTER 1 INTRODUCTION..1

1.1 THESIS OBJECTIVE AND APPROACH ..3

1.2 THESIS LAYOUT ..4

CHAPTER 2 OVERVIEW OF CURRENT METHODOLOGIES5
2.1 DETERMINISTIC AND STOCHASTIC SEARCH TECHNIQUES5

2.1.1 Simulated Annealing (SA) ..6
2.1.2 Genetic Algorithms (GA) ...7

2.2 HYBRIDIZATION OF GA AND SA...8

2.2.1 Parallel Recombinative Simulated Annealing9
2.2.2 Annealing-Genetic Algorithm ..10
2.2.3 Population Oriented Simulated Annealing ..11
2.2.4 Guided Evolutionary Simulated Annealing (GESA)12
2.2.5 Extending GESA with Heritage Factor..15

2.3 COST-BASED ABDUCTION (CBA)...16

2.3.1 Abduction, Deduction and Induction ...16
2.3.2 Abduction ...17
2.3.3 Weighted Abduction ...18
2.3.4 Cost-Based Abduction Definition (CBA) ...19
2.3.5 CBA NP-Completeness ..20
2.3.6 Linear Constraint Satisfaction Approach for CBA..............................20
2.3.7 Polynomial Solvability of CBA ..21
2.3.8 Parallel CBA Reasoning for Distributed Memory Systems21
2.3.9 Networked Bubble Propagation for CBA ..22
2.3.10 Slide-down and Lift-up (SL) Method..22
2.3.11 Binary Decision Diagrams for CBA ..23
2.3.12 Linear-Programming Based Admissible Heuristic for CBA................23

2.4 FITNESS DISTANCE CORRELATION (FDC)...24

2.4.1 FDC Definition ..24
2.4.2 FDC as Measure of Search Difficulty..25
2.4.3 FDC Counterexample ..27
2.4.4 FDC Analysis of Some NP-hard Problems..27

CHAPTER 3 METHODOLOGY..33
3.1 SA ALGORITHM ..33

3.2 GESA ALGORITHM...34

 vii

3.3 EXTENDING GESA WITH THE HERITAGE FACTOR ..36

3.4 CBA INSTANCES...37

3.5 PROBLEM REPRESENTATION ...40

3.5.1 Starting State..42
3.5.2 Neighboring Operator ...42
3.5.3 Distance Measure ..42
3.5.4 Cost Function...42

3.6 HEURISTIC REPAIR FUNCTIONS...43

3.6.1 Worst-Cost Function..43
3.6.2 P-Cost Function ...45

3.7 DESIGN ISSUES..48

3.7.1 Starting Temperature ...48
3.7.2 Annealing Schedule..48
3.7.3 Saturation...49
3.7.4 Stopping Criteria ...49
3.7.5 Acceptance Number ...49

CHAPTER 4 RESULTS AND ANALYSIS..51
4.1 RSA VERSUS GESA..51

4.2 FITNESS-DISTANCE LANDSCAPE ANALYSIS ..59

4.2.1 FDC vs. Percentage of Deviation from Global Optimum....................64
4.2.2 FDC vs. Distance from Global Optimum ..71

4.3 HERITAGE FACTOR AND GESA PARAMETERS ..74

CHAPTER 5 CONCLUSION AND FUTURE WORKS82
5.1 CONCLUSION...82

5.2 FUTURE WORK ...82

REFERENCES...84
APPENDIX A: CBA FILE FORMAT ...89
APPENDIX B: QAB030.CBA...90
APPENDIX C: PUBLISHED PAPER ...102

 viii

LIST OF TABLES
Table 1: Small CBA example ..38

Table 2: CBA Instances ...40
Table 3 : RLD example of qab030 using GESA (5,20)...53

Table 4 : RLD Analysis for RSA and GESA...54

Table 5 : Results of the FDC analysis for the six CBA instances................................59

Table 6: FDC Coefficient vs. Percentage of Deviation From Optimum64

Table 7 : Heritage Factor with GESA (5 Chains, 20 Children) for raa18075

Table 8 : Heritage Factor with GESA (10 Chains, 20 Children) for raa18075

Table 9 : Heritage Factor with GESA (20Chains, 20 Children) for raa18075

Table 10: Heritage Factor with GESA (5 Chains, 20 Children) for caa20076

Table 11 : Heritage Factor with GESA (10 Chains, 20 Children) for caa20076

Table 12: Heritage Factor with GESA (20 Chains, 20 Children) for caa20076

Table 13: Heritage Factor with GESA (5 Chains, 20 Children) for oaa110................77

Table 14: Heritage Factor with GESA (10 Chains, 20 Children) for oaa110..............77

Table 15: Heritage Factor with GESA (20 Chains, 20 Children) for oaa110..............77

Table 16: RLD Analysis for GESA with different number of chains..........................78

 ix

LIST OF FIGURES

Figure 1: SA Algorithm ...34

Figure 2: GESA Algorithm..35

Figure 3: Calculation of Acceptance Number and Number of Children36

Figure 4 : RLD Analysis for raa180 ..55
Figure 5 : RLD Analysis for caa200 ..55

Figure 6 : RLD Analysis for oaa110..56

Figure 7 : RLD Analysis for lab070 ..56
Figure 8 : RLD Analysis for rab050 ..57

Figure 9 : RLD Analysis for qab030..57

Figure 10: Fitness-Distance Plot of raa180..60

Figure 11 : Fitness-Distance Plot of caa200 ..61

Figure 12: Fitness-Distance Plot of oaa110 ...61

Figure 13: Fitness-Distance Plot of lab070..62

Figure 14: Fitness-Distance Plot of rab050 ...62
Figure 15: Fitness-Distance Plot of qab030...63

Figure 16 : FDC Coefficient vs. 5% Deviation from Global Optimum for raa18065

Figure 17 : FDC Coefficient vs. 10% Deviation from Global Optimum for raa180 ...65

Figure 18 : FDC Coefficient vs. 100% Deviation from Global Optimum for raa180 .65

Figure 19 : FDC Coefficient vs. 5% Deviation from Global Optimum for caa200.....66

Figure 20 : FDC Coefficient vs. 10% Deviation from Global Optimum for caa200...66

Figure 21 : FDC Coefficient vs. 100% Deviation from Global Optimum for caa200.66

Figure 22 : FDC Coefficient vs. 5% Deviation from Global Optimum for oaa11067

Figure 23 : FDC Coefficient vs. 10% Deviation from Global Optimum for oaa110 ..67

Figure 24 : FDC Coefficient vs. 100% Deviation from Global Optimum for oaa110 67

 x

Figure 25 : FDC Coefficient vs. 5% Deviation from Global Optimum for lab07068

Figure 26 : FDC Coefficient vs. 10% Deviation from Global Optimum for lab070 ...68

Figure 27 : FDC Coefficient vs. 100% Deviation from Global Optimum for lab070 .68

Figure 28 : FDC Coefficient vs. 5% Deviation from Global Optimum for rab050.....69

Figure 29 : FDC Coefficient vs. 10% Deviation from Global Optimum for rab050...69
Figure 30 : FDC Coefficient vs. 100% Deviation from Global Optimum for rab050.69

Figure 31 : FDC Coefficient vs. 5% Deviation from Global Optimum for qab03070

Figure 32 : FDC Coefficient vs. 10% Deviation from Global Optimum for qab030 ..70
Figure 33 : FDC Coefficient vs. 100% Deviation from Global Optimum for qab030 70

Figure 34 : FDC Coefficient vs. Distance to Global Optimum of raa18071

Figure 35 : FDC Coefficient vs. Distance to Global Optimum of caa200...................72

Figure 36 : FDC Coefficient vs. Distance to Global Optimum of oaa11072

Figure 37 : FDC Coefficient vs. Distance to Global Optimum of lab07072

Figure 38 : FDC Coefficient vs. Distance to Global Optimum of rab050...................73

Figure 39 : FDC Coefficient vs. Distance to Global Optimum of qab03073
Figure 40: RLD Analysis for GESA (5,20), (10,20), (20,20) for raa18079

Figure 41: RLD Analysis for GESA (5,20), (10,20), (20,20) for caa200....................79

Figure 42: RLD Analysis for GESA (5,20), (10,20), (20,20) for oaa110....................80

Figure 43: RLD Analysis for GESA (5,20), (10,20), (20,20) for lab07080

Figure 44: RLD Analysis for GESA (5,20), (10,20), (20,20) for rab05080

Figure 45: RLD Analysis for GESA (5,20), (10,20), (20,20) for qab03081

 xi

LIST OF ACRONYMS

AI Artificial Intelligence

CBA Cost-Based Abduction

EA Evolutionary Algorithm

FDC Fitness Distance Correlation

GA Genetic Algorithm

GESA Guided Evolutionary Simulated Annealing

ILP Integer Linear Programming

NP-hard Non-deterministic polynomial time hard

RLD Run Length Distribution

RSA Repeated Simulated Annealing

SA Simulated Annealing

TSP Traveling Salesman Problem

WAODAG Weighted AND/OR Directed Acyclic Graph

 1

Chapter 1 INTRODUCTION

Simulated Annealing (SA) and Evolutionary Algorithms (EA) are both nature-

based stochastic computational techniques. SA is based on thermodynamics [LKH91]

while EA is based on the idea of population genetics of nature [GZ01]. Evolutionary

Programming (EP), Genetic Algorithms (GA), and Evolution Strategies (ES), all fall

under the subtitle of evolutionary algorithms [BSW02]. Those methods, along with

simulated annealing, are used for solving NP-hard (Non-deterministic polynomial

time hard) combinatorial optimization problems. In such problems, a solution would

be to maximize or minimize the value of a certain function that depends on many

independent variables, usually called the cost, fitness or the objective function, which

represents the quality of that solution [KGV83]. For NP-complete problems, no

method with exact solution with the complexity bounded by the size of the problem

has been found, but if such a solution were found, it could be mapped to solve all

problems belonging to this category [KGV83].

SA and GA work reasonably well on different sets of problems, and require

nearly no specific problem information other than fitness or cost information [MG95].

In SA, a single state representing the solution is maintained. In every iteration, a

neighboring state is generated at random and its objective function is evaluated. If it

has a better value for the objective function than the current state, it becomes the new

current state. Otherwise, the new state replaces the current state with probability e(-∆/T)

where ∆ is the positive difference in the objective function and T is the temperature.

On the other hand, in Evolutionary Algorithms a problem’s solution is viewed

as a point in the finite space of solutions, where every solution has a fitness value that

represents its quality. A population of states representing candidate solutions is

 2

maintained. Periodically, random members of the population are selected and some

genetic operators are applied to them, such as mutation and recombination. Those

generated members compete for a place with the parent members in the population

according to their fitness or value of objective function [GZ01], [BBM93].

Several approaches have been taken to hybridize genetic algorithms and

simulated annealing. One approach is to have parallel SA chains that work in a

population framework. They may or may not share solutions and can influence the

control parameters in one another.

Guided Evolutionary Simulated Annealing (GESA) is an example of such an

approach. In GESA, a set of independent SA chains is maintained, with no

recombination and no sharing of solutions. For each chain, the current state, called the

parent state, generates a number of neighboring child states, where the most fit child

states replaces the parent with a logistic probability just like in SA. The number of

child states generated in each iteration for each chain depends on the value of the

objective function of the child states generated in the previous iteration [YP95]. A

variation on GESA introduces the heritage factor, which makes the number of child

states a parent is allowed to generate dependent on the previous history iterations and

not only the most recent one, thus giving a good family or chain a chance to recover

from the effect of a single bad generation [Abd01].

Cost-Based Abduction (CBA) is an example of an NP-complete problem. In

abduction, the problem is to find the best explanation for a given set of observations

[San94]. In Artificial Intelligence (AI), abduction is modeled by trying to prove the

observation by assuming some set of hypotheses. CBA associates a cost to each

hypothesis. The best solution to the problem is the one with the minimum cost that

proves the goal [San94].

 3

Search space analysis of combinatorial optimization problems helps to

understand the nature of such problems. Fitness landscape is considered an important

criterion for the effectiveness of adaptive multi-start algorithms [SH00]. If we

imagine the fitness landscape as a mountainous region with hills, craters and valleys,

the effectiveness of a search strategy would depend on the ruggedness of the

landscape, the distribution of the valleys and craters and their overall numbers

[SH00].

Fitness Distance Correlation (FDC) shows the correlation between solution

fitness and the distance to optimal solution. It gives an analysis about the distribution

of local minima of a search space and their relative location with respect to global

optima and is considered as a measure of search difficulty [JF95].

1.1 Thesis Objective and Approach

Combinatorial optimization problems are complex and hard to solve, hence

many approaches have been proposed to reach a sub-optimal solution for them

[YP95]. The objective of this thesis is to determine the effectiveness of using Guided

Evolutionary Simulated Annealing in solving Cost-Based Abduction problems as an

example of NP-hard problems. This is done by applying a heuristic repair function to

solve the problem of penalty cost of unfeasible states. The GESA will be compared

against pure iterated Simulated Annealing for solving the same problems. Introducing

the heritage factor will be examined on a small scale to determine its effect on the

generated number of children each generation and the quality of the reached solution.

In addition, landscape analysis of the CBA problem is performed to form a general

view about the difficulty of CBA problems.

 4

1.2 Thesis Layout

In the next chapter, a description of current methods in literature is first given

about SA and GA with their historical origins, along with a discussion about some

hybridization techniques, followed by a formal definition of CBA and other attempts

to solve it, and the definition of fitness landscape analysis and its application to some

other well-known NP-hard problems. The proposed method and description of

algorithms are given in chapter 3, with the problem representation and design issues

involved in solving the problem. Chapter 4 discusses the preliminary results followed

by conclusion and future enhancements in chapter 5.

 5

Chapter 2 OVERVIEW OF CURRENT

METHODOLOGIES

2.1 Deterministic and Stochastic Search Techniques

There are two types of search techniques used to find the optimum value of the

criterion function of a certain problem, which are deterministic and stochastic. In

deterministic search techniques, an exhaustive enumeration is performed to guarantee

the optimal solution. On the other hand, stochastic search techniques generate a near-

optimal partition reasonably quickly, and guarantee convergence to optimal partition

asymptotically. Evolutionary search algorithms and simulated annealing fall under the

latter technique [JMF99].

While deterministic techniques are typically greedy descent approaches,

stochastic approaches permit perturbation to the solution in non-locally optimal

directions also with nonzero probabilities. Stochastic search techniques are either

sequential or parallel. Evolutionary approaches are inherently parallel, whereas the

simulated annealing is a sequential stochastic search technique [JMF99].

Evolutionary Programming, Genetic Algorithms and Evolution Strategies

work in a similar general frame. It can be simply summarized “by a loop over

partially randomized variation and selection operators steering exploration and

exploitation (or chance and necessity) and, in contrast to traditional optimization

procedures, acting upon a set of search points in the decision variable space”

[BSW02]. Following is an overview of both SA and GA.

 6

2.1.1 Simulated Annealing (SA)

Simulated Annealing from the computational view is modeled as the physical

process of annealing. In this process, physical substances such as metals are melted;

i.e. raised to high energy levels, and then gradually cooled until some solid state is

reached, which is a minimal-energy final state [RK91]. The physical substances

usually move from higher energy configurations to lower ones. However, there is a

probability that a transition to a higher energy state would happen. This probability is

given by the functions

p = e(-∆E/kT) (2.1)

where ∆E is the positive change in the energy level, T is the temperature, and k is

Boltzmann’s constant [RK91]. Such transition is more likely to happen during the

beginning of the process when the temperature is high, and becomes less likely as the

temperature gets lower. From the SA computational point of view, the annealing

process is the search space, where we start with a high cost state and search for a

lower cost next state, but sometimes we accept higher cost states with probability

analogous to the one given above so that the search doesn’t get trapped in a local

minimum.

The annealing schedule, which is a sensitive factor for the annealing process,

is the rate at which the system is cooled. If the cooling schedule is too rapid, stable

regions of high energy will form; i.e. the search reaches a local minimum not a global

one. On the other hand, if the annealing schedule is slower for the physical substance,

a uniform crystalline structure is more likely to develop, which corresponds to

minimum energy or global minimum. The optimal annealing schedule for each

particular annealing problem must usually be discovered empirically [RK91].

 7

For Simulated Annealing, ∆E is generalized to represent the change in the

value of the objective function that the SA is trying to minimize. The analogy for kT

in equation (2.1) is only T where k is incorporated into it. The values for T should be

selected to produce desirable behavior for the algorithm. Thus the analogous

probability formula is

p’ = e(-∆E/T) (2.2)

where ∆E is the positive change in the value of the objective function and T is the

temperature [RK91].

Kirkpatrick suggested using SA for solving combinatorial optimization

problems in 1983. Although the algorithm converges slowly, his paper attracted many

researchers for studying SA [KGV83], [YP95]. The asymptotic convergence of an SA

process to the global optimal solution can be guaranteed if the temperature is

decreased at a rate that is no faster than logarithmic. However, this is considered too

slow in practice and the most commonly used schedule is to reduce the temperature

periodically by a fixed fraction [AA03].

2.1.2 Genetic Algorithms (GA)

Genetic Algorithms is based on the concept of “survival of the fittest”. It is

analogous to the natural behavior. The basic principles of GA were first laid down by

Holland in 1975. He also introduced the schema theorem that explains the power of

GA. The system has a population of individuals representing candidate solutions to

the problem in hand. Each member in the population has a fitness that represents how

good it is. The members with high fitness are given more chance to “reproduce” by

“cross breeding” or reproduction and mutation. The new members produced, known

as “offspring” compete to get to the new generation according to their fitness.

 8

Members with good characteristics are more likely to be in the new generation, where

members with low fitness “die out” moving from one generation to another. This way

of favoring the more fit individuals allows for exploring the best areas of the search

space, and with a good design for the problem, the algorithm converges to the optimal

solution [BBM93].

There are some basic principles that should be defined before the system can

run; the problem should be coded in a representative way, the fitness function should

be well defined, and a method of selecting members for reproduction and

recombination should also be defined during the run of the system [BBM93].

Crossover and mutation are the main functions for reproduction. Random

members of the population are selected in a way favoring the more fit ones, and then

crossover takes place to produce the offspring. Mutation is then applied to each

individual. Crossover and mutations have some variations according to the type of

problem. Usually they are not done for the whole population, but to a percentage of

the selected members [BBM93].

Convergence of GA means that the population shares the same values for their

genes. When the system is correctly implemented, the global optimum is reached as

the fitness of the best and average individuals increase in each generation [BBM93].

The schema theorem explained by Holland shows that giving the more fit members

more opportunity to reproduce will eventually lead to finding better solutions

[BBM93].

2.2 Hybridization of GA and SA

GA and SA are both methodologies for solving combinatorial optimization

problems. Unlike GA, in SA only one candidate solution is kept, so there is no overall

 9

picture of the search space. Previous moves are not saved to guide for the selection of

new ones [BBM93]. On the other hand, Esbensen and Mazumder [EM94] report that

one of the problems of GA is the way it converges. The rate of getting a better fitness

is high at the beginning but then drops and it becomes hard to get further

improvement, which wastes most of the runtime at the later phase of the process.

Neither of the two algorithms is preferred for all types of problems, hence the

hybridization was introduced. Esbensen and Mazumder show that a mixture of both

algorithms leads to higher layout quality than pure GA [EM94].

Several attempts have been proposed to hybridize both techniques. One

approach is to use multiple instances of SA chains working in parallel in a generation-

like GA environment, where Guided Evolutionary Simulated Annealing falls in.

Following is a review of some methodologies of this hybridization.

2.2.1 Parallel Recombinative Simulated Annealing

In 1995, Mahfoud and Goldberg introduced Parallel Recombinative Simulated

Annealing (PRSA) as a method for hybridizing SA and GA. Their algorithm keeps the

desirable asymptotic convergence properties of SA and at the same time adds the

power of GA of using the population approach and recombination [MG95]. It is based

on Goldberg’s Boltzmann tournament selection [Gol90]. “PRSA closely follows

simulated annealing, if one imagines several copies of SA running in parallel, with

mutation as the neighboring operator, and crossover recombining independent

solutions” [MG95].

PRSA can be viewed from both the GA and SA environment. Taking it from

the GA framework, in every generation, two members are randomly selected and used

to generate two children by recombination and mutation. Then the children and the

parents hold a Boltzmann trial where the winners replace the parents. In the

 10

Boltzmann trial, a child i replaces a parent j with logistic probability 1/(1 + e(Ei-Ej)/T)

where Ei and Ej are the fitness of the child and parent respectively and T is the

temperature. In a variation, the fitness of both children is compared against the fitness

of both parents. The temperature is lowered periodically [MG95].

From the SA point of view, PRSA can be viewed as simultaneous multiple

independent SA chains, with a global annealing schedule. Boltzmann distribution will

be approached for each independent application of SA. Crossover and mutation can

be viewed as an extension to the neighboring operator of SA [MG95].

Although most hybridization techniques of GA and SA lack formal proofs of

their convergence, Mahfoud and Goldberg provided a formal proof of convergence

under certain easily observed conditions [MG95].

2.2.2 Annealing-Genetic Algorithm

Lin et al. [LKH93] reported some observations on using SA from the

performance analysis of their empirical results:

• The system has to tradeoff between the execution time and quality of

final solution obtained.

• The cooling schedule might get the system trapped in a local minimum

if the temperature drops too sharply.

• Detecting the equilibrium of the system at each temperature is not an

easy task.

• The total number of iterations depends on the initial temperature.

• And, a good solution might be discarded if the number of iterations at

low temperature is not large enough.

 11

They proposed this method of Annealing-Genetic Algorithm to reach an

efficient annealing schedule. They aimed at reaching a near optimal solution with

error not more than 3% and to reach an execution time that is bounded by a

polynomial function of the problem size.

Their algorithm starts with a GA environment. For each generation, the

standard genetic operators are applied to create the new generation. Then, some

members are selected to start an SA search that does not go through a full annealing

schedule; instead it uses a fixed temperature and stops when reaching a no-change

state. The temperature is decreased at the end of the generation and used by all SA

chains in the next generation. Their approach can be viewed as SA with population-

based state transition and with genetic-operator-based quasi-equilibrium control. It

can also be viewed as a GA with Boltzmann selection operator [LKH93].

In another technique of hybridizing SA and GA, several chains of SA searches

are kept running in parallel. Each chain keeps its own current state and starts from a

separate starting state. They do not share best solutions, instead they influence each

other’s controlling parameters. New Population Oriented Simulated Annealing and

Guided Evolutionary Simulated Annealing are two examples of this approach.

2.2.3 Population Oriented Simulated Annealing

In 1998, Cho et al. proposed a “New” Population-Oriented Simulated

Annealing (NPOSA) technique based on local temperature concept. Their technique

runs multiple SA chains in parallel, each with its local temperature. These chains do

not share the best states, but they influence the control parameters of each other.

“Each individual in the population can intelligently plan its own annealing schedule in

an adaptive fashion to the given problem at hand”. This speeds the search and leads to

a near optimal global solution [COC98].

 12

In this approach, each chain has its own temperature, which is adjusted

according to its rank among the population. The rank is adjusted according to the cost

of the solution of each chain. The algorithm starts with a number of SA chains each

starts with a random starting state. In each iteration, each chain finds its rank

according to the value of its objective function, where the best chain gets the highest

rank. The temperature of each chain is then set to αri Tref where Tref called reference

temperature is a constant defined by the user at the beginning of the system and does

not decrease, and ri is the rank of chain i and α is a user define constant called the

distribution factor in the range 0 < α < 1. Then each chain generates its offspring and

accepts it with the SA acceptance functions using its own temperature [COC98].

This approach of setting the local temperature allows a low ranked chain to get

more chance to go uphill on the search surface by getting a higher temperature. On the

other hand, a high ranked chain is given less chance to move uphill to enhance the

solution accuracy [COC98].

NPOSA was tested on the TSP problem against the standard SA and proved to

be more efficient. While in SA, no further progress is made towards the end of the

system because it gets frozen as the temperature gets very low, NPOSA can still go on

with the search because of the concept of local temperature adjustment [COC98].

2.2.4 Guided Evolutionary Simulated Annealing (GESA)

Yip proposed the algorithm GESA in 1995, which incorporates SA into the

selection process of simulated evolution, adding a new level of competition to make

the search regionally guided [YP95]. GESA starts with a number of SA chains, N,

each having its own current state, called parent. All these chains have a single global

 13

temperature. In the first iteration, each parent is allowed to generate a number of

neighboring or child states, say M.

 There are two levels of competition among states in GESA. The first one is

local to each chain. The child state with the best objective function is determined and

compared with the parent state. If it has a better fitness, it becomes the current state

for the next iteration, otherwise, it replaces the parent with the logistic probability

used for SA. The second level of competition among states determines the number of

child states generated in the next iteration for each chain [YP95]. Let mi
(t) be the

number of child states chain i is allowed to sample at iteration t. In the first iteration,

mi
(1) is set to M for all chains. For the next iteration, the number of child states for

each chain i is made proportional to its acceptance number Ai, which is determined by

comparing the fitness of each child with the parent state of chain i. For each child, Ai

is incremented if the fitness of the child is better than the parent. Otherwise, Ai is

incremented with the probability e(-∆/T) where ∆ is the positive difference in fitness

between the current child and the best fitness found ever. The number of child states

of the next iteration t+1 is set equal to

mi
(t+1) = M N Ai / S (2.3)

where

 S = Σj Aj (2.4)

thus the total number of child states generated for all chains in each iteration is kept

constant and equal to MN [Abd01].

Yip and Pao show that eventually one chain survives which is usually the best

family. The acceptance number, which shows the second level of competition among

chains, gives a measure of the regional in formation. A higher acceptance number

 14

indicates that better candidate solutions were found, which gives the search more

attention to that region to generate more children [YP95].

The GESA algorithm can also be explained as parallel simulated annealing

with competition. Each chain can be viewed as a multiple-trial-parallel simulated

annealing machine with the children contributing the trials in parallel. The N chains

can be viewed as N parallel simulated annealing machines competing with each other,

where the better machine is getting more trials [YP95].

In their paper, Yip and Pao tested GESA on the Traveling Salesman Problem

(TSP) which is known to be NP-hard [YP95]. They compared their results against a

version of simulated evolution. Their results outperformed that version of simulated

evolution. They also showed that the GESA approach is less complex than simulated

evolution when the total number of individuals in each generation is very large.

GESA was applied in a study to investigate the effect of varying optimization

parameters on the proposed optimum of a tablet coating formulation requiring

minimization of crack velocity and maximization of film opacity. It was used to

optimize an artificial neural network to identify the formulation that satisfied and

exceeded the looser targets, when the stringency of the performance criteria were

reduced to a crack velocity of > 0 ms-1 and film opacity of < 100%. Under these

conditions, starting GESA from different locations within model space resulted in the

proposal of different optima [PR+03]. GESA was also used by Dean et al. [DZ+01] to

optimize Gamma Knife radiosurgery treatment planning. It was used to maximize the

therapeutic benefit through a probability model that dissects a patient volume image

into three components: normal, critical normal, and tumor tissue. They compared

GESA algorithm to other manual methods using two clinical examples where GESA

optimization showed therapeutic advantage over the treatment team's manual effort.

 15

GESA was in a comparison with GA and SA to solve the problem of file and

task placements in distributed systems in 2002 [CC02]. The authors found that pure

SA had better performance solving this problem and related that to the fact of a non-

continues search space of the file and task placement problem. They suggested that

having jumps within the search space would be more effective than using a

generation-like search method.

2.2.5 Extending GESA with Heritage Factor

A variation on GESA is proposed in [Abd01] introducing the heritage factor.

GESA has the deficiency of dramatically decreasing the number of children of one

parent if this parent has a poor fitness, although the number of children depends on

the relative fitness of children to their parent’s and not on their absolute fitness. This

was the motivation for introducing the heritage factor. It allows the recovery of one

bad generation in a good family.

The heritage factor makes the acceptance number of a chain not only

dependent on the last iteration’s results, but also the previous iterations, i.e. the

genetic line of the chain or family. In GESA, if the current parent of one chain has

very poor children in one generation, the number of children allocated to this chain is

tremendously affected, in spite that it is determined on the relative fitness of the

children relative to the parent. The heritage factor considers the past history of the

family and not just the last generation. The acceptance number is calculated in the

same way like in GESA, but the number of child states mi
(t+1) generated in the next

generation t+1 for chain i is set to

mi
(t+1) = MN [Ai + α mi

(t)] / S (2.5)

 and

 S = Σj [Aj + α mj
(t)] (2.6)

 16

where α is called the heritage factor and 0 ≤ α < 1. The heritage factor is manually

determined and the model reduces to pure GESA when α = 0 [Abd01].

2.3 Cost-Based Abduction (CBA)

This section gives an overview of the term Abduction. It shows the meaning of

abduction in inference logic, along with other inference types, and discusses the

problem of abduction from the AI point of view. Finally it shows some other attempts

to solve CBA problems in literature.

2.3.1 Abduction, Deduction and Induction

Abduction, as a type of inference, is the process that generates explanations

[CM86]. Pen and Reggia [PR90] give an informal definition to abduction; “In

informal terms, abduction or abductive inference is generally taken to mean inferring

the best or most plausible explanations for a given set of facts”. They define three

fundamental logics of scientific inquiry as deduction, induction and abduction.

In deductive reasoning, given a general rule, and a specific case, a specific

result can be deduced [PR90]:

 Given Rule – All the balls in the box are black
+ Case – These balls are from the box

Conclude Result – These balls are black

In inductive reasoning, given a specific case and a specific result, a general

rule can be hypothesized [PR90]:

Given Case – These balls are from the box
+ Result – These balls are black

Hypothesize Rule – All balls in the box are black

 17

In contrast to deduction and induction, in abductive reasoning, given a general

rule and a specific result, a specific case can be hypothesized [PR90]:

Given Rule – All balls in the box are black
+ Result – These balls are black

Hypothesize Case – These balls are from the box

Looking at induction and abduction, both involve making and testing

hypotheses. However, in induction, the general rule is what is being hypothesized,

while in abduction it is the specific case. Moreover, in induction a large number of

situations are used to hypothesize the rule supporting its plausibility, while in

abduction a single situation can be used to conduct the hypothesized case [PR90].

As for deduction and abduction, both use a specific case to produce the result.

However, in deduction, the result is a logical outcome of the general rule and the true

case in hand, while the inferred specific case of abduction is only a possibility even

though the general rule and the specific result are true [PR90].

Both abduction and deduction require relevant facts to infer a new fact, but

abduction can get more than one answer. So it requires an extra step to decide which

answer is best. Deduction is viewed as “legal inference” as it draws true inferences

given true axioms. On the other hand, abduction is not a legal inference as it can give

false conclusions. In spite of this fact, abduction is still an important and necessary

way of inference. It is very useful in medical diagnosis, story understanding, vision,

and natural language understanding [CM86].

2.3.2 Abduction

The nomological theory of explanation has it that “an explanation is a proof of

what is to be explained from knowledge of the world plus a set of assumptions”

[CS94]. Finding an explanation is characterized by the following [CS94]:

 18

• Knowledge of the world is usually given in the form of rules and observed

facts.

• Certain assumptions have to be made so that the evidence could be predicted

or proved.

• The selection of the explanation should be optimal in some sense.

This theory has a problem from the AI point of view, which is having many

possible sets of assumptions that can prove the desired fact. In Cost-Based Abduction

(CBA), a minimal cost proof is to be found that best explains the facts to be proven

[CS94].

2.3.3 Weighted Abduction

Weighted abduction was introduced by Hobbs et al. for The Abductive

Commonsense Inference Text Understanding System (TACITUS) project at SRI

[HS+88]. It was introduced as an explanation scheme to evaluate potential

explanations using cumulative cost of assumptions. It simplified the conceptualization

of the problem of interpreting text. The project was intended for processing messages

and other texts for many purposes, including message routing and prioritizing,

problem monitoring and database entry. It aimed at investigating how knowledge is

used in the interpretation of discourse.

Text interpretation means to prove the logical form of the text from what is

already mutually known, while using coercions, merging redundancies where

possible, and making assumptions when necessary. In abduction, many possible

explanations could be used to prove the evidence, hence some criteria is used to

choose among the possibilities. Consistency of the evidence with the knowledge is

one criterion. Simplicity and consilience are another criterion, where the evidence

should be as small as possible and the goal as big as possible [Hef01].

 19

Weighted abduction solved the problem of minimal set abduction. It also

avoided the over-specification problem where irrelevant hypotheses are assigned

values. On the other hand, it had a major deficiency, which is its lack of semantics

[CS94].

2.3.4 Cost-Based Abduction Definition (CBA)

Cost-Based Abduction (CBA) was formally introduced by Charniack and

Shimony in 1990 [CS94]. In their paper, they provided a definition of a CBA system

as follows: The system has the rules of the form

R : (p1 ^ p2 ^ … ^ pn) CR → q

where q and all the pi are ground atomic formulas or hypotheses, and CR is the cost for

applying the rule. Each conjunct has a cost c(pi), which is the same in all rules where

the conjunct appears on the left hand side. Conjuncts that appear on the left hand side

are called antecedents while the one on the right hand side is called the consequent.

The cost of proving q using this rule is the cost of all the conjuncts assumed plus the

cost of the rule. Without loss of generality, they assumed that all rule costs are 0 and

added a p0, that appears nowhere else to the left hand side, with a cost c(p0) = CR .

Now the objective is to find a minimal cost proof for some fact set ε, which is the

evidence.

Charniack and Shimony modeled the CBA problem as a minimization

problem on a Weighted AND/OR Directed Acyclic Graph (WAODAG). Then a

Boolean belief network was created based on the WAODAG and the semantics for

complete models were constructed. They presented the problem of finding the

Maximum A posteriori Probability (MAP) assignments to belief networks, and

applied a transformation to allow their algorithm to work on the resulting graph

[CS94].

 20

2.3.5 CBA NP-Completeness

Problems that are defined as NP-complete must satisfy certain conditions.

They have to belong to the complexity class of languages NP, which means they can

be verified by a polynomial-time algorithm. Moreover, they have to be NP-hard,

which means they can be polynomial-time reduced to other problems that are known

to belong to the NP class [CLR90].

Charniak and Shimony [CS94] proved that finding the least cost proof is NP-

hard, and that the given cost selection problem is NP-complete. They provided their

proof in a form that has some restrictions. They used the Vertex Cover Problem (VC),

which is a known NP-complete problem, to reduce their proof from. Recently,

approximating least-cost proofs has also been shown to be NP-hard [Abd04].

2.3.6 Linear Constraint Satisfaction Approach for CBA

According to Santos Jr. [San94], having many possible explanations available

in abductive reasoning is the basic problem. Several attempts were made to solve this

problem based on some preferential ordering of the hypotheses. Minimizing the

necessary number of hypothesis proved to be inadequate. Weighted abduction added

costs to hypothesis and avoided the over-specification problem, but it had a major

deficiency, which is its lack of semantics [CS94].

Santos Jr. presented an approach of modeling abductive reasoning by using

linear constraints to represent causal relationships [San94]. The nodes on the

WAODAG were considered variables and constraints were applied between nodes

represented by linear inequalities. The problem was modeled with 1 and 0 instead of

true and false, and linear programming techniques were applied to minimize the cost

associated with the graph. This approach needed to be augmented since sometimes

 21

straight linear programming would not reach a proper solution, and thus the

information provided by the solution could be used in an incremental branch and

bound search that would guarantee minimal cost solution. This augmentation was

rarely needed as shown by the experimental results, and the technique showed

expected-case polynomial growth rate on typical problems.

2.3.7 Polynomial Solvability of CBA

Santos showed that many CBA problems could be solved efficiently with

better performance using linear program relaxation of integer program formulation,

where linear programming is known to be solvable in polynomial time [SS96].

To enhance the results of the linear constraint satisfaction approach of CBA,

Santos and Santos studied those results and determined conditions for solving CBA

problems in polynomial time [SS96]. In their approach, they used the concept of total

unimodularity from network flow analysis and tied it to their CBA problem. They

concluded that parity-balance guarantees polynomial solvability by using their

transformation to integer linear programming.

Santos and Santos also provided a new heuristic for the problems that needed

branching and bounding. It provided a tighter upper bound on the worst-case

performance, which potentially reduced the total number of branches needed to be

explored [SS96].

2.3.8 Parallel CBA Reasoning for Distributed Memory Systems

Kato et al. introduced a search control technique of A* into abductive

reasoning mechanism in 1994. In their paper [KSI96], they proposed a parallel

version for distributed memory systems. Parallel best-first search was used as a search

control technique into abductive reasoning mechanism which resulted in more

 22

efficient results. An informal analysis of their PARallel Cost-based Abductive

Reasoning system (PARCAR) was given, and the system was implemented on an

MIMD distributed memory parallel computer. The main aim of the paper was to

define the way to divide the search space on parallel processors and to construct a

search tree on each one.

2.3.9 Networked Bubble Propagation for CBA

Ohsawa and Ishizuka proposed a near-optimal solution method for solving the

CBA problem in polynomial time [OI97]. In a previous paper for Ishizuka, a CBA

problem would be translated into an equivalent 0-1 integer programming and then the

method of Pivot and Complement (PC) is applied to obtain a near-minimal cost

quickly. The PC method takes time O(N4), where N is the number of variables or

hypotheses. They suggested using a knowledge network that represents the

knowledge structure with a mechanism similar to approximate 0-1 integer

programming, which could achieve inference even faster than the original PC, in time

O(N2) or less. They represented propositions as nodes in the network, and defined

truth values of propositions as real numbers in the range of [0, 1], and introduced

bubble propagation to propagate truth values along the arcs of the network. Their

method solved the CBA problem in polynomial time, but their solution is near-

optimal [OI97].

2.3.10 Slide-down and Lift-up (SL) Method

Slide-down and Lift-up (SL) method was introduced by Ishizuka and Matsuo

in 1998 [IM98]. In SL, linear programming techniques are used to determine an initial

search point for the problem and non-linear programming is used to find a near-

optimal 0-1 solution. They also developed a local handler to escape the search from

 23

local optimal solutions. This method solves the CBA problem in polynomial time

with respect to the problem size.

Like the networked bubble propagation method, the SL method also gets near-

optimal solutions in polynomial time [IM98]. Although its performance is lower than

the networked bubble propagation, the authors find it simpler and more

understandable.

2.3.11 Binary Decision Diagrams for CBA

Kato et al. suggested using Binary Decision Diagrams (BDD) for solving CBA

[KO+99]. BBD represent and manipulate Boolean functions efficiently and easily and

can be applied to many problems. They proposed a specialized BDD and its operation

suitable for abductive reasoning: PBDD (Partial BDD) and GPC (Graft and Pruning

Construction). PBDD was used to keep the reasoning goal-directed and GPC was

introduced to avoid generating irrelevant parts of the BDD to the most preferable

solution.

2.3.12 Linear-Programming Based Admissible Heuristic for CBA

In Hefny’s paper [Hef01], he introduced a new admissible heuristic for CBA.

The A* algorithm was used with a heuristic estimating the cost bounded by the actual

cost, which is the simplex method. The CBA instance was converted to a linear-

programming instance that was used by the A* framework. The heuristic admissibility

was proved theoretically and its efficiency was proved experimentally. He also

defined a measure for the difficulty of CBA problems, where the larger number of

hypotheses, the larger maximum number of antecedents, and the smaller percentage if

AND nodes would lead to a more difficult CBA instance.

 24

Hefny’s work in [Hef01] was compared to Santos work in [San94]. The results

in Hefny’s work shows that his method is admissible and outperforms the other one.

He also concluded that if the percentage of assumable hypotheses is less than or equal

to 25%, his method would guarantee better results.

2.4 Fitness Distance Correlation (FDC)

Fitness Distance Correlation (FDC) was introduced by Jones and Forrest

[JF95] in 1995 as a measure of search difficulty for GA. It was used to predict the

performance of GA on problems with known global maxima. FDC was the result of

investigating the connection between GA and heuristic search.

2.4.1 FDC Definition

Stützle and Hoos give an intuitive definition for fitness landscape [SH00].

They described it as a mountainous region with hills, craters, and valleys, where the

search algorithm is viewed as a wanderer performing a biased walk in this landscape.

The goal is to find the lowest point in this landscape for minimization problem.

Formally, they define fitness landscape as:

1. The set of all possible solutions S

2. An objective function that assigns a fitness value f(s) to every s ∈ S

3. A neighborhood structure N ⊆ S × S

The fitness landscape draws the shape of the search space as met by a local search

algorithm. The neighborhood structure brings a distance metric on the set of solutions;

the distance d(s, s′) between two solutions s and s′ can be defined as the minimum

number of moves that have to be performed to transform s to s′ [SH00].

 25

Correlation between solution fitness and distance to global optima is called in

the genetic algorithms literature as fitness-distance correlation (FDC). It can be

captured by the correlation coefficient, defined by:

ρ(F, D) = Cov (F,D) / ((Var(F))½ * (Var(D)) ½) (2.7)

where Cov(F,D) is the covariance between the random variables F and D which

probabilistically describe the fitness and the distance of local optima to a global

optimum, while Var denotes the variance.

For minimization problem, a high positive FDC indicates that the smaller the

solution cost, the closer the solutions, on average, to a global optimum. Thus,

algorithms combining adaptive solution generation and local search may be expected

to perform well [SH00].

2.4.2 FDC as Measure of Search Difficulty

Jones and Forrest introduced FDC as a measure of search difficulty in 1995

[JF95]. Their work was to examine one aspect of the correspondence between

evolutionary algorithms and heuristic state space search, which is the relationship

between the fitness function of GA and heuristic functions. Deception and

Ruggedness of fitness landscape are other methods of measuring the difficulty of GA.

Jones and Forrest showed conflicting opinions of researchers about those methods.

Some opinions believed that deception is the only thing that makes a problem difficult

for GA, while others saw that it is neither necessary nor sufficient to make a problem

hard for GA. Ruggedness also was not sufficient or necessary to make a problem

difficult for GA [JF95]. The authors saw that the existing methods of measuring

difficulty of GA algorithms are not definitive and did not explain some surprising

 26

results of GA. They suggested that the relationship between fitness and distance to the

goal is very important for GA search. They used scatter plots of fitness versus

distance and the correlation between fitness and distance to indicate problem

difficulty.

Although Jones and Forrest pinpointed that using the actual operators of the

GA would provide better predictions, they used Hamming distance as a simple first

approximation to distance under the actual operators of GA. They also emphasized on

the fact that FDC is only one of the possible ways of examining the relation between

fitness and distance, and showed the importance of examining a scatter plot of fitness

versus distance for understanding that relationship when it cannot be detected by the

correlation [JF95].

The results of their work predicted GA behavior of some well-studied

problems, and also predicted the results that were seen as surprising by other methods,

and detected differences in coding and representation of problems. In their work, they

used maximization problems, and classified problems in three groups according to the

FDC results [JF95];

1. Misleading problems with correlation coefficient ρ ≥ 0.15, where fitness tends

to increase with distance from the global optimum

2. Straightforward problems with ρ ≤ -0.15, where fitness tends to increase as

distance decrease to global optimum.

3. Difficult problems with -0.15 < ρ < 0.15, where there is very little correlation

between fitness and distance to global optimum. If the fitness-distance scatter

plot shows no relation between fitness and distance, then the problem is GA

 27

difficult, but if a structure appears in the scatter plot, it can indicate if the

problem is misleading or straightforward as the case may be.

2.4.3 FDC Counterexample

In 1997, Altenberg criticized the work of Jones and Forrest for using the

Hamming distance as the distance measure for calculating FDC and classifying

problem difficulty accordingly [Alt97]. He constructed a counterexample to the third

condition of Jones and Forrest classification of problem difficulty according to the

FDC coefficient, where he produced a GA-easy fitness function that showed no

relation between Hamming distance and fitness, and had a FDC coefficient of zero,

and thus the problem would be classified as difficult, according to Jones and Forrest.

His results proved that FDC analysis using Hamming distance wrongly

predicted the difficulty of his constructed test function, where other methods were

better predictors, among which was FDC analysis with distance derived from the

genetic operators. He illustrated this point using crossover-based distance measure for

FDC analysis and mutation-based distance measure for FDC analysis. He proved that

it was easily optimized by GA using single-point crossover and roulette wheel

selection and that the efficiency of the GA increased with the size of the search space

[Alt97].

2.4.4 FDC Analysis of Some NP-hard Problems

The FDC analysis was used by many researchers to analyze some famous NP-

hard problems, like the Traveling Salesman Problem, Quadratic Assignment Problem,

Set Covering Problem and Linear Ordering Problem.

 28

The Traveling Salesman Problem (TSP) and Quadratic Assignment Problem

(QAP) were studied by Stützle and Hoos [SH00] in 2000 as application domains for

their MAX-MIN Ant System (MMAS) algorithm. The MMAS algorithm is an Ant

Colony Optimization algorithm derived from Ant System. They showed that their

system is among the best performing algorithms for these problems.

The TSP can be represented by a complete graph G = (N, A) with N being the

set of nodes, also called cities, and A being the set of arcs fully connecting the nodes.

Each arc (i, j) ∈ A is assigned a value cij which represents the distance cost between

cities i and j. The problem is to find the least cost closed tour visiting each of the n =

|N| nodes of G exactly once [SH00]. In symmetric TSP, which was used by the

authors, the distance cost between cities are independent of the direction of traversing

the arcs; that is, cij = cji for every pair of nodes.

The authors gave the distance measure for FDC between two tours s and s’ by

the number of different arcs, that is d(s, s’) = n – |{(i, j) : (i, j) ∈ s ∧ (i, j) ∈ s’}|

(where n is the number of cities). They used a 3-opt local search algorithm with a

number of standard speed-up techniques. Their results showed a strong positive

correlation between solution cost and the distance from the closest optimal solution.

They also indicated that locally optimal tours are concentrated around a small region

of the whole search space [SH00].

The Quadratic Assignment Problem (QAP) is the problem of assigning a set of

facilities to a set of locations with given distances between the locations and given

flows between the facilities [SH00]. The goal is to place the facilities on locations in

such a way that the sum of the products between flows and distances is minimal. It is

considered one of the hardest optimization problems. The authors used benchmark

 29

QAP instances to analyze the FDC coefficient. They classified those instances into

four classes;

i. Unstructured randomly generated instances, which are considered the hardest

to solve

ii. Grid-based distance matrix, which have multiple global optima

iii. Real-life instances, which have the flow matrices having many zero entries

and the remaining entries not uniformly distributed

iv. Real-life-like instances, which are generated with matrix entries resembling

the distributions found for real-life problems

 They used a 2-opt algorithm which examines all possible exchanges of pairs

of facilities. The distance between solutions was measured as the number of items

placed on different locations.

The FDC analysis of QAP showed clear differences between the different

problem classes. For class (i), the FDC coefficient was almost zero for all instances,

indicating that the solution quality gave little guidance to the search algorithm. For the

other classes, much higher correlation was found. They concluded that on average,

better solutions are closer to an optimal solution in real-life QAP instances and also in

those of classes (ii) and (iv), which indicates the potential usefulness of an Ant

Colony approach to the QAP [SH00]. They also compared the FDC analysis for TSP

and QAP, concluding that the local minima in the QAP appear to be spread over large

parts of the QAP search space, while for the TSP they are concentrated on a relatively

small subspace. The solution quality of QAP local minima does not give as much

guidance as the TSP, which indicates that the QAP is more difficult to solve than the

 30

TSP. Also, they suggested that stronger search space exploration is needed for QAP

with effective algorithms as the local minima in the QAP search space are more

scattered [SH00].

The Set Covering Problem (SCP) is a NP-hard combinatorial optimization

problem. It consists of finding a subset of columns of a zero-one m × n matrix such

that it covers all the rows of the matrix at minimum cost. Many different applications

can be modeled as SCP; from crew scheduling in airlines to scheduling and

production planning in several industries. Finger et al. presented an analysis of FDC

for SCP [FSL02]. As there was no straightforward distance measure for the SCP, the

authors used the closeness between solutions to define their distance measure. If s and

s’ ∈ S were two feasible solutions for an SCP instance, then they defined the

closeness n(., .) and distance d(., .) between s and s’ as

n(s, s’) = number of same columns in s and s’

d(s, s’) = max(|s|, |s’|) – n(s, s’)

They used two sets of benchmark SCP instances with different parameters. Their

results showed very strong differences among the search space characteristics

between different types of instances. Hence, they proposed new ways of generating

core problems, which is a much smaller SCP containing a subset of the columns that

are most likely to appear in optimal solutions. Their results showed significant speed-

up of the SA algorithm working on core problems with a very minor loss in solution

quality. They suggested that by increasing the number of local optima for generating

the core problems, more best-known solutions would be found [FSL02].

 31

The Linear Ordering Problem (LOP) is an NP-hard combinatorial optimization

problem. Given an n × n matrix C, the LOP is the problem of finding a permutation of

the columns of matrix C such that the sum of the elements in the upper right triangle

is maximized. For the FDC analysis, Schiavinotto and Stützle used insert local search

and CK algorithm. The distance between two solutions or permutations was defined

as the minimum number of applications of the basic local search operation to pass

from a permutation to another. But as it was not possible for them to obtain the

number of minimum insert application to go from one solution to another, they used a

surrogate distance that evaluates the difference of two permutations just considering

the position of the elements in both, which they called precedence metric [SS03].

Their analysis was based on two benchmark libraries of LOP instances. One

was real-world instances, that were considered rather small, and the other one was

randomly generated instances that were meant to have large number of solutions with

costs close to the optimal value to be considered hard instances. The results indicated

significant differences between the two groups. They suggested that the second group

instances should be, when adjusting for the difference in size, easier to solve for

metaheuristics. They suggested future work to be done on the search space analysis of

LOP to try to distinguish the features that most affect the hardness of the problem

more directly [SS03].

In 2003, Vanneschi and Tomassini presented research studying the pros and

cons of FDC in genetic programming [VT03]. Their work was done for tree-based

genetic programming, and was the first attempt to quantify the difficulty of problems

with multiple optima by the FDC in EAs. They concluded that FDC is a reasonable

index of difficulty for a number of problems. A counterexample was constructed and

showed FDC to be a not infallible measure for problem difficulty. They planned to

 32

look for an alternative measure of difficulty in GP that should not depend on knowing

the global optima, which is the strongest limitation of FDC.

 33

Chapter 3 METHODOLOGY

3.1 SA Algorithm

The SA algorithm starts with a randomly generated state and its cost is

calculated. If it is the goal state then the search terminates. Other wise, the starting

state is considered the current state, the starting temperature is assigned and the

algorithm starts to loop until the goal state is reach, no more operators to be applied to

the current state, or for a certain number of iterations. In each iteration, a neighboring

state is generated and its cost is evaluated. If it is the goal state, the search terminates

and the state is retuned as the solution state. If it is not the goal state, it is compared to

the current state. If it is better than the current state, it replaces it, other wise, it

replaces the old current state with the probability p' = e(-∆E/T) defined in equation (2.2),

where ∆E is the positive difference in cost and T is the current temperature. The

temperature is lowered according to the annealing schedule and the loop continues.

When the loop ends, the best state found is returned as the solution state. The authors

in [RK91] recommend maintaining the best state found so far in addition to the

current state. This helps if the final state is worse than the best state found so far

(because of bad luck in accepting moves to worse states), then the best state would

still be available.

The SA algorithm implemented is illustrated in Figure 1 [RK91]:

Step 1 Evaluate the initial state. If it is a goal state, then return it and quit.

Otherwise, continue with the initial state as the current state

Step 2 Initialize BEST-SO-FAR to the current state, where BEST-SO-FAR is the best

state found so far

Step 3 Initialize T according to the annealing schedule, where T is the temperature

Step 4 Loop until a solution is found or until there are no new operators left to be

 34

applied in the current state:

a) Select an operator that has not yet been applied to the current state

and apply it to produce a new state

b) Evaluate the new state. Compute

 ∆E = (value of current) – (value of new state)

• If the new state is a goal state, then return it and quit

• If it is not a goal state but is better than the current state, then

make it the current state. Also set BEST-SO-FAR to this new

state

• If it is not better than the current state, then make it the current

state with probability p' = e(-∆E/T) as defined in equation (2.2).

This step is usually implemented by invoking a random

number generator to produce a number in the range [0,1]. If

that number is less than p', then the move is accepted.

Otherwise, do nothing

c) Revise T as necessary according to the annealing schedule

Step 5 Return BEST-SO-FAR as the answer

Figure 1: SA Algorithm

3.2 GESA Algorithm

The GESA algorithm uses a population of SA chains instead of keeping only

one state at a time. It starts by assigning the starting temperature and generating a

number of states N. For each starting state, a number of children are generated, M, by

applying a neighboring operator to the starting state or parent. The first level of

competition starts within each chain. The best child of the generated children is

determined and tested to see if it is the goal state or not. If it is not the goal state, it is

compared to the parent. If it is better than the parent it becomes the new parent for the

next iteration. Other wise, it replaces the parent with the probability p' = e(-∆E/T)

defined in equation (2.2), where ∆E is the positive difference in cost and T is the

current temperature. The number of children to be generated for the next generated

 35

depend on the acceptance number of the chain. For each chain, each child’s cost is

compared to the parent. If it is better than the parent, then the acceptance number is

incremented. Otherwise, it is compared to the best cost found ever, and the acceptance

number is incremented with the probability p' = e(-∆E/T) where ∆E is the positive

difference in cost between the child and the best cost found ever, and T is the current

temperature. The annealing temperature is then lowered according to the annealing

schedule and the loop continues by allowing each chain to generated the new number

of children as defined in equations (2.3) and (2.4), which are illustrated in *****. The

algorithm terminates when the goal state is found or a certain number of iterations is

reached. Figure 2 illustrates the GESA algorithm [YP95]:

Step 1 Set initial temperature T.

Step 2 Randomly select N parents.

Step 3 Generate children from the parents.

Step 4 Find the best child for each parent (1st level competition or local

competition).

Step 5 Find the parents for the next generation (selection).

 For each family, we accept the best child as the parent for the next generation

if y1 < y2

or e-(y1-y2)/T > ρ

where y1 is the objective value of the best child, y2 is the objective value of its

parent, T is the temperature coefficient, and ρ is a random number uniformly

distributed between 0 and 1.

Step 6 Find the number of children that will be generated from the parents of the

next generation (second level competition). The details of this step are given

in Figure 3.

Step 7 Decrease the temperature.

Step 8 Repeat step 3 to step 7 until an acceptable solution has been found or until a

certain number of iterations has been reached.

Figure 2: GESA Algorithm

 36

The procedure of determining the number of children for each parent in the

next generation is illustrated in Figure 3:

Step 1 Repeat step 2 to step 5 for each family; Goto step 6.

Step 2 count = 0.

Step 3 Repeat step 4 for each child; Goto step 5

Step 4 If the objective value of the child is less than that of its parent, increase count

by 1, if not, then we increase count by 1 if

e-(y1-y2)/T > ρ

where y1 is the objective value of the child, y2 is the lowest objective value

ever found, T is the temperature coefficient, and ρ is a random number

uniformly distributed between 0 and 1.

Step 5 Acceptance number of the family is equal to count.

Step 6 Sum up the acceptance numbers of all the families

Step 7 For each family i, the number of children generated can be calculated

according to the following formula

 mi
 = U Ai / S (3.1)

where

 S = Σj Aj (3.2)

where mi is the number of children that will be generated for that family i in

the next iteration, U is the total number of points, which is the initial number

of families N multiplied by the initial number of children per family M, Ai is

the acceptance number for that family, S is the sum of the acceptance

numbers.

Figure 3: Calculation of Acceptance Number and Number of Children

3.3 Extending GESA with the Heritage Factor

In [Abd01], Abdelbar introduced the heritage factor to make the number of

children of the next iteration not only dependent on the last iteration, but on the

 37

pervious history of the family. This allows the decay of a family to occur more

smoothly and gives a good family a better chance of recovering one bad generation.

Introducing the heritage factor changes only the equations (3.1) and (3.2) in

the GESA algorithm. The number of children mi for of the family i in the iteration t+1

would be

mi
(t+1) = U [Ai + α mi

(t)] / S (3.3)

 and

S = Σj [Aj + α mj
(t)] (3.4)

where 0 ≤ α < 1 is a manually-tuned parameter that the author called the heritage

factor, U is the total number of points, which is the initial number of families N

multiplied by the initial number of children per family M, Ai is the acceptance number

for that family, and S is the sum of the acceptance number. When α = 0, the model

reduces to pure GESA.

3.4 CBA Instances

As there are no standard benchmark instances for CBA problems, a set of

difficult random instances had to be generated. The problems had to be non-trivial and

still manageable for the algorithm to reach the optimal solution. The problems used

here for testing are the same used in [AGA04]. They were generated using Santos’

ILP (Integer Linear Programming) method for CBA as a benchmark.

The CBA generator takes five parameters; number of hypotheses, number of

rules, maximum number of antecedents in any rule, percentage of hypotheses which

should be sub-goals, and a lower-bound on the number of assumable hypotheses

[AGA04].

The generated CBA instances have the following characteristics [AGA04]:

 38

• The hypotheses are either assumable or provable. Assumable

hypotheses have non-infinite cost and do not appear as consequents of

any rules. Provable hypotheses are consequents of rules and have

infinite cost

• Hypotheses are serially numbered and no hypotheses are allowed to be

an antecedent in a rule whose consequent has a lower serial number.

This is due to the fact that logical cyclicity is not allowed in

hypotheses, where hypothesis a is an antecedent of a rule that has

hypothesis b as a consequent and vise-versa

• All assumable hypotheses are randomly assigned an integer cost in the

range 1 to 1000

Table 1 shows a small example of a CBA instance. It shows the .cba file

format and the meaning of it. This is only for illustration; the costs are not uniformly

distributed. Appendix B is one of the problems used for testing illustrated in Table 2

which is qab030.cba.

Table 1: Small CBA example showing the .cba format used and what it means

.cba Format What it means

1 Signature

7 Number of Hypothesis

4 h1 assumable and its cost = 4

5 h2 assumable and its cost = 5

6 h3 assumable and its cost = 6

0 h4 provable and its cost is infinity

0 h5 provable and its cost is infinity

0 h6 provable and its cost is infinity

0 h7 provable and its cost is infinity

6 Number of Rules

 39

2 1 3 4 2 antecedents in this rule: h1 ^ h3 → h4

2 3 2 4 2 antecedents in this rule: h2 ^ h3 → h4

2 2 4 5 2 antecedents in this rule: h2 ^ h4 → h5

2 5 1 6 2 antecedents in this rule: h5 ^ h1 → h6

2 3 4 6 2 antecedents in this rule: h3 ^ h4 → h6

3 6 2 5 7 3 antecedents in this rule: h6 ^ h2 ^ h5 → h7

7 Goal to be proved h7

Fixing the number of hypotheses at 300 and the number of rules at 900, 425

instances were generated using the CBA generator while varying the number of

assumable hypotheses from 40 to 200 in steps of 10. Three instances were picked as

the most difficult according to the following criterion. Each of the 425 instances was

solved as a linear program without the integrality constraints, and the ratio of the

number of non-integral variables in the solution to the total number of variables in the

linear program was taken as a measure of difficulty of solving the problems. This

process was repeated with fixing the number of hypotheses at 100 and the number of

rules at 300, and varying the number of assumable hypotheses from 30 to 70 in steps

of 10, generating 25 instances at each step. The same criterion was used to determine

the three most difficult instances to be used for testing [AGA04].

Table 2 describes the six instances, showing the optimal solution obtained

using lp-solve as the ILP engine of Santos’ ILP method, the number of hypotheses in

each problem, the number of assumable hypotheses, the number of rules, the CPU

time taken by lp-solve to reach the optimal solution, and the depth and number of

nodes of the branch and bound tree processed by lp-solve. For all the six instances,

the global optimum is unique [AGA04]. Theses instances, along with the CBA

generator are available at http://www.cs.aucegypt.edu/abdelbar/CBAlib/

 40

Table 2: CBA Instances with their optimal cost, number of hypotheses, number of assumed
hypotheses, number of rules, time used by ILP to reach optimal solution, depth of the branch-
and-bound tree used by lp-solve and the number of nodes in the tree

Name Optimal # of # of # of Integer Linear Programming

 Cost Hyp. Assum. Rules Time (sec.) Depth Nodes

raa180 10,821 300 180 900 88,835.1 41 178,313

caa200 7,678 300 200 900 7,604.6 31 6,033

oaa110 6,856 300 112 900 1,792.1 35 6,675

lab070 5,423 100 70 300 108.0 19 727

rab050 2,644 100 50 300 3.9 10 45

qab030 3,830 100 30 300 208.2 21 833

3.5 Problem Representation

The CBA problem is represented by the following structures:

• Hypotheses Cost Array, which is a one dimensional array of size equal to

the number of hypotheses. It represents all hypotheses, those that can be

assumed with their actual cost and those that cannot be assumed with cost

equal zero

• Rules Array, which is a two dimensional bit array with the size of the

number of hypotheses by the number of rules. Each row represents a rule,

and each column represents a hypothesis. If the bit b[i,j] is set then

hypothesis i is an antecedent for rule j, otherwise, it is not.

• Results Array, which is a one dimensional array with the size of the number

of rules. It represents the consequent of the rules.

• Goal, which is the goal hypothesis that needs to be proved.

 41

For example, if we want to represent the problem described in Table 1, here

are the structures used:

Hypotheses Cost Array Results Array

Rules Array

h1 ^ h3 → h4

 h2 ^ h3 → h4

h2 ^ h4 → h5

h5 ^ h1 → h6

h3 ^ h4 → h6

h6 ^ h2 ^ h5 → h7

Goal = h7

The state used by the algorithm is represented mainly by a hypotheses vector.

This vector has the size of the number of hypotheses and each element in it has one of

three states:

• -1 for hypotheses that cannot be assumed

• 0 for hypotheses that can be assumed but not currently assumed in this

state

• 1 for hypotheses that can be assumed and are currently assumed

For example, this could be a state

instance of the problem defined in

Table 1 :

4 65 0000

-1 1 1 -1 -1 -1 -1

-1 1 -1 1 -1 -1 -1

1 -1 -1 -1 1 -1 -1

-1 -1 1 1 -1 -1 -1

-1 1 -1 -1 1 1 -1

1 -1 1 -1 -1 -1 -1

h1 h2 h3 h4 h5 h6 h7

r1

r2

r4

r5

r6

r3

4

5

6

6

7

4

s1 1 10 -1 -1 -1 -1

h1 h2 h3 h4 h5 h6 h7

 42

3.5.1 Starting State

The starting state is a randomly generated state where the hypotheses vector is

initialized all to -1, then we iterate on the can-be-assumed hypotheses and assign them

0 or 1 randomly. Its cost is then evaluated according to the cost function used and

state is returned as the starting state.

3.5.2 Neighboring Operator

In both SA and GESA algorithms, going from one state to another means

toggling the state of a can-be-assumed hypothesis from being assumed to de-assumed

or vise versa. With a small probability, usually 0.2, another hypothesis is chosen to be

flipped from assumed to be de-assumed or vise versa. In GESA, changing one

hypothesis to generate many children for one parent sometimes produces duplicate

children. Hence another hypothesis would be chosen to change state to get to the

neighbor of the neighbor of that parent, and so on.

3.5.3 Distance Measure

The distance measure is needed when calculating the FDC for the CBA

instances. It is used here as the number of assumed hypotheses that are not assumed in

the global minimum, plus the number of un-assumed hypotheses that are assumed in

the global minimum.

3.5.4 Cost Function

The actual cost of a CBA state is the pure summation of the costs of all

assumed hypotheses in the current state. However, not all states of a CBA instance are

feasible states, meaning that not all representations of assumed hypotheses would

prove the goal. Accordingly, an unfeasible state might have an actual cost less than

 43

the best state. Hence, at first, a penalty cost was added to unfeasible states to have a

much higher cost than all other states, which was the case used in [AA03]. But this

way makes the algorithm accepts unfeasible states rarely as they have a very high

cost, which could prevent it from reaching a better state if the only way to get to it

was to go through some unfeasible states, and so be trapped in a local minimum. This

led to the generation of the heuristic repair functions. Each gives the cost of the

current unfeasible state when it is converted to a feasible state. And so, the heuristic

repair functions are never less than the best cost state of the problem.

3.6 Heuristic Repair Functions

Two heuristic repair functions were implemented to solve the problem of

adding a penalty cost to unfeasible states; Worst-Cost function and P-Cost function.

Following is a description of both functions.

3.6.1 Worst-Cost Function

The Worst-Cost function was designed to give an upper-bound value of the

cost of the current unfeasible state when converted to a feasible state. It was used in

the implementation and results in [AGA04]. The idea was to find the cost of a set of

assumable hypotheses that when added to the hypotheses already assumed by the

current unfeasible state would be sufficient to prove the goal. This cost is not

necessarily the minimum; it was used as a pessimistic approximation of the cost of the

unfeasible state.

The Worst-Cost function is based on assigning a pessimistic cost to each

hypothesis. At first, the rules are sequentially reordered by the consequent hypothesis

number. All hypotheses, as mentioned in the CBA Instances section, are already

generated serially numbered in such a way that in any rule, the hypotheses numbers of

 44

all antecedents are less than the hypothesis number of the consequent. Starting from

an unfeasible state s, we first examine its set of assumed hypotheses. We assign a

pessimistic value of zero to all the assumable hypotheses that are assumed by s. The

can-be-assumed hypotheses but not currently assumed are assigned a pessimistic cost

that is equal to the actual cost of assuming each one of them. For example, if we

consider the example shown in Table 1, suppose the current state is assuming only h2,

so we assign a worst-cost to h2 to be zero, and assign worst costs to h1 and h3 to be

their actual costs which are 4 and 6 respectively.

For the other set of hypotheses that cannot be assumed and has to be proved,

we start examining the rules one by one starting with the lowest numbered consequent

hypothesis and ending with the goal hypothesis rule. If a hypothesis appears as the

consequent of only one rule, we assign it a pessimistic cost that is equal to the sum of

the pessimistic costs of the antecedents of that rule. As the rules are sorted

sequentially, the pessimistic costs of the antecedents are already calculated in a

previous step. If a hypothesis appears as the consequent of more than one rule, then

the sum of the pessimistic costs of the antecedents of each rule is computed, and the

consequent hypothesis is assigned a pessimistic cost that is equal to the minimum of

the sums of the antecedent pessimistic costs.

Following our example, applying the rule r1 (h1 ^ h3 → h4) gives a worst-cost

for h4 equal to 10, then applying r2 (h2 ^ h3 → h4) gives also h4 a worst-cost of 6,

which is better than 10, so we keep the new value 6. Then we move to r3 (h2 ^ h4 →

h5) which gives a worst-cost 6 for h5 , then r4 (h5 ^ h1 → h6) which gives a worst-cost

10 for h6, then r5 (h3 ^ h4 → h6) that gives a worst-cost 12 for h6, but the previous

value of 10 is better, so we keep h6 equal to 10. Then we have the final rule r6 (h6 ^ h2

^ h5 → h7) that gives a worst-cost value of 16 to h7.

 45

At the end of the process, the state s is assigned its fitness to be equal to the

sum of the assumability costs of the hypotheses assumed by s plus the pessimistic cost

of the goal. In our example, that will be original cost of h2 plus worst-cost of h7, which

is equal to 21. Note that the pessimistic cost of the goal of a feasible state would be

equal to zero because no other hypotheses are needed to be assumed to prove the goal

in a feasible state.

The assumed hypotheses of state s are not changed, but we keep another

vector that has the indexes of the hypotheses needed to be additionally assumed to

prove the goal in case we need to convert this unfeasible state s to a feasible one. The

state representation is not changed to allow the search to continue from the same point

it reached, because if the state representation changes, it will create a jump in the

search space to another location to start from there.

3.6.2 P-Cost Function

As the Worst-Cost function gets an upper bound of the cost of an unfeasible

state, the P-Cost function is designed to calculate the actual cost of an unfeasible state

when converted to a feasible state. The process of the P-Cost function is almost the

same as in the Worst-Cost function, with a minor change in examining each rule.

In this process also we use the fact that all hypotheses are already generated

serially numbered in such a way that in any rule, the hypotheses numbers of all

antecedents are less than the hypothesis number of the consequent. The rules are

sequentially reordered by the consequent hypothesis number.

Now we start examining each hypothesis in the current state s. A bit vector of

size equal to the number of hypotheses is associated to each hypothesis. This vector

represents the dependent-on hypotheses; i.e. for hypothesis h, the bits that are one in

its bit vector represent the hypotheses needed to be assumed to prove h.

 46

For illustration, we will use the same example of Table 1, with the unfeasible

state s where we assume only h2. Starting from s, we go through the hypotheses one

by one:

• The currently assumed hypotheses are assigned bit vectors equal to

zeros, because they do not depend on any other hypotheses and they

are already assumed so there is no extra cost in using them again. In

our example, this means that h2 has a bit vector of 0000000 and its cost

is zero.

• The can-be-assumed hypotheses but not currently assumed by s are

assigned dependent bit vector of zeros with one set only at the index of

the hypothesis; i.e. if hypothesis hi can be assumed but not assumed in

the current state, its bit vector is all zeros except at index i where there

is a one. In our example, this means that h1 has a bit vector of 1000000

with cost 4 and h3 has a bit vector of 0010000 with cost 6.

• The need-to-prove hypotheses appear as consequents of rules. Taking

the rules one by one, each consequent hypothesis is assigned a bit

vector that is the result of a bit-wise OR of all its antecedents’ bit

vectors. Note that the antecedents’ bit vectors are already done because

the rules are sorted sequentially and the consequents have higher

numbers than the antecedents. The cost of proving this consequent is

then calculated by summing the costs of the hypotheses with one bits

in the bit vector.

• If the same hypothesis appears as a consequent of more than one rule,

its cost and dependent bit vectors are calculated for each rule and the

 47

hypothesis is assigned the bit vector of the lowest cost as its dependent

bit vector.

Following our example, applying the rule r1 (h1 ^ h3 → h4) gives a bit vector

for h4 equal to 1010000 with p-cost equal to 10, then applying r2 (h2 ^ h3 → h4) gives

also h4 a bit vector 0010000 with p-cost of 6, which is better than 10, so we keep the

new bit vector and the new value 6. Then we move to r3 (h2 ^ h4 → h5) which gives a

bit vector 0010000 and p-cost 6 for h5, then r4 (h5 ^ h1 → h6) which gives a bit vector

1010000 and p-cost 10 for h6, then r5 (h3 ^ h4 → h6) that gives a bit vector 0010000

and p-cost 6 for h6, which is better than the previous value of 10, so we keep the new

values for h6. Then we have the final rule r6 (h6 ^ h2 ^ h5 → h7) that gives a bit vector

0010000 and a p-cost value of 6 to h7.

At the end of the loop, we will have the bit vector of the goal hypothesis with

its cost. The fitness of state s is equal to the cost of the already assumed hypotheses of

s plus the cost of the goal, which is in our example the original cost of h2 plus the p-

cost of h7 which is equal to 11.

Note that the P-Cost function returns the exact cost of converting the current

state to a feasible one using the current assumable hypotheses. When the P-Cost

function is applied to a feasible state, the goal hypothesis bit vector will be all zeros

and the cost returned will be the exact cost of the assumed hypotheses.

Both the Worst-Cost and the P-Cost functions were implemented and tested on

the problem raa180.cba using pure SA. The P-Cost function showed improvement in

the calculated cost of the current state in each iteration by 9% but was slower by 11%.

It also made the search saturates in less number of iterations. As it is seen to be a

better representative of the search space, it was used in the rest of testing.

 48

3.7 Design Issues

There are many parameters involved in the design of the algorithms. For

example, there is the starting temperature of the algorithms, the annealing schedule

and the stopping conditions. Here are the decisions taken to determine these

parameters.

3.7.1 Starting Temperature

The starting temperature T for the SA and GESA algorithms is an important

parameter that has to be determined according to the problem being solved. For the

CBA problem instances, T was determined based on the average cost of the assumable

hypotheses. Going from one state to a neighboring state toggles one assumable

hypothesis from being assumed to being de-assumed or vise versa. At the beginning

of the search, a worse state would be accepted with the probability 0.5. This means

that

e(-∆E/T) = 0.5

where ∆E is the positive change in cost, which is ≈ 500 according to the generated

CBA instances. This means that

 T = - 500 / ln(0.5) ≈ 720

Therefore, the decision was made to make the initial temperature for the

search to be 720.

3.7.2 Annealing Schedule

After experimenting on some small CBA instances, decrementing the

temperature every iteration by a factor of 0.9995 was found to produce best results.

 49

3.7.3 Saturation

In the SA program, saturation means that the current state did not change for a

certain number of iterations defined as an input parameter by the user. By this change

we mean that the state representation did not change, or the cost did not change. For

the GESA, each chain saturates when its current state does not change for a certain

number of iterations defined by the user, and the program saturates when all the

chains running reach their saturation state.

3.7.4 Stopping Criteria

In general, reaching the best solution could not be used as the only stopping

criterion for the algorithms as it is not usually known. Hence, two additional methods,

besides finding the best solution if known were used in the experimentation; number

of iterations or saturation.

When using the number of iterations as a stopping condition, the user would

define a maximum number of iterations for the program to go. It will stop either when

the program is saturated according to the saturation criterion defined above or when

reaching the maximum number of iterations defined by the user. On the other hand,

the program would stop when it saturates, no matter how many iterations it had

completed.

3.7.5 Acceptance Number

In the original GESA algorithm, when calculating the acceptance number of a

chain, the best child is compared against the parent, if it has a better fitness, the

acceptance number is incremented. If it is not better, it is compared against the best

fitness found ever, and the acceptance number is incremented with the logistic

probability used by SA [YP95]. This causes all chains but one to die eventually,

 50

having acceptance number of zero and producing no children. In the implementations,

this would happen so early in iteration 10 or 11. Thus, the current implementation

made the following change; instead of comparing against the best fitness found ever,

the best child is compared against its parent, which is almost the best value found for

the current chain, and the acceptance number is incremented if it is better than the

parent or using the logistic probability of SA. Thus, all chains but one will die

eventually, but at some later stage in the run.

 51

Chapter 4 RESULTS AND ANALYSIS

The SA and GESA algorithms were implemented using C++ language.

Experiments were done to fine-tune the parameters of SA, where the starting

temperature was set as mentioned in section 3.7.1 and the annealing schedule fixed as

mentioned in section 3.7.2 for both SA and GESA. Experiments are divided into three

groups; Repeated Simulated Annealing (RSA) versus Guided Evolutionary Simulated

Annealing (GESA), Fitness-Distance Landscape analysis for CBA using the SA

algorithm, and experimentation within the GESA, varying the number of chains and

the Heritage Factor.

4.1 RSA versus GESA

To test SA versus GESA, we used Run Length Distribution (RLD) as a

measure. As the experiments were done on different kinds of machines with different

configurations, Run Time Distribution (RTD) could not be used as a measure to

compare among the results; instead we are using RLD for comparison.

RLD was introduced by Stützle and Hoos to model runtime behavior of

randomized methods. Here is how it is calculated:

• A full run for RLD is considered the run ended by finding the optimal

solution of the problem. So if a run has saturated on a local minimum, a

new run starting from a new random state will then follow where the

number of iterations of the first run is added to the number of iterations of

the new run, and so on till one run finds the optimal solution and stops.

• A table is formed with one column showing the number of iterations of a

full run and the other column showing how many times these iterations

 52

reached the optimal solution. The table is sorted assendingly by the

number of iterations.

• The number of times the runs reached the optimal solution is accumulated

for the iterations. i.e., if the global was reached twice in five iterations and

was reached three times in ten iterations, then we consider that by ten

iterations, the algorithm reached the optimal solution five times.

• The accumulated number of times of finding the optimal solution in each

iteration entry in the table is then divided by the total number of full runs,

to get the percentage of finding the optimal solution.

For Repeated SA (RSA), we consider the runs of SA as repeated runs, where a

whole run of RSA is terminated by finding the global optimum of the current problem

instance. If a run of SA saturates on a local minimum, we start another run from a

random state with a new search. The number of iterations of different runs is

accumulated until the global minimum is found where the RSA is considered to

terminate.

GESA was also treated in the same way, where different runs would add up

the number of iterations gone through until the global optimum is found. But for a fair

comparison between RSA and GESA, the number of iterations of GESA is multiplied

by the number of chains N multiplied by the initial number of children M. In one

iteration using SA, only one state is generated as the child of the parent. However, in

GESA, the total number of children generated each iteration is equal to N * M, and

hence we use this as an indicator that the run length of one loop using SA is

equivalent to N * M run length of GESA. Table 3 shows an example of the RLD

entries of the problem qab030 using GESA with 5 chains, 20 children and saturation

100. It shows the number of iterations in each full run, the number of iterations

 53

multiplied by 100 which is N*M, how many times it reached the optimal solution in

each iteration entry, the accumulated summation of how many times the optimal

solution was found and the percentage of finding it.

Table 3 : RLD example of qab030 using GESA (5,20), showing the number of iterations in each
full run, the number of iterations multiplied by 100 which is N*M, how many times it reached the
optimal solution in each iteration entry, the accumulated summation of how many times the
optimal solution was found and the percentage of finding it

Num
Iterations

Num Iterations *
100

Reached
Solution

Accumulated
Sum Solutions

Percentage of
Finding Optimal
Solution

3 300 2 2 0.1
4 400 20 22 1.1
5 500 26 48 2.4
6 600 68 116 5.8
7 700 134 250 12.5
8 800 209 459 22.95
9 900 256 715 35.75

10 1000 232 947 47.35
11 1100 220 1167 58.35
12 1200 185 1352 67.6
13 1300 147 1499 74.95
14 1400 92 1591 79.55
15 1500 76 1667 83.35
16 1600 94 1761 88.05
17 1700 43 1804 90.2
18 1800 34 1838 91.9
19 1900 22 1860 93
20 2000 29 1889 94.45
21 2100 29 1918 95.9
22 2200 17 1935 96.75
23 2300 11 1946 97.3
24 2400 13 1959 97.95
25 2500 6 1965 98.25
26 2600 9 1974 98.7
27 2700 2 1976 98.8
28 2800 2 1978 98.9
29 2900 2 1980 99
30 3000 3 1983 99.15
32 3200 4 1987 99.35
33 3300 2 1989 99.45
35 3500 2 1991 99.55
36 3600 1 1992 99.6
38 3800 2 1994 99.7
39 3900 2 1996 99.8
45 4500 2 1998 99.9
54 5400 2 2000 100

 54

With SA, about 10,000 runs were done for each CBA problem instance

described in section 3.4, with the stopping criteria of either finding the optimal

solution or looping for 100 iterations with no-change in state or cost. The same

stopping criteria were used for GESA, with N = 5 chains, M = 20 initial children for

each chain, and about 2000 runs for each problem. Table 4 shows the number of runs

of each problem, the maximum number of iterations reached to find the global

optimum, and the number of times the global optimum was found.

Table 4 : RLD Analysis for RSA and GESA, showing the total number of runs, maximum
number of iterations found to reach the global optimum, and the number of times the global
optimum was reached.

 RSA GESA

Instance # Runs Max #

Iterations

Reached

Global

Runs Max # Iterations *

N * M

Reached

Global

raa180.cba 10,000 8,602,558 44 2,000 44,034 * 100 76

caa200.cba 10,000 1,698,665 175 2,000 4,060 * 100 901

oaa110.cba 10,000 241,254 1,946 2,000 3,742 * 100 1,120

lab070.cba 8,758 72,223 3,161 2,000 2,848 * 100 1,245

rab050.cba 10,000 13,118 9,821 2,000 57 * 100 2,000

qab030.cba 10,000 12,975 9,612 2,000 54 * 100 2,000

Figure 4 to Figure 9 show a comparison between RSA and GESA of the RLD

analysis for the six CBA instances.

 55

0
10
20
30
40
50
60
70
80
90

100

0

10
00

00
0

20
00

00
0

30
00

00
0

40
00

00
0

50
00

00
0

60
00

00
0

70
00

00
0

80
00

00
0

90
00

00
0

10
00

00
00

Num Iterations

P
er

ce
nt

ag
e

O
pt

im
al

 S
ol

ut
io

n

GESA (5,20,0.0, 100) RSA (100)

Figure 4 : RLD Analysis for raa180

0

10

20

30

40

50

60

70

80

90

100

0 200000 400000 600000 800000 1000000 1200000 1400000 1600000 1800000

Num Iterations

P
er

ce
nt

ag
e

O
pt

im
al

 S
ol

ut
io

n

GESA (5, 20, 0.0, 100) RSA (100)

Figure 5 : RLD Analysis for caa200

 56

0

10

20

30

40

50

60

70

80

90

100

0 50000 100000 150000 200000 250000 300000 350000 400000

Num Iterations

P
er

ce
nt

 o
f F

in
di

ng
 O

pt
im

al

GESA (5, 20, 0, 100) RSA (100)

Figure 6 : RLD Analysis for oaa110

0

10

20

30

40

50

60

70

80

90

100

0 50000 100000 150000 200000 250000 300000

Num Iterations

Pe
rc

en
ta

ge
 O

pt
im

al
 S

ol
ut

io
n

GESA (5, 20, 0.0, 100) RSA (100)

Figure 7 : RLD Analysis for lab070

 57

0

20

40

60

80

100

120

0 2000 4000 6000 8000 10000 12000 14000

Num Iterations

P
er

ce
nt

ag
e

O
pt

im
al

 S
ol

ut
io

n

GESA(5, 20, 0.0, 100) RSA (100)

Figure 8 : RLD Analysis for rab050

0

10

20

30

40

50

60

70

80

90

100

0 2000 4000 6000 8000 10000 12000 14000

Num Iterations

P
er

ce
nt

ag
e

O
pt

im
al

 S
ol

ut
io

n

GESA (5, 20, 0.0, 100 RSA (100)

Figure 9 : RLD Analysis for qab030

 58

The RLD analysis shows that GESA outperforms RSA in four of the six CBA

problem instances used for testing. In the big problems raa180 and caa200 GESA

clearly finds the optimal solution in less number of iterations. In the small problems

rab050 and qab030, GESA found the global optimum in all runs and with much less

number of iterations than RSA.

For the oaa110 problem, the two algorithms are almost overlapping until 40%

of finding the optimal, and then SA outperforms GESA, and with lab070, GESA is

taking the lead till 60% of finding the optimum and then SA outperforms it with a big

difference. With closer look into the results of oaa110 runs, many local minima were

saturated upon many times. For example, the local minimum of 6891 was the final

solution 287 times out of the 2000 runs and it is 8 steps distant from the global

optimum. Interestingly enough, in the paper [AGA04], the six instances of CBA used

here were also solved using Iterated Local Search (ILS), which always found the

optimum solution for caa200, rab050 and qab030, but sometimes failed to find the

optimal solution and needed a phase of RSA in raa180, oaa110 and lab070.

The explanation given in [CC02] to justify the worse performance of GESA

against SA in the distributed file and task placement problem might be valid here also.

According to the authors, the search space for the distributed file and task placement

problem is not continuous; hence the search for solutions must be carried out by

looking through more possible solutions, so performance will be bettered if more

generations are involved in the search. For CBA problems, the search space is also not

a continuous one; there are many points that could be unfeasible states, which makes

it easier for SA that jumps from one solution to another than for GESA that explores

one generation at a time. But it is not clear why this is valid for only some of the

instances and not all the cases.

 59

4.2 Fitness-Distance Landscape Analysis

For the six CBA instances used in testing, a large number of local minima

were needed along with the distance from the global optimum to calculate the fitness

distance correlation coefficient and plot the fitness-distance landscape. Three sets of

10,000 runs were made for each CBA problem instance to produce the local minima.

The first set used the stopping criteria of finding the best solution or saturation with

10; to produce as many different local minima as possible for the small problems. The

second set was to saturate at 30, and the third was to saturate at 100, to try to come

closer to the global optimum. Table 5 shows the results obtained using all the local

minima found. It shows the number of local minima Nls, the average percentage

deviation avg% of the cost of the generated local minima over the optimum cost, the

average distance avgd-ls between the generated local minima, the ratio of avgd-ls to the

number of assumable hypotheses |HA|, the average distance avgd-opt to the optimum

from the generated local minima, the ratio of avgd-opt to |HA|, and the fitness-distance

correlation coefficient ρls.

Table 5 : Results of the FDC analysis for the six CBA instances
Instance Nls avg% avgd-ls avgd-ls / |HA| avgd-opt avgd-op t/ |HA| ρls

raa180.cba 24,497 0.5293 46.6862 0.2594 36.8030 0.2045 0.890

caa200.cba 24,498 0.9628 44.7875 0.2239 31.2962 0.1565 0.951

oaa110.cba 22,155 0.5131 28.2311 0.2521 22.8439 0.2040 0.837

lab070.cba 15,687 0.4653 19.8283 0.2833 16.2722 0.2325 0.546

rab050.cba 10,976 0.9199 11.4917 0.2298 7.8753 0.1575 0.784

qab030.cba 2,046 0.2998 8.9348 0.2978 7.1311 0.2377 0.460

 60

Figure 10 to Figure 15 show the Fitness-Distance plots of the six CBA

instances. Each figure is a plot of the distance to global optimum versus the

percentage of deviation of fitness from global optimum.

0

50

100

150

200

250

300

350

0 10 20 30 40 50 60 70 80 90 100

Distance to Global Optimum

P
er

ce
nt

ag
e

D
ev

ia
tio

n
Fr

om
 O

pt
im

um

Figure 10: Fitness-Distance Plot of raa180

 61

0

100

200

300

400

500

600

0 10 20 30 40 50 60 70 80 90 100

Distance to Global Optimum

P
er

ce
nt

ag
e

D
ev

ia
tio

n
fro

m
 O

pt
im

um

Figure 11 : Fitness-Distance Plot of caa200

0

50

100

150

200

250

300

350

0 10 20 30 40 50 60 70

Distance to Global Optimum

Pe
rc

en
ta

ge
 D

ev
ia

tio
n

Fr
om

 O
pt

im
al

Figure 12: Fitness-Distance Plot of oaa110

 62

0

50

100

150

200

250

300

0 5 10 15 20 25 30 35 40

Distance to Global Optimum

Pe
rc

en
ta

ge
 D

ev
ia

tio
n

Fr
om

 O
pt

im
al

Figure 13: Fitness-Distance Plot of lab070

0

50

100

150

200

250

300

350

400

450

500

0 5 10 15 20 25 30

Distance to Global Optimum

P
er

ce
nt

ag
e

D
ev

ia
tio

n
fro

m
 O

pt
im

um

Figure 14: Fitness-Distance Plot of rab050

 63

0

20

40

60

80

100

120

140

0 2 4 6 8 10 12 14 16 18

Distance to Global Optimum

Pe
rc

en
ta

ge
 D

ev
ia

tio
n

Fr
om

 O
pt

im
al

Figure 15: Fitness-Distance Plot of qab030

According to the classification of problem difficulty given in [JF95], the six

CBA instances are classified as straightforward for genetic algorithms, because there

is a strong correlation between fitness of a local minimum and its distance from the

global optimum. This does not say that the problems are trivial, because for example,

although raa180 has a much higher FDC Coefficient than qab030, still the global

optimum is found much fewer times than qab030. Being straightforward is an

indication that by getting lower fitness, the global optimum will be eventually

reached. The Fitness-Distance plots of the six problems show that the farther the local

minimum is from the global, the higher fitness it has in most cases. In raa180, oaa110,

and lab070 there are many local minima that are so close in fitness to the global

optimum but with a big distance from it, which might indicate that to saturate on the

global optimum of those problems is harder than the other problems.

The values of the FDC coefficient found are considered high because the

sample of local minima is really huge and so different. Classifying the local minima

 64

according to fitness and according to distance and taking the FDC coefficient

accordingly gave the following interesting results.

4.2.1 FDC vs. Percentage of Deviation from Global Optimum

The results show variations of the value of the FDC coefficient ρls that differs

according to the number of local minima taken into consideration and their fitness

with respect to the global optimum. Table 6 shows the different values of ρls when

fixing the percentage of deviation from the global optimum devopt to 5%, 10% and

100% respectively.

Table 6: FDC Coefficient vs. Percentage of Deviation From Optimum

 devopt = 5% devopt = 10% devopt = 100%

Instance Nls ρls Nls ρls Nls ρls

raa180.cba 2609 0.420 4918 0.394 19133 0.822

caa200.cba 2598 0.310 4226 0.583 14509 0.838

oaa110.cba 712 0.195 2521 0.533 18785 0.799

qabo30.cba 8 -0.294 34 0.306 2042 0.453

lab070.cba 45 0.181 537 0.185 15222 0.521

rab050.cba 6 0.472 20 0.582 6640 0.691

From Table 6, the FDC coefficient value for oaa110 with 5% deviation from

the optimal had the lowest value among the three big problems. This explains its

behavior with GESA that RSA performed better as it has a low FDC coefficient near

the optimal solution, indicating that it is harder than the other two big problems near

the optimal solution.

Figure 16 to Figure 33 show the plots of FDC coefficient versus the

percentage of deviation from global optimum with values 5%, 10% and 100% for the

six CBA instances.

 65

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.00 1.41 1.82 2.13 2.36 2.60 2.80 3.04 3.35 3.62 3.94 4.29 4.65 4.99

Percentage Deviation From Global Optimum (Up to 5%)

FD
C

 C
oe

ffi
ci

en
t

Figure 16 : FDC Coefficient vs. 5% Deviation from Global Optimum for raa180

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.00 1.82 2.36 2.80 3.35 3.94 4.65 5.27 5.92 6.76 7.68 8.61 9.64

Percentage Deviation From Global Optimum (Up to 10%)

FD
C

 C
oe

ffi
ci

en
t

Figure 17 : FDC Coefficient vs. 10% Deviation from Global Optimum for raa180

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.00 5.58 12.75 19.64 27.58 67.00 93.22

Percentage Deviation From Global Optimum (Up to 100%)

FD
C

 C
oe

ffi
ci

en
t

Figure 18 : FDC Coefficient vs. 100% Deviation from Global Optimum for raa180

 66

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0.00 1.30 1.67 1.94 2.20 2.44 2.70 2.93 3.20 3.48 3.82 4.19 4.60

Percentage Deviation f rom Global Optimum (Up to 5%)

FD
C

 C
oe

ffi
ci

en
t

Figure 19 : FDC Coefficient vs. 5% Deviation from Global Optimum for caa200

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0.00 1.67 2.20 2.70 3.20 3.82 4.60 5.46 6.42 7.62 9.01

Percentage Deviation f rom Global Optimum (Up to 10%)

FD
C

 C
oe

ffi
ci

en
t

Figure 20 : FDC Coefficient vs. 10% Deviation from Global Optimum for caa200

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0.00 3.05 5.98 11.68 20.12 26.15 31.83 38.10 46.80 61.83

Percentage Deviation f rom Global Optimum (Up to 100%)

FD
C

 C
oe

ffi
ci

en
t

Figure 21 : FDC Coefficient vs. 100% Deviation from Global Optimum for caa200

 67

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.00 2.17 2.68 3.02 3.37 3.69 4.03 4.38 4.70

Percentage Deviation From Global Optimum (Up to 5%)

FD
C

 C
oe

ffi
ci

en
t

Figure 22 : FDC Coefficient vs. 5% Deviation from Global Optimum for oaa110

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.00 3.28 4.52 5.73 6.72 7.63 8.45 9.16 9.79

Percentage Deviation From Global Optimum (Up to 10%)

FD
C

 C
oe

ffi
ci

en
t

Figure 23 : FDC Coefficient vs. 10% Deviation from Global Optimum for oaa110

-0.2

0

0.2

0.4

0.6

0.8

1

0.00 7.63 10.88 13.71 16.66 19.47 22.93 27.92 40.90 64.57 75.92 85.05 94.53

Percentage Deviation From Global Optimum (Up to 100%)

FD
C

 C
oe

ffi
ci

en
t

Figure 24 : FDC Coefficient vs. 100% Deviation from Global Optimum for oaa110

 68

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.00 2.42 3.50 3.96 4.37 4.44 4.68 4.78 4.94

Percentage Deviation From Global Optimum (Up to 5%)

FD
C

 C
oe

ffi
ci

en
t

Figure 25 : FDC Coefficient vs. 5% Deviation from Global Optimum for lab070

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.00 5.90 6.90 7.47 8.26 8.78 9.15 9.46 9.72

Percentage Deviation From Global Optimum (Up to 10%)

FD
C

 C
oe

ffi
ci

en
t

Figure 26 : FDC Coefficient vs. 10% Deviation from Global Optimum for lab070

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.00 13.76 17.72 21.98 29.98 44.26 53.25 60.87 68.23 77.36 94.52

Percentage Deviation From Global Optimum (Up to 100%)

FD
C

 C
oe

ffi
ci

en
t

Figure 27 : FDC Coefficient vs. 100% Deviation from Global Optimum for lab070

 69

0

0.1

0.2

0.3

0.4

0.5

0.6

0.00 1.36 3.21 4.58

Percentage Deviation From Global Optimum (Up to 5%)

FD
C

 C
oe

ffi
ci

en
t

Figure 28 : FDC Coefficient vs. 5% Deviation from Global Optimum for rab050

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.00 3.21 4.58 5.94 6.09 7.34 7.79 9.15 9.30

Percentage Deviation From Global Optimum (Up to 10%)

FD
C

 C
oe

ffi
ci

en
t

Figure 29 : FDC Coefficient vs. 10% Deviation from Global Optimum for rab050

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.00 36.42 53.59 66.41 76.66 86.08 94.67

Percentage Deviation From Global Optimum (Up to 100%)

FD
C

 C
oe

ffi
ci

en
t

Figure 30 : FDC Coefficient vs. 100% Deviation from Global Optimum for rab050

 70

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.00 1.88 2.04 2.64 3.37 3.76 4.36

Percentage Deviation From Optimal (Up to 5%)

FD
C

 C
oe

ffi
ci

en
t

Figure 31 : FDC Coefficient vs. 5% Deviation from Global Optimum for qab030

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.00 6.61 8.30 9.32

Percentage Deviation From Optimal (Up to 10%)

FD
C

 C
oe

ffi
ci

en
t

Figure 32 : FDC Coefficient vs. 10% Deviation from Global Optimum for qab030

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.00 17.21 20.57 23.24 25.38 27.52 30.13 32.90 36.37 42.11 63.86

Percentage Deviation From Optimal (All Available Data)

FD
C

 C
oe

ffi
ci

en
t

Figure 33 : FDC Coefficient vs. 100% Deviation from Global Optimum for qab030

 71

Those figures show clearly that taking only the close-in-fitness local minima is

not sufficient to calculate the FDC coefficient, and that a large number of local

minima, close in fitness and far, are needed to get a clearer view about FDC

coefficient.

4.2.2 FDC vs. Distance from Global Optimum

Variations of the value of the FDC coefficient ρls also appear when changing

the number of local minima taken into consideration and their distance from the

global optimum. Figure 34 to Figure 39 show different values of FDC coefficient

versus the distance to global optimum for the six CBA problem instances. The FDC

coefficient ρls is calculated after sorting the local minima with respect to their distance

from optimal and at each point, ρls is calculated from the nearest local optimum to the

current.

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90 100

Distance to Global Optimum

FD
C

 C
oe

ffi
ci

en
t

Figure 34 : FDC Coefficient vs. Distance to Global Optimum of raa180

 72

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60 70 80 90 100

Distance to Global Optimum

FD
C

 C
oe

ffi
ci

en
t

Figure 35 : FDC Coefficient vs. Distance to Global Optimum of caa200

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70

Distance to Global Optimum

FD
C

 C
oe

ffi
ci

en
t

Figure 36 : FDC Coefficient vs. Distance to Global Optimum of oaa110

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0 5 10 15 20 25 30 35 40

Distance to Global Optimum

FD
C

 C
oe

ffi
ci

en
t

Figure 37 : FDC Coefficient vs. Distance to Global Optimum of lab070

 73

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

Distance to Global Optimum

FD
C

 C
oe

ffi
ci

en
t

Figure 38 : FDC Coefficient vs. Distance to Global Optimum of rab050

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0 2 4 6 8 10 12 14 16 18

Distance to Global Optimum

FD
C

 C
oe

ffi
ci

en
t

Figure 39 : FDC Coefficient vs. Distance to Global Optimum of qab030

Taking only the close in distance local minima is very misleading to the FDC

coefficient, where its values range from being negative (misleading problems) to

positive (straightforward). Also in the cases of the big CBA instances used, going

from close to far local optima, the FDC starts with different values for the same

distance, then it moves higher to become positive, then there is a drop in the value of

FDC coefficient before it starts to move up again and saturate at a certain point. This

looks like an interesting observation if it is common to all CBA instances and even

other NP-hard problems.

 74

4.3 Heritage Factor and GESA Parameters

In our analysis of using the heritage factor, different values of the heritage

factor were examined, from 0.00 (pure GESA) to 0.50 with increments of 0.05 with 5

chains 20 children, 10 chains 20 children and 20 chains 20 children for each CBA

problem instance. For each combination, the experiments were done 100 times and

the following points were monitored:

• The average final cost reached

• The best-cost-loop-index which is the first time the algorithm reached the best

cost that it saturated upon later

• The average of total number of iterations gone through before saturation

• The number of times all but one chain of the GESA chains died (had

acceptance number = 0 and hence produced no children).

• The average duration of time taken by the runs

Table 7 to Table 15 show these values for the different combinations of GESA chains

and children for the three big CBA Instances. From these results, it is clear that the

average final cost gets better when using the heritage factor. But this is on the account

of the total number of iterations which increases, causing the duration of execution to

increase also. The number of chains that die except one does not change when using

10 and 20 chains, but with 5 chains, the program terminates with less number of times

all chains but one have died. This means that the generation stays alive when using

the heritage factor more than without using it, which allows for wider search.

There is no clear cut of a specific value that would be best when using the

heritage factor. For example, when solving raa180 using GESA(5,20), the best

average final cost was at heritage factor of 0.3, but with caa200, it was as heritage

factor 0.45. The fine tuning of the heritage factor value should be done empirically.

 75

Table 7 : Heritage Factor with GESA (5 Chains, 20 Children) for raa180

H Factor Avg. Final
Cost

Avg. Best Cost
Loop Index

Avg.Num
Iterations

Num of times All
Died But One

Avg. Duration
(sec.)

0.00 11194.51 129.79 212.93 35 87.8386
0.05 11168.31 128.47 209.68 36 83.1401
0.10 11122.61 117.17 203.48 28 80.3088
0.15 11165.18 130.19 223.20 26 86.3826
0.20 11121.31 131.95 218.07 20 84.1813
0.25 11127.01 132.11 222.44 21 88.8886
0.30 11114.16 122.19 211.87 22 84.1574
0.35 11148.20 130.87 225.39 17 87.2165
0.40 11140.92 126.02 220.00 10 85.6996
0.45 11160.26 135.10 226.54 10 88.4893
0.50 11115.38 138.07 238.09 15 92.9840

Table 8 : Heritage Factor with GESA (10 Chains, 20 Children) for raa180

H Factor Avg. Final
Cost

Avg. Best Cost
Loop Index

Avg.Num
Iterations

Num of times All
Died But One

Avg. Duration
(sec.)

0.00 11067.23 130.82 221.96 0 182.6413
0.05 11009.36 135.49 216.96 0 175.1532
0.10 11072.25 131.20 230.81 0 188.7816
0.15 11012.56 130.41 225.90 0 183.9818
0.20 11052.91 134.08 230.75 0 185.5177
0.25 11019.26 131.08 227.75 0 194.5921
0.30 11038.77 128.32 224.38 0 187.7322
0.35 11045.52 126.08 240.32 0 196.0005
0.40 11004.10 133.36 238.91 0 195.6499
0.45 11023.34 129.14 240.19 0 192.2563
0.50 11012.24 140.02 244.62 0 195.7536

Table 9 : Heritage Factor with GESA (20Chains, 20 Children) for raa180

H Factor Avg. Final
Cost

Avg. Best Cost
Loop Index

Avg.Num
Iterations

Num of times All
Died But One

Avg. Duration
(sec.)

0.00 10958.11 148.54 315.80 0 541.4275
0.05 10959.31 142.17 329.56 0 591.3636
0.10 10936.82 148.73 331.53 0 594.3821
0.15 10942.46 141.85 322.05 0 573.6850
0.20 10940.51 156.07 337.98 0 575.8763
0.25 10951.82 149.02 341.59 0 612.4336
0.30 10941.68 154.71 352.80 0 639.4532
0.35 10937.60 158.99 340.94 0 576.9604
0.40 10938.31 141.91 338.08 0 570.2164
0.45 10939.78 146.52 356.00 0 628.2091
0.50 10943.65 145.42 352.76 0 594.3343

 76

Table 10: Heritage Factor with GESA (5 Chains, 20 Children) for caa200

H Factor Avg. Final
Cost

Avg. Best Cost
Loop Index

Avg.Num
Iterations

Num of times All
Died But One

Avg. Duration
(sec.)

0.00 7775.49 116.75 170.00 32 68.4275
0.05 7768.05 126.95 162.84 31 64.1602
0.10 7760.88 119.46 176.25 35 68.1619
0.15 7743.82 130.35 183.94 21 71.0634
0.20 7712.07 126.87 191.04 21 73.4111
0.25 7716.97 135.92 198.18 18 74.8906
0.30 7714.22 136.11 191.89 13 73.1739
0.35 7723.17 136.64 189.81 9 74.6916
0.40 7725.72 134.76 198.23 18 76.9391
0.45 7707.67 129.26 184.54 7 71.5075
0.50 7729.46 140.34 189.83 11 73.5706

Table 11 : Heritage Factor with GESA (10 Chains, 20 Children) for caa200

H Factor Avg. Final
Cost

Avg. Best Cost
Loop Index

Avg.Num
Iterations

Num of times All
Died But One

Avg. Duration
(sec.)

0.00 7702.54 123.45 162.2 0 131.4663
0.05 7684.81 118.61 140.64 0 111.3153
0.10 7692.17 117.40 145.89 0 116.0855
0.15 7698.75 116.44 156.78 0 122.4769
0.20 7686.90 117.06 158.46 0 125.6899
0.25 7687.63 122.03 150.01 0 116.4753
0.30 7687.17 123.97 150.65 0 115.2789
0.35 7691.11 122.99 155.68 0 125.7589
0.40 7688.88 125.55 161.75 0 124.1577
0.45 7689.87 115.21 151.76 0 117.3011
0.50 7686.52 119.66 143.84 0 113.9658

Table 12: Heritage Factor with GESA (20 Chains, 20 Children) for caa200

H Factor Avg. Final
Cost

Avg. Best Cost
Loop Index

Avg.Num
Iterations

Num of times All
Died But One

Avg. Duration
(sec.)

0.00 7680.80 114.26 139.78 0 225.3505
0.05 7679.78 107.55 127.34 0 204.1992
0.10 7679.71 118.19 139.71 0 225.8760
0.15 7680.04 113.50 133.91 0 215.1480
0.20 7680.30 109.74 131.61 0 211.5904
0.25 7678.77 108.44 122.28 0 195.0951
0.30 7678.77 111.38 125.56 0 196.4883
0.35 7679.12 110.95 117.02 0 181.6149
0.40 7679.33 110.03 131.59 0 209.1756
0.45 7679.59 109.31 128.23 0 201.8456
0.50 7678.76 110.54 119.55 0 187.5176

 77

Table 13: Heritage Factor with GESA (5 Chains, 20 Children) for oaa110

H Factor Avg. Final
Cost

Avg. Best Cost
Loop Index

Avg.Num
Iterations

Num of times All
Died But One

Avg. Duration
(sec.)

0.00 7030.46 101.4 160.62 18 66.0241
0.05 7013.94 99.47 166.00 11 68.6489
0.10 7031.45 98.04 175.56 13 70.3182
0.15 7048.72 113.26 180.82 9 71.2176
0.20 7040.67 106.42 180.46 7 71.9677
0.25 7029.70 113.7 190.64 10 75.6301
0.30 7027.88 108.15 170.41 8 69.2060
0.35 6972.83 113.26 180.86 3 71.6650
0.40 6995.47 114.19 182.54 2 74.2060
0.45 7001.88 111.14 175.64 6 67.5310
0.50 6964.86 117.01 184.01 4 73.3453

Table 14: Heritage Factor with GESA (10 Chains, 20 Children) for oaa110

H Factor Avg. Final
Cost

Avg. Best Cost
Loop Index

Avg.Num
Iterations

Num of times All
Died But One

Avg. Duration
(sec.)

0.00 6902.59 90.45 132.95 0 109.3919
0.05 6915.03 102.69 143.44 0 116.7513
0.10 6909.48 90.96 128.26 0 104.8354
0.15 6905.88 101.6 134.35 0 107.9916
0.20 6902.81 105.29 142.29 0 116.5781
0.25 6898.70 100.66 137.63 0 113.2255
0.30 6903.56 101.85 140.35 0 114.1443
0.35 6885.49 112.7 135.12 0 112.3661
0.40 6894.35 111.41 152.86 0 125.8467
0.45 6889.39 97.65 129.79 0 108.7101
0.50 6895.92 108.71 150.27 0 123.7344

Table 15: Heritage Factor with GESA (20 Chains, 20 Children) for oaa110

H Factor Avg. Final
Cost

Avg. Best Cost
Loop Index

Avg.Num
Iterations

Num of times All
Died But One

Avg. Duration
(sec.)

0.00 6878.54 93.01 126.25 0 206.6352
0.05 6857.05 84.24 91.87 0 152.1805
0.10 6857.75 94.82 109.50 0 185.5580
0.15 6863.62 91.89 114.42 0 192.1911
0.20 6859.93 90.47 104.52 0 178.9680
0.25 6859.43 115.38 121.55 0 210.7190
0.30 6857.75 105.09 123.48 0 207.2115
0.35 6863.49 100.48 109.79 0 179.8755
0.40 6862.37 101.98 113.77 0 190.1550
0.45 6857.08 97.82 108.12 0 181.5467
0.50 6856.00 95.22 95.22 0 159.1565

 78

To test the effect of varying the GESA parameters, the RLD analysis is done

to the three groups of (5 chains 20 children), (10 chains 20 children) and (20 chains

20 children). The number of runs for each group was 100 runs, without applying the

heritage factor, and with saturation 50. To make a fair comparison, the number of runs

for the group (10 chains, 20 children) was multiplied by 2 and the number of runs of

(20 chains, 20 children) was multiplied by 4, to make them equivalent to the run

length of (5 chains, 20 children). Table 16 shows the maximum number of iterations

to reach the global optimum using each group for the six CBA instances; along with

how many times the global optimum was reached.

Table 16: RLD Analysis for GESA with different number of chains

 GESA (5, 20) GESA (10, 20) GESA (20, 20)

Instance Max #

Iterations

Reached

Global

Max # Iterations

* 2

Reached

Global

Max # Iterations

* 4

Reached

Global

raa180.cba 7109 4 7033 * 2 7 5887 * 4 16

caa200.cba 1623 46 1237 * 2 68 542 * 4 88

oaa110.cba 1336 45 1217 * 2 70 966 * 4 89

lab070.cba 512 77 373 * 2 86 240 * 4 95

rab050.cba 52 100 37 * 2 100 29 * 4 100

qab030.cba 34 100 19 * 2 100 14 * 4 100

Figure 40 to Figure 45 show the RLD graphs for the six instances. For the

smallest two instances qab030 and rab050, 5 chains 20 children is the best

combinations especially that the global optimum is always found, which indicates that

there is no need for the extra complexity of adding more chains. For the other

problems, it seems also that 5 chains 20 children dominate most of the time, with

some exceptions where 10 chains 20 children perform better at parts of raa180 and

 79

oaa110. In general, the added complexity of more chains is not needed unless the

problem is harder for less number of chains.

0
10
20
30
40
50
60
70
80
90

100

0 5000 10000 15000 20000 25000

Num Iterations

Pe
rc

en
ta

ge
 O

pt
im

al
 S

ol
ut

io
n

GESA 5, 20, 0, 50

GESA 10, 20, 0, 50

GESA 20, 20, 0, 50

Figure 40: RLD Analysis for GESA (5,20), (10,20), (20,20) for raa180

0
10
20
30
40
50
60
70
80
90

100

0 500 1000 1500 2000 2500 3000

Num Iterations

Pe
rc

en
ta

ge
 O

pt
im

al
 S

ol
ut

io
n

GESA 5, 20, 0, 50

GESA 10, 20, 0, 50

GESA 20, 20, 0, 50

Figure 41: RLD Analysis for GESA (5,20), (10,20), (20,20) for caa200

 80

0
10
20
30
40
50
60
70
80
90

100

0 1000 2000 3000 4000 5000

Num Iterations

Pe
rc

en
t o

f F
in

di
ng

 O
pt

im
al

GESA 5,20,0,50

GESA 10, 20, 0, 50

GESA 20, 20, 0, 50

Figure 42: RLD Analysis for GESA (5,20), (10,20), (20,20) for oaa110

0
10
20
30
40
50
60
70
80
90

100

0 200 400 600 800 1000 1200

Num Iterations

Pe
rc

en
ta

ge
 O

pt
im

al
 S

ol
ut

io
n

GESA(5, 20, 0, 50)

GESA(10,20,0,50)

GESA(20,20,0,50)

Figure 43: RLD Analysis for GESA (5,20), (10,20), (20,20) for lab070

0
10
20
30
40
50
60
70
80
90

100

0 20 40 60 80 100 120 140

Num Iterations

Pe
rc

en
ta

ge
 O

pt
im

al
 S

ol
ut

io
n

GESA(5, 20, 0, 50)

GESA(10,20,0,50)

GESA(20,20,0,50)

Figure 44: RLD Analysis for GESA (5,20), (10,20), (20,20) for rab050

 81

0
10
20
30
40
50
60
70
80
90

100

0 10 20 30 40 50 60

Num Iterations

Pe
rc

en
ta

ge
 O

pt
im

al
 S

ol
ut

io
n

GESA(5, 20, 0, 50)

GESA(10,20,0,50)

GESA(20,20,0,50)

Figure 45: RLD Analysis for GESA (5,20), (10,20), (20,20) for qab030

 82

Chapter 5 CONCLUSION AND FUTURE WORKS

5.1 Conclusion

In this research, we have applied population oriented and sequential chained

simulated annealing in the form of Guided Evolutionary Simulated Annealing and

Repeated Simulated Annealing to Cost-Based Abduction problems. A comparison

was made between the two approaches using run-length analysis. The experiments'

results showed GESA to outperform pure RSA in most of the instances used in

testing. Using the Heritage Factor even improved finding the best-cost-loop-index but

made the search saturate after more number of iterations and took longer time, as it

kept the generations alive for a longer duration. Whether or not to use the heritage

factor and the best value for it to be used is problem dependent and can only be

determined empirically.

The Fitness-Distance analysis of CBA problems is done here showing that the

instances used are considered straightforward for genetic algorithms. It was also

shown that the Fitness-Distance Correlation coefficient strongly depends on the local

minima taken into account, and that a large number with a large variation in distance

and fitness of local minima has to be accounted for to some extent, as the very far

local minima with very high fitness value could affect the FDC coefficient although

they might be considered irrelevant.

5.2 Future Work

As a start, a benchmark of CBA problem instances has to be established and

classified, to make it easier for search algorithms to be evaluated using CBA

problems.

 83

All the test cases used in this work have only one global optimum. Doing the

analysis to other problems that have more than one global optimum is an interesting

point that was not accounted for in this thesis. It could be more investigated as one of

the keys to CBA problem difficulty, as it might affect the FDC coefficient value and

the fitness-distance plots of CBA problems. It might also make it harder or easier for

GESA to solve a multi-global optima problem.

The GESA was compared to RSA in this thesis. It could be also compared to

evolutionary programming and genetic algorithms to see its performance and

effectiveness with CBA problems.

For the FDC analysis, more work can be done to determine how many local

minima should be taken into account to calculate the FDC and to what percentage of

deviation from the global optimum. Setting these standards might give more precise

values for the FDC coefficient which give better understanding for problem difficulty.

More emphasis can be given to the Heritage Factor to determine the best ways

of assigning a value to it and using it in other search problems.

 84

REFERENCES

[Abd01] A. M. Abdelbar. “Heritage Factors: Extending Guided Evolutionary
Simulated Annealing” Proceedings IEEE International Joint
Conference on Neural Networks, vol.4, pp. 2568-2573, 2001

[Abd04] A. M. Abdelbar. “Approximating Cost-Based Abduction is NP-Hard”
Artificial Intelligence, to appear, 2004

[AA03] A. M. Abdelbar and H. Amer. “Applying Guided Evolutionary
Simulated Annealing to Cost-Based Abduction” Proceedings IEEE
International Joint Conference on Neural Networks, vol 3, pp. 2428-
2431, 2003

[AGA04] A. M Abdelbar, S. H. Gheita and H. Amer. “Exploring the Fitness
Landscape and the Run-Time Behavior of an Iterated Local Search
Algorithm for Cost-Based Abduction” under review, 2004

[Alt97] L. Altenberg. “Fitness Distance Correlation Analysis: An Instructive
Counterexample” Proceedings of the 7th Int. Conference on Genetic
Algorithms (ICGA97), pp. 57-64, San Francisco, CA. Morgan
Kaufmann. 1997

[BBM93] D. Beasley, D. R. Bull and R. R. Martin. “An Overview of Genetic
Algorithms: Part 1, Fundamentals” University Computing, vol. 15, no.
2, pp. 58-69, 1993

[BSW02] H.-G. Beyer, A.-P. Schwefel, and I. Wegener. “How to Analyse
Evolutionary Algorithms” Theoretical Computer Science, vol. 287, no.
1, pp. 101-130, Aug 2002

 [CM86] E. Charniak and D. McDermott. Introduction to Artificial Intelligence,
pp. 21, 453-457. Addison-Wesley 1986

[CS94] E. Charniak and S. E. Shimony. “Cost-Based Abduction and MAP
Explanation” Artificial Intelligence, vol. 66, pp. 345-374, 1994

 85

[COC98] H. J. Cho, S. Y. Oh, and D. H. Choi. “Population-Oriented Simulated
Annealing Technique Based on Local Temperature Concept”
Electronics Letters, vol. 34, no. 3, pp. 312-313, 1998

[CC02] P.J. Chuang and C.W.Cheng. “On File and Task Placements and
Dynamic Load Balancing in Distributed Systems” Tamkang Journal of
Science and Engineering, vol. 5, no. 4, pp. 241-252, 2002

[CLR90] T. H. Cormen, C. E. Leiserson and R. L. Rivest. Introduction to
Algorithms, MIT Press, McGraw-Hill, NY, 1990

[DZ+01] D. Dean, P. Zhang, A. Metzger, C. Sibata, and R. J. Maciunas “Medial
Axis Seeding of a Guided Evolutionary Simulated Annealing (GESA)
Algorithm for Automated Gamma Knife Radiosurgery Treatment
Planning” Proceedings of the 4th Int. Conference on Medical Image
Computing and Computer-Assisted Intervention (MICCAI), Springer-
Verlag. pp. 441-448, 2001

[EM94] H. Esbensen, and P. Mazumder. “ SAGA: A Unification of the Genetic
Algorithm with Simulated Annealing and Its Application to Macro-
Cell Placement” Proceedings Seventh International Conference on
VLSI Design, pp. 211-214, 1994

[FSL02] M. Finger, T. Stützle and H. Lourenço. “Exploiting Fitness Distance

Correlation of Set Covering Problems” Applications of Evolutionary
Computing, S. Cagnoni, J. Gottlieb, E. Hart, M. Middendorf, and G. R.
Raidl (eds.), Springer- LNCS, pp. 61-71, 2002

[Gol90] D. E. Goldberg. “A Note on Boltzmann Tournament Selection for
Genetic Algorithms and Population-Oriented Simulated Annealing”
Complex Systems, pp. 445-460, 1990

[GZ01] G. W. Greenwood and Q. J. Zhu. “Convergence in Evolutionary
Programs with Self-Adaptation” Evolutionary Computation, vol. 9, no.
2, pp.147-157, 2001

[Hef01] M. S. Hefny. “A New Linear-Programming Based Admissible
Heuristic for Cost-Based Abduction” MSC Thesis, Department of
Computer Science, The American University in Cairo, May 2001

 86

[HS+88] J. R. Hobbs, M. E. Stickel, P. Martin and D. Edwards. “Interpretation
as Abduction” Proceedings 26th Annual Meeting of the Association for
Computational Linguistics, Buffalo, NY, pp. 95-103, 1988

[IM98] M. Ishizuka and Y. Matsuo. “SL Method for Computing a Near-
Optimal Solution Using Linear and Non-Linear Programming in Cost-
Based Hypothetical Reasoning” Proceedings of Pacific Rim
International Conference on Artificial Intelligence (PRICAI),
Singapore, 1998

[JMF99] A. K. Jain, M. N. Murty, and P. J. Flynn. “Data Clustering: A Review”
ACM Computing Surveys (CSUR), vol. 31, no. 3, pp. 264-323, Sept.
1999

[JF95] T. Jones and S. Forrest. “Fitness Distance Correlation as a Measure of
Problem Difficulty for Genetic Algorithms” L. Eshelman, editor,
Proceedings of the 6th Int. Conference on Genetic Algorithms, pp. 184-
192, San Francisco, CA. Morgan Kaufman, 1995

 [KO+99] S. Kato, S. Oono, H. Seki and H. Itoh. “Cost-Based Abduction Using
Binary Decision Diagrams” Proceedings of Industrial and
Engineering Applications of Artificial Intelligence and Expert Systems
(IEA/AIE), Cairo, 1999

[KSI96] S. Kato, H. Seki, and H. Itoh. “Parallel Cost-Based Abductive
Reasoning for Distributed Memory Systems” Proceedings of Pacific
Rim International Conference on Artificial Intelligence (PRICAI),
Cairns 1996

[KGV83] S. Kitpatrick, C. D. Gellat, and M. P. Vecchi. “Optimization by
Simulated Annealing” Science 220(4598), pp.671- 680, 1983

[LKH91] F. T. Lin, C. Y. Kao, and C. C. Hsu. “Incorporating Genetic
Algorithms into Simulated Annealing” Proceedings of the Fourth
International Symposium on Artificial Intelligence, pp 290-297, 1991

[LKH93] F. T. Lin, C. Y. Kao and C. C. Hsu. “Applying the Genetic Approach
to Simulated Annealing in Solving Some NP-Hard Problems” IEEE
Transactions on Systems, Man and Cybernetics, vol. 23, no. 6, pp.
1752-1767, 1993

 87

[MG95] S. W. Mahfoud and D. E. Goldberg. “Parallel Recombinative
Simulated Annealing: A Genetic Algorithm” Parallel Computing, vol.
21, pp. 1-28, 1995

[OI97] Y. Ohsawa and M. Ishizuka. “Networked Bubble Propagation: A
Polynomial-Time Hypothetical Reasoning Method for Computing
Near-Optimal Solutions” Artificial Intelligence, vol. 91, pp. 131-154,
1997

[PR90] Y. Peng and J. A. Reggia. Abductive Inference Models for Diagnostic
Problem-Solving, pp. 1-9. Springer-Verlag, NY, 1990

[PR+03] A. P. Plumb, R. C. Rowe, P. York, and C. Doherty. “Effect of Varying
Optimization Parameters on Optimization by Guided Evolutionary
Simulated Annealing (GESA) Using a Tablet Film Coat as an Example
Formulation” European Journal of Pharmaceutical Science, vol. 18,
issue 3-4, pp. 259-266, March 2003

[RK91] E. Rich and K. Knight. Artificial Intelligence, pp.70-72. McGraw-Hill,
Inc.2nd ed. 1991

[San94] E. Santos Jr. “A Linear Constraint Satisfaction Approach to Cost-
Based Abduction” Artificial Intelligence, vol.65, no.1, pp. 1-28, 1994

[SS96] E. Santos Jr., and E. S. Santos. “Polynomial Solvability of Cost-Based
Abduction” Artificial Intelligence, vol. 86, pp. 157-170, 1996

[SS03] T. Schiavinotto and T. Stützle. “Search Space Analysis of the Linear
Ordering Problem” In S. Cagnoni, J. J. Romero Cardalda, D. W.
Corne, J. Gottlieb, A. Guillot, E. Hart, C. G. Johnson, E. Marchiori, J.-
A. Meyera, M. Middendorf and G. R. Raidl, editors. Applications of
Evolutionary Computing, vol 2611 in Lecture Notes in Computer
Science, Springer Verlag, pp. 322-333, 2003

[SH00] T. Stützle and H. H. Hoos. “MAX-MIN Ant System” Journal of
Future Generation Computer Systems, 16: pp. 889-914, 2000

[VT03] L. Vanneschi and M. Tomassini. “Pros and Cons of Fitness Distance
Correlation in Genetic Programming” Proceedings of the Bird of a
Feather Workshop, Genetic and Evolutionary Computation
Conference (GECCO 2003), A. Barry, Editor. pp 284 – 287, 2003

 88

[YP95] P. Yip, and Y.-H. Pao. “Combinatorial Optimization with Use of
Guided Evolutionary Simulated Annealing” IEEE Transactions on
Neural Networks, vol. 6, no. 2, pp. 290-295, 1995

 89

APPENDIX A: CBA FILE FORMAT

http://www.cs.aucegypt.edu/~abdelbar/CBAlib/format.txt

1. The first line of the file always contains the number 1.

2. Throughout the file, any blank lines are ignored.

3. This is followed by a line with a single integer H, where H is the number of

hypotheses.

4. This is followed by H lines, where line i contains a single real number equal to the

assumability cost of hypothesis number i. If a hypothesis's assumability cost is

infinity, then the line contains the number zero.

5. This is followed by a line containing the integer R, where R is the number of rules.

6. This is followed by R lines, where each line represents a rule. Each of these lines

contains a number of integers with the following meanings: the first integer is the

number of antecedents u for this rule, this is followed by u integers equal to the

hypothesis numbers of the u antecedents for this rule (hypothesis numbers start at

1 not at 0), this is followed by the hypothesis number of the consequent of this

rule.

7. This is followed by a line with a single integer equal to the hypothesis number of

the goal hypothesis. (This line is actually redundant because the goal hypothesis is

always equal to the maximum-numbered hypothesis, which is equal to the number

of hypotheses).

 90

APPENDIX B: QAB030.CBA

1

100

 190.00

0

0

 836.00

0

0

 662.00

0

0

0

0

0

 848.00

0

 747.00

0

0

0

0

0

0

 331.00

0

0

0

0

0

0

0

 91

 488.00

 917.00

0

0

 782.00

0

0

0

 725.00

0

0

 857.00

 468.00

 653.00

 492.00

0

0

0

 272.00

0

0

0

0

0

0

0

0

 890.00

0

0

0

 739.00

 477.00

0

0

 92

 454.00

0

 237.00

 190.00

0

0

0

 483.00

0

0

0

 538.00

0

0

 386.00

 263.00

 537.00

0

0

0

0

0

0

 983.00

 466.00

0

0

 396.00

0

0

0

0

 400.00

0

0

 93

0

300

3 11 7 17 21

5 8 9 1 41 4 45

4 54 24 53 44 83

2 20 43 46

1 2 3

7 23 17 30 48 6 32 22 54

6 11 5 6 3 8 15 17

4 77 63 61 60 94

5 70 52 39 73 44 87

8 15 29 24 26 31 7 16 19 32

3 38 71 7 84

7 12 32 6 7 23 27 4 33

5 40 3 23 54 73 75

3 2 1 16 18

7 9 4 10 13 15 7 11 17

4 46 15 29 32 78

5 36 30 14 7 18 51

8 1 14 11 7 4 3 13 8 19

8 97 44 58 90 67 68 76 80 99

7 26 6 41 19 1 52 2 60

1 1 6

8 37 38 79 57 33 20 93 54 94

1 12 25

4 5 11 12 3 14

2 63 43 82

2 35 18 54

1 24 58

4 21 7 22 26 27

5 4 63 43 50 19 93

8 82 26 22 69 45 59 81 13 85

6 84 15 82 45 53 67 95

 94

3 4 5 6 8

5 50 11 62 56 1 66

3 29 39 31 77

2 7 5 19

4 50 5 43 31 51

5 43 15 31 42 34 59

1 1 2

5 33 17 23 51 45 64

1 29 52

2 4 9 12

2 11 33 64

2 45 35 51

8 12 13 25 20 19 2 16 22 27

5 16 6 14 11 10 19

5 51 75 38 91 23 95

7 28 78 38 22 6 41 8 96

5 38 18 57 47 8 59

7 46 21 16 30 42 6 14 53

4 60 85 2 67 91

6 41 30 7 17 19 6 49

3 45 30 56 75

2 1 22 23

8 8 19 25 20 15 2 27 4 37

3 31 52 53 54

2 4 3 16

6 14 6 7 10 8 5 19

5 1 5 4 8 7 10

1 49 52

3 23 16 21 35

2 53 54 63

5 50 30 69 83 24 84

2 8 14 16

8 76 15 1 53 24 41 62 8 83

7 6 1 7 5 4 2 3 8

6 12 11 5 16 8 6 18

 95

5 9 17 23 5 7 27

2 8 2 21

8 12 50 17 25 37 44 66 63 69

8 36 24 54 10 11 28 5 52 78

4 14 45 22 47 77

7 20 17 8 2 14 5 21 25

1 12 46

8 80 28 30 8 48 89 71 21 94

4 34 2 72 29 75

5 58 37 42 47 78 95

4 45 19 4 63 70

1 1 2

1 2 3

7 30 58 43 32 12 44 4 75

4 35 26 4 23 49

4 44 79 19 54 86

6 13 9 7 17 1 15 19

5 7 11 9 13 10 16

6 23 22 9 11 4 26 27

5 56 68 12 38 63 74

4 11 8 7 14 26

1 28 64

6 46 15 67 35 66 56 75

6 3 15 6 14 9 10 16

6 11 13 5 6 3 8 14

3 28 62 10 69

8 11 45 48 51 54 19 42 53 60

8 10 18 14 23 6 1 12 9 24

6 10 5 8 11 9 2 12

5 72 28 57 44 65 84

8 2 12 1 15 16 11 24 14 26

1 1 45

3 2 4 3 11

3 1 3 2 6

1 7 9

 96

8 21 18 41 44 30 3 19 48 54

4 3 18 10 23 45

5 57 47 23 49 22 77

6 14 71 35 52 22 74 77

7 4 6 7 9 2 3 1 11

5 1 24 6 35 38 73

4 39 14 40 31 50

5 7 37 36 28 23 40

6 7 5 1 2 3 4 9

6 46 40 29 42 49 4 63

6 27 50 41 13 51 46 54

2 32 4 40

1 1 2

4 22 41 51 63 71

4 6 1 5 4 8

1 14 33

3 5 2 4 6

6 46 1 75 26 48 50 85

5 7 16 2 12 4 19

7 32 47 9 40 13 20 11 50

2 2 1 3

4 15 43 18 13 75

8 16 2 8 9 17 5 22 25 28

1 1 6

6 50 5 10 39 16 34 60

2 9 6 29

3 36 30 44 64

8 34 8 43 32 27 44 17 47 51

4 76 26 87 20 96

8 33 28 61 37 39 85 48 77 95

2 48 12 56

7 49 10 92 46 79 82 60 93

3 33 20 28 49

8 1 24 20 2 11 36 33 14 53

4 10 20 7 14 21

 97

6 50 11 34 5 64 19 82

3 11 13 83 87

1 38 52

2 54 16 98

5 67 59 4 32 69 77

8 69 48 47 9 25 55 35 66 73

8 67 20 80 30 1 19 10 73 87

1 49 59

4 19 8 15 23 32

1 15 90

6 26 59 79 32 57 3 96

1 1 9

2 28 2 56

4 16 9 12 18 27

1 47 83

6 9 26 7 43 39 4 64

1 66 78

6 5 8 3 13 12 11 14

8 57 48 72 70 67 64 46 42 77

1 13 63

6 16 66 55 23 33 28 77

7 44 28 30 27 16 7 15 49

4 82 97 53 37 99

5 60 63 44 12 50 77

7 8 12 11 2 13 14 10 18

4 8 7 9 5 18

6 32 16 37 21 20 22 49

4 15 1 41 46 47

5 8 3 2 7 13 21

1 6 55

5 64 7 58 24 14 69

3 15 2 5 27

5 33 90 76 29 35 94

5 6 3 7 1 8 9

8 22 56 13 28 53 30 35 41 64

 98

8 33 24 34 9 23 44 4 46 47

1 1 2

5 21 7 6 39 27 45

4 19 11 6 22 49

3 15 9 12 26

3 3 20 9 28

3 14 2 9 35

8 41 80 62 54 51 72 35 79 83

7 23 28 48 39 58 61 24 63

4 15 22 26 9 35

5 5 1 2 3 4 6

7 34 31 46 7 15 12 37 52

3 40 46 26 56

8 25 28 14 23 20 15 5 2 32

8 33 36 83 31 12 81 56 14 85

7 22 35 68 39 45 5 43 69

3 17 3 34 45

1 54 87

8 53 40 28 50 13 11 61 44 66

5 8 9 4 22 5 23

8 55 10 25 39 34 7 13 43 66

1 7 8

1 1 3

3 5 1 4 9

7 25 40 43 1 31 34 4 51

7 3 12 11 10 4 2 5 14

6 9 13 6 1 3 7 14

2 78 26 91

2 21 17 23

6 9 2 10 23 19 18 33

3 23 17 1 29

1 26 53

2 9 5 16

1 1 2

3 77 70 42 86

 99

7 6 3 7 13 9 12 18 21

1 4 32

3 19 7 15 39

5 25 20 26 38 23 46

7 19 4 51 42 37 20 33 54

2 30 16 58

5 13 5 7 9 11 18

2 8 2 11

8 14 13 20 25 22 19 36 8 51

7 59 23 26 15 13 48 7 60

8 5 22 8 17 57 48 30 58 64

6 22 2 19 5 13 16 26

5 17 81 26 8 3 86

1 2 5

1 6 40

2 9 2 14

7 13 24 37 25 8 7 11 59

7 46 20 22 61 73 36 34 75

1 8 32

8 5 17 12 6 1 10 15 14 19

5 23 5 39 42 40 71

4 63 61 60 29 86

3 18 16 3 49

1 79 95

4 1 34 23 2 35

5 9 19 13 24 18 49

8 60 45 26 63 47 5 23 65 66

7 14 34 29 30 27 11 19 36

8 15 7 2 41 27 16 46 33 56

6 20 29 54 61 3 66 70

5 49 29 3 40 4 54

4 10 1 7 4 11

2 73 23 86

3 15 31 18 55

5 23 29 67 69 37 77

 100

5 21 8 17 16 3 46

3 85 16 73 93

2 5 7 12

3 27 11 2 95

4 12 2 25 30 50

3 21 9 14 36

4 41 42 4 23 94

7 1 13 31 46 2 9 24 52

4 88 61 94 11 95

2 5 4 6

6 28 73 53 36 34 40 84

6 4 10 26 36 41 52 53

3 13 14 8 18

4 31 54 8 23 83

2 29 17 70

3 5 3 4 6

1 4 9

5 19 14 6 12 2 20

3 50 47 74 82

7 3 14 44 28 19 33 20 45

1 1 3

3 31 20 27 45

2 37 5 83

8 9 16 4 18 12 2 14 13 19

1 10 71

6 13 17 7 18 5 10 19

7 12 16 2 10 3 1 4 17

7 11 14 10 31 29 36 2 40

1 2 3

5 4 34 32 2 37 47

1 6 9

5 58 64 51 13 70 73

4 55 36 53 34 73

1 36 70

8 44 11 21 7 34 20 45 2 51

 101

6 27 36 18 15 22 34 56

4 6 65 54 46 66

4 16 24 4 5 25

2 26 15 55

2 5 17 28

8 54 19 20 79 74 58 60 38 84

6 25 13 6 14 17 3 28

8 10 3 5 6 4 2 12 13 17

3 42 27 31 47

5 18 13 85 73 50 91

2 2 1 3

3 6 7 5 12

7 11 7 9 8 5 10 2 12

6 51 59 36 54 7 30 87

4 35 75 3 31 78

4 29 4 6 55 63

8 10 23 59 18 20 56 19 12 66

2 31 63 95

8 7 37 33 9 31 44 85 20 87

4 27 30 47 56 60

2 15 30 55

3 45 49 20 71

2 1 2 3

11 19 20 36 49 50 52 54 56 77 93 94 100

100

 102

APPENDIX C: PUBLISHED PAPER

	Parallel versus iterated: comparing population oriented and chained sequential simulated annealing approaches to cost-based abduction
	Recommended Citation
	APA Citation
	MLA Citation

	Microsoft Word - Defense _2_.doc

