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The American University In Cairo

ABSTRACT

DIMENSION AND SHAPE INVARIANT PROGRAMMING: THE 
IMPLEMENTATION AND THE APPLICATION

by Manal Ezzat A. Helal

Supervised by: Dr. Ahmed Sameh

This thesis implements a model for the shape and dimension invariant 

programming based on the notation of the Mathematics of Arrays (MOA) 

algebra. It focuses on dimension and shape invariance implementation, and 

their effect in parallel computing. A new design for the MOA notation is 

implemented that eliminates the need for another PSI-compiler, or a language 

extension to functional programming languages. The MOA notation is 

designed as a library of Application Programming Interfaces (APIs), contains 

object oriented classes implemented in C++. The library executes array 

operations correctly, and is expected to enhance the performance invariant of 

dimension and shape. To implement these APIs, the mathematical equations 

of the original notation were analyzed and sometimes simplified to become 

more comprehensible to implement from the programming point of view, 

and some more operations were added. The APIs reduce the erroneous loops 

starts, strides, and stops used by programmers in the traditional handling of 

multi-dimension arrays. The library defines the dimension and shape of the 

arrays at runtime; and gives the source code of the problem in hand better 

chances to be automatically parallelized.

The MOA library testing tool developed and implemented in this thesis, can 

be used by mathematicians and computer arithmetic researchers to translate 

high level arithmetic functions in applications like image processing, video 
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processing, fluid dynamic, … etc. to the MOA notation, utilizing its benefits. 

An image-processing tool is implemented using this new MOA library, 

proving the correctness of the design on 2D-array application, where image 

operations are expressed concisely in the source code and easily manipulated 

on the conceptual level. Image processing transformations, filtering and 

detections are implemented. Video processing operations like transformations 

on the AVI Frames after decomposing them, and motion detection scheme 

are implemented using the MOA library, to prove the correctness of the 

library on a 3D-array application. Also, the parallelisation factors inherent in 

the MOA library design are discussed in terms of shape polymorphism, MOA 

parallel architecture, data redistribution, and Tiling algorithms, in relation to 

the MOA notation. Furthermore, pipelining with MOA has been investigated. 

In addition to the above experiments, a hardware implementation of the 

MOA APIs was implemented using VHDL on Renoir as a package, and 

simulated using ModelSim. Performance analysis is conducted in terms of 

general benefits of programming invariant of shape and dimension as 

designed in this thesis, which is open to further analysis based on the 

application domain.
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C h a p t e r  1

INTRODUCTION

1.1 Introduction

Arrays are the core of almost any complex computational problem. The Von 

Neumann computer architecture has been always more appropriate to array 

processing because of its linear memory structure and its addressing methods 

(absolute address + offset + index, base registers, offset registers, index 

registers). Also, its instruction set is considered a perfect base to express 

arrays. However, researchers addressed the Von Neumann bottleneck that is 

caused by processors accessing words of memory one at a time [47]. This 

bottleneck caused programs to handle data in small units processed 

individually; then gathered together into large conceptual units. It was 

desirable to encourage computer architects to design a machine organization 

that handles data in large conceptual blocks. Solving this problem, researchers 

developed functional languages that deal with large data items as single units, 

such as APL and LISP. These programming languages implement solutions 

more succinctly than others. This brevity does not come always with clarity. 

However, in many cases, these languages are more amenable to parallel 

processing.

In addressing real problems, programmers usually have the tendency to 

implement in flat programs, using complicated nested loops and GOTOs 

[11]. Efficiency necessitates employing higher-level concepts of programming 

languages, addressing real problem (frequently used metrics, image processing 

transformations, … etc.). One of the benefits of writing an efficient code, 

(among other benefits like conceptual clarity, expressiveness, … etc.), is the 

possibility of automatically parallelizing the sequential code. Handling 
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boundary constraints, variables scopes, and static memory layout, are 

considered overheads for the programmer designing a flat program that can 

be transformed automatically to parallel programs. 

Efficient parallel scheduling and load balancing requires the analysis of the 

shape and dimension of the arrays. So, the notion of shape analysis and 

decomposition has been researched in various aspects during the last decade. 

This thesis relates the shape and dimension invariance programming to the 

Mathematics of Arrays (MOA) notation - based on the Psi-Calculus – an 

algebra of arrays - that is designed to provide a technology for scientists and 

engineers, to do large-scale scientific and engineering computations 

effectively, utilizing parallel computers [7]. Previously, research was taking the 

direction of providing compilers that translate the code written using the 

MOA notation to C or Fortran languages, or providing language extensions 

to existing functional languages, saving the programmer the effort of writing 

the code of the array computation. In this research, a Dynamic Link Library 

(DLL) providing Application Programming Interfaces (APIs) is designed to 

be imported to the user’s application, to use the MOA notation directly. This 

implementation achieves the preliminary requirements for a functional C++ 

language. 

A MOA testing tool based on this library is designed having a complete user 

interface for the MOA notation. This tool can be used in the mathematical 

analysis process for testing and verifying equations to easily map traditional 

computer arithmetic problems to the MOA notation, explaining the MOA 

functionality, and a test bench for the correctness of the implementation. 

Then, the MOA library is used in representing image structures for 

performing image-processing functions using the new notation as a 2-

Dimension illustration. Then, a 3-Dimension illustration of the use of the 

MOA library is presented through a Video (AVI File) being read into MOA 

structures, and operated on it. Some other factors of the full utilization of the 
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notation has been discussed, like the explicit parallelisation factors in the 

MOA library design, discussed in terms of shape polymorphism, data 

redistribution algorithms, tiling algorithms, and pipelining. 

The design of the library is simple and could be migrated easily to any 

platform or language. It is implemented in Visual C++ as a Windows DLL 

and tested on Visual Basic and Java. It is also implemented on hardware using 

VHDL packages on Renoir, and simulated using ModelSim. The hardware 

implementation is an important step towards the current direction of hyper-

programming, mixing hardware programming with software to reach the 

ultimate performance possible using new faster hardware technology. Special-

purpose hardware (hardware accelerators) could be deigned for different 

scientific and engineering applications based on array computations.

The performance of applications based on MOA is compared to the 

traditional methods non-quantifiably, and the effect of dimension invariance 

on performance as dimension increase was analyzed. Analysis covered also 

the effect of the MOA design on the source code, parallel computing, multi-

processor environment, and employing hardware accelerators. 

1.2 Thesis Motivation

The main motivation behind this thesis is to achieve conceptual and 

functional array processing invariant of dimension and shape, in C++ as 

found in some functional languages. Another main objective is to prove the 

practicability of the MOA algebra, by providing simple APIs that are added to 

any project in a sort of an external compiled library. A programmer can use 

these APIs to apply computations on arrays of arbitrary dimensions, without 

handling the erroneous nested loops starts, stops and strides, and the 
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transformation equations, that require extensive testing to reach the simplest 

expressions.

The previous effort in this field presented several attempts to implement array 

operations invariant of dimensions and shapes, using the notations and 

equations presented in [1]. However, these attempts lacked the formality of a 

simple algorithm, and were quite complicated and not reduced to its simplest 

programming steps, and were implemented using laboratory research 

compilers that are in many cases not used in real-life applications. The 

research was directed towards designing compilers to parse the MOA 

notation to produce a C or Fortran languages source code, or to provide 

recommendations about language extensions to functional programming

languages to encapsulate the array operations in their compilers. So, this thesis 

is motivated by formalizing these algorithms and simplifying the MOA 

algebraic equations to be easily implemented as a Library of APIs that can be 

called directly from any application and used to define the dimension and the 

shape of the array at run time by the calling applications, or the end-user.

Also, presenting a valid physical application (image and video processing) is a 

main motivation to encourage the implementation of real-life problems based 

on this notation. These application examples proved the correctness of the 

design of the MOA library, and the enhanced performance of the dependence 

on this programming model, making use of the parallel computing that is 

made easier with MOA, and the chances of having hardware accelerators for 

the problem in hand. 

1.3 Thesis Objective

The main and first objective of this thesis is to support the MOA notation 

equations by implementing them as APIs. The second objective is to test the 
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MOA APIs correctness and performance on a 2-Dimension application, 

using images as a 2-Dimension MOA array structures, and applying the image 

processing operations on them based on MOA notation. A Third objective is 

to apply the previous tests on a 3-Dimension application, using Videos (AVI 

files) applying video processing functions on them.

A fourth objective is to discuss how parallelism and pipelining factors in the 

MOA notation are more obvious than in the traditional implementation. A 

fifth objective is to implement in hardware the MOA APIs, to provide 

hardware accelerators for the applications that can be implemented using this 

notation. A final objective is to conduct a general analysis of the performance 

of applications depending on the MOA notation implemented in this thesis.

1.4 Thesis Outline

The Thesis is divided into 8 chapters. Chapter two surveys the array 

programming theories and languages. The Third chapter presents the 

Mathematics of Arrays (MOA) literature review, background information, and 

a comprehensive description and examples of the notation in details, with 

some modification to the original ones. Chapter four discusses the 

implementation details of the model class implemented, and design issues for 

the MOA Library implementation. Chapter five discusses the Image 

Processing operations as 2-Dimension application of the MOA Library, and 

the Video Processing operations as a 3-Dimension application of the MOA 

Library. Chapter six discusses the parallel computation, arrays pipelining, and 

implementation of the MOA library in VHDL using Renoir. Chapter seven 

presents the performance analysis of the conducted experiments.  Finally, 

chapter eight states the conclusion and outlines the future work.
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C h a p t e r  2

PROGRAMMING WITH ARRAYS

2.1 Introduction

Array-based programming started with APL Language as will be described 

later. The More’s array theory (AT) was formalized evolving from the data 

concepts of APL, extending it to include nested arrays and systematic 

handling of the second order functions. AT is a formal description of nested 

arrays in a first order logic. It is a mathematical model of the ways in which 

the orthogonal arrangement of material bodies interacts with their hierarchy 

nesting. The theory stems out of geometric experience with finite collections. 

Originally, the motivation to formalize array theories and languages was to 

create a notation for subscripting sequences, vectors, matrices, and higher 

dimensional objects.

Arrays properties are defined in the array theory as: [23][27]

• arrays are complex bodies composed of mass (data) and energy 

(operations), 

• multidimensional rectangular objects with items locations described by 0-

origin  addressing scheme,

• arrays have arbitrary numbers of dimensions including zero (denoting 

scalars),

• data elements are laid out along orthogonal axes (dimensions),

• every axis has a length (extent or upper bound),

• the extents of the array’s axes forms a shape vector,

• items of arrays can be themselves arrays, allowing for nesting,
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• arrays are heterogeneous, since there is no type constraints,

• operations on these bodies are simple, expressed as relationships between 

operations that are simple enough to be remembered and communicated,

• any operation applies to an element in an array, applies to others,

• the result of an operation is always an array subject to further operations,

• the formulae of brevity and universality of arrays are simplified by 

expressing the array transformations as successive operations on arrays. To 

preserve a pattern, array operations behave like operations on simple objects,

• absence of axes and nesting is a manifestations of a boundary-case 

presence of a structure,

• arrays are not a generalization of simple objects; simple objects (numbers, 

truth values, characters, … etc.) are special cases of arrays, 

• array operations include: valence, shape, tally, pick, tell, choose, raise, reshape, link, 

take, takeright, drop, dropright, list, sublist, transpose, fuse, rows, cols, split, mix, 

blend, each, pack, flip, reduce, leftreduce, cart, inner, outer, rest, front, append. Second 

order functions – Transformers, unary pervasive operations (abs, sin, … etc.), 

and binary pervasive operations (minus, plus, … etc).

• the basic operations of the arrays are total in the sense that they apply for 

all arrays,

• the array operation are closed, in the sense that they return arrays for 

further operations as pointed above.

Array theory, similar to set theory, is concerned with the concepts of nesting, 

aggregation and membership. Array theory is the mathematics of nested, 

rectangularly arranged collections of data objects, having a special position 

relative to other data objects in a collection. So, collections of zero or more 

elements are held at positions in a rectangular arrangement along zero or 

more axes. The items of arrays are themselves arrays. Nesting is an important 

concept in array theory that gives the theory much of its expressive power; it 
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is the ability to aggregate arbitrary elements in an array, by having the objects 

of a collection be collections themselves. [17]

Array theory conceptualize an algebra of:

• self-containing scalars, 

• empty arrays having nested structures, 

• strand (nested vector) notation, 

• the application of operations to nested arrays, with scalar operations acting 

pervasively,

• pictorial representation of such objects by nested boxes,

• explicitly defined primitives operators, such as each,

• and the application of arbitrarily defined operators to any operation.

In array theory, arrays are constructed by three different methods: hitch, reshape

and void.  Selection in done by four main selectors: first, rest, shape, and list, 

where the combinations of these correspond to cons, head, and tail.

In traditional imperative scalar languages, arrays are accessed with the 

specified index of its defined dimensions, as much as these dimensions are 

declared. To traverse a multidimensional array, the programmer need to take 

care of the starts, stops, and strides of nested loops of as many as the 

dimensions of the array. A two-dimension array will require two nested 

loops in the specified lower and upper bounds of each dimension, and so 

forth. To retrieve a slice from the array, the programmer must traverse 

through all entries in the array, to locate the required slice, or portion, and 

may copy it in another location in memory to apply some processing on it, 

and rewrite it back to the array. The programmer will be overloaded with 

defining relations between the indices in the multi-dimension array, and 
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testing the efficiency of the resulting relation equations. This requires a lot 

of tracing as much as the complexity of the problem.

2.2 Functional Programming

In applicative languages, it is not easy to define and implement arrays under 

the applicative semantics, this is due to three reasons:

1. arrays are handled as an expression result that makes the allocation of 

storage and filling in values alien to applicative semantics; 

2. illegal array definition occurs in case of recursive definition; arrays must be 

defined at most once;

3. modifying arrays require copying them, while the cost of copying large 

arrays is prohibitive.

In procedural languages, arrays are simpler than in functional languages. 

Non-sequential processing requires a functional programming language 

(category of declarative languages based on mathematical notion of 

functions) that is statically scoped and based on single expressions, which 

are executed by evaluating the expression. Most functional languages use 

arrays (such as nested lists, tuples, trees) as a mean for structuring data. 

Functional Languages implement arrays in a variety of approaches. Usually 

arrays are represented as a flat contiguous area in linearly addressable 

memory. Another approach would represent arrays to be passed item-by-

item, along data-flow links. Also, Sparse arrays can be stored as lists of 

items, or hash-tables. One of the approaches can be mapping arrays to fine-

grain SIMD machines, such as a Connection Machine [14]. Moreover, Finite 

portions of infinite arrays can be represented using data-flow or sparse array 

techniques. Relating functional languages to lambda calculus, realized arrays 
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such that progress was achieved compromising the four factors of 1: 

adhering to first principles, 2: clear semantics, 3: obvious pragmatics, and 4: 

high performance.

Scientific computations like fluid dynamic problems or weather forecast 

require enormous memory capacities operating on large data structures, like 

lists of records or arrays.  So, programming languages and computer systems 

suitable for these applications need to efficiently manage space and time 

consumption. Programming techniques, clever algorithms, and highly 

optimized compilers provide means to create code that avoids temporaries, 

and immediate re-claim of memory after finishing using it.

Techniques like allocating exactly the required memory size in declaration, de-

allocating on leaving the declaration scope, the multiple assignment concept 

that allows to overwrite arrays (reusing previously allocated space), indexing in 

array access allowing the iteration in loops with the required starts, stops, and 

strides, are all functional techniques that allow the efficient management of 

space and time for scientific applications. Side effects are observed like the 

naming problem for the multiple assignments, and scope problems in splitting 

large programs into concurrently executable parts, due to shared variables. 

The programmer can make concurrency explicit, or the compiler can deduce 

logical dependencies on variable assignments or indices. [7]

Functional programming languages provide the solution for those side 

effects, where variables are just placeholders for values, applying the concept 

of “single assignment rule”, avoiding side effects in over-writing. However, 

that was at the expense of the efficiency of array-operations, due to the fact 

that they consume their operand objects, creating new result objects, rather 

than update existing ones. This rewriting of large arrays, for any mere 

restructure or a few entries being changed, is very costly in terms of memory 
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space, and processing time. So the functional languages needed to integrate 

array concepts to allow operations to overwrite their operands, achieving 

concise programming and efficient implementation. With the Mathematics of 

Array (MOA), arrays can be viewed as conceptual entities that high-level 

functions can operate on to restructure and transform values. This method 

can totally decrease the use of the Do-Loops, since traversing and accessing 

arrays can be done in specific order using a particular primitive, handled by 

the system or the compiler. The idea is to map restructured arrays into 

existing arrays, instead of rewriting them, by moving pointers using offsets. 

This technique requires algebraic simplification to the array complex 

expressions, avoiding the creation of intermediate arrays.

Since the PSI-calculus is an algebra of array, it is based on a core set of 

essential array operations defined in terms of dimensionality, shapes, and 

indexing such as psi and gamma functions [1]. Moreover, the omega operator 

( Ω ) allows for distributing functions over the components of the array 

argument, to compute the values of elements of the resultant array.  MOA 

extended the PSI Calculus to include high level constructs for array 

restructuring and value transformation, making it a full subsystem for array 

processing. Initially, the research was directed towards integrating MOA 

notation into functional languages. Challenging problems for an array 

processing subsystem were the correct treatment of boundary conditions, the 

mapping into other arrays of different mesh sizes, and designing a program 

that works invariant of dimensionality and shape of actual array supplied as an 

argument.

The advantages of integrating the PSI-calculus into a functional programming 

language lie specifically in the reduction of temporary variables created, less 

amount of the error-prone loops created for a multi-dimension array, folding 

loops with the same starts, stops, and strides into one, and freeing the code 

from redundancies. Thus the programmer using the MOA constructs will be 
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able to produce enhanced program design that is abstracted from problem-

specific parameters, with confidence in program correctness, and without 

sacrificing performance.

In the following general overview of array languages and processing 

environments, considering the popularity of the scalar languages like C, 

Pascal, Fortran, ADA, … etc., (where operations apply only on single values, 

and array operations require indexing and looping which is tedious and error 

prone), it is desirable to investigate how we can integrate the array operations 

found in array-based languages, to these imperative scalar languages as higher 

order constructs. This thesis implements array operations invariant of 

dimension and shape in C, as APIs in a library, based on the MOA (Psi-

Calculus), and tests the applications domains that could benefit from this 

implementation, as well as the parallelisation, pipelining, and hardware 

implementation of the implemented library. 

2.3 Array Languages and Environments Survey

Array languages have been around since the 1960. The following are some 

array languages that provide array operations and indexing functions:

APL Language: It stands for A computer Programming Language [15]. It is

the first array language with powerful functional subsets that look like 

algebraic formulas and contain an enormous character set with concise 

syntax; it is famous for its succinctness, and the indefinite nesting of functions 

(functions evaluations are parameters for other functions).  It provides a 

number of powerful built-in functions that are applied to multi-dimensional 

arrays [of arrays [of arrays …]] (denoting nesting of arrays) as easy and simple 

as they are with atomic items. It emerged in a number of dialects with a 

standard one called ISO Standard APL; the ACRON compiler is a 
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combination of two of these dialects. APL is based on Lambda calculus like 

in dropping and taking elements from an array. It includes recursive data 

structures (boxed arrays), the rank adverb; it employs dynamic scoping, in 

which a called verb (function) can alter the values of the variables of its caller, 

and which are not localized within the called verb. On the other hand, 

ACRON used static scoping. APL supports using integer vectors as 

subscripts for arrays, by computing the outer product of the indices in each 

dimension to identify the elements referenced. APL is cursed for being un-

maintainable, due to considering it an incomprehensible programming 

language (an anarchist programming language).

Fortran introduced the array concepts, with static arrays of a fixed type and 

with a limited number of dimensions. The array-handling notation in Fortran 

is closer to the mathematical form. Fortran allows referencing elements using 

triple or slice notation to reference subsets of elements. Fortran 90 allows 

zero-sized arrays and explicit shape definition. Both languages (APL and 

Fortran) allow ignoring the subscript to denote the whole array. Fortran 

provides some higher level array constructs like: whole array assignment, 

WHERE to mask an assignment, sub-objects to allow for segmentation, Dot 

Product, Matrix Multiplication, array reduction, array inquiry, array 

construction, reshaping, and manipulation operations. Fortran 90 can support 

object-oriented concepts. Parallelism is much less obvious in original source 

code of Fortran, but it is intuitively clear. 

Algol: stands for (ALGOrithmic Language) [27]; it is a high level language 

designed for programming scientific computation. It allows for an arbitrary 

number of dimensions. It determines the size of the array dynamically at 

block entry, where the subscript range is specified by variables to define the 

size of the array while allocating storage for it. 
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Nial Language: Array theory was formalized for development through the 

Nial (Nested Interactive Array Language), which is a multi-paradigm 

programming language combining features from APL, Lisp, and FP [23]. It 

implements fast powerful array operations, based on the mathematical 

treatment of nested arrays, with procedural language and familiar control 

structures, containing a rich set of primitives to rapidly develop a loop-free 

data-driven algorithm. Nial supports the heterogeneous arrays. Q’Nial is a 

highly portable interpreter for Nial, used for applications in decision support, 

knowledge based systems, scientific computations, and data analysis. 

VCODE is an intermediate vector language, where all data are vectors, 

including the shape vector. It compiles to a variety of parallel machines. 

Q’Nial and VCODE are two languages that allow multidimensional arrays to 

be declared in terms of a flat array and a shape, allowing operation over a 

variety of shape classes – This is how the MOA model is implemented in this 

thesis in C++.

Sisal Array Language: it is a general-purpose applicative language that 

stands for “Streams and Iterations in a Single Assignment Language” [13]. It 

is a high-performance parallel programming language that exposes implicit 

parallelism through data independence (guaranteeing determinate results), 

based on mathematical principles. It is a single assignment data-flow language, 

which support arrays. Sisal generates code for multi-processors architectures. 

Performance of Sisal programs is better than equivalent Fortran programs 

compiled using automatic vectorizing and parallelizing software, and run 

comparably to hand-written parallel Fortran codes. This is because of the 

simplicity of the functional programming model. It employs single assignment 

data-flow, and is designed such that arrays and array operations are included 

in its language definition to target the large-scale scientific applications to run 

on parallel-supercomputers. In Sisal, modifications of elements, and mean 
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copying of array operands, are possible while the cost of copying of large 

arrays is prohibitive. 

Falafel Array Language: it stands for (Functional Array Language for 

Experiments in Laziness) [14]; it is an experimental functional language that is 

not an array-based language, with first class arrays. Falafel relates array types 

by strong structured polymorphic typing, and structural inheritance of 

functions applied from supertypes to subtypes. It employs the lazy evaluation 

concept, and provides means for partial definitions of arrays. It supports only 

the homogenous arrays, not the heterogeneous ones. Falafel adopts the 

sophistication of array theory and simplifies some areas.

NESL Language: is a parallel functional language that supports nesting. It 

translates to VCODE. It is based on two main concepts which are the Nested 

data parallelism, and the language based performance model. The first 

concept resulted in data parallelism, concise code, and hence, readiness for 

irregular algorithms on trees and graphs or sparse matrices. The second 

concept gives a formal way to calculate the work and depth of a program. It is 

used for teaching, algorithm experimentation (planar Delaunay triangulation, 

the N-body problem, graph connectivity, graph separators, support tree 

conjugant gradient), and algorithm animation.

Haskel Language: it is a lazy non-strict functional language [25], where 

arrays are defined as a basic type, called non-strict monolithic arrays that can 

contain undefined elements, and monolithic arrays can define all its elements 

at once, using array comprehensions. Some of array functions in Haskel are: 

array, listArray, accumArray, bounds, indices, elems, assoc, operator // (copy array), 

operator ! (subscripting), accum (batch updating), amap (mapping on the 

elements), ixmap (mapping on the indices), … etc. Since, Array mapping in 

Haskel is supported through type classes (also in Gofer Language), therefore 
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the mapping algorithm must be supported by the user. Unlike the Charity 
language, the algorithm of mapping can be inferred from the type.

Gofer Language  stands for GO(od) F(or) E(quational) R(easoning), not like 

the Gopher (internet distributed information delivery system) [25]. It is an 

interpreter language based on the Haskell report. It supports lazy-evaluation, 

higher order functions, polymorphic typing, pattern matching, and 

overloading. It runs on several machines like PCs, Ataris, Amigas, Unix-based 

systems,  and Apple Macintosh.

Charity language  is a categorical programming language that is based on 

the theory of strong categorical data types (inductive and co-inductive data 

types). Programming in Charity is expressed by folding (catamorphisms) for 

the inductive and unfolding (anamorphism) for the co-inductive data types.  It 

supports lazy-evaluation, higher order functions, all computation terminates 

up to user input.  It is elegant and suitable for teaching, researching, 

development for reasoning about programs, transformations and 

verifications. 

Lucid Language: it was introduced in the mid seventies, originally with 

implicit one dimension (referred to informally as time) [28]; then later it was 

enhanced to allow for the existence of different dimensions and even 

temporary dimensions. It includes operators like first, next, fby, realign, and 

rank.

FISh Language: is an array-based, polymorphic language for array 

programming that supports both functional and imperative styles [24]. It 

includes higher-order array operations such as mapping and folding 

(reduction). Its array type constructor is used to represent all finite 

dimensional arrays, so that polymorphic functions may be applied to arrays of 
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any number of dimensions. Shape analysis is used to determine the storage 

requirements of each array, so that boxing of array entries is unnecessary. 

Also, the shape  analysis produces an accurate portable parallel programs 

costing model . FISh shows dramatic speedups in array programming 

compared to other higher-order, polymorphic languages.

MATLAB language: it is a high-performance interpreted technical 

computing environment, designed for engineering and scientific 

applications, with trusted mathematics and powerful numeric computing 

functions, and graphical representation of data. Its application domain is 

wide; it applies for producing solutions to complex systems of equations, 

modeling, simulations, prototyping, fuzzy logic implementation,  digital 

signal processing, image processing, partial differential equations, curving 

applications, aerospace applications, decision support systems, data analysis 

and exploration and visualization, … etc. It provides efficient matrix and 

vector computations, and graphical plotting of 2-dimensional and 3-

dimensional structures. 

ZPL: it stands for the Z-level Programming Language [25] [21]; it is an 

efficient parallel APL language used by scientists and engineers that provides 

a performance model allowing for reasoning about parallel overheads, and is 

faster than other high level programming languages. It is characterized by 

good scalability, platform portability (machine independent overlapping of 

computation with communication optimization using its Ironman interface), 

message passing equivalent to C. It compiles to ANSI C, and then is compiled 

to the targeted machine (currently to Cray T3E, IBM SP2, Intel Paragon, SGI 

Origin, Sun Enterprise, High Performance Clusters, and Unix workstations). 

It can interface with sequential C code, and provides access to scientific 

libraries. It supports region-programming concept (indexing arrays by regions; 

i.e. slicing to compute on boundary conditions), directions, sophisticated array 

structures, shattered control flow. It provides a performance model that 
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makes users define how well their programs will run on parallel machines, 

characterized by what-you-see-is-what-you-get (WYSIWYG) property. It is 

not a shared memory language, however it preserves the minmum advantages 

of shared memory. it eliminates the temporaries created both by the 

programmer and by the compiler, specially in arrays. This is done by 

operating on the entire array by wrapping each line in enough loops to iterate 

over all elements of the array. 

2.4 Summary

In table 2-1, a summary of some basic properties of arrays are compared 

among the surveyed languages is presented. A hyphen in a cell in the table 

means that the information wasn’t available at the time of editing of this table, 

since these languages & environments were surveyed theoretically from the 

available references, without experimentations. From table 2-1 and the 

discussions in this chapter, the need to include array operations in an

imperative language with a larger domain of application, becomes more 

obvious. This is what this thesis hopes to achieve.

Table 2-1: Summary of Surveyed Array Languages and Environments

Property

Lang.

Arrays & Array 
Operations

Nesting Hetro/
Homogenou
s

Dynami
c Size

Parallel
Computing

APL Array-based Functions 
& Arrays 
nesting

Homogenous Dynamic Parallel 
Language

Fortran Supports Arrays Can 
support 
inheritance, 
but wastes 
efforts for 
source code 
duplication

Homogenous Fixed Intuitive
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Table 2-1: Summary of Surveyed Array Languages and Environments - Continued

Algol Array-based Allow 
Nesting

Homogenous Dynamic -

Nial Array-based - Heterogeneou
s 

Dynamic -

VCODE Vector-language - Homogenous Dynamic Compiles to 
parallel 
machines

Sisal Support arrays - Homogenous - Parallel 
Language

Falafel First class arrays Structured 
inheritance

Homogenous Partial 
Array 
definition

-

NESL Supports arrays. Nested 
Data 
Parallelism

Homogenous - Parallel 
Language

Haskell Incorporates 
arrays

- Homogenous - -

Gofer Supports arrays - Homogenous - -
Charity Supports arrays - Homogenous - -
Lucid Array-based - Homogenous - -
FISh Array-based 

(mapping, 
reduction,  static 
shape, and 
efficient array 
access)

- Homogenous - GoldFish 
supports 
parallel 
combinators
.

MATLAB Supports Arrays - Homogenous - -
ZPL Supports 

indexing array 
by regions

- - - Parallel APL 
language
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C h a p t e r  3

MATHEMATICS OF ARRAYS

3.1 Introduction

Since arrays are an important data structure in many applications, many 

researchers worked on enhancing array manipulation techniques to achieve 

better performance. Mathematics of Arrays (MOA) is the algebra of 

Reduction Rules defined to operate on arrays of arbitrary dimension. In the 

paradigm of MOA, arrays of arbitrary dimension and shape are the basic data 

structure of all types. Scalars are considered to be arrays of 0 dimension, 

vectors are considered to be arrays of 1 dimension, matrices are considered to 

be arrays of 2 dimensions, and up to any arbitrary number of dimensions and 

shapes.

Earlier studies on arrays went in two directions. The first direction dates back 

to the 19th century when Joseph Sylvester, an English Mathematician, 

developed “The Construction Theory of Partitions” [34], incorporating ways 

to partition an integer into a finite arbitrary number of parts. He used 

diagrams resembling arrays to visualize the odd and even partitioning. He was 

the first to introduce the term Matrix, and developed the theory of 

determinants, and the theory of invariants, and studied the quarternians (a 

special kind of matrix).

Sylvester collaborated with Arthur Cayley who was investigating the linear 

transformations on matrices [35], introducing matrix transpose and inversion 

and matrix methods for the geometry of n-dimensional space. Both of them 

developed jointly an algebraic approach to differential geometry. Their work 
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was referenced in the work of Whitehead [48] discussing the Universal 

Algebra in the 1960’s.

The second direction started by Iverson, who investigated similar ideas and 

reformulated the previous ideas [36], developed a set of operations for a 

programming language that used arrays. Iverson generated the APL language 

formulating partitions and properties of array expressions. Abrams in 1970s 

studied the APL operations [37], recognizing the relation between the arrays 

transformations and indexing operations. Then, he simplified the array 

expressions, relating inner and outer product to scalar operations and 

reductions, and discussed the lazy evaluation concept (evaluation of 

expressions should take place only when the values are needed). He built an 

APL machine, developing the basis of the Mathematics of Arrays (MOA).

Guibas and Wyatt [38] extended Abrams work, to include the outer product.  

Perlis, Minter, and Miller [39] included these concepts in an efficient 

implementation of an APL compiler. Tu and Iverson later introduced the 

ranking operation, using the rank as an argument to operations [40]. Tu also 

described the semantics of the array expressions in terms of the Psi (ψ )-

Calculus, linking them to the functional programming languages.

Later on, array operations notation was used to describe and simulate 

computer architectures [41] (for example System/360 architecture was 

described using APL notation, and also hardware components like multipliers 

and adders) and as a basis for the Register Transfer Language (RTL). 

Examples of the RTLs based on array operations notation are the AHPL by 

Hill written in Fortran [42]. Also APLSIM is a circuit design language, which 

provides SPICE-like simulations implemented in C in a modified APL 

environment [43].
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Reynolds, Gerhart, Pichumani, and Stabler verified array expressions using 

inductive assertion techniques [44] [45] [46], automating the verification of 

shape constraints. Some investigations found that APL had too many 

irregularities and can’t perform systematic verifications, suggesting that in 

order to completely automate the array operations in a language, it should be 

functionally semantic and arrays should be described in terms of their shapes. 

On the other hand, others proved that APL can be used to automate the array 

operations, proving properties about RTLs, which appear frequently in VLSI 

designs, in shifting, or rotating registers, taking, or dropping segments of 

registers, and comparing registers segments with stored memory locations.

In the late 80’s and 90s, Mullin later performed a complete arithmetic analysis 

to identify the array operations that have a common theme [1], and the usage

of axioms and definitions to describe theorems for VLSI design verification. 

She identified the common theme to be the indexing function, which uses the 

array structuring information (dimensionality and shape). Later on, the Psi-

Compiler was designed [4] [5], which parses the notation in MOA to generate 

C or Fortran programs, which were also introduced, then implemented in 

hardware using the Chameleon board (described later in this thesis). Further 

work discussed the Reduction semantics of the array expressions in the Psi-

compiler, and the Data Parallel computation using the Psi-Calculus, and 

Functional Languages extensions to encapsulate the Psi-Calculus subsystem 

for array operations [6] [7].

That was how the MOA evolved to become a notation used for verifications 

of computer architectures design, and array descriptions in any physical 

problem.
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3.2 MOA preliminary axioms and Definitions

MOA is a notation based on the Psi-Calculus, which corresponds to the array 

theory discussed in chapter 2 [27]. It encapsulates the same array properties 

discussed earlier, only differs in that its data elements are numeric scalars that 

can be extended to any homogenous scalar type. Scalars are defined to be 

arrays of no dimension and with empty shape vectors. The MOA algebra is a 

set of operations proven to be useful for scientific algorithms. All operations 

are based on shapes and indexing functions.  The properties of the 

mathematics of arrays notation are as follows:

• The method of evaluating expressions only when the values are needed 

(Lazy Evaluation).

• The method of simplifying array expressions, to perform fewer operations, 

consuming less space.

• The method of updating operands (large arrays) in place, avoiding the 

creation of temporaries.

• The ability to shift or rotate, taking or dropping segments of registers and 

comparing register segments to stored memory locations.

• The fact that the array operations that are defined to access arrays in large 

adjacent blocks, fit nicely in the cache structure and execute faster, because 

caches take advantage of nearest memory locations, even on a uni-processor. 

• The fact that in a multi-processor environment, sub-array operations can 

be scheduled over the multiple processors of the shared-memory, MIMD 

architectures.
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As these potential speed-ups could be fully realized in a parallel architecture, it 

was also proven that they could be partially realized on a uni-processor. 

Hence, a combination of an accurate model of memory caches, concurrency 

of sub-array operations, and low process communication was seen to achieve 

good performance [1]. 

Arrays are read in row major order. The notations used through out this 

thesis are summarized in table 3-1.

Table 3-1: MOA Notation

vr Denoting vectors,
ξ For arbitrary array,

[ The opening parenthesis for a dimension in an array,
] The closing parenthesis for a dimension in an array,
< The opening parenthesis for a vector,
> The closing parenthesis for a vector,
abs Returns absolute value of argument on right hand side.
div Integer divide, returns the quotient,
mod The remainder, from an integer division,
op Any arithmetic operation [+, -, *, /, <, >, max, min, and, or, xor]

The following sub-sections describe the MOA operations. The functionality 

of each operation is described, the equation is stated, and some examples are 

demonstrated. These operations are divided into seven categories: the 

measurement operations, the indexing operations, the array constructing 

operations, the scalar operations, axis transpositions and transformations 

operations, reduction and scan operations, and finally the higher order 

constructs. The diagram in figure 4-13, found in the next chapter in section 

4.4, illustrates these categories and all the MOA functions, conceptualizing the 

MOA notation as implemented in this thesis.
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3.2.1 The Measurement Operations

Dimensionality: δξ  a unary prefix operation returning the rank of the array:

nn ≡δξ Equation 3-1 

 

This function returns zero for a scalar, 1 for a vector, 2 for a matrix, and so 

forth.

Shape: ρξ  any array ξ has a shape vector, denoted by ρξ , whose entries 

are the lengths of each of ξ ’s dimensions.

1)(10 ...,,, −= δξρξ iii Equation 3-2 

The following examples are defined to be used in all the operations to come. 

They are selected to be comprehensive test cases, to illustrate the behavior of 

the notation invariant of dimension and shape:

543211 ≡vr

51 ≡vrρ

11 =vrδ
















=

65
43
21

2
1ξ
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>=< 232
1ρξ
















=

1211109
8765
4321

2
2ξ

>=< 432
2ρξ
















=

65
43
21

2
3ξ

>=< 232
3ρξ



















=

16151413
1211109

8765
4321

2
4ξ

>=< 442
4ρξ























≡

101620142
211151923
25418248
6139175
11722312

2
5ξ

>=< 552
5ρξ

































=

1211
109

87
65

43
213

1ξ
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>=< 2233
1ρξ














































































=

2423
2221

2019
1817

1615
1413

1211
109

87
65

43
21

4
1ξ

>=< 22234
1ρξ

Total: τξ : is a unary operation that returns the number of elements of an 

arrayξ , by multiplying the components of its shape.

)( nρξπτξ ≡ Equation 3-3 

 

Examples using the arrays defined in section 3.2.1:

6)23(2
1 ≡≡ πτξ

12)223(3
1 ≡≡ πτξ

Ravel: rav ξ  collapses the array to one dimension, i.e. it returns the flat 

vector of a multidimensional array.

Given array nξ  with shape vr , and valid subscript vector i
r

:

ψ→
v
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[ ] ( )[ ]11211010 )...))))(((((..., −−− +×+×+×≡ nnn
n ivviviravii ξξ

Equation 3-4 

Examples using the arrays defined in section 3.2.1:

>≡< 6543212
1ξrav

>≡< 1211109876543213
1ξrav

Pi: πξ is a unary operation that returns the product of the array components 

of any arbitrary vector vr , or the component elements of a multidimensional 

array ξ .

][)(
)1]0)[((

0
irav

i
ξ

ρξ
πξ

−

=
Π≡ Equation 3-5 

 

Example using the above defined arrays:

7202
1 ≡πξ

3.2.2 The Indexing Operations

Psi– niψξ
r

: This is the main indexing operation; it is a binary operation 

which accesses the selected i
r

 from nξ .

]]1[],...,0[[ −= niii nn ξψξ
r

Equation 3-6 

 

Examples using the arrays defined in section 3.2.1:
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411 2
1 =>< ψξ

12112 3
1 =>< ψξ

>=<>< 6501 3
1ψξ









=><

2423
2221

12 4
1ψξ

Gamma: ( )ba rr;γ  is a mapping function that returns the index in the raveled 

(flattened) array ξ  of shape b
r

, denoted by the vector index ar .

Given an array of dimension j, and shape b
r

, gamma of index vector ar is:

( ) ),...,;,...,(,...,;,..., 2020111010 ><><×+≡><>< −−−−−− jjjjjj bbaababbaa γγ

Equation 3-7 

So this is equivalent to:

)];()[( ρξγξψξ iravi
rr

≡

Examples:

5)23,12( 2
1 ≡><>< ξγ

10)223,012( 3
1 ≡><>< ξγ

Note: the shape is included in the argument list. No need to pass a complete 

array, just its shape is enough to compute the index in the flat array from the 

multidimensional index. This same note applies for the next function.
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Gamma Inverse: γ ′ this function returns the index vector of a scalar index in 

the raveled array. It takes the output of the previous gamma function to 

return its input.

γγ ′≡><′ + ),...,;( 10 nbbn (n div d; <b0, …, bn>), n mod d Equation 3-8

where d = >< nbb ,...,1π .

So that:

nbbny ≡′ ));;((
rr

γ

Examples:

>≡<><′ 12)23;5(γ

>≡<><′ 012)223;10(γ

3.2.3 The Array Constructing Operations

Reshape: ρξsr this is a binary infix operation that constructs or reconstructs 

arrays.

For vectors:

);([)( sivvsi rrrrrr
γρψ ≡  mod ]vrτ Equation 3-9

For arrays:

)( ξρρξ ravss rr ≡ Equation 3-10
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Examples using the arrays defined in section 3.2.1:









≡><

43
21

22 2
1ρξ

[ ]
[ ]
[ ]

[ ]
[ ]
[ ]















≡><

1211
109
87

65
43
21

232 3
1ρξ

Catenate: 21 ξξ ⊕ we will be giving this operation the sign ⊕ . This operation 

concatenates two arrays over the required dimension, given that the shapes 

along the other axes are equal.

For vectors:

)()()( yxyx rrrr ρρρ +≡⊕ Equation 3-11

yxi
xi

xif
if

yxi
xi

yxi rr

r

rrr

r
rr

ττ
τ

τψτ
ψ

ψ
+<

<
≤
≤





>−<
><

≡⊕><
)(

0
)( Equation 3-12

For arrays, Catenate of array 1ξ  with shape vector ar  and 2ξ  with shape 

vector b
r

 on the Xth dimension, given that other dimensions bounds are equal 

on both arrays:

>−+≡<⊕ ]1[]),...,[][(],...,0[)( 1121121 δξρξρξρξρξξξρ XX Equation 3-13

][][][
][][

][
0

]1[],...[][],...,0[
)(

2

1
21 XbXaXi

XaXi
Xaif

if
diXaXii

i
i

+<
<

≤
≤





>−−<
><

≡⊕><
ψξ

ψξ
ξξψ

r
r

Equation 3-14

Examples using the arrays defined in section 3.2.1:
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1,

65
43
21
65
43
21

2
3

2
1 =



























≡⊕ Xwhenξξ

resulting shape vector = <6 2>.

2,
6565
4343
2121

2
3

2
1 =
















≡⊕ Xwhenξξ , resulting shape vector = <3 

4>.

Iota: nι is a vector whose entries are the integers from 0 to n-1, for n ≥ 0.

>≡< nn)(ιρ Equation 3-15

jjn ≡])[(ι Equation 3-16

Example:

43210)5( ≡ι

3.2.4 The Scalar Operations

Point-wise Extension: 21 ξξ op This kind of operation takes two arrays 

of the same dimension and shape and applies a point wise operation on their 

components. This means that elements of the same coordinate positions are 

treated as scalars to produce an output array of the same dimension and 

shape as the input arrays, containing the resulting elements.
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)()( 121 ξρξξρ ≡op Equation 3-17

( ) )()( 2121 ξψξψξξψ iopiopi
rrr

≡ Equation 3-18

Example using the above defined arrays:
















≡+

1210
86
42

2
3

2
1 ξξ

Scalar Extension: ξσ op This kind of operation takes a scalar and an 

array as inputs, and applies an operation between the scalar and every element 

in the array, constructing an array of the same dimension and shape as the 

input array.

)()( ξρξσρ ≡op Equation 3-19

( )ξψσξσψ iopopi
rr

≡)( Equation 3-20

Example using the above defined arrays:
















≡+

87
65
43

2 2
1ξ

3.2.5 The Axis Transposition and Partition Operations
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Take: ξ↑i
r

This structuring or restructuring operation partition an array ξ

by returning an array of shape i
r

, from the front end of the axes in the shape 

of ξ , if i
r

is positive, or from the back-end otherwise.

For vectors:

>≡<↑ σσρ absv)( r Equation 3-21

0
0

])[(
][

])[(
<
<

≤−
≤





+−
≡↑

σ
τσ

τστ
σ

v
vif

if
ivv

iv
iv

r

rrr

r
r Equation 3-22

For Array ξ  of shape b
r

and dimension k, where j is the upper bound of the 

vector i
r

:

kj
k

if
jif

kbjbjii
i

i
<≤

=





>−<
≡↑

0][],...,[],1[],...,0[
)(

r
r

ξρ Equation 3-23

kj
k

if
jif

kbjbjll
lil

<≤
=





>−<
≡↑

0][],...,[],1[],...,0[
)(

ψξ
ψξξψ
r

rr
Equation 3-24

Examples using the arrays defined in section 3.2.1:









≡↑

65
21

22 2
2ξ

21211 3
1 ≡↑ ξ

[ ]6521212 3
1 ≡↑ ξ
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Drop: ξ↓i
r

This function returns the remaining of the array in the take 

function after taking the index of it, i.e. it drops from the front end of the 

axes in the shape of ξ , if i
r

is positive, or from the back-end otherwise.

For vectors:

>−≡<↓ στσρ absvv )()( rr Equation 3-25

0
0

][
][

])[(
<
<

≤−
≤



 +

≡↓
σ

τσ
τ

σ
σ

v
vif

if
iv
iv

iv
r

rr

r
r Equation 3-26

For Array ξ of shape b
r

and dimension k, where j is the upper bound of the 

vector i
r

:

0
0

])1[(]1[,...,])0[(]0[
]1[]1[],...,0[]0[

)(
<
<

≤−
≤





>−−−−<
>−−−−<

≡↓
j

kj
kif

if
jiabsjbiabsb

jijbib
i ξρ
r

Equation 3-27

0
0

)])1[(]1[(),...,])0[(]0[(
)(

)(
<
<

≤−
≤





>↑−−−−−−<
↑↓

≡↓
j

kj
kif

if
jiabsjbiabsb

i
il

ξ
ξξρ

ξψ
r

rr

Equation 3-28

Examples using the arrays defined in section 3.2.1:

121122 2
2 ≡↓ ξ

128111 3
1 ≡↓ ξ

121112 3
1 ≡↓ ξ
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Reverse: φξd  this operation reverses the elements of array ξ  on the 

required dimension d, preserving symmetry.

For vectors:

vv rr ρρφ ≡ Equation 3-29

)]1()[(])[( +−≡ ivviv rrr τφ Equation 3-30

For arrays:

ρξρφξ ≡ Equation 3-31

ψξρξφξψ >+−≡<>< )1(])[()( idi
r

Equation 3-32

Examples using the arrays defined in section 3.2.1:
















≡

4321
8765

1211109
2
2φξ , on dimension 1,
















≡

9101112
5678
1234

2
2φξ , on dimension 2.

Rotate: θξσr this operation rotates the array ξ with dimension j, on every axis 

k, ][kσr  positions towards increasing indices if ][kσr  is positive, and towards 

decreasing indices otherwise.

For vectors:

)()( vv rr ρσθρ ≡ Equation 3-33

]mod)([][ viviv rrr τσσθ +≡ Equation 3-34



- 37 -

For arrays:

)()( ξρθξσρ ≡
r Equation 3-35

ψξρξσρξσθξσψ >−−+−+≡<>< ]]1)[(mod])1[]1[([],...,]0)[(mod])[][([)( jjjiooii rrrrrr

Equation 3-36

Examples using the arrays defined in section 3.2.1:



















≡

6587
2143

14131615
1091211

22 2
4θξ ,



















≡

14131615
1091211

6587
2143

20 2
4θξ ,



















≡

8765
4321

16151413
1211109

02 2
4θξ ,



















≡

9121110
5876
1432

13161514

13 2
4θξ

So, rotate achieves the result of a multidimensional circular shift, where the 

parameter index, decides the amount of shifting required on each axis.

Transpose: ξΦvr This operation applies a multi-dimensional transposition on 

the input array, defined by a permutation vector of length equals to the array’s 
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dimensionality. In a 2-dimensional array, a transposition of permutation 

vector = <2, 1> converts rows to columns. For arrays of dimensionality 

more than 2, a permutation vector decides the way the array is transposed, so 

it must be always of length equal to the arrays dimensionality, and its elements 

are the order of switching the multi-dimension index of the input array. A 

reverse order permutation order, always converts rows to columns.

This operation does not apply on Vectors. It applies only on Arrays with j 

dimensions greater than or equal 2:

)()( ξρξρ ≡Φvr Equation 3-37

ψξρξρξξψ >−≡<Φ>< ]]]1[)[[(]]],...,0[)[[()( jvivivi rr
Equation 3-38

Examples using the arrays defined in section 3.2.1:



















≡Φ

161284
151173
141062

13951

12 2
4ξ ,

























≡Φ

1284
1062

1173
951

123 3
1ξ ,

Grade Up: gu is a function that sorts the elements in an array in ascending 

order 

Examples using the arrays defined in section 3.2.1:























=

2524232221
2019181716
1514131211

109876
54321

2
5ξgu
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Grade Down: gd is a function that sorts the elements in an array in 

descending order 

Examples using the arrays defined in section 3.2.1:























=

12345
678910

1112131415
1617181920
2122232425

2
5ξgd

Slice: ba ξ⊂ This function slices the multidimensional array ξ into 

slices of arrays of the dimensionality a, and returns the specific slice b.

For vectors:

][bvabva rr ρ≡⊂ Equation 3-39

For arrays:

)( ξρψξ abba rrr
≡⊂ Equation 3-40

Examples using the arrays defined in section 3.2.1:

9510000 3
1 ≡⊂ ξ

861111 3
1 ≡⊂ ξ

1090022 3
1 ≡⊂ ξ
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3.2.6 The Reduction and Scan Operations

Reduction: (op red) It is like the scalar extension operations discussed above, 

but requires no scalar input and the operation is applied on the components 

of the input array cumulatively, reducing its dimension by 1.

For vectors:

0≡vredop
rδ �  a scalar, an array of dimension zero. Equation 3-41

>=< 1)( vredop
rρ , a scalar has a shape of 1. Equation 3-42

][1
0 cvopvred vc

cop
rr r−=

=≡ τ Equation 3-43

generating one element (a scalar) of the result of applying the operation on 

the elements of the input vector.

For arrays:

1−≡ δξξδ redop , the dimensionality, Equation 3-44

>−=< ]1[],...,1[)( jbbredop ξρ Equation 3-45

skipping the first dimension b[0] that will be reduced.

ψξξψ >−<≡ =
= ]1[],...,1[,)( ]0[

0 jiicopredi bc
cop

r
Equation 3-46

Examples using the arrays defined in section 3.2.1:

151 ≡+ vred r

242118152
2 ≡+ ξred
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Scan: ξscanop  retains all the partial results obtained in a reduction 

operation on an array on the specified dimension.

For vectors:

vvscanop
rr ρρ ≡)( Equation 3-47

( )( ) viviredivscan opop
rrr τ<≤∀↑+≡ 01])[( Equation 3-48

For arrays:

ρξξρ ≡)( scanop Equation 3-49

( ) ρξξτρξξψ <>≤<∀↑>−+++<≡ iiiiredscani opop

rr
0,...,0]1[1],...,1[1],0[1)(

Equation 3-50

 Examples using the arrays defined in section 3.2.1:

15106311 ≡+ vscan r
















≡+

24211815
121086

4321
2
2ξscan , on the first dimension
















≡+

24211815
121086

4321
2
2ξscan , on the second dimension

Compress: •/  Compressing the array on the positions of the data elements 

set to 1 in the Boolean array specified. The original equation in the MOA 

notation:
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For vectors:

121 )/( vredvv rrr
+≡•ρ Equation 3-51

]][[])[/( 1221 ivgdvivv rrrr
≡• Equation 3-52

For arrays:

( )ρξξρ ↓⊕≡• + 1)/( vredv rr Equation 3-53

ψξξψ >≡<• ][)/( ivgdvi rrr
Equation 3-54

Examples using the arrays defined in section 3.2.1:
















≡•

















5
3
1

/
01
01
01

2
1ξ

Expand: \•  Expands the array on the positions of the data elements set to 1 

in the Boolean array specified. Using the same Boolean array argument, this 

function returns the same original array (the dimension, the shape, and the 

values of the non-skipped elements), but with the data elements that has been 

skipped in the compress, will be equal to zero. The first argument is the 

Boolean array.

For vectors:

( ) 121 \ vvv rrr ρρ ≡• Equation 3-55

( ) ( )[ ]
0][

1][
0

][\ 1

12
21 Otherwise

ivif
ivscanv

ivv
≡





−
≡•

+

r

rr
rr Equation 3-56

For arrays, over the zero’s dimension:
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( ) ( )ρξρξρ ↓⊕≡• 1)(\ vv rr Equation 3-57

( )
( )( ) 1

0
][
][

1][
0)1(

\
≡
≡





−
↓

≡•
+ ivif

ivif
ivscan

vi r

r

r
r

ξψ
ρρξ

ξψ Equation 3-58

Examples using the arrays defined in section 3.2.1:
















≡•
















•

















05
03
01

)/
01
01
01

(\
01
01
01

2
1ξ

3.2.7 The Higher Order Operations

Omega: 21 ξξ baopΩ  This is a higher order operation, that applies 

operation op on pairs of identically indexed sub arrays from the slice of 

dimension a of array 1ξ  and the slice of dimension b of array 2ξ .

( ) ( )2121 ξξξξ ⊂⊂≡Ω bopabaop , for all slices from 

both arrays Equation 3-59

Examples using the arrays defined in section 3.2.1:









≡

654
321

oξ

( ) ( ) ( )
( ) ( ) ( )






+++
+++

≡Ω+ 656435214
653432211

10 3
2ξξO

Dot:• This function performs the outer and inner products of arrays. It has 

two variations, a unary Dot operation that performs the outer product, and a 
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binary  Dot operation that performs the inner product. The outer product 

unary dot operation applies the unary operator on each element of the first 

array with each element in the second array, ending up with an expanded 

result of shape formed by the concatenation of the shapes of the input arrays. 

The inner product binary operation applies an operator on every pair of 

equally indexed elements from the two arrays, then reduces the resulting array 

by one dimension, ending up with a collapsed array than the input arrays. The 

functionality of the Dot operation can be decided as the problem domain 

requires, and different variations can be introduced. The two operations 

proposed in this thesis are formalized as follows:

Outer Product Unary Dot:

( ) 2121 ρξρξξξρ ⊕≡• op Equation 3-60

( ) ( ) ( ) ( )2121, ξψξψξξψ jopiji op

rrrr
≡• Equation 3-61

Inner Product Binary Dot:

( ) ( ) ( )2121 11
10

ρξρξξξρ ↓⊕↓≡•opop Equation 3-62

))(()( 21121 010
ξξξξ Φ≡• vopredopopop

r Equation 3-63

where  ))((1 2δξιϕ≡vr , which is a vector of a reverse order permutation 

of size equal the dimensionality of the second array input. 

Examples:

43211 ≡dξ
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

















≡•

161284
12963
8642
4321

)( 11
* dd ξξ

30)( 11
* ≡•+ dd ξξ

MOA expression Example:

Given a 4 dimensional array as follows:



























































































































































≡

3635
3433
3231

3029
2827
2625

2423
2221
2019

1817
1615
1413

1211
109
87

65
43
21

4ξ

With shape vector:

23324 ≡ρξ

To choose the sub-array that corresponds to the first hyper-plane in the axis 

0,  first two planes in axis 1, last two rows in axis 2, and all the columns in axis 

3,  results from the following nested MOA expression:

























≡↑↓

1211
109

65
43

)21(1 4ξ
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3.3 Psi Reduction Theorem

Reduction in literature can be defined to be shape reduction, or data 

reduction. Shape reduction means the definition of the array shapes statically, 

simplifying the shape expressions, and evaluating polymorphic constants. 

Data reduction is expressed as the process of replacing the manipulation of a 

whole array with the manipulation of a part, which increases efficiency. 

The Psi reduction theorem is the process of simplifying the expression for the 

item in terms of its Cartesian coordinates. The MOA operations defined 

above are all designed so that expressions can be reduced to the minimal 

normal form. Consider the following example:

Given the following three-dimensional array:

































≡

1211
109

87
65

43
213ξ

with shape vector:

2233 ≡ρξ

The following MOA expression drops 1 from the array, then takes 1, results 

in:









≡↓↑

87
65

)1(1 3ξ
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This is equivalent to the following reduced expression:









≡

87
65

1 3ψξ

As shown above, MOA array expressions can be reduced to their simplest 

form, which does the minimal work, to an expression by only involving the 

ψ - Psi operation. The Psi-reductions are deterministic and mechanical, and 

could be used in conjunction with existing parallel compiler technology.

Considering the previous definition of reduction in MOA, we can see that 

reduction of any MOA array over a dimension interacting with its shape 

vector, is a reduction over shape and data. The reduce operation discussed 

earlier, is a general form of reducing the size of the data in the array by 

applying an operation between pairs of items in the array along a specified 

axis reducing its dimensions by one. Another form of reduction is achieved 

by the compress operation, which reduces the size, by skipping some of the 

elements in the array. However, the expand operation does not restore the 

data reduced in the compress function, as shown in the examples above. 

Another variation for the compress function could be implemented that 

averages the values of the non-skipped elements by the neighboring skipped 

elements (using the connectivity operation), so that the compressed array can 

be restored later by expansion, using an inverse operation. This is illustrated 

in the next chapter in the image compression section 5.2.7.

The reduction entails interaction between the data and the shape. However 

this interaction is designed to be invariant of the values and the size of the 

shape vector, so that we can maintain dimension and shape invariance in our 

programming paradigm in general. This means that data reduction results in 

shape reduction also, which can affect also the dimension of the array. So, the 
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resulting array after a reduction operation can be a different shape and 

dimension, than the input array.

3.4 Psi Correspondence Theorem (PCT)

The Psi Correspondence Theorem (PCT) is used to express the selection in 

terms of starts, strides and lengths. It is used to access memory efficiently. 

Since, all MOA operations are expressed in terms of the ψ - Psi operation, 

the PCT can translate their definitions from one involving Cartesian 

coordinates into one involving selection from a list of items stored in 

memory, or through abstract data or processor restructurings. The PCT can 

contribute to reliable methods for partitioning, and mapping to multiple 

processors. It is used to collapse multiple loops based on three notations:

1. The (expr) Γ  Notation: this notation is based on extracting slices from 

an array, according to their Psi index position, by defining the index of the 

slice required in every dimension in the array.

For example, given the same three-dimensional array defined in the previous 

section, the following expression results in:









≡===Γ
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91

]0,1,20[|3 kjikji
rrrrrr

ξ

As shown, this operation works by defining the slices in each axis from which 

to extract the elements, the first index vector i
r

defined the first axis and the 

last axis, which is the first and the last brackets in the above array, then the 

second index vector j
r

defined the second (the last) row, and finally the last 
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index vector k
r

defined the first column to extract from. These slices resulted 

in the above array. As you see, the shape of the resulting vector is dependant 

on the values of the indices provided. A rule for the resulting shape can be 

induced to be:

( ) KJikji
rrrrrr

τττξρ ≡Γ 3

2. The (mix) Ξ Notation: this notation is based on gluing the arrays formed 

using ψ on partial indices.

For example using the same three-dimensional array defined in the previous 

section, the following expression results in:
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which is equivalent to the following MOA expression using the ψ - Psi 

operation  and the ⊕ - catenate operation defined earlier in this chapter:


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)2()0( 33 ψξψξ , which is a catenation on the

second dimension.

3. The (link) Λ  Notation: this is the vector formed by concatenating the 

items collected from the array by the previous expr notation.
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The three notations are used to describe the start, stride and length of 

selection in an MOA array, which are used in the loop to traverse a specified 

selection from an MOA array, which leads to collapsing the number of loops 

required to traverse for the selection. PCT is not implemented in this thesis; 

for further details on the computation of the start, stride and length, refer to 

[6]. However, there is a discussion in chapter five, relating the video stream 

with the audio stream in an AVI file, and another discussion in chapter six, on 

the proposed parallel architecture-mapping scheme.

3.5 Summary of MOA Operations

Table 3-2 summarizes the entire MOA notation as explained in the previous 

sections.

Table 3-2: Summary of MOA Operations

Symbol Name Description
δ Dimensionality Returns the number of dimensions of the array.
ρ Shape Returns a vector of the upper bounds or sizes of 

each dimension in the array.
ψ Psi The main indexing function of the MOA 

notation, returns either scalars of the elements in 
the array, if provided with a full index, or 
partitions of the array otherwise.

rav Ravel Flattens a multi-dimensional array, retrieving all 
its elements as one-dimensional array.

π Pi Returns the product of the elements in a 
multidimensional array.

τ Tau Returns the number of elements in a 
multidimensional array (the Pi result of the 
shape vector of the array).

λ Gamma Indexing function, converts a multidimensional 
index into its scalar equivalent in the flat 
(raveled) array.
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Table 3-2: Summary of MOA Operations - Continued

λ′ Gamma 
Inverse

Inverse of the previous function; returns the 
multidimensional index from a scalar index, given 
the shape of the array.

ρξsr Reshape Changes the shape vector of the array, affecting 
its dimensionality, and rearranging its elements to 
fit symmetrically in the new shape. 

21 ξξ ⊕ Catenate Concatenates two arrays on the specified 
dimension, given that the rest of dimensions are 
of equal sizes.

21 ξξ op Point-wise 
Extension

Applies an operator between every pair of equally 
indexed element in two arrays of the same 
dimensionality and shape.

ξσ op Scalar 
Extension

Applies an operator between a scalar and every 
element in an array.

nι Iota Returns the vector containing elements from 0 to 
n-1.

↑ Take Takes as much as specified in each element in the 
input vector from the corresponding dimension 
in the shape vector from the array, from the front 
if values are positive, and from the back, if values 
are negative. Returns the elements of the taken 
partition of the array.

↓ Drop Drops as much as specified in each element in 
the input vector from the corresponding 
dimension in the shape vector from the array, 
from the front if values are positive, and from the 
back, if values are negative. Returns the 
remaining of the array.

red Reduce Reduces the arrays dimension by one, by applying 
the specified operator on the elements of the 
arrays.

gu Grade – Up Ascending sorting of the elements of the input 
array.

gd Grade – Down Descending sorting of the elements of the input 
array.

scanop
Scan Returns the partial results obtained from a 

reduction operation.
φ Reverse Symmetrically reverses the elements on the 

specified dimension.
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Table 3-2: Summary of MOA Operations - Continued

θ Rotate Rotates the elements of the arrays on the each 
dimension k, ][kσr  positions towards increasing 
indices if positive, or decreasingly otherwise.

Φ Transpose Transposes the elements in the array by the 
permutation vector specified. 

•/ Compress Compressing the array on the dimensions set to 1 
in the Boolean vector specified.

\• Expand Expands the array on the dimensions set to 1 in 
the Boolean vector specified. 

⊂ Slice Slices the array to the specified dimensionality, 
returning the slice required.

Ω Omega Applies an operator over pairs of equally indexed
slices of two MOA arrays.

• Dot Unary & Outer Dot operations applier the outer 
and inner product respectively. 
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C h a p t e r  4

MOA LIBRARY IMPLEMENTATION

4.1 Introduction

In this research work, MOA notation is implemented in a class named 

CMOA. Next chapter explains the implementation of CMOAImage, and 

CMOAVideo, which are based on the CMOA class for image and video 

processing respectively. The three classes are compiled in a Library to be 

included in any application. The main class CMOA is designed to operate all 

MOA notation described in the previous chapter, on an MOA_rec structure 

that contains the dimension n, shape (n tuple of sizes – extents or upper 

bounds - of the n dimensions), and the data elements of the MOA array, 

stored as a flat (raveled) array in principal row major order. The length of the 

flat array of the MOA array data elements is equal to the product of the 

bounds of its dimensions (the values of the shape vector elements). The 

shape and data of the MOA array are explicitly separated for the advantages 

of the shape theory as will be discussed in chapter six. The type of the Data is 

fixed in this implementation to be a DWORD. The choice of DWORD data 

type is influenced by the image and video applications implemented as

described in chapter five. The image pixels, which are the array elements of 

the MOA arrays in both applications, require a minimum of one bit (black 

and white images) and a maximum of double word (32-bit pixel, describing 

the intensities of the blue, green, and red components of each pixels) space in 

memory to store a pixel value. However, data morphology (as explained in 

chapter six) can be implemented since C++ is a language that allows for 

overloading. Overloading can be employed to redefine the MOA functions to 

operate on different data types for array elements, based on different MOA 

structures denoting the different types. The CMOA class implementation will 

be explained in this chapter, while the next two classes will be explained in the 



- 54 -

next chapter. Appendix A contains the header declaration of the CMOA 

Class and shows the functions argument lists and return types.

4.1.1 MOA Data Structure

MOA_rec is the main data structure used as argument and return type for 

most functions in the MOA library. It contains the three main attributes of 

the array description, which are the dimensionality, the shape, and the raveled 

(flattened) vector of its content data elements. It is declared as follows:

struct MOA_rec {

dimn;

shape;

elements;

}

Restruct_rslt_rec: this structure is used for the return types of the 

restructuring functions. It contains the new array and the set of indices it 

represent in the original array. It is declared as follows:

struct Restruct_rslt_rec {

MOA_rec;

orig_indices;

}
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4.1.2 The CMOA Class

The MOA library is designed (for the first time) by applying object oriented 

techniques, providing a class that contains the above MOA structure and the 

methods that perform the equations described in chapter three.  The 

programmers can instantiate an object from the class and define its values and 

call the methods as the logic of the application in hand requires, or call APIs 

(higher-level constructs), that perform MOA notation functions on the values 

provided in the argument list. The Library consists of the following methods:

The declaration and measurement functions:

These functions return or set the private values of the MOA structure in the 

instantiated object of the MOA class.

• Class constructors: several constructors are defined; one takes one 

argument, which is a pointer to the MOA structure as defined above; another 

takes as argument list: the dimension, shape (which is an array of integer 

values of bound equals to dimension – 1, containing values defining the 

bound for every axis in the array), and the data elements in a flat one-

dimensional array. Other constructors are defined to serve different purposes, 

like an empty constructor is defined to declare an object of the MOA class 

with no internal MOA array, which can be used to call the MOA operations 

for external MOA structures defined in the calling program.

• GetMOA: returns the values of the MOA structure defined above in the 

instance of the MOA class, by either returning a pointer to it, or a new 

instance equal to it.
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• Dimn, Shape, Ravel are three functions, which return parts of the MOA 

structure values defined in the class, as the notation definition.

• SetShape, SetElements, SetMOA: change the values of the MOA structure 

in the MOA class, keeping a valid relationship between the dimension value, 

and the shape vector size on one hand, and the shape vector values and the 

number of components in the elements vector (flat array that contains the 

raveled vector of the multidimensional array) on the other.

• Pi: it returns the product of all the components of the array.

• Tau: it produces the product of the elements in the shape vector of an 

array, resulting in the number of elements in the array.

The indexing functions:

• PSI: this function returns either a scalar value (if the index argument is a 

full index – i.e. the number of elements in the index array is equal to the 

number of elements in the shape array). Or returns a portion of the axes of 

the multidimensional array not defined in the index vector, identified by the 

values of the defined axes in the index vector. The index vector is the set of 

values that in normal handling of arrays would have been used as subscripts 

for every dimension:

Example in traditional handling, a given multidimensional array defined as 

follows:

Integer M[4][5][6];
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Used as follows:

value1 = M[2][4][3];

Will be represented by:

MOA_rec M;

M.dimn = 3;

M.shape[0] = 4;

M.shape[1] = 5;

M.shape[2] = 6;

Index[0] = 2;

Index[1] = 4;

Index[2] = 3;

When the above declarations are passed like this (notice we are passing a full 

index – number of elements in the index vector equals to the dimensionality 

of the array):

X = Psi (M, index)

a scalar value that can be assigned to the variable X is returned, defined in an 

MOA structure – i.e. X is defined to be an MOA structure, that holds a scalar 

in case a full index is passed to the Psi function, and a sub-array in case of a 

partial index.
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It might seem that the number of statements used to declare an MOA array is 

much more than in traditional methods. However, the point is not in the 

declaration, it is in the further manipulation of the multidimensional array that 

gets more complicated as the dimension increases. Chapter seven has more 

on the Nested Loops reduction with MOA.

The Psi function returns another MOA structure as a result. If a full index is 

sent in the argument list, it returns a scalar (remember MOA represents 

scalars as arrays of zero dimension, shape of one element of value 1; and one 

element in the raveled array of value of the scalar). Otherwise it returns a 

multidimensional array as defined above.

• Gamma: as defined before, this function returns a scalar value of the index 

vector sent in the argument list that can be used as a subscript in the raveled 

vector of the elements. This function is useful in mapping the traditional 

handling of multidimensional arrays to the MOA notation, if direct access is 

required.

Example:

Value1 = M [2][3][4];

Is represented with MOA as:

Index[0] = 2;

Index[1] = 3;

Index[2] = 4;

Value1 = M[Gamma(M.shape, index)];
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• Gamma_Inverse: as defined before, this function is the inverse of the 

previous function. It returns the multidimensional index of the scalar value 

argument that is an index in the raveled vector of elements in a 

multidimensional array.

The Array Construction/Reconstruction Functions:

• Iota: this function can be used to assign the elements of the array with 

values from 0 : n-1, where n is the number of elements decided by the 

Tau(shape), which is the default in the MOA testing tool provided. 

• Catenate: this function as defined in the notation, generates a new MOA 

structure containing the result of the concatenation of two MOA Structures 

entered on the specified dimension.

• Reshape function transforms the data elements of the array, in addition to 

changing the dimensionality and the shape vector of the result.

• Pack: Adds a new dimension to the array of extent (shape) equal to two, 

where the two equally equivalent indexed elements of the two input arrays are 

packed as the new dimension. This function is defined in the Array Theory, 

not in the MOA notation.

Value Transformation Operations:

The implementation of the value transformation functions aims to:
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• Determine minimal or maximal values along specific axes: min(d) and 

max(d).

• Apply an operator to all elements of an array (scalar) as scalar_op, or to 

pairs of elements from two arrays with identical shape (point-wise) as 

array_op.

The Axis Transpositions and Partitioning Functions:

Memory management enhancement is one of the basic advantages of 

designing the MOA notation, by reducing the temporary storage 

requirements, and reducing the amount of address generation of array 

references. A design decision must be taken in the return structure of the 

MOA partitioning functions. The first alternative is to return the indices of 

the elements in the required partition, so that the caller of the partitioning 

function can process the partition using the same memory reference allocated 

to the original array with an offset of the position of the element. The second 

alternative is to copy the partition as a new MOA structure with a new 

memory address, as a temporary variable that will be deleted after finishing 

the operation, or reused for other temporary calculations.

Sometimes, for some specific operations (for instance the transpose 

function), especially when processed sequentially, one can’t change the 

original array in the same memory location, because as soon as we start 

changing the first few elements, the processing of later elements will require 

checking the original values of the previous elements. In parallel processing, 

this is not a problem as long as reading the original values happens at one 

clock cycle before starting to change it. In cases where parallel execution 

doesn’t guarantee that reading will succeed to get the original values before 

the changes, for example when the number of processors is less than the 
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problem size, there is no way out, except by allocating temporary memory 

space.

• Take: this function partitions the different axes of the shape input MOA 

array. For instance, it returns the first two of five in the first axis, and first 3 of 

six in the second axis, and so forth. Unlike the Psi function, a full valid index 

sent as argument to the Take function doesn’t return a scalar. It returns as 

many slices of each dimension as defined in the position of that dimension 

position in the index vector. Positive values mean to slice from the front, and 

negative values mean to slice from the back. A partial index vector means 

including the full size of the missing axes. 

• Drop: this function is implemented based on the take function. The input 

index is processed to define a new index to be passed to the take function to 

take the remaining part of the array after dropping the slices of the 

dimensions as defined in the input index vector. 

• Slice: This function is implemented as explained in chapter 3. It is 

illustrated by figure 4-1. This figure shows how a 3-dimensional array can be 

sliced from either the front or the back on each dimension. 
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All the transformation functions are designed to return a new memory 

allocation for a new MOA structure, however as discussed previously, it can 

apply the changes in place in some cases only. The functions are: Rotate, 

Reverse, Grade_Up, Grade_Down, and Transpose functions transform the 

data elements of the input array preserving the same dimensionality and 

shape. The functionalities of these functions are implemented as described by 

the notation explained in chapter three.

• The Grade_Up and Grade_Down are implemented by traversing the 

elements of the input array (raveled array), then calls the min_on_dimn or 

max_on_dimn functions respectively (which is already one dimension, since 

the array is raveled), to specify the elements to be removed from the input 

array and placed in the current position in iteration on the output array.

Figure 4-1: Slicing a 3-D array over: (a) the 0th dimension from the front end; (b) the 0th dimension 

from the back end; (c) the 1st dimension from the front end; (d) the 1st dimension from the back 

end; (e) the 2nd dimension from the front end; (f) the 2nd dimension from the back end

The Reduction Operations:

• Reduction: reduces the dimensionality of an array by 1, by applying an 

operator along the reduced axis.
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• Scan: scans the partial results of a reduction operation.

• Compress and Expand functions are implemented as required in the MOA 

notation. With Boolean MOA input entered by the user. The Boolean array 

must be of the same shape as the input array and contains ones in its space 

that correspond to a regular shape (i.e. constant number of ones in each axis, 

and this applies to all axes). Refer to chapter five, in the image compression 

section for better utilization of these two functions. 

Higher order primitives:

• Omega: Value Transforming and restructuring at the same time. It works 

by applying an operator on pairs of elements identically indexed, of 

parameterized dimensionality from two arrays of different shapes, keeping the 

constraints discussed in chapter 3.

• Dot: computes Inner and Outer products of two MOA structures as 

explained in chapter 3. 

Other useful functions:

• NextIndex: This function returns the next index vector of a given index i
r

, 

within a specified shape sr . It is used to traverse an MOA array. The 

programmer starts calling this function with all elements in the starting index 

equal to zero. It increments the argument index by one position in the 

bounds specified in the shape vector argument.
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• Connectivity operation returns the set of indices of the connected 

elements (number of steps away as specified in input) in the array to the 

specified element, on the specified dimension. The number of the returned 

set of connected elements is bound according to the dimension of the array, 

and the dimension of the connectivity. For example a two dimension array 

can return 8-connected elements if the dimension required for the 

connectivity is the second (including connections on the diagonal), and the 

number of steps away from the required point is one; and it returns only 2-

connected elements on dimension one and also one step away from the 

specified point. If it is a vector, the connected elements can’t be more than 2 

in case of one step away from the specified point, i.e. the element before and 

after the specified element in the flat array. From this we can note that the 

number of elements retrieved in the Connected set, is dependent on the 

location of the specified point. If it is at the borders of the array, it returns less 

neighbors than the other elements in the middle, in case of one step away, 

where d is the specified dimension, which must be less than the 

dimensionality of the input array. This function can be designed in several 

ways. It can be a simple partitioning using the take and the drop functions, 

deciding the starting index and the length indices from the index of the 

element required and the number of steps for neighboring as required (for 

direct connectivity, number of steps are 1). Otherwise, it is implemented as a 

transformation on the index of the element required, traversing all its 

neighbors only.

• GetOrientation: This function is used to suggest an orientation for the 

border data elements that when used to return its neighboring elements, will 

find empty positions. This suggests according to the position of the element 

in the array, the orientation to align the returned neighbors MOA structure, in 

the expected larger neighboring structure, which is equivalent to either the 

mask used (as in the convolution operation described in chapter five), or the 

number of steps away at which the neighbors are included.
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Figure 4-2 illustrates how the neighboring and the GetOrientation function 

work. The input array is a 2-dimensional array, with shape vector = <3 3>.

The element enclosed in the small square is the element whose neighbors 

are to be returned. This figure illustrates the neighbors one step away from 

the required element’s position. So, this requires the output to be always a 

<3 3> shaped two-dimensional array. The GetOrientation function, decides 

for the border elements like in a, b, c, d, f, g, h, and i, the orientation to align 

the returned neighbors in an MOA structure. Figure (e) is a middle element, 

not a border element. The Orientations are defined in the MOA class in an 

enumeration as shown in Appendix A. 

The summary table 4-1 in section 4.5 may be reviewed for other implemented 

functions. The implementation of the above functions is divided into three 

stages, which are repeated in almost all functions. First define the resulting 

dimension. Second, compute the resulting shape, which either depends on the 

inputs’ data or inputs’ shapes according to the following:

• Most cases it is defined based on the inputs’ shapes. 

• Reshape, the same data elements of the input array is distributed over a 

new shape. 

• The catenate function, the resulting shape depends on the inputs’ shapes 

and the parameterized dimension of the catenation.

• The take function, makes the resulting shape equal to the index vector if it 

is positive, or a variation of it, if it is negative.

• The drop, the resulting shape is a subtraction between the input’s shape 

and the index vector.

• The compress and expand functions, analyzing the MOA Boolean input 

decides the resulting shape.
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Figure 4-2: Orientation of the neighboring function related to elements’ position; (a) lower right; (b) 

lower middle; (c) lower left; (d) middle right; (e) center; (f) middle left; (g) upper right; (h) upper 

middle; (i) upper left.

The third stage is the computation of the resulting element values as specified 

by the function definition. A general check is always performed in all 

functions to take care of scalar MOA structures, where the dimension is equal 

to zero and the shape vector of length one that is equal to value one, and 

hence data vector of length one that is equal to the scalar’s value. Input 

validation (constraints) based on the functions’ definition is always performed 

before starting to compute the function.

4.2 The MOA Library C++ Design Decisions

Functional languages in general, view memory locations as “box-variables”, 

associating four basic operations to them: allocate, deallocate, fill content of 

box, and read content.  In contrast, conventional languages view a memory 

location as a “place-holder-variable”, which is either attached to an 

expression by functional application, or an occurrence of the of the place 

holder variable is replaced by the attached expression.  This replacement 
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makes neither the place nor the expression accessible through the variable 

name after that. [11] This concept makes the implementation of the MOA 

on functional languages more appropriate to satisfy one of the main 

advantages of applying it, which is avoiding the creation of temporaries, and 

calculation in place. However, sometimes the processing logic, given some 

constraints as discussed previously, requires creating temporaries during 

calculation to produce correct results.

The implementation of the library in Visual C++, as an imperative language 

in the sense that it consists of a sequence of commands, which are executed 

strictly one after the other, depended entirely on memory allocation at run 

time, which required care in the bounds of the run-time defined shapes and 

arrays, and efficiently implemented equations that preserve the boundary 

constraints. It is compiled as a Dynamic Link Library (DLL), so that 

applications can include it and use its notation. The compilation of the MOA 

library to a DLL, helped to compile the library once, and to use it by including 

it in other applications programmed with any language as APIs. Dynamic 

array allocations can be done with two different methods, either to use the 

MFC class CArray which allows for expanding or shrinking the array size as 

an array of a changing size may require, while preserving the values of the 

common elements between the original and new size. Another method is the 

simple memory allocation of the required size, and is subject to be reallocated 

at any point during the execution of the program. The second method proved 

to be more appropriate, and allows for better control over the memory 

allocations.

Since the design of the MOA indexing functions is based on an index 

component (a vector of indices), not simple scalars like in traditional array 

operations. This imposed a difficulty in using the indexing functions’ results 

in conjunction with second order operations. So, the subscript selection is 

filled in a vector of indices to be passed to the operations, even for scalars, 
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vectors, and less dimensional arrays. It could be investigated to provide 

indexing operators equivalent to the traditional bracket subscripting provided 

for vectors at least in the same manner it is provided for the CString MFC 

class. The MOA structure stores regular (rectangular shapes) that can be 

viewed to be indexed as follows:

given 2233 =ρξ

then: 12=τξ

Figure 4-3 shows how the Psi-indexing function operates. The content of 

every box represents the index argument to the Psi. In the figure a three 

dimensional array is represented, a vector index of one element returns the 

subtree under the first dimension below the index. The same applies to the 

second dimension, until the leaves of the tree contains the flat array data 

elements, with the same multidimensional index as specified in the diagram, 

applying the row-major order. Figure 4-3 also illustrates how the rectangular 

homogenous arrays are represented in the CMOA implementation as a 

balanced tree.

The MOA library implemented was referenced in another two classes that 

apply the MOA notation for the two examples of image and video as a 2-

Dimnesion MOA, and a 3-Dimension MOA respectively. The other two 

classes are explained in more details in the next chapter.
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Figure 4-3: Regular Rectangular Array Indexing (Psi-operation)

4.3 The MOA Testing Tool

A user interface is provided for the MOA library discussed above, 

which allows the user to access all its operations. This MOA testing 

tool is a multiple document interface application, where the user can 

define several MOA arrays, all displayed in separate work documents. 

It is used to verify the computation in MOA, returning the result of 

operations one by one in a new document containing the resulting 

MOA array, and subject for further operations. 

The Tool starts by the definition of a MOA array with the dialog 

interface shown in figure 4-4, where the dimension of the array is 

defined, and this automatically decides the number of elements 

expected in the shape vector defined in the second list box. The 

values in the shape list box, automatically decides the total number of 

data elements to be expected in the second list box. The user can 

check the Iota Elements check box to hide the elements list box, and 

assign the elements the result of calling the itoa function with 

argument equals to the Tau of the shape vector defined. A definition 

like that shown in figure 4-4 (dimensionality = 2; shape = <3 3>; 

elements = iota(9)), defines the MOA array displayed in figure 4-5.
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Figure 4-4: New MOA dialog interface in the MOA Testing Tool

Figure 4-5: MOA Testing Tool

Figure 4-6 to figure 4-9 display the Menus contained in the MOA tool, 

covering all the MOA notation. 
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Figure 4-6: MOA Menu in the MOA Testing Tool

Figure 4-7: Partitioning Menu in the MOA Testing Tool
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Figure 4-8: Transformations Menu in the MOA Testing Tool

Figure 4-9: Operations Menu in the MOA testing Tool
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For example: to do a drop operation for the above defined MOA array, the 

user clicks the Partitioning menu, and choose drop, the dialog in figure 4-10 

will be displayed to enter the index dimension and values for the drop 

function. Then, the result is displayed in a new document as shown in figure 

4-11

Figure 4-10: Drop Index Interface Dialog in the MOA testing Tool

Figure 4-11: The Drop result displayed in the MOA Testing Tool

The elements of a MOA structure are displayed as data diagrams showing the 

data of the result in a structured way. The diagrams give immediate feedback 

on the effect of operations or definitions in development on trial data, 

showing the arrangement of the data elements flat array based on the 
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dimension and shape defined, or resulting from a computation. Testing in this 

style is very effective because the results of the intermediate functions being 

developed is checked as you go along, to map a computation to a series of 

MOA operations. 

The arrangement of data elements on the screen reflects the shape vector of 

the MOA structure in hand. Diagrams like the ones generated by Nial, (with 

tables enclosing the slices of the different dimensions in the multidimensional 

arrays) can be achieved by further enhancement on the drawing function, to 

be able to draw tables corresponding to the shape vector as well. The 

interface of a MOA structure of shape vector = 223 , looks as 

displayed in figure 4-12.

Figure 4-12: A Three-dimensional MOA array displayed in the MOA Testing Tool

Figure 4-12 understood as:
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4.4 Completeness Discussion

The MOA library implemented in this thesis operates on regular (rectangular) 

infinite-dimensional arrays. The completeness claim stems from the fact that 



- 75 -

all notation introduced in [1] is implemented in this thesis and is tested to 

prove its correctness. Initial functions are the dimn, shape, ravel, Psi, gamma,

and NextIndex. All other functions are based on these basic functions and on 

each other. Higher constructs built calling these functions, could be countless 

and/or domain dependant. Take is based on iterations of indices, and Drop is 

based on the take function, while reshape, transpose, rotate and reverse all call 

the gamma function. The reduction function is based on internal iteration 

using the NextIndex function, and the scan function depends on the 

reduction. Inclusion operations are already tested on several functionalities 

using function IsContainElement. Scalar and Point-wise operations are 

implemented, while projection operations can be implemented using the 

shape vector to allocate projections. Figure 4-13 displays the CMOA class 

methods in a diagram. The hierarchical relationship is implicit in the diagram, 

since the detailed relations are too complicated to include in one diagram.

Figure 4-13: CMOA Methods Diagram
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The transitive closure of the MOA library implemented in this thesis is 

proved by the totality of the operations implemented, meaning that these 

operations can be applied to all arrays invariant of dimension and shape, and 

terminates with a return of a value. The closure is expressed in the fact that all 

functions return MOA structures that are subject to further MOA operations. 

4.5 Summary of  MOA Class Methods

Table 4-1 lists the functions implemented in the CMOA class, and relating 

them to the MOA notation defined in chapter three, and the Array Theory 

(AT) constructs as explained in chapter two. 

Table 4-1 Summary of MOA Class Methods corresponding to MOA & AT

Function Comment MOA 
Symbol

Array 
Theory

MOA_cls Class Constructor
~MOA_cls Class Destructor
GetMOA, SetMOA, 
CopyMOA
Dimn See chapter 3. δ valence
Shape; SetShape See chapter 3. ρ shape
Psi See chapter 3. ψ Pick, 

choose
Ravel; SetElements See chapter 3. rav
Pi See chapter 3. π
Tau See chapter 3. τ tally
Gamma See chapter 3. λ
Gamma_Inverse See chapter 3. λ′
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Table 4-1 Summary of MOA Class Methods corresponding to MOA & AT - Continued

Reshape See chapter 3. ρξsr reshape

Catenate See chapter 3.
21 ξξ ⊕ Link, 

append
Pack Pack
array_op See chapter 3.

21 ξξ op minus, plus, 
… etc

scalar_op See chapter 3. ξσ op minus, plus, 
… etc

op_on_dimn Same as above, but returns the result 
of an input operator.

min_on_dimn Returns the minimum value among the 
elements on the specified dimension in 
the input array, calling the previous 
function.

max_on_dimn Same as above, but returns the 
maximum.

average_on_dimn Same as above, but returns the 
average.

sum_on_dimn Same as above, but returns the sum.
Op_element Applies an operator on all the elements 

of an MOA array., also, found in  
min_element, max_element, 
avg_element, and sun_element.

Iota See chapter 3. nι Tell

Take See chapter 3. ↑ Take, 
takeright

Drop See chapter 3. ↓ Drop, 
dropright, 
rest

Partition Takes two indices, one specifies the 
starting point in the array, and the 
other specifies the size of each 
dimension to take. Based on take and 
drop functions.

Sublist

Red See chapter 3. red reduce, 
leftreduce

Grade_Up Ascending sorting. gu
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Table 4-1 Summary of MOA Class Methods corresponding to MOA & AT - Continued

Grade_Down Descending sorting. gd

Scan_op See chapter 3.
Reverse See chapter 3. φ Reverse

Rotate See chapter 3. θ
Transpose See chapter 3. Φ Transpose, 

fuse, rows, 
cols

Compress See chapter 3. •/
Expand See chapter 3. \•
Slice See chapter 3. ⊂ Split
Omega See chapter 3. Ω
Dot See chapter 3. • INNER, 

OUTER, 
cart

IsValidIndex Tests the input index to be a valid 
complete index in the input array or 
not.

Next Index See chapter 3.
VecAssignTo Assigns all the elements values in input 

array 1 to input array 2.
VecIsEqual Checks if two arrays are equal in size 

and elements values.
IsContainElement Checks the availability of an input 

value in any of the elements in the 
input array.

ElementFoundCnt Returns the number of availability of 
an input value in the elements of an 
input array.

Connectivity See chapter 3.
GetOrientation Returns the recommended orientation 

to be used in the align and the 
convolve functions, based on the 
position of the center-point of the 
structure and the borders 
identification.
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Table 4-1 Summary of MOA Class Methods corresponding to MOA & AT - Continued

Convolve Works as convolution, except that it 
returns the next partition around the 
center point provided as input, so it 
convolves the partitions of an input 
array one by one, so multiple 
processing on the required partition 
can take place.

Convolution Applies convolution of a mask on an 
input array.

DoubleConvolution Works as convolution using two input 
masks, and use the resulting value, 
according t an input operation.
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C h a p t e r  5

APPLICATIONS OF THE MOA LIBRARY

5.1 Introduction

The MOA Library can be used by any scientific or engineering application 

that operates on large data-structures and arrays. The library is useful in 

structuring the code and avoiding the array computation details that cause so 

many errors, and in obtaining implicit concurrency processing in the 

executable code. Since it is noticed that more than half of the total design 

effort is consumed by the verification and the simulation, especially in the 

area of the multidimensional signals, that exhibit a large amount of related 

control flow expressed in terms of loops. Memory in these cases is considered 

a bottleneck, requiring an optimization for the global memory use and 

communication, leading to the fact that loops and index manipulation 

become crucial issues. This problem is addressed in the MOA library design, 

and relating DSP (convolution, FIR filters, FFT, … etc.) problems to the 

MOA notation provide solutions to some of these problems. Image 

processing applications, fluid dynamic management, and weather forecasts 

applications can benefit from the MOA notation. Besides the LAN 

distributed systems organization, and the Internet and Intranet IP address 

generation and resource management, all can make use of the library. In the 

experimentations of this thesis, Image and Video files are mapped to the 

MOA structure and processed using the MOA notation. The nesting of the 

MOA structure in these two examples provide a high order functionality 

efficiently.  The first section of this chapter discuss the CMOAImage 

implementation, and the second section discusses the CMOAVideo class 

implementation.
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5.2 Image Processing Using MOA

Image processing is one field of application where MOA can be extensively 

used to represent the image and apply processing on it using the above-

explained notation. The image can be represented in 1, 2, or 3-dimensional 

MOA structures. However, in this thesis only the 2-dimensional images will 

be experimented. Almost all the image processing operations can be applied 

using the MOA calculus as will be demonstrated in the coming sections. The 

MOA structure design is suitable for the spatial domain methods, since it 

allows the direct manipulation of image pixels using Cartesian coordinates. 

The frequency domain, which is based on modifying the Fourier Transform 

of an image, can be investigated, by using a Fast Fourier Transform function 

on the image pixels, after defining the real and imaginary parts. Fourier 

Transform can be defined in terms of point-wise operators, maintaining the 

shapely operations by having the dimension and shape as parameters. 

However, this was out of the scope of this research.

5.2.1 Image MOA Format

The experimentation in this thesis used the bitmap (bmp) format as the base 

for the testing. Other image specifications were considered in the analysis of 

the image format to read in an MOA structure of 2-Dimension, like different 

color tables, compression, and file formats. The bitmap file consists of header 

information represented in the BITMAPFILEHEADER, the 

BITMAPINFOHEADER, and the RGBQUAD structures, followed by the 

stream of image pixels. This structure is read and an MOA structure is 

formed with dimension equals 2, and a shape vector of two elements the first 

represents the height of the image, and the second represents the width, as 

illustrated in figure 5-1.
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Figure 5-1: MOA Image Representation

The values of the image pixels (The MOA elements) are the pixels color 

values, decided by the image specification, like an 8-bit color image (256 

colors), which is read such that every byte in the memory pixels stream read 

from the bitmap file is an element in the MOA structure. A 16-bit color 

image is read such that every two bytes in the pixels stream, represents one 

element in the MOA structure elements, and so forth. The spatial 

representation of the image in MOA and the connectivity function 

discussed above, can be augmented by notions of north, south, east, or 

west, in correspondence to right, left, up, or down. These notions can be 

used for navigation and image interpretation as will be discussed below. The 

following image-processing functions are implemented using the MOA 

library:

5.2.2 Transformation

Transformations are required to visualize the image from different 

perspectives based on the special relationships between the pixels in an image. 
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Using the MOA functions reverse and transpose, several types of 

transformations can be applied on the image MOA structure. A reverse on 

dimension 1, causes a vertical flip, and a reverse on dimension 2, causes a 

horizontal flip. Transpose causes a flip on diagonal. The transpose function 

can be changed to be able to identify which diagonal to transpose on. Figure 

5-2 demonstrates several transformations operated on an image using its 

MOA structure. 

(a)                                    (b)

(c)                                      (d)

Figure 5-2: Image Transformations by MOA; (a) original image; (b) Horizontally flipped image; (c) 

vertically flipped image; (d) Transposed image (Rows & Columns Transpositions)

Other types of operation can be applied on an image, for example stretching 

can be done by the reshape function after changing it to assign the elements 

of the new 2-dimension MOA array with values identical to the original image 

in the pixels, which are relatively mapped, thus keeping the ratio in size with 

the original image. In the newly added pixels, between the original ones, the 

function assigns values after applying morphology with different dilation and 

erosion percentages based on the distance between the new image and the 

eight adjacent pixels from the original image coming from all directions 

around the new pixel. The symmetrical relations that are kept during the 

transformations can enhance graphic design in general.
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5.2.3 Convolution and Applying Filters

Filters are applied for a specific image enhancement required by an 

application. Image convolution is based on the general array convolution as 

expressed in [2] MOA notation with the following equations:

M2 is a Mask array with shape <3 3>:

83210
2 ... mmmmmMrav =

 and D2 is a data array with shape <100 100>:

13210
2 ... −= DdddddDrav τ

The result is array R2 with shape <100 100> calculated by the following 

equation:

2
iTredR += Equation 5-1 

 

where:

( ) MiDibMiTi ρψ *0*2 <≤∀∇∆=
rrrr

and 9898=b
r
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The equation can be written in programming form of calling the above 

defined MOA APIs and structures as inputs and output of functions to be as 

follows:

Convoluted_Array = Red + (Array_Op *, (take ( drop (Input_Array, dr_vec), 

tk_vec), 0 ,  Mask_Array)  � for all elements in the Input_Array (a0, a1,  … , 

aTau(A) – 1).

Where dr_vec, and tk_vec are the indices vectors defined for the drop and 

take functions for every element in the array A, according to its position in 

the array to iterate through the partitions of the Array matching the Mask 

size, and with center point being the point at iteration, covering all points in 

the input array. Figure 5-3 graphically sketches the convolution operation.
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Figure 5-3: Convolution Operation: (a) Input Array – Image Pixels; (b) Mask Array; (c) Mask 

spanning Input array to compute the value of the center point of every spanned region.

The low pass, high pass, prewitt, and sobel filters are all variations to the 

above convolution with different Masks, to produce different effects. In the 

low and high pass filters a simple convolution operation is called as described 

above with the Masks defined below as input. In the prewitt and sobel filter a 

more complicated convolution is required because we have two masks in each 
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filter to be convoluted with the input array at the same time, and the resulting 

point in every time is compared and the smaller value of both convolutions is 

the value chosen for the resulting array. To use the same function defined 

above without changing it, we can call the convolution procedure twice, and 

then call the array_op function (the point wise extension) with operation “<” 

as input, which chooses the smaller value of the two equally indexed elements 

in both input arrays to be the values of the equally indexed elements in the 

resulting array. This will result in computing time equal to O(3n), where n is 

the number of elements in the input array (Tau of input shape : τξ ). This is 

because the elements of the input array will be traversed two times in the two 

convolution calls, and then a third time in the point wise extension.

To enhance the performance, another function was designed that takes the 

two masks, and applies the two convolutions at the same iteration, and 

applies the comparison to include in the result the smaller value, all at one 

shot. The computing time will then be enhanced to O(n + f), where f is extra 

time consumed in the second convolution (multiplication and the addition 

reduction), and the comparison. This enhancement can be expanded to allow 

the input of variable number of Masks, defined at run time, and all processes 

at one shot, having the operation that decides how the results of these 

convolutions are reduced to the resulting array as an argument, like “<”, “>”, 

“+”, … etc.

The following are the Masks that apply the above-explained filters. Figure 5-4 

illustrates the original image that most of the effects in this chapter will 

operate on.
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Figure 5-4: Original Image

Figure 5-5 is the effect of the low pass filter using the following mask on the 

image of figure 5-4.

Low Pass Mask:
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Figure 5-5: Low Pass Filter Effect

Figure 5-6 is the effect of the high pass filter using the following mask on the 

image of figure 5-4.
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High Pass Mask:
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Figure 5-6: High Pass Filter Effect – Point Detection

Figure 5-7 is the effect of the Prewitt filter using the following masks in a 

double convolution function on the image of figure 5-4.
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Figure 5 -7: Prewitt Filter Effect

Figure 5-8 is the effect of the Sobel filter using the following masks in a 

double convolution function on the image of figure 5-4.

Sobel Masks:
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Figure 5-8: Sobel Filter Effect

Figure 5-9 is the effect of the following custom mask on the image of figure 

5-4.

Custom Filter Mask:
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Figure 5-9: Custom Filter Effect
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Morphology operations are also variations of the convolution operation 

described here. The difference is that no Mask is passed as an argument to the 

operation. The input array is scanned like the traversing scheme presented 

above, selecting the minimum pixel value of the selected region (in case of 

erosion) to be assigned to the value of the output image. Erosion removes 

spurious pixels (noise) and thin boundaries of objects on a dark background 

(object of pixel values greater than the background values). Dilation is applied 

the same way, but the maximum value of the selected region is the value 

assigned to the output center pixel value. Dilation fills up holes and thickens 

boundaries of objects on a dark background (object of pixel values greater 

than the background values). Applying erosion followed by dilation is called 

opening the image that has the effect of eliminating small and thin objects, 

breaking objects at thin points, and generally smoothing the boundaries of 

larger objects without significantly changing their area. Also, applying dilation 

followed by erosion is called closing the image that has the effect of filling 

small and thin holes in objects, connecting nearby objects, and generally 

smoothing the boundaries of objects without significantly changing their 

areas.

Figure 5-10 is the effect of the dilation by spanning one neighboring level on 

the image of figure 5-4.

Figure 5-10: Dilation Effect
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Figure 5-11 is the effect of the erosion by spanning one neighboring level on 

the image of figure 5-4.

Figure 5-11: Erosion Effect

Figure 5-12 is the effect of opening the image of figure 5-4, by spanning one 

neighboring level.

Figure 5-12: Opening Effect

Figure 5-13 is the effect of closing the image of figure 5-4, by spanning one 

neighboring level.
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Figure 5-13: Closing Effect

5.2.4 Segmentation

Segmentation of the image leads to image analysis, so that we can extract 

information from it. It is the process of dividing the image into constituent 

parts or objects. From the basic definition of image segmentation, how to 

apply it on MOA can be visualized. Point, Line (horizontal, vertical, °+ 45 , 

and - °− 45 ), Edge and Combined Detections are applied by using Masks that 

are convoluted on the image plane to detect discontinuities in the specified 

manner described in the provided mask.

The Point Detection Mask uses the same mask as the high pass filter mask 

explained before, and has the same effect as shown in figure 5-6. Figure 5-14 

shows the effect of detecting the horizontal line using the following mask on 

the image of figure 5-4.
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 Horizontal Line Detection Mask:
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Figure 5-14: Horizontal Line Detection

The °+ 45 Angle line is detected using the following mask, and is illustrated in 

figure 5-15, as applied on the original image of figure 5-4.

°+ 45 Line Detection Mask:
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Figure 5-15: 45 Angle Line Detection

Figure 5-16 shows the effect of detecting the horizontal line using the 

following mask on the image of figure 5-4.

Vertical Line Detection Mask:
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Figure 5-16: Vertical Line Detection
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The °− 45  or 315 Angle line is detected using the following mask, and is 

illustrated in figure 5-17, as applied on the original image of figure 5-4.

°− 45 Line Detection Mask:
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Figure 5-17: 315 Angle line Detection

The Edge Detection is implemented through discontinuities detection, or 

thresholds (to eliminate noise) or Region detection. The Region oriented 

segmentation is based on finding boundaries between regions using intensity 

discontinuities or on thresholds based on distribution of pixel properties 

(intensity, color, gray-level, texture).  Region segmentation is achieved by 

finding regions directly by the Region Growing method through pixel 

aggregation, which starts by “seed” points and adds to them neighboring 

pixels with similar properties. Another direct method is the Region splitting 

and Merging, where an image is sub-divided initially into a set of arbitrary, 

disjoined regions and then merges and/or splits them in order to satisfy the 
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region segmentation conditions (complete, connected, disjoint, same 

properties within a region, and different properties among the regions). [8]

The region segmentation is a process that associates different MOA Image 

classes for every region detected. These different regions can be operated on 

separately as independent images, and then mapped to the original image. 

Otherwise, Regions can be represented as a reference to the indices of the 

regions’ pixels in the original image, where any further computations are 

applied directly to that specific region in the original image.

5.2.5 Representation and Description

The regions segmented in the above section now need to be represented 

either on the shape of its boundaries (externally), or in the characteristics of 

the pixels in a region (internally). A Representation scheme is required to be 

chosen, then a description of the representation of a region is to be selected 

according to the external or internal features of the region (invariant of 

transformations like change in size, translation, rotation, … etc.). 

Representation schemes are Chain Codes, Polygonal Approximations, 

Signatures, Boundary Segments, and the Region’s Skeleton. Chain Codes is a 

connected sequence of straight-line segments of specified length and direction 

that describes the boundary of an object based on its 4-connectivity or 8-

connectivity. Chain codes are represented on a grid of equally spaced x and y 

coordinates, where every pixel is assigned a value of the direction connecting 

every pair of pixels. Evidently, the implementation of the chain code is just 

another 2-dimension MOA structure that their elements contain the 

representation of an object. The same understanding of image representation 

in MOA can be applied with other representation Schemes as discussed in [8]. 

The representation MOA structures can be formed by object segmentation of 
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images to define object boundaries, and fed to a database of objects, to which 

images are compared to be identified and described.

The image description can be expressed as the length of the contour, the 

value and orientation of the diameter, curvature (rate of change of slope), 

shape numbers, moments, number of pixels in a region, compactness of a 

region ((perimeter)2 / area), topology of a region, statistical texture 

(smoothness, coarseness, and granularity), structural texture (regularity), 

spectral texture (based on Fourier spectrum), or relational descriptors. For 

further details on these kinds of image descriptors, refer to [8]. The 

description can be implemented in MOA the same way it is implemented 

traditionally. The experimentation in this thesis did not cover the image 

description for recognition purposes in depth. However, the experimentation 

conducted can conclude that it is feasible to implement image description 

based on the MOA basic class and Image class implemented in this thesis.

5.2.6 Recognition and Interpretation

Image recognition and interpretation is the process of analyzing the image 

to discover, identify and understand image patterns. So, the computer needs 

to be fed with patterns of the interested image-based task, and recognition is 

the process of approximating an input pattern to one of the base patterns.   

Recognition can be implemented by decision-theoretic methods, structural 

methods, or image interpretation methods. Then interpretation (a process of 

assigning meaning to an ensemble of recognized image patterns or 

elements) is implemented as a knowledge base for a problem domain based 

on predicate logic, semantic networks, or production (expert) systems.  The 

implementation of knowledge representation in MOA is an emulation of the 

Nial AI toolkit described in [17]. The array methods used in Nial are the 

same implemented in the MOA library, and hence, AI applications designed 
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based on Nial can be experimented in MOA. So far, the image is 

represented in its spatial structure as a matrix of pixels on the image plane. 

Another representation of hierarchical structures for complex images can be 

added, where layers of the image are entered as another dimensions in the 

MOA structure. Lower Levels in the hierarchy represents details 

information about the image (this could be useful also for GIS –

Geographic Information System – applications where complex images 

denote maps). Image interpretation can be implemented as literal or 

prepositional knowledge, where literal knowledge describes the meaningful 

parts in the image and their locations, constructing an MOA structure 

attached to the image structure, and prepositional knowledge captures the 

non-spatial features of the image. This method is cognitive and captures the 

inherent parallelism as will be discussed in the next chapter. 

In Nial, complex images (hierarchical, or multi-dimensional images as can 

be represented in MOA), are considered recursive. In MOA, recursion is 

totally avoided because of the explicit structure of the multidimensionality 

of the arrays. The north (up), south (down), … etc, notion discussed earlier, 

can be used now in relation with the recognized patterns, to extract relations 

of which object is above / below which. Other special relationships can be 

added relative to the problem-domain. The approach discussed in [17] 

allows for three categories of imagery cognitive inferences, which are image 

construction, image transformation, and image access. The image 

construction can be extracted from a frame data, from pattern database by 

description attached to these patterns, or through a perception and 

recognition process. 

Then, object extractions from background, learning from examples to 

generalize knowledge, and inference from incomplete information can be 

implemented based on arrays as discussed in [17]. 
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5.2.7 Image Compression

Image compression can be expressed in MOA using the explicit compress 

function. However, in using the expand function to restore the image, this 

will be a lossy compression as the examples in chapter three demonstrate, in 

which the skipped elements in the compress functions, will be restored as 

zeroed elements in the expand function, with the a Boolean vector describing 

the original shape. Averaging functions can be defined for averaging the 

skipped elements values with the non-skipped ones using the Connectivity 

function in MOA, so that the expansion using an inverse operation will be 

non-lossy. To fully utilize these two functions (compress and expand), further 

functions need to be implemented to construct a valid Boolean input MOA 

array, instead of depending on the awareness of the user of the expected valid 

input. Several Boolean array construction functions can be defined to serve 

different compression and expansion requirements. These functions are not 

implemented in this thesis, because they will require the definition of a new 

file format for the images based on the MOA structure.

5.2.8 Summary of  MOA Image Class Methods

The above image processing operations were implemented in a new class 

called CMOAImage that interfaces the bmp file format with the MOA 

structure, and performs the image processing functions by calling MOA 

notation as described in previous chapters. The CMOAImage class performs 

only on 2-dimensional MOA arrays. Appendix B contains the header file for 

this class, showing the argument lists and the return types of functions. Table 

5-1 summarizes the CMOAImage Methods.
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Table 5-1: Summary CMOAImage Class Methods

Name Description
ImageToMOA Converts different formats of an Image (handle to bmp file, or 

BITMAPINFOHEADER and image pixels stream) to MOA Image 
structures.

MOAToImage Converts MOA Image structures to different formats of an Image 
(handle to bmp file, or BITMAPINFOHEADER and image pixels 
stream).

VerticalFlip Calls MOA reverse operation on dimension 1
HorizontalFlip Calls MOA reverse operation on dimension 2
TransposeImage Calls MOA transpose operation to switch rows to columns and vice 

versa.
LowPassFilter Applies convolution with low pass filter mask defined before.
HighPassFilter Applies convolution with high pass filter mask defined before.
PrewittFilter Applies convolution with Prewitt filter mask defined before.
SobelFilter Applies convolution with Sobel filter mask defined before.
CustomFilter Prompts the user to define an MOA structure to be used in 

convolution over the current image.
DetectPoints Convolves the image using Point detection mask, defined to be the 

high pass filter in this thesis.
DetectHLine Convolves the image using horizontal line detection mask, defined 

before.
DetectVLine Convolves the image using vertical line detection mask, defined before.
Detect45Line Convolves the image using 45-angle line detection mask, defined 

before.
Detect315Line Convolves the image using 315-angle line detection mask, defined 

before.
Dilation Convolves to choose the maximum pixel value in a specified span area.
Erosion Convolves to choose the minimum pixel value in a specified span area.
Opening Calling the erosion function followed by dilation function on the 

specified span area.
Closing Calling the dilation function followed by erosion function on the 

specified span area.
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5.3 Video Processing Using MOA

Video processing is another field where MOA can be beneficial. The AVI file 

format is designed to contain Audio Video Interleaved streams. This means 

the images forming the frames of a video file, are stored in the form of 

streams, then another layer of an audio stream can be combined with file. 

This structure complicates the video processing operation. Since streams will 

need to be processed one by one, and will require more effort from the 

programmer to isolate frames while being able to process them collectively in 

a symmetric manner. The MOA representation for a video file is a 3-

dimensional MOA array structure, where the first dimension is the time 

sequencer or the frame number, and the remaining two are the height and 

width of the frames images. Video processing operation on the Video frames 

can be processed individually using the psi MOA indexing function to return 

the image of the frame number required, or collectively by working on all the 

frames at one shot (by applying all operations on the second dimension).

5.3.1 Video MOA Format

The CMOAVideo class provides the main interfacing between the MOA 

structure defined in the CMOA class and the AVI file format. The main 

objective achieved from this class is the decomposition of the AVI video 

stream into the frames of the images, which the video displays. The pixels 

of all these frames are mapped to a 3-dimensional MOA structure as shown 

in figure 5-18. The first dimension is the frame number, and the remaining 

two dimensions are the height and the width of the images respectively, 

assuming that all images in a Video file has the same height and width.
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5.3.2 Transformations

All image transformations applied in the previous section are applied on the 

frames of the video stream stored in a 3-D MOA structure. The forward and 

rewind operations are a simple positioning of the index of the first dimension 

in MOA video structure. The reverse function can be applied on the image 

frames, by reversing the images display, keeping the same order (as the 

horizontal and vertical flipping illustrated in figures 5-2 (b) and 5-2(c) 

respectively). The reverse function can be applied on the first dimension only, 

to reverse the display of the sequence of the frames. The same applies to the 

transpose function, filters, and morphology functions, as explained in the 

previous section.

Figure 5-18: MOA Video structure
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5.3.3 Object Tracking

Object tracking is one important video processing operation. It is based on 

the image detection process discussed above. Object tracking in general is the 

motion detection, where motion is the process of extracting objects of 

interest from a background of irrelevant detail. Motion is defined to be a 

relative displacement between the sensing system and the scene being viewed. 

Again this can be implemented in the special domain and in the frequency 

domain. Since in this thesis, we are more interested in the special domain, 

only the methods of the special domain will be discussed. As the Video MOA 

diagram shows how the image in the video stream is represented by the 

function f(t, x, y) where t is the time where the image is taken or is displayed, 

and x and y are the spatial coordinates. We must keep also a reference image 

that captures the stationary components. So, we need to compare two images 

(frames in a video file in two different time slots) pixel by pixel with the 

reference image to generate a difference image canceling the stationary 

components and leaving only non-zero entries that correspond to the non-

stationary image components. This can be defined as:
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Equation 5-2 

 

where θ is a threshold that is to be chosen larger than the background 

intensity. [8]

The difference image will denote the leading and the trailing edges of the 

moving object, i.e. this shows the area that was occupied by the object in the 

previous images, and is recently occupied by the object in the new image. 

Another method to detect motion is the Accumulative difference, which is 
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more suitable to the video frames. This method is based on recognizing the 

first frame in the video as the reference image, and comparing every frame in 

the video with the first one, producing an image that corresponds to the 

accumulative difference using the above equation.  In the accumulative 

difference resulting image, higher values will be given to the areas that were 

occupied by the moving object in earlier frames and moved away from them, 

and lesser values will be given to the newly occupied area. This can be realized 

in three types of accumulative difference images: Absolute Accumulative 

Difference Image (AADI), Positive Accumulative Difference Image (PADI), 

and Negative Accumulative Difference Image (NADI). The Absolute will 

show the path the moving object took and the new object’s location, the 

positive will show only the new location, and the negative will show only the 

path. 

The motion detection scheme implemented using the MOA class, used an 

xoring algorithm to have better display of the differential image. This updates 

equation 5-1, to have an xor sign instead of the subtraction minus sign. Figure 

5-20 illustrates the frames of an AVI displaying a clock’s pointers moving, as 

decomposed by the CMOAVideo class.
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Figure 5-19: Clock AVI Frames Decomposed by the CMOAVideo Class

The motion in the frames of figure 5-19 is detected using the updated 

equation, resulting in the differential image displayed in figure 5-20.
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Figure 5-20: Clock Pointers Motion Detection

Another example is illustrated by the frames decompositions of a file copy 

AVI in figure 5-21, and its motion detected producing the differential image 

in figure 5-22.

Figure 5-21: File Copy AVI Frames Decomposed by CMOAVideo Class
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Figure 5-22: File Copy Motion Detection

5.3.4 Video and Audio Correspondence

The Psi-Correspondence theorem  (PCT) discussed in chapter three, can be 

applied by relating the audio stream and the video stream coded in the AVI 

file format as two MOA structures in correspondence to each other. 

Streaming is a technique of using a small buffer to play a large file by filling 

the buffer with data from the file at the same rate that data is taken from the 

buffer and played. 

5.3.5 Summary of  MOA Video Class Methods

CMOAVideo is implemented in this thesis to perform the interfacing 

between the MOA structure and the AVI file format and the Video 

processing operations by calling MOA notation as described in previous 

chapters. This class performs only on 3-dimensional MOA arrays. Refer to 

Appendix C for the header file of this class, showing the argument lists and 

return types. Table 5-2 summarizes the CMOAVideo Methods.

5.4 MOA Applications

The MOA library implemented in this thesis has a wide domain of 

applications. Only two domains were tested in this thesis. Table 5-3 

summarizes the possible domains and their applications including those tested 

in this thesis, and the other feasible applications.
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Table 5-2: Summary CMOAVideo Class Methods

Name Description
CMOAVideo Constructor: Analysis the AVI file 
InitVideo Decomposes the AVI file into its streams, and decomposes the 

Video stream into its images.
AVIBitMapInfoHeader Returns the Info. Header of a specified frame in the video 

stream
AVIGetBitMapImage Returns the Image pixels stream of a specified frame in the 

video stream.
AviToMoa Converts she AVI file format to MOA Video structure.
MoaToAvi Converts the MOA Video structure to AVI file format.
VideoMOAIntoImage-
MOA

Converts a specific frame in the video stream to an MOA 
Image structure .

ReverseFramesOrder Calls MOA reverse operation on dimension 1
FlipFramesVertically Calls MOA reverse operation on dimension 2
FlipFramesHorizontally Calls MOA reverse operation on dimension 3
VideoSubtract Performs a bit-wise MOA operation (array_op) using 

subtraction operator among the 2-D Frames in a Video 3-D 
MOA structure.

MotionDetection Performs a bit-wise MOA operation (array_op) using xor 
operator among the 2-D Frames in a Video 3-D MOA 
structure (producing better illustrations for motion).

Table 5-3: Summary of MOA Applications

Application Description
Image Processing & 
Medical Imaging

Spatial arrangement of pixels in the images plane (width and 
height), applying all processing required on an image.

Video Processing Frames of images arrangement in a specified time sequencer.
GIS Applications Hierarchical arrangements of maps with different layers of details. 
Routing Algorithms Where points on the map are digitized having a defined scale 

between the spatial coordinates in reality and the coordinates in 
the MOA structure.

Robotics Visual Perception, autonomous navigation
Knowledge Base 
Systems

Reasoning about spatial knowledge like: recognition of complex 
objects, motion planning.
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Table 5-4: Summary of MOA Applications - Continued

Scientific 
Applications

Depending on multidimensional array structures and requiring 
aggregation and proration.

Processor Alignment Distributed Systems, very useful to load balancing, pipelining, 
distribution and redistribution.

Parallelisation Agents To be embedded in Compilers.
Document Editing & 
Layout

Where characters are the data elements of the array, and the shape 
is the document width and height.

5.5 Summary

This chapter presented two applications that can benefit from the MOA 

library. The image processing operations are implemented, representing the 

image as a 2-Dimensional MOA structure, and The Video processing 

operations are implemented, representing the video as a 3-Dimensional MOA 

structure, where operations in both applications are implemented by calling 

MOA functions as explained in chapter 4. Interfacing with the file formats for 

the image and the video files, was implemented, and some operations were 

implemented to prove the applicability of the MOA structure and operations. 

Moreover, the anticipated applications domains for the MOA library are 

presented.
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C h a p t e r  6

PARALLELISM, PIPELINING, AND 
HARDWARE IMPLEMENTATION

6.1 Introduction

This chapter investigates further experimentation on the programming 

invariant of dimension and shape environment implemented in this thesis. 

Sections 6.2 – 6.4 discuss parallelism, pipelining, and hardware 

implementation respectively, all related to the MOA library implemented in 

this thesis. Parallelism and pipelining are discussed theoretically, by relating 

previous research fields to the implementation of the MOA class. Only 

section 6.4.2 (on the Hardware implementation), includes a complete 

implementation in VHDL using Renoir, and simulated by ModelSim, of the 

MOA class implemented in C++.

6.2 Parallelism in MOA programming

The idea behind the MOA is to allow programmers writing array 

computations sequentially, to write their code in higher-level constructs that 

allow the compiler to extract parallelism implicitly from the overall structure 

of arrays and the array algorithms. The process is based on rewriting a 

sequential solution on a single processor to run on a specific parallel 

architecture. Since it seems difficult to develop a technology that 

automatically parallelizes a sequential code, the sequential code will instead 

need to be rewritten using these higher-level constructs, thus eliminating the 

use of nested loops and detailed subscript handling.
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The performance of parallel computing depends on two factors: i) dividing 

the work on the available processors, and keeping the overall computing time 

small, and ii) placing the data, and minimizing the communication between 

the processors. So, it can be summarized in computation, distribution, and 

communication. Communication can be several orders of magnitude higher 

than the computation costs.  Arrays are considered one of the major 

problems that decrease the parallelism effectiveness, the thing that caused 

recognizing the need to provide language extensions for a more direct 

expression of the problem in terms of array data structures. There has been a 

lot of research focusing on providing a mathematical formalization analyzing 

the array objects introduced into High Performance Fortran (HPF), and High 

Performance C (HPC), providing a systematic way of describing array 

operations to one that does minimal work. HPF provides semi-automatic 

parallelisation through the use of programming directives. These directives 

describe the data partitioning and dependencies that are communicated to the 

compiler in conjunction with the parallel tools to achieve an effective 

solution. The Psi-calculus research direction is based on the belief that the 

data placement can be deduced from the array expression, using mathematical 

formalization to describe the parallel architecture as an array of processors, 

and hence to achieve a reasonable partitioning solution for a non-trivial 

problem. [6]

The introduction of parallelism into sequential computation using arrays 

operations was previously studied, by viewing arrays of data and arrays of 

processors using an equational theory. This way, data is manipulated more 

efficiently through equivalence preserving transformations. Alternatively, the 

Psi-calculus defines everything in terms of structure and indexing, allowing 

the simplification of an arbitrary array expression even on one processor. The 

unified theory of arrays does not rely on graph theory, set theory, nor data 

flow analysis. This unified theory is designed to represent the computation 

and the computational organization in a network of processors, through a 
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high-level mathematical treatment of the problem to capture the inherent 

parallelism of the computation, and by providing a high level description of 

the available architecture. Eventually, this allows the use of transformation 

techniques to convert a high level description into a program that utilizes the 

architecture effectively.

The objective of the MOA algebra and the associated Psi-calculus is to 

optimize array computation given a linear address space on two levels. The 

first level is the functional normal form, which is a minimal semantic form 

expressed in terms of selections using Cartesian coordinates, which employ 

the Psi Reduction theorem. The second level is the transformation of the 

functional normal form to it’s equivalent operational normal form, which describes 

the implementation results in terms of starts, strides, and lengths to select 

from the linear arrangements of the items. The latter form employs the Psi 

Correspondence Theorem (PCT). [6]

Ongoing research has been attempting to describe abstract models for 

architectures, to be used as the basis for mapping decisions. However, the 

mapping of a computation to an abstract model based on manual efforts is 

always researched for better automation. There are several models, which 

provide automation solutions, and enhancement to existing ones. It is crucial 

to provide automation to this step, making effective use of parallel 

architecture. The graph theory is often used in designing the abstract model 

using nodes as processors, and edges as the communication links. The graph 

theory itself in this manner can be represented as an array of the addresses of 

the processors, where processors having a link are one address away along 

one of the axes. This way can describe a list of processors, a 2-dimensional 

mesh, a hypercube, a balanced tree, or a network of workstations. [6]
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A DoAll loop is one form of parallel execution of arrays, where all iterations 

can be executed in parallel, causing additional communication costs in case 

the array is not properly distributed across the processors. Some cases of the 

DoAll loop allow for communication-free array partitioning. These cases are 

derived in an equations as discussed in [31], using a constant distance vector 

and a set of independent array elements expressed in a lattice. If the set of 

independent array elements is the whole array, then the problem is trivial. 

Other cases can be handled by one block communication partitioning, 

locating all remote data to one processor, requiring at most one block 

communication for each processor to get the remote data during 

computation.

In this thesis, parallelism is discussed in terms of the MOA library 

implemented in C++, which is considered a step towards enhancing and 

simplifying the parallelism in C that was proven difficult, since the language 

was designed to be sequential in nature. So, it is an overhead for the C 

programmer targeting parallel computing to encode the programs’ 

synchronization, communication operations, and safeguard against race 

conditions. The separate shape in the MOA structure is discussed in terms of 

parallel computing. Then a discussion of a previously proposed parallel 

architecture-mapping scheme follows. Another discussion will address the 

Block-Cyclic redistribution problem and the algorithm presented in [16] for 

the Multi-dimensional Arrays. Then, a discussion about the implementation 

of the Tiling algorithms based on the MOA notation is presented. 
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6.2.1 Shapely Types

Parallel programming requires defining the shapes of the data structure 

separately from the data itself, in order to distribute the data among 

containers before operating on them  [18]. This, as well as the fundamental 

study of the semantics of matrices and arrays, raised a formalization of shape 

theory. This theory is based on whether the data types are defined as shapely 

data types or not, where shapely data types are those whose values can be 

decomposed into their shape and their data. Regular and irregular arrays, 

graphs, records, variant records, lists and trees are shapely; functions and sets 

are not shapely. Arrays were considered peripheral to the central functions in 

functional programming. To parallelize the computing of the arrays, 

dependent types were introduced, which require intolerable penalty for type 

checking during execution. So, the shapely types have the right amount of 

structure for data parallel computing.

Besides, the fixed geometry entailed in physical systems, requiring the 

conversion from graphs to sparse matrix (decoding and encoding), the 

programmer using shapely types can replace this process, by low-level 

processes for handling shapes as discussed in previous chapters. Another 

advantage for separating shapes from data, is the independence of shape, for 

which changes  such as dimension increase, generalizing from a mesh to an 

arbitrary graph, does not affect the computation.  This is called shape 

polymorphism, which is a novel form of parametric polymorphism, which 

allows operations to be parameterized over shapes. Interaction between the 

shape and the data can be found in the reduction operations (where shape is 

affected), and matrix multiplication (where shape of the inputs is validated 

and affects the resulting shape), whereas other functions may not be 

interacting with the shape. However, this interaction is designed in this thesis 
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such that it is not dependant on the values of the shape vector in order to 

maintain dimension and shape invariance.

Hence, shapes (which can also be defined to be data structures, containers, 

indexing systems) are needed in parallel computing to determine 

communication strategies, load balancing, evaluation strategies, … etc, to the 

limit that data parallel computing can be defined as shape-based computing. 

The greater the separation between the shape and the data and the more 

stable is the shape, the greater is the parallelism achieved. The library 

implemented in this thesis eliminates the static and the dynamic shape analysis 

phase (computing shape and assigning values to be used in the computation 

and performing the shape constraints as entered to the library). Previous 

research assigns the compiler and the optimizer to do the shape analysis as in 

[18]. For further details about the shape theory and semantics, refer to [18] 

and [19]. To summarize the importance of the shape separation from data, 

and the availability of shape information, we may state the following about it:

• It allows programming of graphs and topologies to be handled explicitly, 

while avoiding embedding within a structure, and supporting reusability for 

variant geometries.  

• As will be discussed in the next section, it can also be more expressible in 

terms of processor architecture, so that the compilation can map the shape of 

the problem to the shape of the processors. 

• Since shapes carry size information, this can be useful in pre-determining 

the load-balancing.

• It allows complexity estimates to be made for various sub-tasks, leading to 

improved scheduling, or determination to some non-deterministic algorithms.

• Because of shape polymorphism, error detection, and optimization are 

simplified.
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• Error detection is useful in identifying the impossibilities and the 

improbabilities (wild constraints).

• The MOA design provides the shape analysis (no need for static nor 

dynamic shape analysis), which allows for compiler optimization, and 

consequently the computation to be straightforward.

• Global synchronization is made available due to the availability of shape 

information and reshaping algorithms.

• Reshaping to partition is already implemented, and using the Psi-

Correspondence theorem (PCT), reshaping points are required, initially 

during the realization of the input data, and later during the data distribution, 

with as much redistributions as will be required.

• Shape independence is explicit in the MOA design,  and can be addressed 

separately by the optimizer.

6.2.2 A Proposed Parallel Architecture Mapping Scheme

The approach is based on two array organizations, one for the abstract model 

describing the problem, and the other for the enumeration of the processors 

in the form of a list, corresponding to the list of processors identity numbers, 

which is used to determine the actual send and receive instructions issued by 

the resulting program  [6]. There must be a systematic determination method 

about what information to distribute to which processor, and to map from 

the data arrays of the problem, to the processors’ array-like arrangements. 

The next step, is to design the low level code that selects data elements from 

one-dimensional memory, sending to the appropriate processor in the one 

dimensional list of processors. The code is to be based on the algorithm using 

high-level array-operations. In the second array (list of processors), each 

processor needs to have its own parameterized code to process its data in its 

local memory.
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Slicing can be used to tackle the problem of large components. Slicing can be 

done by having a three dimensional array, where the first dimension 

represents the number of slices handled at one run, and the second dimension 

represents the amount of data each processor can process in one run, and the 

third dimension is the number of processors. There must be an automatic 

address computation formal technique to ensure that the problem 

decomposition is handled correctly, because of the difficulty in the manual 

manipulation of data addresses. [6]

Mapping Cartesian coordinates to their lexicographic ordering can be useful 

when we want to partition and map arrays to a multi-processor topology in a 

portable, scalable way. For instance, a vector A of shape (n), multiplied by 

matrix B of shape (n p), where p is the number of available processors, can be 

performed in parallel by mapping each of the rows in B to a processor, and 

the elements of A to the corresponding processor. An integer-vector 

multiplication takes place in each processor, and then the vectors are added 

point-wise, producing the result. Adding the n vectors together, is best done 

by adding pairs of vectors in parallel, or abstractly, adding the rows of a 

matrix point-wise. This computation ideally needs a hypercube topology, 

taking at best O(log n)on n processors to compute, which is often not 

available. Having a LAN of workstations, a linear list of processors, or any 

processor topology, we can view abstractly as a hypercube and map the rows 

to processors by ordering on the p available processors, looking at the pi

where 0 ≤ i < p as the lexicographically ordered items of the hypercube.

This process is based on obtaining a vector of socket addresses in case of a 

LAN, and abstractly restructuring it to a k-dimensional hypercube, where k = 

[log2 n] [6]. Then the matrix needs to be restructured to a 3-dimensional array 

to be mapped to an abstract hypercube, having a 1-1 correspondence between 
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the restructured array’s planes and the available processors. This method 

utilizes the Psi Correspondence Theorem (PCT), sending the ith plane of the 

array to the ith processor lexicographically, and allowing for efficient memory 

addressing. In case there are more rows than processors, we can reduce the 

planes sequentially within each processor in parallel.

For example, an addition of the rows of 256 x 512 matrix denoted by A, on 8 

workstations connected by a LAN, we would restructure the matrix into an 

array of shape <8 32 512> denoted by A. A matrix P for socket addresses is 

created with 8 addresses of workstations. Addition of the rows is performed 

in parallel producing 8 vectors of length 512 in each processor. Then, P is 

restructured into a 3-dimensional hypercube implicitly to be used in deciding 

how to perform accessing the subsequent addition between processors. Thus, 

addition can be done in 3 steps taking (log2 8) time: [6]

1. Add processor plane 1 to 0. By applying Psi-Correspondence 

Theorem, this means adding the contents of processors 4 to 7 to the 

contents of processors 0 to 3.

2. Add processor row 1 to row 0, (i.e. add the contents of processors 2 

& 3, to the contents of processors 0 and 1).

3. Add the contents of processor 1 to the contents of processor 0.

The above method can be applied on any size matrix and any arbitrary 

number of homogenous workstations connected by a LAN. This scheme is 

portable and scalable.
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6.2.3 Block Cyclic Redistribution with MOA

Data distributions are managed to enhance the data locality in a distributed 

system, since accessing local data is much faster than accessing remote data  

[16]. Data aligning is a research area concerned with the redistribution 

algorithms, which are automatically embedded in compilers of parallel 

languages like in High Performance Fortran (HPF) as described in [20]. The 

block-cyclic distribution problem is a classical research area that matches the 

data access patterns of many High Performance Computing (HPC) 

applications, such as radar, and sonar signal processing. Also, there is 

ScaLAPACK, a mathematical software for dense linear Algebra 

computations, which uses block-cyclic distribution for load balancing and 

computation efficiency. The redistribution is required since data access may 

change during computation (due to failure of some resources in the 

distributed system, or whatever). This means data will be reorganized in order 

to minimize the remote access overhead, leading to scalable performance.

Specifying data distribution and redistribution varies in level of details in 

application programs. It is specified as a high level compiler directives, when 

parallel compilers are used, like in HPF: ALIGN, DISTRIBUTE, and 

REDISTRIBUTE directives. In explicit parallel algorithms, the programmer 

manages the data distribution and movements between the processors. 

Message Passing Interface (MPI) can be used to perform inter-processor 

communications. These algorithms need to be efficiently implemented or else 

overheads will offset the data locality performance benefits. 

A Cartesian representation of processor assignment to each dimension in a 

multi-dimensional block-cyclic redistribution is discussed as a process 

topology to implement the redistribution of multi-dimensional arrays [16]. 

Changing the block size requires the reapplication of a 1-d (for dimension) 
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redistribution algorithm along each dimension of the array. However, this is 

applicable for the process topology changes, which require the matrix 

transpose operation. This used to be enhanced by reducing the index 

computation overhead, or reducing the actual communication cost of 

redistribution, which could make the redistribution cost very high if not 

implemented efficiently.  Communication schedules are classified to be 1) 

direct scheduling – array elements are sent directly to their destination, or 2) 

multiphase scheduling – arrays are moved in phases using direct scheduling 

within the phases, reducing the startup costs.

In [16], a uniform framework for block-cyclic redistribution is presented, 

utilizing the generalized circulant matrix, exploiting the regular characteristics 

of block-cyclic redistribution. This approach minimized the communication 

time and the index computation overhead, deriving direct, indirect and hybrid 

scheduling, and eliminating node contention. The algorithm exploits a two-

dimensional table (called Destination Processor Table - dpt), which relates the 

global block indices with the destination processor depicting the actual local 

memory layout of the blocks. The number of the columns equals the number 

of processors in the architecture, and the number of rows equals the number 

of the communication events. This structure makes the determination of 

every block location a function of the block size along each dimension 

(shape), number of processors, and the global block index assignment index, 

reducing the redistribution (conceptually) to be a table conversion process –

row (inter-processor communications) and column (local memory) 

transformations.  The indirect scheduling algorithm in [16] aligns the diagonal 

entries vertically in logarithmic number of steps by cyclically shifting the rows 

of the dpt, thus reducing the number of communication steps. The 

scheduling then proceeds as mentioned earlier either direct, indirect, or 

hybrid, using a permutation.
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As discussed above, the shape information (holding size information) 

available in the MOA design can be made available to the distribution 

algorithm to be used in the dynamic data distribution, which is optimized 

based on the shape values. The dynamic cycle of shape analysis, and 

optimization required for the redistribution of the data until the program 

ends, is reduced due to the availability of the shape information from the 

beginning as discussed in section 6.2.1. The index computation overhead can 

be further reduced by applying the indexing notions discussed in section 

6.2.2, using a mapping scheme between the indices in the MOA’s data 

elements, and the processors MOA structure. The destination processor table 

used in this algorithm and the row and column transformations discussed, can 

be all mapped to the MOA structure and the PCT theory, using the 

operations implemented in this thesis to provide the index computation 

invariant of dimension and shape, which leads to a full implementation of the 

circulant matrix form using the same notation of the MOA library, either as a 

higher construct based on the available operations, or by adding an extra 

operation to handle this concept. The full implementation of the algorithm 

based on the MOA notation is beyond the scope of this thesis.

6.2.4 Tiling

Tiling is the process of applying geometric transformations in the iteration 

space in order to restructure the loop nest (execution of statements within the 

loop, or the loop iterations), in order to improve the performance, preserving 

a reasonable tradeoff between communication and computation, and allowing 

automatic parallelisation [10]. It is a way to make an orderly subdivision of 

space, using two or more shapes assembled somehow to cover the whole 

plane without overlapping. The transformation can be any of the following 

types, which will be discussed in relation to their correspondence to the MOA 

notation and will cause the same kind of effect on the final performance.
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Fusion in Tiling is combining two adjacent loops, which is achieved by the 

Catenate function in MOA. Fission is dividing two loops into two separate 

loops, which can be achieved by several functions in MOA according to the 

type of separation (psi, take, drop, and slice). Interchange is that the order of 

the nested loops can be interchanged. This can be achieved in MOA by the 

transpose function, which will also take care of the legality and the 

dependency and will preserve the performance of the original code 

automatically. Strip Mining in tiling is partitioning the one-dimensional array 

into vectors of certain size and operates on it as if it is a two dimensional 

array with two nested loops. This can be achieved in MOA, by the slicing 

function, returning partitions of the array in the form of slices (number of 

slices is the required size) of the required dimension – in this case vectors 

(arrays of one dimension). Then, the resulting vectors are reshaped to operate 

on them as two-dimensional arrays. 

Loop Skewing is the process of transforming the inner loop indices to the 

sum of difference of old inner indices and an integer multiple of the outer 

loop index  [10]. This adding of a skewing factor to the indices of the iteration 

is what is totally eliminated in the MOA notation, since there is no need to 

have a relation between indices identified with this skewing factor, when you 

have the psi function. In MOA, all that the programmers need to do is to 

send the indices in a vector with the multidimensional array as arguments to 

the psi function, and that defines the relation. Another possibility is to send 

the vector of indices to the Gamma function and it returns the index in the 

flat array, without going through the trouble of identifying the skewing factor. 

Hence, in relating arrays of different dimension or shapes to each other in 

one loop, indices are used incrementally according to the shape and bounds 

of dimensions of each array.
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Rectangular partitioning in Tiling is the process of forcing the tile to be of 

rectangular shapes having the borders of the tiles parallel to the iteration 

space boundaries, not to the iteration space axes. The reshaping in general, 

whether to rectangular or any other shape, is achieved with a simple function 

in MOA, which is reshape.

The data dependence relations can be identified straightforwardly in MOA 

notation from the multidimensional index vector. The Hyper-planes defined 

in tiling is the main data type of the MOA notations, since it is all based on a 

variant number of dimensions and shapes. The Tiling parameters (size and 

shape) are the same notation used in MOA with Tau (Shape) and shape, 

where the psi, reshape, take, drop, and slice functions can be used to perform 

the tiling algorithm in the MOA notation, keeping the number of 

computation nodes (elements of components of the flat array) bounded by 

the cache size. 

MOA allows for better parallelisation because of the lowered dependency in 

its logic. In Tiling the main factors were the communication and 

computation, while in MOA, we can focus only on communication, since 

computation can be easily divided into independent blocks of code that 

address specified locations in memory.

6.3 Arrays Pipelining

Pipelining is one of the parallel processing techniques. Since arrays are 

accessed by loops, therefore pipelining can be a process of scheduling 

technique that makes use of the repetitive nature of loops. This means, an 

iteration of a loop starts before its preceding iteration is completed, thus 

executing multiple iterations concurrently. This makes it an NP-complete 

problem, which is overcome by using expensive hardware features such as 



- 126 -

in the polycyclic architecture or the FPS 164 approach that restricted 

software pipelining to loops containing a single Fortran statement in their 

bodies. Previous work addressing this issue includes Warp systolic array 

architecture, the fine-grain scheduling technique, and the time and space 

efficient general framework for fine-grain code scheduling in pipelined 

machines, exploiting fine-grain parallelism through dataflow software 

pipelining as discussed in [12].

The software pipelining accomplished by arranging the mapping of the array 

selection operations to flow in a pipelined fashion into a code block (units 

of program text that define the major structured values involved in a 

computation), in the right order, while discarding the unused values. This 

structure is achieved by having an index generator subgraph (IGEN) that 

generates the indices required from an array in a computation. Besides, an 

array generator subgraph (AGEN) is needed to use the indices and control 

values generated from the IGEN to structure an array (assemble the results 

elements into a resulting array) depending on the base address of the array. 

Also, the framework requires a selection operation with an index calculation 

expression. The use of the IGEN is optimized by deciding whether the 

array elements selected are processed in the same order, in which case, there 

is no need to dismantle them and assemble them after the computation, and 

thus create an overhead of storing intermediate array values in structure 

memory. [12]

The scheduling for pipelined architecture is addressed by a constraint 

precedence graph, where nodes represent operations, directed edges 

represent precedence relations due to data dependence hazard, and 

undirected edges represent constraints due to possible collisions. This 

scheduling aims to find an execution order of the instructions to minimize 

the total run-time. The code scheduling for the dataflow software pipelining 

is the process of defining a dataflow of a computation, which shows the 
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successive waves of elements of the input arrays to visualize how the 

computation can proceed in a pipelined fashion. Work in this field resulted 

in a (fully) balanced acyclic dataflow graph containing equal number of 

operations on every path between a pair of nodes. This balancing can be 

achieved by introducing a minimum amount of FIFO buffering on certain 

unbalanced arcs. Full balancing vs. limited balancing concepts were 

discussed in this work, causing less space requirements in the case of limited 

balancing. Also, the register allocation task is not done separately from the 

loop-scheduling task, with a total transparency of the runtime storage 

management to the user (complier), and reduced synchronization 

acknowledgement signals. So, the scheme is based on unraveling the loop at 

compile-time for pipelined execution, using the same code and data memory 

space for the entire loop pipelining, avoiding the overhead of allocation and 

management of space and tags. [12] 

From the abstract description of the monolithic array pipelining, we can 

visualize where the MOA notation fit in the scheme. IGEN, AGEN, and 

index calculation expression are the three main constructs in this scheme 

that can be easily implemented in the MOA notation. The index generation 

in the IGEN can be implemented using the Gamma and Gamma Inverse 

functions in MOA. The array generation is the result of many of the MOA 

partitioning and restructuring functions discussed in MOA in previous 

chapters (take, drop, reshape, catenate, reduce, slice, … etc.). The index 

calculation construct is the heart of the MOA notation in all its functions.

6.4 MOA Hardware Implementation

6.4.1 VLSI Verification
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The MOA axioms and definitions represent one of the techniques used in the 

VLSI verification. Since arrays are considered an important data structure for 

the description of any physical problem, the array operations and notations 

are used to describe and simulate computer architectures, and as a basis for 

register transfer languages. The entire System/360 Architecture is described 

using APL notation. The APL notation is used to describe hardware 

components like multipliers and adders. Also, there is a register transfer 

language called AHPL, written in Fortran, which simulates hardware design. 

Moreover, a circuit design language, APLSIM, provides SPICE-like 

simulations in a modified APL environment written in C.  The properties of 

the mathematics of arrays notation discussed previously, are considered useful 

to the VLSI design verification.

As defined previously, the mathematics of arrays is based on believing that all 

data structures can be represented using arrays. A scalar is an array of zero 

dimension, a vector is an array of one dimension, and a matrix is an array of 

two dimension, and so forth. Forming a notation to handle all operations 

independent of dimension, resulted in having a new paradigm of 

computation, which takes the advantages of the mathematics of arrays, and is 

applicable to all domains, specially the image processing applications. This 

notation was first implemented in software using the Psi compiler, and 

achieved a speedup on the performance of the conventional software 

computation on both uni and distributed processors, by reducing array 

expressions to eliminate unnecessary computation and temporary storage. It 

was also desirable to apply this notation on hardware to achieve higher 

performance. In  [2] and [3], a Chameleon reconfigurable coprocessor board 

is presented to try various approaches. The board consists of:

1. One 4013-4 Xilinx  FPGA for SBUS interface, 

2. 10 Mbits of 15 ns static RAM (SRAM),
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3. An Analog device ADSP-21020 Digital Signal Processor (DSP) for high 

speed floating point calculations.

4. Two application reconfigurable FPGAs, programmed through the SBUS 

to control the DSP chip and to manipulate the data between the SBUS, 

external SRAMs, and the DSP chip,

The system implementation is done manually in VHDL, aiming to use the Psi 

compiler to generate syntheizable VHDL code for high performance array 

address generation and microcode for the DSP chip. In [2] and [3], the 

authors presented an application example of array convolution using MOA to 

derive a hardware algorithm for optimal memory address generation on the 

Chameleon coprocessor, thus achieving optimal performance for all resources 

involved (bus bandwidth, DSP speed, supporting architecture, array shapes, 

etc.). The array convolution is achieved using the following algorithm:

1. Define the initial data array D, and the multiplier mask M, and flatten 

them using the rav operator.

2. Iterate step 3 until the difference between iterations for all points is less 

than some predefined epsilon or until a predetermined iteration count is 

reached, depending on the application on hand. 

3. Apply the mask to all sets of points in the data array to compute the 

resultant data array with boundary conditions held constant. A single resultant 

point in the resultant data array is computed by taking each element of the 

mask and multiplying with each element of a corresponding region in the data 

array centered about the point of interest and summing the results to 

compute the resultant point. This is achieved by applying the summation 

reduction (+ red) on all vectors i greater than or equal zero, and less than or 
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equal the shape of the mask, as the Cartesian offset of the mask (i ψ  M), 

multiplied by the vector (sub-array) b taken from the vector i, and dropped 

from the initial data array D.

Using the MOA notation, the above algorithm can be defined by the 

following expression [3]:
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6.4.2 Hardware Implementation of  the MOA Library in 
VHDL

It was also desirable to test the MOA notation implementation in VHDL as a 

hardware description language, in order to test the performance of the 

notation in hardware. The implementation was designed in the form of a 

library package to be included in any project to use the pre-compiled 

operations.  The only limitation in the hardware implementation was the 

absence of the dynamic allocation of memory as it was available in C++ 

implementation, or the absence of the unconstrained arrays the way it is used 

in other software programming languages. There must be a constant upper 

bound for the memory reserved for the MOA structure, and the application 

uses as much variable space needed beneath this upper bound. For example 

the MOA structure displayed in figure 6-1, displays a VHDL MOA defined in 

the input signals simulated with ModelSim. A static upper bound is defined 

for this package to be 15, and only one upper bound is used for both the 

shape array and the elements array (this is of course for simplicity, but 
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engineering wise, it can’t be). The package traverses the arrays up to the 

defined upper bound and skips the rest. 

The static allocation of array sizes limited the main advantage of MOA, which 

is the efficient memory manipulation. Solutions like cascading or designing 

different size packages can be applied to allow for applications requiring 

larger memory allocations to set an upper bound. 

The same design applied in the C++ implementation for the MOA, was again 

used in VHDL, minor changes were required to take care of the hardware 

processing. The simulation showed the same results as the C++, and the 

synthesis required further changes to avoid the use of the for loops. The 

implementation on Renoir using VHDL, and producing a package, was 

intended to test the performance of the MOA notation on hardware and 

study the possibilities of having special-purpose hardware (hardware 

accelerators) for scientific applications. Appendix D contains the VHDL 

package header. The difficulties lie in the synthesis of the package, since some 

of the functions used in the design are not synthesizable. So, they need to be 

rewritten in a more primitive syntax to allow for synthesis.

In the case of figure 6-1, the shape is traversed up to index 1, since it is a 2-

dimensional array, and the elements array is traversed up to the index 8, since 

the shape vector is defined to be < 3 3 > as seen in the shape (0) and shape 

(1) signals. The MOA array in figure 6-1 denotes an array as follows:

2≡δξ , 332 ≡ρξ , and 









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Figure 6-1: MOA Array with defined upper bound in VHDL

The testing in the simulation, showed accurate results as shown in figure 6-2 

demonstrating the result of a reduction operation with + operator, and on 

dimension 1, over the MOA input array displayed in figure 6-1. The MOA 

array in figure 6-2 denotes the following array:
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1≡δξ , 32 ≡ρξ , and [ ]1815122 ≡ξ

Figure 6-2: ModelSim MOA output after reduction operation using + operator on dimension 1
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6.5 Summary

The experimentation in the implemented library can take different directions, 

which is what this chapter has proven. The work in this thesis focused 

primarily on the implementation of the basic notation, as well as validating the 

notation behavior on 2-dimension and 3-dimension, using an image and video 

processing applications respectively, proving the correctness of the design. 

However, the main advantages of the MOA class can be clearly observed 

when experimenting with parallel computing, pipelining, and even when 

augmenting hardware accelerators. The parallel computing was discussed, 

presenting the shape polymorphism of the implemented MOA structure, the 

MOA proposed parallel architecture scheme, MOA data redistribution using 

the block cyclic redistribution algorithm, and the tiling MOA implementation. 

The MOA array pipelining was discussed based on a general framework for 

fine-grain code scheduling in pipelined machines. Only the hardware 

experimentation in this chapter was implemented on VHDL using Renoir and 

simulated using ModelSim.
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C h a p t e r  7

PERFORMANCE ANALYSIS

7.1 Introduction

In this chapter, a discussion of the performance of the applications, designed 

based on the MOA library implemented in this thesis is presented. It is 

difficult to give a quantified analysis for all applications, since the library has a 

wide variety of application domains, and is still open for further investigation, 

more fine tuning, and for adding more exceptions to be handled as required 

by applications. Hence, the analysis presented in this chapter will be a general 

estimate on how far an application based on the data structures of the MOA 

library, can be enhanced due to the nature of the design, and how far it is 

dependant on the complexity of the applications’ computation. 

7.2 MOA Versus Traditional Methods

From the experiments presented in the previous chapters, it is obvious that 

the declaration of the MOA arrays requires more statement and initialization 

of the MOA structure because of the dimension and shape invariance and 

separation. This complication can be reduced if handled by the compiler (in 

case of augmenting the semantics of the library to the compiler), where extra 

declarations are added by the compiler, not by the programmer. The division 

of work between the compiler and the programmer is out of the scope of this 

thesis. However the array declaration is not the end of the story. All the 

complications of the traditional methods come from traversing and 

manipulating a multidimensional array specially when there are some defined 

relationships among its elements. The equations that define these 

relationships require lots of validations and verifications until they are 
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efficiently implemented. The implementation of these equations might add 

extra complexity and overhead to the performance of the design of the 

solution. Therefore, the programmer will start reducing and simplifying these 

equations to reach the optimal form. These steps are all eliminated when 

designing the data structure of the solution on hand based on the MOA 

library implemented in this thesis. 

The MOA library contains numerous types of relations that can be extended 

in any further experimentation on new application domains, as well as 

traversing methods that are already simplified and reduced using the Psi-

Reduction theorem and the Psi-Calculus. Dependence on these operations 

will eliminate the effort of redesigning them every time an application requires 

their implementation for a fixed dimension and shape, since they represent a 

repeated pattern between different fields of application. Moreover, MOA 

decreases the number of nested loops required in the solution, the fact that 

will eliminate the erroneous design of loop starts, stops, and strides and 

boundary constraints, leaving the source code of the application on hand 

reflecting the design of the application specific solution. The shape 

polymorphism achieved in the MOA library allows all operations to reduce 

the general case to that of lists, so that these operations can be interpreted by 

a single algorithm for every function, i.e. only one transpose algorithm is used 

for all shapes, one dot operator, one reduction operators, … etc. 

7.3 Nested Loops Reduction with MOA

The MOA notation reduces the number of nested loops involved in 

traversing arrays of variant dimensions. All types of arrays (different 

dimensions and different shapes) can be traversed in one loop either on the 

sequence of their raveled (flattened) array, or on the sequence of their shapes 
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and dimensions. This reduction is useful for the performance, and efficiency 

of the solution design.

An example of an array traversed on its variable dimension and shape

Array[A1][A2][A3];

L1: For (I = 0 to A1 )

L2: For (J = 0 to A2 )

L3: For (K = 0 to A3 )

Array[I][J][K] := I * J + (K*3)

End L3

End L2

End L1

An example of an array traversed on its flattened array

Array[A1][A2][A3];

L1: For (i = 0 to (A1 * A2 * A3) )

Indices = Gamma_Inverse (i, Shape(A));

Array[Indices[0]] [ Indices[1]] [ Indices[2]] := Indices[0] * Indices[1] + 

(Indices[2]*3)

End L1

Where Shape is a function that returns a vector containing the A1, A2, A3 

bounds of each dimension or axis in the multidimensional array, and 
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Gamma_Inverse is a function that returns the values of the multidimensional 

indices for a specific index in the flattened array. 

Note also that the reference:

Array[Indices[0]] [ Indices[1]] [ Indices[2]]

is  equivalent to:

Array[i], where i is the loop counter. Also it is equivalent to:

Array[Gamma(Indices)], where this will return the same i mentioned above.

The second example contains one loop, and the gamma inverse function 

contains just another one loop on the array, so, we end up with one loop 

reduction from the three loops used in the first example. That is in case of 

three-dimensional arrays. For more dimensions, the second method will keep 

on using those two loops only for an arbitrary number of dimensions, while 

the traditional method shown in the first example will use as many loops as 

the dimensions of the array. The graph presented in figure 7-1 shows how 

dimension invariance programming affects performance as dimension 

increases.
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Figure 7-1: Increasing Dimension in MOA vs. Traditional Methods

7.4 Invariant Dimension & Shape Analysis

From the above analysis, we arrive at the fact that the declaration of the 

MOA arrays are complicated than in the traditional multidimensional array 

handling. We can also see how easy it was to design the video MOA class. 

This easiness comes from the fact that most of the functionality of video 

processing can be readily implemented in the image MOA class. Hence, 

processing the video operations can be just a matter of calling the MOA 

image class to apply some image operations on the several image frames 

found in the video files. This property in general visualizes the hierarchical 

architecture of the MOA arrays, which provides reusability of functions 

implemented on one level to be applied on higher or lower levels in the 

hierarchy by manipulating the MOA structure correctly. Therefore, the extra 

complexity in the MOA array declaration more than the traditional methods 

noticed earlier, is compensated for and even better enhanced by the 

increasing dimension, and the complicated traditional manipulation of 

multidimensional arrays.
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This basic property of MOA is the main justification of using it. If an 

application expects its data structure’s shape and size to be defined, grows, or 

shrinks at run time, or when operation may need to be re-applied on different 

levels, slices, or partitions of its array structures, it will considerably benefit 

from designing its structures based on the MOA library. On the other hand, 

applications that decides for sure that there is no expansion in the 

dimensionality of their data structures, can still benefit from the parallelisation 

inherited from the shape polymorphism in the design of the library. 

7.5 Parallel Processing

Parallel processing with MOA was investigated in the previous chapter. It was 

proven that MOA inherently contains parallel computing factors that lie in 

the shape invariance and separation from data, and in the partitioning and 

decomposition of arrays into smaller ones, which can be processed 

concurrently on several processors or threads, then reconstructed to form the 

larger array result. This main concept can be expanded in several ways to 

include more control over the parallelisation process, and solving many of its 

problems in the scheduling, data redistribution, and load balancing problems. 

The shape analysis and its effect on the parallelisation, and the data 

redistribution problem, and the tiling algorithm implementation based on the 

MOA library are examples for how MOA can be a base for an automatic 

parallelisation agent that parses a sequentially written source code to generate 

its parallel version. Further investigation and experimentation is required in 

this field, since only discussions were presented in this thesis.
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7.6 Time of  Processing

The time of processing is expected to be exponentially decreasing as the 

dimension increases on one hand as illustrated in the graph of figure 7-1, and 

is expected to decrease again when parallelized and executed on a multi-

processor environment in order of the number of processors involved. The 

shape knowledge decides the computation time, by deciding the depth of the 

trees or graphs connectivity denoting the complexity of the operation. Hence, 

a general estimate of the time of processing of any computation based on the 

MOA library is:

))(*2(
N

O ρξτ

Where ξ  is the data array of invariant dimension and shape (could be scalar, 

vector, matrix, arrays of any dimension), and N is the number of processors 

used in the computation, τ is the Tau operation that returns the product of 

the shape vector ρξ  denoting the number of elements in the array ξ . The 

size of the data array is multiplied by two, since it was decided previously that 

it takes two nested loops to traverse an array of arbitrary dimension and shape 

using the MOA paradigm, and then divided by the number of processors 

involved in the computation. Obviously this equation is a general estimate of 

the simple traversing problem of arrays in MOA. The computation 

specification of an application based on MOA, rewrites this equation 

depending on its requirements and solution design.

The image transformations implemented in this thesis in the image and video 

processing tools take more time than the traditional methods. This is due to 

the full traversal of the image in pixels in the image class, and to all pixels in 

all frames in the video class, all on one processor. Furthermore, another 

reason for the slower performance is the overhead of mapping the bmp file 

format to the MOA structure to do the operation, then mapping back to the 
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bmp stream of pixels to draw on the screen the result using the StretchDIBits 

function. The performance can be considerably enhanced if a file format of 

the MOA image structure is designed and a new drawing function is 

implemented to read from the MOA description directly.

7.7 Hardware Accelerators

The implementation of the MOA library as a VHDL package to test its 

performance on hardware succeeded to produce correct results. However the 

array definition in VHDL requires a constant upper bound. So this constraint 

affected the complete dynamic implementation found in the software version. 

However, it can be compensated for by designing packages of defined upper 

bounds, and the application uses a suitable bound on its data size. 

7.8 Summary

The performance analysis of the classes implemented in this thesis is difficult 

to quantify, since it will always depend on the application employing it, and 

the correct handling of the MOA structure and operation. The work on this 

thesis is rather abstract and proposes a new paradigm of computing that is 

still open for further enhancements and experimentations that will tune the 

performance. Generally, this chapter discussed the factors affecting the 

performance of applications designed using the MOA structure. These factors 

are: the expressiveness, validity and conceptual clarity achieved better than in 

the traditional methods, the nested loops reduction for multi-dimensional 

arrays, the programming invariant of dimension and shape polymorphism 

benefits, which is more amenable to parallel computing, and finally work can 

be more easily divided between software and hardware accelerators.
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C h a p t e r  8

SUMMARY

8.1 Introduction

This thesis investigated the array programming invariant of dimension and 

shape, using the Mathematics of Arrays (MOA) - PSI-Calculus. The main 

emphasis through out the experimentations conducted was to form a 

complete understanding of how far we can utilize the MOA notation and the 

PSI-Calculus, which were previously defined in the literature but never 

applied in real applications. The gap between the mathematical equations 

defined earlier and the complexity of programming these equations without 

being analyzed and simplified from a programming point of view was the 

main reason behind ignoring this complete notation. This thesis took a 

different direction than the previous research efforts, by working on 

implementing the array operation invariant of dimension and shape, as APIs, 

not as a compiler that parses a new language lexicon of the basic notation to 

produce a traditional array handling source code in the targeted language, nor 

as a language extension to an existing functional language. 

This thesis proved that the MOA notation implementation neither requires a 

separate complier to compile its notation to a functional language, nor does it 

requires extensions to the existing functional languages. It was implemented 

as a library of APIs on an object oriented class using C++, to be used by 

programmers as higher-level constructs, operating on a flat array (one 

dimensional array), comprehending it as an array of dimension and shape 

defined at run time.  The choice of C++ as a powerful object oriented 

imperative language was meant to add some functional array interactions to 

C++ as in array-based functional languages that are based on a mathematical 

description of the problem. The CMOA class implemented in this thesis 
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satisfies the preliminary requirements towards achieving a functional C++ 

array interaction, which were implemented in sort of higher level constructs 

(APIs) that can be used for scientific and engineering applications in an object 

oriented environment that allows for overloading, inheritance and 

polymorphism. These concepts helped in achieving different variations of the 

array operations, and can allow for nesting of the data structures containing 

the arrays. 

Also, C++ implementation achieves more effectiveness and better memory 

control. The design of the library allows compilers to capture the implicit 

parallelism due to shape polymorphism. This design of the MOA proved its 

correctness and showed better programming style, and generally better 

performance. It eliminated a considerable amount of nested loops, and 

allowed for reusing the functions defined for any dimension and any shape. 

The Library implemented in this thesis is comprehensive and covers the 

entire notation presented in previous work with a few simplifications to some 

of the equations, and adding some more functions that were required for the 

application of the library, like the slicing, iteration, connectivity, and 

orientation functions. The application of the MOA library design could be 

infinite, since it forms a programming paradigm that even scalar programming 

can be based on. First of all, as claimed in previous work, it can be an 

extension to compilers, where users don’t have to change their programming 

styles, but the compiler parses their defined structures as MOA structures, 

with scalars treated as arrays of zero dimension, vectors as arrays of one 

dimension, and matrices as arrays of 2 dimensions, and so forth. This 

eliminates the shape analysis phase from the compilers’ job, as required for 

parallel computing. It also makes the translation to low-level languages and 

Register Transfer Languages (RTL) as well as the parallelisation inherited 

from the shape polymorphism, much easier and more straightforward. 
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The second class of application, which was more experimented in this 

research, is the graphic design (image and video processing). MOA showed 

better performance and easier manipulation of graphics (2D and 3D images) 

and video files. Most of the processing of both images and videos are a matter 

of calling notation already implemented in MOA library, with higher 

efficiency, enhanced performance, and much less effort than traditional 

methods.

Third class of application represents the scientific and engineering 

applications in general, which require excessive computations, and 

complicated data structures with defined relations among them. The shape 

polymorphism is useful for divide and conquer algorithms, Gaussian 

elimination on a sparse matrix (pivot choosing), Partial Differential Equations 

(PDEs) which is graph polymorphic (only depends on the notion of 

neighborhood), systolic algorithms, and recursion in trees construction and 

parsing (defining the path to a node in terms of an index in a list). 

The fourth class of application of the MOA library is the parallel computing 

and pipelining experiments discussed in chapter six. Some of the applications 

of this class are:

1. Parallel matrix multiplication.
2. Mapping arrays by Cartesian Coordinates to a Multi-processor topology.
3. Matrix addition on workstations connected by a LAN.
4. MOA block cyclic data redistribution.
5. Tiling Algorithm MOA implementation.
6. MOA arrays pipelining scheduling algorithms

This class of application also includes the operating systems, and distributed 

systems in particular. The MOA library can be used for the scheduling of 
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processes on processors, load balancing, mesh networks communications or 

other types of networks merging and designing, … etc.

Designing the data structures of the various applications based on the MOA 

library, gives the implementation efficiency, conceptual clarity, and 

expressiveness, due to the elimination of a considerable amount of equation 

verifications and validations, allowing for better performance. Besides, all the 

above discussed features of dimension and shape invariance, reduction of 

nested loops as dimension increases, pre-compiled and efficient index 

computations, parallelisation, pipelining, and ability to augment hardware 

accelerators to the design are added values to the design.  

8.2 Experimentations Results - Contributions

The main contribution of this thesis is the full implementation of the MOA 

notation in C++ as APIs, which is done for the first time in a powerful 

Object Oriented imperative language. This implementation required a 

comprehensive analysis of the MOA operations equations and their 

simplification. The CMOA class is the base for other experimentation in this 

thesis. This contribution is verified through the implementation of the MOA 

testing tool, which presents a comprehensive user interface for all notations 

that allows the user to define the test cases and call the MOA methods. It 

graphically displays the results on the screen in a style amenable for further 

operations. Test cases applied covered a variety of MOA arrays of different 

dimensions and shapes, and applied all the methods on each example. The 

library showed a steady performance invariant of dimension and shape.

A second contribution is the two other testing stages, which were performed 

to prove the applicability of the MOA library in two real life applications, 

namely the image and the video applications. The image-processing class 
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implemented using the MOA basic class, proved the correctness of the 

design, and presented an easier and neater manipulation of the image, and the 

operations that were processed on it. The MOA image class processed image 

transformations that were programmed in an expressive and concise source 

code. The MOA based class for Video processing was implemented to read 

video files, store them in MOA structures, and operate on them using the 

MOA notation and the implemented MOA based image class. This class 

showed easier manipulation of video files and more control over the frames 

in the video stream processing operations. Most of the functionalities of 

video processing are already implemented in the image MOA class, and are 

just called to be applied on the several image frames found in the video files. 

This property visualizes the hierarchical architecture of the MOA arrays that 

provide reusability of functions implemented on one level to be applied on 

higher or lower levels in the hierarchy by manipulating the MOA structure 

correctly. Thus, the extra complexity in the array definition over the 

traditional methods, is soon compensated for and even enhanced when the 

dimension and the shape changes at run time, and the designed algorithm still 

performs correctly, and the complicated traditional manipulation of 

multidimensional arrays.

A third contribution is the definition of the parallelisation and pipelining 

factors inherently defined in the MOA notation. These were discussed in 

terms of shape polymorphism, MOA parallel architecture scheme, data 

redistribution algorithms, the tiling algorithm related to the MOA class, and 

the MOA array pipelining. These discussions shed some light on the benefits 

of employing the MOA structure in problem solutions, related to parallel 

computing.

A fourth contribution is the hardware implementation of the library using 

VHDL on Renoir. The package implemented in this thesis can be considered 
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a base for more specific hardware accelerators of data-intensive 

computations, specifically in the DSP, image and video processing fields.

8.3 Future Work

Future work based on this thesis can be classified into two categories. The 

first category is the possible enhancements of the current implementation of 

the MOA library to include more array interactions or concepts, or even to 

enhance its current performance. This category includes adding more direct 

subscripting operators to the library that allow for accessing the scalar 

elements, partitions or the whole array (by ignoring the index) for reading and 

writing. Also, graphical representation of data elements in the MOA tool can 

be enhanced to match the ones produced by Nial.

Moreover, investigation can proceed in the direction of the implementation 

of irregular array structures also invariant of dimension and shape. In this 

thesis only the regular (rectangular) arrays have been implemented for the 

MOA notation. This research can focus on allowing higher dimensions in the 

shape vector not to be multiplied by the lower dimensions in the shape vector 

to contribute to the final number of the elements in the MOA array; i.e. upper 

bounds defined in the shape vector could be defined for each dimension, 

where each can define its own lower-level number of dimensions and the 

extent of each (shape). It will also require shape records for every dimension 

in the MOA array. Therefore, the final number of elements on the flat array, 

could be the recursive summation of all these shape values (with a 

termination condition reached when the dimension of the current nesting is 

equal to 1 – vector - or zero - scalar -). The theory is clear for implementation, 

however it will require revising and altering all implemented functions to 

reflect this change in the data structure, to maintain invariance, and certainly 
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will need the rewriting of all equations for higher-level generalization. This 

can be programmed such that:

struct shape_rec {

dimn;

shape;

}

struct MOA_rec {

dimn;

array_of_shape_rec;

data_elements_flat_array;

}

where the shape_rec in the MOA_rec structure is a structure as shown 

above. This structure contains dimn, and shape vector. The shape_rec is a 

pointer to an array whose size is defined at run time by the MOA 

dimensions. Thus, we can have a shape record containing another 

dimension and shape vector for each dimension in the main MOA 

structure. The size of the flat data elements array, is decided by the 

summation of the product of all these shape vectors as mentioned above, 

while maintaining the data listed in row major order in a flat array.

This enhancement will update the tree diagram of the MOA structure in 

chapter 4, figure 4-3, to be as follows:

Given an MOA array of base dimension = 3;

Dimension 1 � dimn = 1; shape = 4;

Dimension 2 � dimn = 3; dimension 1 �  dimn = 1; shape = 2;

dimension 2 �  dimn = 1; shape = 3;

dimension 3 �  dimn = 1; shape = 4;
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Dimension 3 � dimn = 2; dimension 1 �  dimn = 1; shape = 2;

dimension 2 �  dimn = 1; shape = 2;

Figure 8-1 represents this change, where the total number of elements 

(leaves in the tree) in the data elements flat array is equal to 17, instead of 12 

in figure 4-3.

Figure 8-1: Irregular Array Indexing Tree Structure

Hence, if it is possible to do irregular shapes, why don’t we also include 

nesting in the MOA programming paradigm. This means that data elements 

could have any type, and these types can include also, other MOA structures. 

This opens the door for testing for data polymorphism, where the 

computation is done invariant of the data type or size. Also, future work can 

test having the data elements flat array be of different types within the same 

MOA structure. 

Also, implementing the parallel and pipelining experiments discussed in this 

thesis is another suggested future work. The parallelisation factors discussed 

in relation to the MOA library can create a new direction in the research for 

designing an automatic parallelisation agent, which takes a sequentially 

implemented source code, and automatically produces a parallel 

implementation of it. This new direction can be based on the library 

implemented in this thesis, after enhancing it, or adding missing utilities. 
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The second category of the future work is based on deploying the library 

implemented in this thesis to different problem domains. This category 

includes further investigation of the image and video-processing applications, 

starting by defining new file formats for the image and the video files based 

on the MOA structure. It also includes the investigation of the types of 

applications, which can be implemented based on the MOA notation, and 

quantifiably analyzing the performance enhancement over the traditional 

methods. Different organizational applications, like in LAN distributed 

systems implementing concurrency, and Internet and intranet IP address 

generators can be investigated to see how much MOA notation can enhance 

their performance and/or add more functionality to them.

This category of future work can focus on forming finite state automata for 

some of the functions that can be implemented using the MOA. The 

implementation can take either directions of the software or the hardware. 

The software approach can be based on the MOA library designed in this 

thesis. Also the hardware approach can utilize the MOA package 

implemented in this thesis and the Chameleon board designed in previous 

research, by reprogramming the application FPGA to handle other 

functions [2] [3]. 

Another approach could be taken by designing a hardware board that takes 

an input of operands of variable dimension and shape, and a specific 

operation from the set of operations that the chip supports, and use the 

MOA approaches of flattening and partitioning arrays, and of decomposing 

the operations into a series of primitive additions and offsets based on the 

array shape. The Block Diagram in figure 8-2 represents the suggested 

board.



- 152 -

Figure 8-2: Block Diagram for a hardware MOA operations Board

In figure 8-2, the operation multiplexor takes two input operands (i1, and i2), 

the shape of the operands "s", and the operation code as input "op". This unit 

decides the expression simplification operations that need to be applied on 

the operands to enhance the performance, using the MOA unit. It performs 

the operation needed using the DSP processor, after decomposing it to its 

primitive operations using predefined finite state automata for each operation. 

The MOA unit in the above diagram is responsible for the simplification of 

the input operands by applying the MOA techniques of flattening, 

partitioning, indexing, etc, and performing the MOA functions on the input 

operands before sending them to be processed by the DSP processor. Thus, 

the MOA unit can be designed based on the VHDL package implemented in 

this thesis, which can play the role of a hardware implementation of the PSI 

compiler. 

This board can be applied to any list of functions, by either feeding the 

operation multiplexor unit with finite state automata for any operation that is 

already analyzed externally (manually or using the MOA test bench provided 

in this thesis), or by designing an intelligent algorithm that parses the 
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operation definition in the traditional programming style, or taking an input 

of the traditional equation as a string, and analyzing it to produce its 

equivalent equation in MOA notation. 
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APPENDIX A: CMOA Class

The following is the declaration of the CMOA class in the MOA.h file. 

Overloading allowed the implementation of several forms of the same 

function. Some functions are overloaded to operate on MOA structures 

passed as parameters from the calling user, and repeated again without the 

input MOA structure, to operate on the private content of the CMOA object 

(such as take and drop functions). Other functions are overloaded to allow 

for different indexing methods, like accessing the MOA structure data 

elements using the multi-dimensional index, or the scalar index in the flat 

array (such as Convolve function). Other functions are overloaded to accept 

different argument lists, leading to different operations (such as Binary and 

Unary Dot functions).

// MOA.h: interface for the CMOA class.

//

//////////////////////////////////////////////////////////////////////

#include <afxtempl.h>

#if !defined(AFX_MOA_H__68246453_8717_11D4_9CB7_0050DA465A48__INCLUDED_)

#define AFX_MOA_H__68246453_8717_11D4_9CB7_0050DA465A48__INCLUDED_

#if _MSC_VER > 1000

#pragma once

#endif // _MSC_VER > 1000

#include <math.h>

#include <stdlib.h>

#include <search.h>

typedef struct tagMOA_rec {

int dimn;

int * shape;

DWORD elements_ub;

DWORD * elements;

int lelm_size;

} MOA_rec ;

typedef struct tagRestruct_rec {

MOA_rec  MOA_ret;
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int * indexes;
} Restruct_rec  ;

typedef enum tagOrientations   // Declares Orientation Names

{

   UpperLeft = 0, // upper left corner,            

   UpperMiddle = 1, // upper middle corner          

   UpperRight = 2, // upper right corner              

   RightMiddle = 3, // right middle corner             

 LowerRight = 4, // lower right corner           

   LowerMiddle = 5, // lower middle corner

   LowerLeft = 6, // lower left corner

   LeftMiddle = 7, // left middle corner

   Center = 8, // center

   Undefined = 10 // can't define Orientation

} Orientations;                 

// --------------- MOA Class Definetion

class CMOA  

{

public:

CMOA(int dimn_param, int * shape_param, DWORD * elements_param, DWORD elements_ub);

CMOA(MOA_rec * MOA_param);

virtual ~CMOA();

MOA_rec * GetMOA(void);

void CopyMOA (MOA_rec * rslt);

int Dimn (); //GetDimn

int * Shape (); //GetShape 

void Ravel (DWORD * rslt); //GetElements

bool SetDimn (int dimn);

bool SetShape (int * Shape, int shape_ub);

bool SetElements(DWORD * Elements, DWORD elements_ub);

void SetMOA (int dimn_param, int * shape_param, DWORD * elements_param, DWORD elements_ub);

void SetMOA(MOA_rec * MOA_param);

bool AssignDataElement (int * mlt_index, DWORD new_value);

bool AssignDataElement (DWORD flat_index, DWORD new_value);

void Iota (DWORD N, DWORD * rslt);

DWORD Tau (int * array_in, int array_ub);

DWORD Pi (DWORD * array_in, long array_ub);

DWORD Gamma (int * ind, int ind_ub, int * arr_shape, int shape_ub, bool Front = false);

void Gamma_Inverse (DWORD ind, int * arr_shape, int shape_ub, int * rslt);

MOA_rec *  Psi (int * ind, int ind_ub);
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void Psi (int * ind, int ind_ub, MOA_rec * rslt);
void Psi (int * ind, int ind_ub, MOA_rec * MOA_in, MOA_rec * rslt);

bool IsValidIndex (int * shape, int shape_ub, int * index);

void NextIndex (int * Prev_Index, int p_ind_ub);

void NextIndex (int * shape, int shape_ub, int * Prev_Index, int p_ind_ub);

void NextIndex (int * shape, int shape_ub, int * Start_Index, int * Prev_Index, int p_ind_ub);

void Slice (int slice_size, int Slice_Pos, bool Front, MOA_rec * MOA_in, MOA_rec * rslt);

void GetFirstSlice (int slice_size, int * start_slice_ind, bool Front, MOA_rec * MOA_in, MOA_rec * rslt);

void GetNextSlice (int slice_size, int * prev_slice_ind, bool Front,  MOA_rec * MOA_in, MOA_rec * rslt);

void SliceOnAxe (int slice_Axe, int * slice_ind, MOA_rec * MOA_in, MOA_rec * rslt);

void GetFirstSliceOnAxe (int slice_size, int * slice_pos, int * start_slice_ind, MOA_rec * MOA_in, MOA_rec * 
rslt);

void GetNextSliceOnAxe (int slice_size, int * slice_pos, int * prev_slice_ind, MOA_rec * MOA_in, MOA_rec * 
rslt);

void VecAssignTo (int * Array_1, int array1_ub, int * Array_2, int array2_ub);

bool VecIsEqual (DWORD * array, DWORD array_ub);

bool VecIsEqual (int * array, int array_ub);

bool VecIsEqual (int * Array1, int array1_ub, int * Array2, int array2_ub);

bool IsContainElement(int element);

bool IsContainElement(int element, int * array_in, int array_ub);

bool IsContainElement(DWORD element);

bool IsContainElement(DWORD element, DWORD * array_in, DWORD array_ub);

int ElementFoundCnt(int element);

int ElementFoundCnt(int element, int * array_in, int array_ub);

DWORD ElementFoundCnt(DWORD element);

DWORD ElementFoundCnt(DWORD element, DWORD * array_in, DWORD array_ub);

void Take (int * ind, int ind_ub, Restruct_rec * rslt);

void Take (int * ind, int ind_ub, MOA_rec * MOA_in, Restruct_rec * rslt);

void Partition (int * From_ind, int * Length_ind, Restruct_rec * rslt);

void Partition (int * From_ind, int * Length_ind, MOA_rec * MOA_in, Restruct_rec * rslt);

void Drop (int * ind, int ind_ub, Restruct_rec * rslt);

void Drop (int * ind, int ind_ub, MOA_rec * MOA_in, Restruct_rec * rslt);

void Reshape (int * new_shape, int n_shape_ub, MOA_rec * rslt);

void Reshape (int * new_shape, int n_shape_ub, MOA_rec * MOA_in, MOA_rec * rslt);

void Catenate (MOA_rec * MOA_in, int Cat_DIM, MOA_rec *  rslt);

void Catenate (MOA_rec * MOA_1, MOA_rec * MOA_2, int Cat_DIM, MOA_rec * rslt);
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void Pack (MOA_rec * MOA_1, MOA_rec * MOA_2, MOA_rec * rslt);

DWORD op_on_dimn (char Op, int dimn, DWORD * index = NULL);

DWORD op_on_dimn (char Op, int dimn, MOA_rec * MOA_in, DWORD * index = NULL);

DWORD min_on_dimn (int dimn, DWORD * index = NULL);

DWORD max_on_dimn (int dimn, DWORD * index = NULL);

DWORD average_on_dimn (int dimn);

DWORD sum_on_dimn (int dimn);

DWORD min_on_dimn (int dimn, MOA_rec * MOA_in, DWORD * index = NULL);

DWORD max_on_dimn (int dimn, MOA_rec * MOA_in, DWORD * index = NULL);

DWORD average_on_dimn (int dimn, MOA_rec * MOA_in);

DWORD sum_on_dimn (int dimn, MOA_rec * MOA_in);

DWORD min_element (DWORD * elements, DWORD elm_ub);

DWORD max_element (DWORD * elements, DWORD elm_ub);

DWORD average_element (DWORD * elements, DWORD elm_ub);

DWORD sum_element (DWORD * elements, DWORD elm_ub);

DWORD op_element (char Op, DWORD * elements, DWORD elm_ub);

void scalar_op(char Op, DWORD scalar, bool FirstArgument = false);

void scalar_op(char Op, MOA_rec * MOA_in, DWORD scalar, MOA_rec * rslt);

void scalar_op(char Op, DWORD scalar, MOA_rec * MOA_in, MOA_rec * rslt);

void array_op(char Op, MOA_rec * MOA_in, MOA_rec * rslt);

void array_op(char Op, MOA_rec * MOA_1, MOA_rec * MOA_2, MOA_rec * rslt);

void Grade_Up (DWORD * array_in, DWORD array_ub);

void Grade_Down (DWORD * array_in, DWORD array_ub);

void Red (char Op, int Dim_No, MOA_rec * rslt);

void Red (char Op, MOA_rec * MOA_in, int Dim_No, MOA_rec * rslt);

void Scan_op (char Op, MOA_rec * MOA_in, int Dim_No, MOA_rec * rslt);

void Reverse(int Rev_dimn);

void Reverse(int Rev_dimn, MOA_rec * rslt);

void Reverse(MOA_rec * MOA_in, int Rev_dimn, MOA_rec * rslt);

void Rotate(int * Rot_ind, int Rot_ind_ub, MOA_rec * rslt);

void Rotate(int * Rot_ind, int Rot_ind_ub, MOA_rec * MOA_in, MOA_rec * rslt);

void Transpose(int * Trns_ind, int Trns_ind_ub);

void Transpose(int * Trns_ind, int Trns_ind_ub,  MOA_rec * MOA_in, MOA_rec * rslt);

void Omega(char Op, int dimn_1, MOA_rec * MOA_1, int dimn_2, MOA_rec * MOA_2, MOA_rec * rslt);

// Unary Dot Operation performs Outer Product Operation

void Dot(char Op, MOA_rec * MOA_1, MOA_rec * MOA_2, MOA_rec * rslt);

// Binary Dot Operation performs Inner Product Operation
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void Dot(char Dot_Op, char Red_Op, MOA_rec * MOA_1, MOA_rec * MOA_2, MOA_rec * rslt);

void MatrixMultiplication (MOA_rec * MOA_1, MOA_rec * MOA_2, MOA_rec * rslt);

void Connectivity(MOA_rec * MOA_in, int conn_dimn, int * elm_ind, DWORD * * connected_set, DWORD * * 
connected_indices, DWORD * ubound);

void Neighbors(MOA_rec * MOA_in, int * mlt_elm_ind, int num_steps_away, DWORD * * neighbors_set, 
DWORD * * neighbors_indices, DWORD * ubound);

void Neighbors(MOA_rec * MOA_in, DWORD flat_elm_ind, int num_steps_away, DWORD * * neighbors_set, 
DWORD * * neighbors_indices, DWORD * ubound);

void Compress (MOA_rec * MOA_in, MOA_rec * Bool_MOA, MOA_rec * rslt);

void Expand (MOA_rec * MOA_in, MOA_rec * Bool_MOA, MOA_rec * rslt);

Orientations GetOrientation (MOA_rec * MOA_in, int * mlt_elm_index, int num_steps_away);

Orientations GetOrientation (MOA_rec * MOA_in, DWORD flat_elm_index, int num_steps_away);

void Convolve (int * mlt_index, int num_steps_away, Orientations Orientatation, MOA_rec * MOA_in, MOA_rec 
* rslt);

void Convolve (DWORD flat_index, int num_steps_away, Orientations Orientatation, MOA_rec * MOA_in, 
MOA_rec * rslt);

void Convolution (MOA_rec * Mask, DWORD Div_Factor, DWORD Multip_Factor);

void Convolution (MOA_rec * MOA_in, MOA_rec * Mask, DWORD Div_Factor, DWORD Multip_Factor, 
MOA_rec * rslt);

void DoubleConvolution (MOA_rec * Mask1, MOA_rec * Mask2, char MaskRedOp, float Div_Factor, float 
Multip_Factor);

void DoubleConvolution (MOA_rec * MOA_in, MOA_rec * Mask1, MOA_rec * Mask2, char MaskRedOp, float 
Div_Factor, float Multip_Factor, MOA_rec * rslt);

private:

MOA_rec * MOA_val;

};

#endif // !defined(AFX_MOA_H__68246453_8717_11D4_9CB7_0050DA465A48__INCLUDED_)
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APPENDIX B: CMOAImage Class

The CMOAImage class provides an interface between the MOA structure 

implemented in the CMOA class and the bmp file format, by containing an 

object of the CMOA class. Some Image processing operations were 

implemented only to demonstrate the effectiveness of the design on 2-D 

applications.

// MOAImage.h: interface for the CMOAImage class.

//

//////////////////////////////////////////////////////////////////////

#if !defined(AFX_MOAIMAGE_H__A9E9F29E_A582_11D4_9BE5_0080AD97CBA2__INCLUDED_)

#define AFX_MOAIMAGE_H__A9E9F29E_A582_11D4_9BE5_0080AD97CBA2__INCLUDED_

#if _MSC_VER > 1000

#pragma once

#endif // _MSC_VER > 1000

#include "MOA.h"

#include <math.h>

#include <mmsystem.h>

#include <windowsx.h>

class CMOAImage  

{

public:

CMOAImage();

CMOAImage(MOA_rec * Image_MOA, WORD bit_Count_Param);

CMOAImage(BYTE * ImagePtr, LPBITMAPINFOHEADER bih);

CMOAImage(LPCTSTR lpszPathName);

virtual ~CMOAImage();

CString PathName;

HANDLE h_Image;

BYTE * ImagePtr;

BITMAPFILEHEADER bmfh;

BITMAPINFOHEADER bmih;

float WidthScale,HeightScale;

CMOA * cls_MOA;

bool ImageToMOA(HANDLE h_Image);

bool ImageToMOA(HANDLE h_Image, MOA_rec * p_MOA);

bool ImageToMOA(BYTE *ImagePtr, LPBITMAPINFOHEADER bmih);
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bool ImageToMOA(BYTE *ImagePtr, LPBITMAPINFOHEADER bmih, MOA_rec * p_MOA);

bool MOAToImage(BYTE *ImagePtr, LPBITMAPINFOHEADER bmih);

bool MOAToImage(HANDLE h_Image);

bool MOAToImage(MOA_rec * p_MOA, HANDLE h_Image);

bool MOAToImage(MOA_rec * p_MOA, BYTE *ImagePtr, LPBITMAPINFOHEADER bmih, WORD 
bit_Count_Param);

// Transformations

void VerticalFlip ();

void HorizontalFlip ();

void TransposeImage ();

// Filtering

void LowPassFilter();

void HighPassFilter();

void PrewittFilter();

void SobelFilter();

void CustomFilter(MOA_rec * Mask);

// Segmentation

void DetectPoints();

void DetectHLine();

void DetectVLine();

void Detect45Line();

void Detect315Line();

// Morphology

void Dilation (int num_steps_neighborhood);

void Erosion (int num_steps_neighborhood);

void Opening (int num_steps_neighborhood);

void Closing (int num_steps_neighborhood);

};

#endif // !defined(AFX_MOAIMAGE_H__A9E9F29E_A582_11D4_9BE5_0080AD97CBA2__INCLUDED_)
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APPENDIX C: CMOAVideo Class

The CMOAVideo class provides an interface between the MOA structure 

implemented in the CMOA class, by containing an object of the CMOA class, 

like the case in the CMOAImage class. Some Video processing operations 

were implemented only to demonstrate the effectiveness of the design.

// MOAVideo.h : interface of the CMOAVideo class

//

/////////////////////////////////////////////////////////////////////////////

#if !defined _VIDEO_DOC_H

#define _VIDEO_DOC_H

#if _MSC_VER > 1000

#pragma once

#endif // _MSC_VER > 1000

#include "MOA.h"

#include "MOAImage.h"

#include <windowsx.h>

#include <mmsystem.h>

#include <string.h>

#include <stdlib.h>

#include <malloc.h>

#include <ctype.h>

#include <vfw.h>

#include "Muldiv32.h"

#include <wingdi.h>

//--------------------------------------------------------

class CMOAVideo

{

protected: 

// Attributes

public:

UINT gwZoom; // zoom (divide by 4)

LONG timeStart; // cached start, end, length

LONG timeEnd;

LONG timeLength;

LONG curTime;

CString PathName;
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AVIFILEINFO * pfi;
PAVIFILE pfile;

PAVISTREAM gapavi[MAXNUMSTREAMS]; // the current streams

PGETFRAME gapgf[MAXNUMSTREAMS]; // data for decompressing

HDRAWDIB  ghdd[MAXNUMSTREAMS];// drawdib handles

// video

int gcpavi; // # of streams

PAVISTREAM gpaviVideo;                 // 1st video stream found

int giFirstVideo;                // index of gapavi for 1st Video stream

PAVISTREAM gpaviAudio;                 // 1st audio stream found

DWORD gdwMicroSecPerPixel;     // scale for video

AVICOMPRESSOPTIONS gaAVIOptions[MAXNUMSTREAMS];

LPAVICOMPRESSOPTIONS galpAVIOptions[MAXNUMSTREAMS];

LPVOID lpAudio; // buffer for painting

bool IsPlay, IsMOAPlay;

LONG startPlayTime;

// Operations

public:

void InitVideo(LPCTSTR lpszPathName);

void FreeVideo();

LPBITMAPINFOHEADER AVIBitMapInfoHeader(int iStream, LONG lTime);

BYTE * AVIGetBitMapImage(int iStream, LONG lTime);

LPBITMAPINFOHEADER AVIFrameBitMapInfoHeader(int iStream, LONG lFrame);

BYTE * AVIFrameGetBitMapImage(int iStream, LONG lFrame);

bool AviToMoa ();

bool GetFirstFrameMoa ();

void AviFrameIntoMOA (DWORD FrameTime, LPBITMAPINFOHEADER lpbi, BYTE * ImagePtr, MOA_rec 
* VideoMOA_FramePixels);

bool MOAFirstFrametoAVI ();

void MOAIntoAviFrame (MOA_rec * VideoMOA_FramePixels, DWORD FrameTime, 
LPBITMAPINFOHEADER lpbi, BYTE * ImagePtr);

void ReplaceFrameInMOA (MOA_rec * VideoMOA_FramePixels, DWORD Frame_No, MOA_rec * 
FrameImage);

bool MoaToAvi();

void VideoMOAIntoImageMOA (MOA_rec * VideoMOA_FramePixels, DWORD FrameTime, MOA_rec * 
FrameImage);

MOA_rec *  FrameFromMOAVideo(int Frame_No);

bool FlipFrame (int Frame_No);

void FlipFramesVertically ();

void FlipFramesHorizontally ();

void ReverseFramesOrder ();

MOA_rec * VideoSubtract(void);
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// This function performs the Xoring operator over the frames in 
// MOA structure, producing a 2-dimensional MOA structure of the

// resulting differential image, denoting the motion.

CMOAImage * MotionDetection ();

CMOA * cls_MOA;

CMOAImage * m_pMOAImage;

DWORD * VedioSubtract;

MOA_rec * MOAVideoImage;

// Implementation

public:

CMOAVideo();

virtual ~CMOAVideo();

};

#endif // !defined _VIDEO_DOC_H

//////////////////////////////////////////////////////////////////////////////
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APPENDIX D: MOA VHDL Package

The hardware implementation did not elaborate to implement all the MOA 

notation like the case in the C++ implementation. The following important 

operations were implemented to prove the correctness of the design in the 

hardware VHDL implementation using Renoir.

--

-- VHDL Package Header MOA_Lib.Hdr

--

-- Created:

--          by - mhelal.student (ultra)

--          at - 15:18:34 07/18/00

--

-- Generated by Mentor Graphics' Renoir(TM) 99.5 (Build 108)

--

package MOA_Lib is

   CONSTANT ub:integer := 1023;

   TYPE integers IS ARRAY (ub downto 0) OF integer;

   TYPE MOA_rec IS RECORD

       dimn: integer;

       shape: integers;   

       elm_ub: integer;

       elements: integers;     

   END RECORD;

   TYPE TK_DRP_rec IS RECORD

MOA_ret : MOA_rec;

Gamma_indexes: integers;

   END RECORD;

   FUNCTION Tau(array_in: integers; ub:integer) RETURN integer;

   FUNCTION Pi(array_in: integers; ub:integer) RETURN integer;

   FUNCTION Psi(ind: integers; ind_ub: integer; MOA_in: MOA_rec) RETURN MOA_rec;

   FUNCTION Gamma(ind: integers; ind_ub: integer; arr_shape: integers; ub:integer) RETURN integer;

   FUNCTION Gamma_reverse(ind: integer; shape: integers; ub:integer) RETURN integers;

   FUNCTION Iota (N: integer) RETURN integers;

   FUNCTION scalar_op(Op: CHARACTER; MOA_in: MOA_rec; scalar: integer)  RETURN MOA_rec;

   FUNCTION array_op(Op: CHARACTER; MOA_1: MOA_rec; MOA_2 :MOA_rec) RETURN MOA_rec;

   FUNCTION SliceOnAxe (slice_Axe: integer; slice_ind: integers; MOA_in: MOA_rec) RETURN MOA_rec;

   FUNCTION ElementFoundCnt(element: integer; array_in: integers; array_ub: integer) RETURN integer;



- 170 -

   FUNCTION VecIsEqual (Array_1: integers; array1_ub: integer; Array_2: integers; array2_ub: integer) RETURN 
boolean;

   FUNCTION Reverse(MOA_in: MOA_rec; Rev_dimn: integer) RETURN MOA_rec;

   FUNCTION Scan_op (Op: CHARACTER; MOA_in: MOA_rec; Dim_No: integer) RETURN MOA_rec;

   FUNCTION Rotate(Rot_ind: integers; Rot_ind_ub: integer; MOA_in: MOA_rec) RETURN MOA_rec;

   FUNCTION Transpose(Trns_ind: integers; Trns_ind_ub: integer;  MOA_in: MOA_rec) RETURN MOA_rec;

   FUNCTION op_element (Op: CHARACTER; elements: integers; elm_ub: integer)  RETURN integers;

   FUNCTION Grade_Up (array_in: integers; array_ub: integer) RETURN integers;

   FUNCTION Grade_Down (array_in: integers; array_ub: integer) RETURN integers;

   FUNCTION Compress (MOA_in: MOA_rec; Bool_MOA: MOA_rec) RETURN MOA_rec;

   FUNCTION Expand (MOA_in: MOA_rec; Bool_MOA: MOA_rec) RETURN MOA_rec;

   FUNCTION Omega(Op: CHARACTER; dimn_1: integer; MOA_1: MOA_rec; dimn_2: integer; MOA_2 
:MOA_rec) RETURN MOA_rec;

-- Unary Dot Operation performs Outer Product Operation

   FUNCTION UDot(Op: CHARACTER; MOA_1: MOA_rec; MOA_2 :MOA_rec)  RETURN MOA_rec;

-- Binary BDot Operation performs Inner Product Operation

   FUNCTION BDot(Dot_Op: CHARACTER; Red_Op: CHARACTER; MOA_1: MOA_rec; MOA_2 
:MOA_rec)  RETURN MOA_rec;

   FUNCTION NextIndex(shape: integers; shape_ub: integer; Prev_Index :integers) RETURN integers;

   FUNCTION Take(ind: integers; ind_ub: integer; MOA_in :MOA_rec) RETURN TK_DRP_rec;

   FUNCTION Drop(ind: integers; ind_ub: integer; MOA_in :MOA_rec) RETURN TK_DRP_rec;

   FUNCTION Reshape(new_shape: integers; new_shape_ub: integer; MOA_in :MOA_rec) RETURN MOA_rec;

   FUNCTION Catenate(MOA_1: MOA_rec; MOA_2 :MOA_rec; CAT_dimn: integer) RETURN MOA_rec;

   FUNCTION Red(Op: CHARACTER; MOA_in: MOA_rec; Dim_No: integer) RETURN MOA_rec;

end MOA_Lib;
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