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ABSTRACT 

The  need  for  fast  maneuvering  and  accurate  positioning  of  flexible  

structures  poses  a control  challenge.  The flexibility inherent in these lightly damped 

systems creates large residual vibrations in response to fast disturbances. Several 

control approaches have been proposed to tackle this class of problems, of which the 

input shaping technique seems quite appealing.  

 While input shaping has been widely investigated to attenuate residual vibrations 

in flexible structures,  less  attention was  granted  to  expand  its  viability  in  further  

applications.  It  is therefore  the  aim  of  this  work  to  develop  a  methodology  for  

applying  input  shaping techniques to suppress sloshing effects in open moving 

containers to facilitate safe and fast point-to-point movements.  The liquid behavior is 

modeled using finite element analysis. The  input  shaper  parameters  are  optimized  

to  find  the  commands  that  would  result  in minimum  residual  vibration. Other 

objectives, such as improved robustness and motion constraints such as deflection 

limiting are also included in the optimization scheme. Numerical results are verified 

on an experimental setup consisting of a small motor-driven water tank that is 

precisely guided to undergo rectilinear motion, while  measuring  both  the  tank  

motion  and  free  surface  displacement  of  the  water.  The results obtained suggest 

that input shaping is an effective method for suppressing residual liquid vibrations.  
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CHAPTER 1 

1. INTRODUCTION AND LITERATURE REVIEW 

This chapter gives an overview of the input shaping technique, and provides a 

brief mathematical derivation of the simplest forms of input shapers. Next, the 

motivation, objectives and approach of this research work are discussed. A summary 

of the trends in input shaping research is presented, followed by the scientific 

contribution of the work performed in this thesis. The last section is an outline of the 

following chapters.  

1.1. OVERVIEW OF INPUT SHAPING METHOD 

The need for fast maneuvering and accurate positioning of flexible structures, 

poses a great control challenge. The flexibility inherent in these lightly damped 

systems creates large residual vibrations in response to fast disturbances resulting in 

either inaccurate positioning or time waste waiting for the residual vibration to die 

out. In some applications, safety issues may limit the amount of tolerable vibrations. 

For example, in ship yards or steel mills, swaying gantry cranes may result in serious 

safety hazards. In satellite movement, the stresses created due to antennas' vibration 

may result in failure or damage of the antenna [1]. Such problems were mitigated 

traditionally either by slowing down the movement, or by introducing more damping 

and mass in the structure. Therefore, most cranes for example have to be driven in a 

slower rate than the capability of their motors only to limit the sway of the payload. 

Needless to say, adding physical damping or mass is again a waste of time and 

energy. 
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There are numerous control techniques in the literature addressing the control of 

flexible structures to produce fast and accurate maneuvering while dampening their 

undesirable dynamics. These techniques can be grouped into three main categories, 

time-optimal, feedback, and command shaping. Time-optimal is the least adopted 

scheme in commercial use, since it requires a pre-computation of the entire command, 

thus preventing real-time control [2]. Feedback and command shaping are both 

implemented in various commercial applications. 

Command shaping has received special attention since the seminal work of Singer 

and Seering [1]. The power of command shaping – also referred to as input shaping – 

is that it is a feedforward scheme, which does not require sensor feedback. Therefore, 

input shaping is usually cheap and easy to implement. However, as a feedforward 

approach, it suffers from sensitivity to modeling error and consequently becomes 

limited to a rather narrow range of parameters variation.  

The basic idea behind input shaping is exciting the flexible modes of the system 

in such a way that they would combine destructively resulting in a low level of 

vibration at the end of the command. For example, in the case of gantry cranes the 

structure can be modeled, without loss of generality, as a cart-pendulum system, 

where the pendulum represents the pay load while the cart represents the trolley 

movement. Fig. 1-1 shows the pay load response for an impulse command. The first 

impulse initiated the response shown in blue. If the second impulse is adjusted with 

the correct time delay and amplitude to produce the exact negative of the first impulse 

as shown in green, the resultant vibration after the second impulse will reduce to zero 

as shown Fig. 1-2. 
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This method can be applied in real time by convolving the set of the shaped 

impulses with the reference command to produce a shaped input command that results 

in a zero vibration, as shown in Fig. 1-3. 

Figure 1-1 Impulse Response of Second Order System 

Figure 1-2 Resultant Response of two shaped impulses 
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Figure 1-4 shows a comparison between a step input and shaped input of trolley 

velocity in a lightly damped trolley-pendulum second order system. The blue curve is 

the response due to step input, while the red curve is the response of the shaped input 

(shown in green). The fast settling time of the shaped input comes at the cost of a 

small increase in the rise time. 

 

 

 

 

 

 

 

 

 

Figure 1-4 Shaped versus unshaped responses of a lightly damped second order system 

Figure 1-3 Input Shaper Filtering 
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1.2. INPUT SHAPER OF A LIGHTLY DAMPED SECOND ORDER SYSTEM 

Many systems can be approximated as a cascade of second order systems. The 

following derivation is for a typical trolley gantry crane, schematic of which is shown 

in Fig. 1-5. The transfer function relating the payload angular deflection to the trolley 

velocity is: 

2

2 2

( )
( )

2( )

n

n n

s
gs

s sx s



 

 
   
 

     1-1 

 

 

                  Figure 1-5 Schematic sketch of a trolley gantry crane 

 

The response of this system to an impulse input is: 

 )(1sin
1

)( 0

2)(

2

0 0 tte
A

t n

ttn n 

















 


 

  1-2
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where n is the natural frequency,  is the damping ratio, A0 and  t0 are the impulse 

amplitude and timing respectively. Since the system is linear, the response for a set of 

impulses delayed in time is a superposition of equation 1-2: 

 






















n

i

in

ttni
total tte

A
t in

1

2)(

2
)(1sin

1
)( 



 
 1-3

  

Where n is the total number of impulses, Ai and ti are the amplitudes and timing 

of the i
th

 impulse. From equation (1-3) the amplitude of the vibration at the time of the 

last impulse can be evaluated as follows: 

   22

2
),(),(

1




 
SCe nntn

amplitude 





 1-4 

Where, 



n

i

id

t

i teAC i

1

)cos(),(  
, 




n

i

id

t

i teAS i

1

)sin(),(  
  

21d n     

The vibration level at the end of the impulse series expressed in percentage of 

unity impulse at t=0 is: 

   
2 2

% ( , ) ( , )n nt

residual e C S       1-5 

For the residual vibration to cancel out after the second impulse both the sine and 

cosine terms has to sum to zero independently [3]. These constraints can be expressed 

in two equations and solved for the amplitude and timing of the impulses as follows. 

 





n

i

id

t

i teA in

1

0cos 
     1-6 

 





n

i

id

t

i teA in

1

0sin 
     1-7 
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For a given system both n  and  are known, equations 1-6, and 1-7 can be set 

to zero using n = 2 (two impulses). In this case there are four unknowns, namely A1, 

t1, A2, t2, where A1 is the amplitude of the first impulse, and A2 is the amplitude of the 

second impulse. While t1, t2 are the time delays of the first and second impulses 

respectively. Since, these two impulses should be convolved with the reference 

command to generate the shaped input, the amplitudes A1 and A2 have to sum to 1. 

Otherwise, the input shaper pre-filter would result in scaling of the input. This gives 

rise to one additional equation. 

A1 + A2 = 1      1-8 

Equations 1-6 through 1-8 are three equations in four unknowns. The last 

unknown can be chosen to shorten the length of the shaping command by taking the 

first impulse timing at zero t1 = 0. Using this information the impulses timings and 

amplitudes can be solved for in closed form as follows. 

01 t                 

d

t



2     1-9 

         






















2

1

1
exp1

1




A              12 1 AA                1-10 

Equations 1-9, 1-10 are the parameters fed to the input shaper in order to produce 

the self destructive response shown earlier in Fig. 1-4. 

1.3. MOTIVATION 

Since the introduction of input shaping in a formal way in 1990 [1], the research 

focus has been on improving input shaping theory and methodology. Creative and 

intensive research has been conducted in improving the robustness, adding motion 

constraints, and incorporating the nonlinearities in the design of the shapers. 



 8 

However, there is currently a gap in the application of input shaping to new models in 

addition to the well-established cart-pendulum system. Input shaping is an effective 

method suitable to the motion control of other flexible system.  

A traditional problem faced in production lines is the moving of open liquid 

containers. The sloshing of the liquid in open containers limits the speed of movement 

and waste time waiting for the liquid sloshing to die out. This problem is repeatedly 

faced in food industry as well as molten metal casting [4]. The work done in this 

thesis focuses on applying input shaping technique to mitigate liquid sloshing in open 

moving containers. 

1.4. OBJECTIVE AND APPROACH 

As stated above, the objective of this work is to develop a methodology for 

applying input shaping to the motion of an open container in order to limit the 

sloshing of the liquid inside. The approach followed is summarized below. 

1- A numerical model is developed for both the driving motor and the liquid 

contained in a tank. The liquid is modeled using finite element analysis, and the time 

response is obtained by numerical integration of a set of ordinary differential 

equations. Unlike mathematical models, numerical models can capture irregular 

systems, and incorporate nonlinearities, similar to the work done in [5].  

2- Since the sloshing liquid is a continuous system, the resulting vibration is expected 

to be multimodal. Instead of solving for the input shaper parameters in closed-form, 

the shaper is designed by optimization, i.e. to find the optimum commands that would 

result in the minimum amount of residual vibration. Other objectives and motion 

constraints can also be included in the optimization.  
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3- An experimental setup is built to verify the numerical models and the results 

obtained by optimization. 

1.5. LITERATURE REVIEW 

The idea of input shaping was first mentioned in the literature in 1958 by O.J.M. 

Smith [6] who introduced the technique of posicast control in which the reference step 

command is broken into two smaller steps that cancel out. However, the problem with 

this technique remained the robustness, since no feedback was involved. Singer and 

Seering [1] wrote a seminal work in 1990 where they introduced input shaping in a 

formal way for the first time and improved the robustness for parameter variations by 

introducing the concept of zero-vibration-derivative (ZVD) input shaping.  

Since 1990 the research conducted in input shaping can be grouped into four main 

groups. 1- Improving the insensitivity by increasing the robustness of the shaper. 2- 

Including the effect of nonlinearities in the shaper design. 3- Hybridization of input 

shaping with other control techniques. Finally, 4- Applying input shaping to novel 

systems and models. 

1.5.1. INPUT SHAPING ROBUSTNESS 

The input shaping technique can be regarded as a finite impulse response (FIR) 

Figure 1-6 Comparison of the sensitivity of different input shapers to errors in n  [3] 
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filter. The open-loop nature of input shaping behaves poorly in case of modeling 

errors or system parameters variation. The first work done to improve the robustness 

of input shaping has been done by Singer and Seering [1]. They added the derivative 

of the residual vibration with respect to the sensitive system parameters as an 

additional constraint and set it to zero to get an insensitive filter, at the cost of 

increasing the rise time. They showed that input shaping performance is insensitive to 

variations in the damping ratio, but highly sensitive to variations in the natural 

frequency. Their work was continued by Singhose et al. [7] who made significant 

contributions in improving input shaping robustness. They showed that a broader 

range of tolerable variation in the parameters can be achieved if the zero vibration 

constraint is relaxed to a larger value. On the root locus plot this has the effect of 

adding two zeros around the flexible pole rather than on the pole as in the case of 

zero-vibration-derivative input shaper. The improvement of the shaper sensitivity 

came at no additional cost in the rise time. The new shaper was called extra-

insensitive (EI) shaper. The EI effect is shown in Fig. 1-6 where the x axis is the 

actual over the modeled natural frequencies. In [8] Singhose et al. made the 

insensitivity to modeling error a design parameter by introducing a procedure that 

would solve for the shaper parameters given a pre-specified level of insensitivity. This 

shaper was named specified insensitivity (SI) input shaper. 

Rather than improving the insensitivity in the direct feedforward direction, 

another technique is to use feedback to change the parameters of the input shaper in 

response to changes in the system parameters. This is known as adaptive input 

shaping. However, its practicality remains questionable since the feedback required in 

this case might not be applicable.  In [9] Cutforth and Pao applied simple learning rule 
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to tune the parameters of the shaper in between and during maneuvers. The sensitivity 

curve and the phase shift curve were both used to determine the range of the modeling 

errors and tune the parameters accordingly. Other adaptive techniques may be found 

in [10,11]. 

1.5.2. INPUT SHAPING FOR NONLINEAR SYSTEMS: 

The strength of input shaping technique is the straightforwardness and ease of 

application. This is true in case of simple linear systems. However, complications 

arise for nonlinear systems. The effect of nonlinearity is the subject of ongoing 

research, since nonlinearities limit the effectiveness of applying input shaping to real-

life systems. In their work [12] Sorensen and Singhose discussed the effect of four 

hard nonlinearities on the performance of the input shaping, namely saturation, rate 

limiting, backlash and dead zone. They proposed some measures to quantify the 

detrimental effect of these nonlinearities on the residual vibration reduction of the 

linear input shapers. They also proposed a simple mitigation technique to reduce the 

effect of the nonlinearities. For the case of saturation and rate limiting the reference 

command is altered such that it remains within the saturation and the rate limit of the 

system before being fed to the input shaper filter. In this way the shaper itself will act 

in the linear zone and avoid the hard nonlinearities. For the case of backlash and dead 

zone they suggested the use of their inverse functions. Lawrence et al. provided a 

closed-form solution to systems with coulomb friction in [13], while in [5] Meshreki 



 12 

provided a numerical optimization solution to a similar problem with both friction and 

motor saturation nonlinearities for two degrees of freedom system
1
.   

1.5.3. INPUT SHAPING HYBRIDIZATION 

Many researchers have realized that the effectiveness of input shaping can be 

increased if it is combined with other control techniques that depend on feedback. 

Mohamed and Tokhi combined input shaping with time delay in [14]. They exploited 

the input shaping to filter out the flexible modes from the reference command to 

reduce the largest portion of the vibration, while switching to time delay at the end of 

the movement to suppress the remaining residual vibration and attain high positioning 

accuracy. Time delay is an alternative technique for reducing the vibration in flexible 

systems that is characterized by feeding back the position signal of the flexible mode 

delayed in time. This has the effect of adding more damping to the closed loop 

system. The feedback is expected to increase the insensitivity of the controller. 

Sorensen on the other hand exploited feedback for disturbance rejection. In his work 

[15] Sorensen et al. isolated the vibration due to any disturbance coming from outside 

the loop by comparing the actual response of the system to the input shaper command 

with the response from the mathematical model of the system to the same command. 

The difference between the two is the vibration due to outer disturbance. They applied 

a PD controller to suppress this disturbance and absorb the resulting energy in the 

                                                 

 

1
 The approach presented in this thesis is similar to the one adopted in [5]. In his work, Meshreki 

made use of Genetic algorithms to find the optimum input commands based on numerical integration of 

the system's states. He included the effect of nonlinearities inside the integration scheme.   
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flexible mode. They also added an additional loop for accurate positioning. The work 

of Meshreki in [5] also addressed the behavior of input shaping with both PD and PI 

controllers in order to attain high positioning accuracy in addition to suppressing the 

residual vibration by the input shaper.  

1.5.4. APPLICATIONS OF INPUT SHAPING 

Input shaping was developed primarily for suppressing residual vibrations in 

cranes. The crane model was extensively studied in literature, while less attention was 

granted for other applications. Banerjee developed input shapers for satellite antennas 

in [16]. Such antennas suffer from high strain in response to satellite movements, 

which shortens their life time or in sever cases damages the structure. A numerical 

experiment was conducted whereby it was proved that input shaping is successful in 

reducing residual vibration and easy to implement. Singhose et al. extended the work 

of Banerjee by adding a deflection limiting constraint to limit the maximum deflection 

of the antenna during the entire motion, rather than at the end of the movement only 

[17]. Kojima and Singhose [11] recently showed that the deflection limiting input 

shaper can be made adaptive by evaluating the second natural frequency of the 

antenna online during motion, and use it to estimate the first natural frequency and 

determine the timing of the shaper impulses in real time.   

A close variation of the antenna model is the case of a moving cart carrying an 

upright beam with concentrated mass at its tip addressed in [18]. This application is 

suitable for robot manipulators in production lines, for this purpose the authors added 

a robust internal loop compensator to achieve accurate point to point positioning. 

In spite of the need for controlling the sloshing of fluids inside moving containers, 

this application has been poorly addressed in literature. Terashima and Yano [4] 
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applied input shaping to reduce the molten metal sloshing in metal casting production 

line. In this specific application an automatic tilting pouring machine pours the molten 

metal into one mold then tilts backward to wait for the next mold to be positioned 

correctly. The backward tilting movement causes sloshing of the molten metal inside, 

which limits the cycle time of the line. The fluid inside is modeled by two methods, 

one by using a representative pendulum-damper mechanical model, the other by using 

complex numerical simulation based on distributed parameter model. Input pre-

shaping was applied for the angular tilting and compared with the original sinusoidal 

path function. It was shown that the input shaping outperforms the original system, 

and decreases the cycle time. An optimal control law was added to compensate for the 

control performance of the input shaper in response to the reduction of the system 

natural frequency of vibration, due to the reduction in the fluid level. However, in the 

discussion they provided, the practicality of the feedback loop was questioned 

because of the difficulty in sensing the molten metal level in real time. Therefore, it 

was recommended the study of the robustness of the shaper to changes in liquid level 

as well as the effect of the higher modes which were not captured in the simple 

mechanical model, or in the shaper design. The practical limitation of the sensors 

favors the open loop input shaper method for this application. 

Feddema et al. also addressed sloshing suppression in moving tanks by input 

shaping in [19], where the focus was placed on applications with robot arm 

movements. The acceleration profile of the robot arm was based on the pendulum 

mechanical model. However, a double pendulum model was adopted for the case of 

slosh-free movement. In some applications such as in molten metal it is preferable to 

keep the fluid level from moving relative to the container in order to preserve the thin 
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film on the fluid surface. The authors made use of a second degree of freedom where 

the tank can be tilted around its axis during the translational movement.  

1.6. THESIS OUTLINE 

This thesis is organized into 5 Chapters. Chapter 2 presents the numerical models 

of the various components of the system under investigation. The detailed 

experimental setup is described in Chapter 3, followed by design and optimization of 

the input shapers as applied to the slosh suppression problem in Chapter 4. 

Experimental results are then compared to their numerical counterparts, and finally 

concluding remarks and future work are presented in Chapter 5. 
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CHAPTER 2 

2. NUMERICAL MODELING 

This Chapter presents the numerical modeling techniques adopted to simulate the 

dynamic behavior of the liquid tank under investigation, together with the actuating 

motor, in order to derive the complete differential equations governing the motion. 

These equations will then be numerically integrated to solve for the liquid behavior 

for various excitation schemes.  

Section 1 explains the abstract block diagram of the system adopted and lists the 

advantages of the numerical model over the closed-form mathematical model. The 

system is decomposed in two separate models namely motor and tank. The motor 

dynamic numerical model is addressed in section 2, while, the water tank dynamic 

model is addressed in section 3. The two models developed are then combined into 

one integrated numerical model that represents the block diagram explained in the 

first section. 

2.1. MODEL BLOCK DIAGRAM 

Figure 2-1 shows a schematic diagram of the liquid tank under investigation. The 

tank is mounted on a motor-driven cart that is precisely guided to move along the 

horizontal direction. A detailed description of the experimental setup, together with 

the implemented sensors and actuators is presented in Chapter 3. 
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Figure 2-1 Schematic diagram of cart/tank system under investigation 

 

Figure 2-2 shows a block diagram of the model adopted in the following chapters. 

This block diagram shows the mathematical relations between the different 

components of the system. 

The input shaper block is responsible for changing the reference command into a 

shaped command that is designed to filter out the largest portion of the flexible modes 

of the system. The reference command can either be a velocity or a position signal. 

The reference command applied in this work is a step position signal. However, 

because the input shaper impulses are convolved with the reference command in real 

time, the shaper can work on any type of signal. The filtered shaped command is 

compared with the actual position of the cart, and the error signal is fed to a 

proportional controller, which simply multiplies the error by a constant gain. The 

x 

y 

Free surface 

Rigid tank 

Figure 2-2 Tank/Cart/Motor numerical model block diagram 

L 

H 
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controller output signal is a voltage which is fed to a DC motor, whose force depends 

on both the input voltage and the back emf. The force applied by the motor acts on the 

cart carrying a tank filled with water. The resultant movement of the cart is affected 

by the fluid sloshing force inside the tank in addition to the force applied by the 

motor.  

For the purpose of modeling the system represented by the block diagram shown 

in Fig. 2-2 above, the actions of each of the physical components are described by a 

set of first order differential equations. These equations are integrated numerically 

using Runge Kutta (RK)
1
 scheme to solve for the system response. There are mainly 

two advantages that favor the numerical modeling over closed form mathematical 

solutions.  

1-The inclusion of nonlinearities: Meshreki [5] showed that soft nonlinearities such as 

static and dynamic friction are hard to solve for in closed form, while hard 

nonlinearities such as motor saturation have no closed form solution. Saturation and 

other sorts of nonlinearities have significant effect on the system response. In fact, in 

practical applications they cannot be neglected. Building a numerical rather than a 

mathematical model of the system enables easy incorporation of these nonlinearities 

in the integration scheme, which produces more realistic response, as proved by the 

experimental results presented in the next Chapter. 

2-Fluid sloshing modeling: fluid sloshing is a complex phenomenon. It has been 

thoroughly studied in the literature. Early simulations relied on building equivalent 

                                                 

 

1
 Fifth order adaptive Runge-Kutta scheme using Matlabe® (Mathworks Inc.) ode45 subroutine.  
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mechanical models. While these models provide a good reference for comparison and 

validation, they have limited modeling capabilities. For example, modeling of 

irregular shaped tanks or tanks with baffles is prohibitively complex. Also, as will be 

shown in the following section, mechanical models equivalence is based on fluid 

forces rather than fluid displacement, which dose not serve the objective of this 

research. Therefore, the fluid model adopted in the current work is a finite element 

model. In [20] Arafa presented a finite element model that handles the dynamics of 

rigid rectangular liquid tanks. This method is used and incorporated in the integration 

scheme as set of ordinary first order differential equations, to calculate the fluid 

response (both forces and displacement) for an arbitrary cart motion as will be shown 

in section 2.3. 

2.2.  MOTOR DYNAMIC MODELING 

In this section the DC motor and cart governing equations will be derived. The 

equations will be arranged in state space format and the time response is calculated by 

RK integration. Two kinds of nonlinearities are incorporated, namely friction (both 

static and dynamic) and saturation. The results shown in this section are for the 

numerical model before parameter tuning (please refer to Chapter 3 for further 

details). Some parameters in the model will be tuned to match the real system. More 

results will be presented to compare the numerical model with the actual system.  

The governing equation of the DC motor relates the applied voltage to the 

armature current and its rotation speed [21].  

r

x
KKRIKKRIV gmmmgmmm



   2-1 
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where mR , mK , gK are all motor constants, mI is the armature current,  is the 

motor rotational speed, r is the output gear radius 


x is the linear speed.  

The torque and linear force produced by the motor are given by 

rFIKKT mgm   

Equations 2-1, 2-2 can be grouped to express the resultant motor force as a 

function of the applied voltage and the motor/cart linear velocity.  

2 2

2

m g m gK K K K
F V x

Rr Rr



   

The term 
m gK K

Rr
 will be referred to as C1, while C2 will refer to 

2 2

2

m gK K

Rr
. The 

motor force accelerates the cart according to Newton's second law  

cartF M x


  

Equations 2-3, 2-4 can be arranged in state space format by choosing the states as 

follows, xx 1 , 


 xx2 . Two first order differential equations can be used to describe 

the dynamic behavior of the motor 

21 xx 


 

1 2 2
2

cart

CV C x
x

M

  
  
 

 

Equations 2-5 are both linear. Dynamic friction nonlinearity can be simply added 

as follows 

1 2 2 2
2

 ( )k

cart

CV C x N sign x
x

M

   
  
 
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where k is the dynamic friction coefficient, N is the reaction force. Static friction can 

be added as a condition inside the numerical integration scheme where both velocity 

and acceleration are set to zero once the motor applied force is less than the static 

friction and the cart velocity is less than threshold value. The saturation nonlinearity is 

represented by a condition of scaling down the voltage to  5 volts. The above 

procedure is similar to the work done in [5]. The values of the physical experimental 

setup parameters are shown in appendix B. 

It is worth mentioning that the above equations simulate the open loop behavior. 

The closed loop action will be addressed in section 2.4 where a complete 

representation of the block diagram in Fig. 2.2 will be discussed. 

2.3. TANK SLOSHING MODELING 

In this section both the mechanical and finite element models of a liquid sloshing 

inside partially filled tanks are presented. The mechanical model representation 

follows the work of [22] while the finite element model is based on the work done by 

[20]. Because of the reasons mentioned in section 2.1 the finite element model is the 

one adopted throughout the rest of this thesis. 

2.3.1. SLOSHING MECHANICAL MODEL 

A review of the pertinent literature reveals that a wealth of research has been 

expended to model sloshing phenomena in containers. The derivation of the 

governing equations for rectangular tanks from fluid dynamics principles is rather 

lengthy and beyond the scope of this work. Emphasis, however, will be placed 

primarily on those established equations that serve the current research objectives. For 

more detailed treatments of the subject, the reader is referred to the work of 
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Abramson [22] and to the more recent text by Ibrahim [23] which covers the 

dynamics of sloshing comprehensively. 

The basic equations that describe the fluid sloshing is derived from velocity 

potential and based on the assumption that the fluid is inviscid and incompressible. 

The behavior of the liquid can be represented by mechanical components such as 

springs and masses, or pendulum as shown in Fig. 2-2. Mechanical models are built 

according to the following conditions [22]: 

1- The equivalent masses and moments of inertia must be preserved. 

2- The center of gravity must remain the same for small oscillations. 

3- The system must possess the same modes of oscillations and produce the 

same damping forces. 

4- The force and moment components under certain excitation must be 

equivalent to that produced by the actual system. 

It is evident that mechanical models are not designed to predict the liquid free 

surface oscillations amplitude.   
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The model shown in the Fig. 2-3 simulates the first mode of vibration only. 

Additional springs and masses can be added to simulate higher modes. 

The natural frequencies of oscillation for rectangular tanks depend on liquid 

height and the tank dimension as described by equation 2-6 

 

where h is the liquid height inside the tank, a is the tank other dimension, g is the 

acceleration of gravity and n is the n
th 

mode of vibration.  

The mass M of the spring mass equivalent system shown in Fig 2-2 can be found 

by applying the 4 conditions of the mechanical models.   

 

Figure 2-3 Equivelant Mechanical Models 

2-7 
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2-9 

2-8 

 

where mn is the mass representing the n
th

 node, and mliq is the total liquid mass. 

Using 2-8 the spring stiffness can be solved for to satisfy the natural frequency in 2-7. 

Equations 2-6 through 2-8 describe the sloshing of a liquid inside a moving tank 

in the light of the four conditions mentioned above.  

 

As a closed form solution the mechanical model role in the current work scope is 

the validation of the finite element model by comparing the natural frequencies of the 

two models. 

2.3.2.  SLOSHING FINITE ELEMENT MODEL 

The finite element (FE) model of the sloshing behavior in rigid rectangular tanks 

has been presented by Arafa in [20]. Similar to the previous sub-section only the 

equations pertaining to the scope of the current work will be mentioned.  

In the FE model proposed by Arafa and adopted here, the liquid domain is 

discretized into two-dimensional four-node rectangular elements with the liquid 

velocity potential representing the nodal degrees of freedom. Liquid sloshing effects 

can be induced either by steady-state harmonic or arbitrary base excitation. The 

objective is to be able to determine the slosh frequencies, liquid velocity field, free 

surface displacement and hydrodynamic forces acting on the tank walls for various 

excitation schemes. Fluid—structure interaction is accounted for in the model to 
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couple the liquid motion with the rigid tank walls to ensure continuity of liquid and 

structural motion at the liquid—tank interface. 

In order to include the rigid enclosure in the present finite element formulation, 

three spring-supported pistons are attached to the liquid domain, as depicted in Fig. 2-

4. Mass and stiffness parameters of the additional mass—spring systems are selected 

to ensure the walls of the container are practically rigid and possess natural 

frequencies that are appreciably higher than the frequency range of interest which 

includes the liquid slosh frequencies.  

The procedure of building the FE model is fairly simple. Starting from the basic 

equation of the velocity field of the fluid, and satisfying set of boundary conditions 

including the direction of the velocity at the wet-walls and continuity, expressions for 

the kinetic and potential energies of the elements can be derived. Applying 

Lagrange’s equations gives the equation of motion governing the system. The 

coefficients of the equation of motion can be used as the mass and stiffness matrices 

of the FE model. The final FE equation of motion becomes.  

Figure 2-4 Modeling of the tank walls as rigid spring-supported pistons 
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where  is the fluid density, k is the stiffness of the spring-supported pistons shown in 

Fig.2-4 and all other parameters denote coefficients in the mass and stiffness matrices. 

IIIIIIII ww 



 ,  are the positions and accelerations of the tank walls respectively, 

following the notation and directions shown in Fig. 2-4. ff pp


, are the pressure and 

second derivative of the pressure with respect to time of the free fluid surface. Finally, 

IIIIf  are the hydrodynamic forces applied by the fluid on the walls of the tank.  

To validate the accuracy of the present FE formulation, the model is employed to 

study the sloshing characteristics of water having  =1000 kg/m
3
 in a rigid 

rectangular tank having the dimensions of the tank available in the lab. The length L 

and width b are both taken to be 0.1 m and the filling height H is 0.04 m. The liquid 

region is divided into 20 by 20 elements. The liquid slosh frequencies are calculated 

and compared in Table 2.1 with the analytical values based on equation 2-7. 

Inspection of the results reveals that the present FE formulation is quite accurate 

in predicting the slosh frequencies with a percentage error of about 1.5% up to the 

fifth mode. Higher frequencies can be predicted more precisely by increasing the 

number of elements, but on the expense of longer computational time, which is a 

typical trade-off in these types of problems. Since the FE model will later be 

incorporated in a rather computationally intensive optimization scheme, the present 

accuracy obtained with a 20 x 20 mesh is considered sufficient. 

 

2-10 
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Table 2-1 Liquid slosh frequencies in a fixed tank (L = 0.1 m, H = 0.04 m, b = 0.1 m) 

Mode Natural frequencies [Hz] 

 Present Analytical 

1 2.5783 2.5762 

2 3.9355 3.9255 

3 4.8631 4.8368 

4 5.6415 5.5878 

5 6.3415 6.2476 

 

 Figure 2-5 shows the liquid velocity field at the first three slosh modes, as 

obtained from the present finite element analysis. Liquid particles adjacent to 

boundaries of the tank are shown to possess velocity vectors that are parallel to the 

boundary surfaces, in agreement with the boundary conditions imposed. It is worthy 

to note that only the odd modes will be excited during the horizontal tank motion, as 

shown by Abramson [22]. Damping can easily be incorporated into the model by 

introducing an artificial proportional damping matrix in the form   fPKC


   in the 

equations of motion.  

Figure 2-5 Liquid velocity field in the (a) first,(b) second and (c) third slosh mode 
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2.4. MOTOR/CART/TANK COMBINED MODEL 

Equation 2-10 in its present format cannot be used to solve for the response of the 

liquid inside the tank while incorporating the closed loop motor model, and hence has 

to be manipulated and rearranged as shown below. 

 

Figure 2-6 shows a schematic free body diagram of the experimental cart/tank set-

up explained in details in Chapter 3. 

 FI and FIII are the hydrodynamic sloshing force applied by the liquid on the tank 

walls. The state space representation of this model can be expressed as follows, 

xx 1 , 


 xx2  , nfn Px   133 , nfnn Px 



  1424  

Where n is the number of elements of the FE mesh, Pf is the pressure of the free 

surface. The first derivative of the states can be found using the free body diagram in 

Fig 2-5 and equations 2-6, and 2-10. 

21 xx 


 

frictionmotorIIIIcart fFffxM 


2  

2-6 

2-12 

Figure 2-6 Schematic free body diagram of Tank/Motor/Cart system 

2-13 
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where the tank wall acceleration IIII ww


,  in 2-10 are substituted for by the cart 

acceleration 2



x . It is worth mentioning that according to the directions shown in Fig. 

2-3 2



 xwI , 0


IIw , and 


 2xwIII . The unknown term in equation 2-14 can be 

collected on the left hand side as follows 
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Equations 2-12,2-15 are subject to the static friction condition stated previously in 

section 2-2.  

The Fmotor term can be found using equation 2-4, rewritten here in a state space 

format for completeness 

22

22

x
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motor





  

By examining the block diagram in Fig. 2-1 motor voltage can be expressed in the 

light of the closed loop system. Assuming the shaped signal is a step position signal 

dx , where dx changes with time according to the shaper parameters. 

1xxV d  , Subject to the saturation condition 55  V  

Equations 2-10, 2-13 now define the cart dynamics including the sloshing effect 

of the fluid inside the tank. Equations 2-3, 2-16 define the motor dynamics after 

closing the loop. The fluid dynamics inside the tank are defined by the states 

representing the free surface pressure derived from the first row equation of 2-10, as 

follows  

2-14 

2-15 

2-3 

2-16 
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where Mff, K11 are the mass and stiffness matrices respectively. M14, M12 are 

constants defined from the FE analysis.  For the case of damped response, a damping 

coefficient proportional to the stiffness can be added as shown in equation 2-19 
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Once the free surface pressure fP is determined the free surface displacement can 

be calculated easily by 
g

P
U

fi

i


 , ni 1  where n is the number of elements in the 

mesh. 

The states' first derivative equations 2-12, 2-15, 2-17 and 2-18 in addition to the 

closed loop motor dynamics equations 2-3, and 2-16 are the complete dynamic model 

for a system composed of a DC motor driving a cart that carries a tank partially filled 

with inviscid/incompressible fluid, represented by the block diagram in Fig 2-1. The 

time response of arbitrary position command is calculated by integrating the states' 

equation.  

 

  

2-17 

2-18 

2-19 
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CHAPTER 3 

3. EXPERIMENTAL WORK 

The purpose of this Chapter is to document the experimental work carried out to 

validate the numerical model presented in Chapter 2, and the results obtained in the 

following chapters. The experimental model is based on a setup provided by Quanser 

[21]. It has gone through numerous modifications before reaching its final shape. 

Because of its fairly simple structure and small number of components the model 

proved to be sufficiently accurate and robust to serve the purpose and scope of this 

research work. Section 1 will explain the model built and the block diagram of the 

experiment. Section 2 will be dedicated for validation and comparison between the 

numerical model presented in chapter 2 and the experimental model. The fine tuning 

of the numerical model based on the results obtained from the experiment will also be 

discussed. 

3.1. EXPERIMENTAL MODEL 

Fig. 3-1 shows two views of the experimental setup with the components labeled 

below. The original setup provided by Quanser [21] is connected to a PC and 

controlled through Simulink. The real-time-workshop enables building controllers in 

Simulink, compiling the models, and transferring them to c-code that is downloadable 

to the microcontroller. The data collected by the sensors and encoders can be recorded 

and manipulated directly from within Matlab environment.  
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The setup consists of a cart carrying a DC motor. The cart slides with linear 

bearing on a smooth guide at the back side, while driven on a rack by the motor 

pinion at the front side. The position of the cart is sensed by an optical encoder 

Figure 3-1 Experimental setup components 
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connected to the rack via gear. This basic setup is modified to suit the purpose of the 

current research work by adding a tank partially filled with water on top of the cart. 

The dimensions of the tank are (10x10x8 cm). The tank is supported on the cart 

via plastic guides in order to prevent slippage. A block diagram of the experimental 

model is shown in Fig. 3-2. Note the way the zero vibration (ZV) input shaper is 

modeled (see Chapter 4). The step reference command is passed to two gain blocks 

namely A1 and A2. Those gain blocks represent the first and second amplitude of the 

shaper impulses. The signal passing through A2 is delayed in time a value of T2 before 

being added to the signal passing through A1. The summation of the signals through 

A1 and A2 is the shaped command indicated by the shaped signal label. It is worth 

mentioning that the parameters of the ZV input shaper as presented here are A1 and T2 

only, since A1 and A2 has to sum up to unity as stated in chapter 1, and T1 (delay of 

the first impulse) is chosen to be zero to reduce the shaper time.  

3.1.1. WATER LEVEL MEASURING SENSOR 

Although input shaping is a feedforward approach that does not require feeding 

back the control variable (water level in this case), the control variable still had to be 

measured for analysis, validation, and comparison purposes. Otherwise, the results 

Figure 3-2 Experimental Model Block Diagram 
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would have been all reported qualitatively. Measuring water level in real time on a 

moving cart proved to be a challenging task. The measuring device had to be chosen 

and mounted in a way that does not influence the dynamics of the system. It had also 

to measure the water level in real time and feed the data back to the PC for storage 

and analysis. Unfortunately, no non-contact sensor was capable of performing this 

task within satisfactory accuracy limits and budget as well.  

The current contact sensor is an assembly of a floating indicator, connecting arm, 

and optical encoder mounted on the tank wall as shown in Fig. 3-1. Because the 

connecting arm is directly coupled to the shaft encoder, no slippage, friction, relative 

motion or backlash takes place. The floating indicator captures the water free surface 

displacement fairly accurately, especially in the low frequency range. When the 

motion turns into nonlinear or changes rapidly at high excitation frequencies, the 

floating indicator fails to follow the water surface. However, this kind of motion is 

outside the scope of work. The arm connecting the floating indicator to the encoder 

shaft turns the vertical displacement of the water free surface into rotary deflection at 

the shaft encoder. The encoder reads relative angular deflection. At the start of 

motion, when the water surface is level, the encoder reads zero degrees, as the cart 

moves and water surface is disturbed, the encoder reads the angular rotation of the 

connecting arm due to the vertical displacement of the water level. The rotation 

recorded by the encoder is related to the water surface relative displacement by a 

constant calibration factor. This is a valid approximation because the angles are all 

small compared to the connecting arm length. The sensitivities and calibration 

constants for both the water level, and position optical encoders are shown in 

Appendix A. 
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Although the water level measuring device is not expected to be perfectly 

accurate in the global sense, its repeatability is sufficient to ensure accuracy in the 

relative sense. This can be better understood in the light of Fig. 3-3. 

The pyramid-like graph in Fig. 3-3 is the sensor readings in cm of water level. In 

the first portion, 0.5 cm of water is added at each step (measured by a scale). The 

reverse happens in the second portion, where 0.5 cm of water is taken away from the 

tank at each step. The final value recorded is around 1.86 cm while it should read 2 

cm, this is an error of 7%. While this is relatively high error in the global sense, the 

maximum difference between the readings of two steps is only 0.06 cm, showing 

acceptable error in the relative sense. The pyramid shape of the forward and reverse 

runs suggests sufficient repeatability as well.  

Generally speaking, the setup accuracy and handling are adequate for the scope of 

this work. 

Figure 3-3 Water level measuring device accuracy and repeatability 
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3.2.  NUMERICAL VS EXPERIMENTAL MODELS 

The purpose of this section is to compare and fine tune the numerical model with 

the experimental runs. The procedure followed was first to tune the motor numerical 

model alone, then, to use the results obtained to tune the motor/cart/tank combined 

model. Some of the tuning parameters were solved for using the experimental data, 

such as the static and dynamic friction, others were found by trial-and-error such as 

motor constants and water damping. It is worth noting that more rigorous procedure 

could be employed to fine-tune the numerical model. The procedure could have 

involved multiple runs and design-of-experiment concepts. However, given the scope 

and objective of the work, in addition to the inaccuracies inherent in the experimental 

model itself, identical agreement between the numerical and experimental models is 

both unattainable and unnecessary. The purpose of the tuned-numerical model is to 

faithfully reflect the actual system behavior form, and to be repeatable and reliable in 

a relative sense rather than producing the same results of the experimental setup. For 

example, if certain shaper succeeds in suppressing 50% of the unshaped residual 

vibration amplitude, it is more crucial that the numerical model predicts this 50% 

accurately than to predict the actual values of residual vibration amplitudes in the 

shaped and unshaped runs. It will be shown in the following Chapter that the 

objective function of the optimization scheme depends on the relative performance 

and not the absolute performance. 

3.2.1. MOTOR MODEL 

There are four tunable parameters in the motor numerical model, namely C1, C2, 

static friction coefficient and dynamic friction coefficient. C1, and C2 are the volt and 
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Figure 3-4 Numerical versus actual motor response 

back emf constants in equation 2-3 respectively. These constants are expected to be 

different from the values reported in the kit manual because the motor is subject to 

degradation. The actual values of these constants were determined by trial and error. 

The static friction can be evaluated by applying voltage to the motor in small 

steps and recording the voltage at which the motor starts motion. The force applied by 

the motor at this point can be found using equation 2-4 and the static friction 

coefficient can be calculated. The dynamic friction coefficient was evaluated similar 

to the work done in [5] where the coefficient is the slope of the cart velocity versus 

motor voltage curve. 

Fig. 3-4 shows a comparison between the numerical model response before and 

after tuning, and the experimental response. The adjustment of the back emf constant 

C2 is responsible for the slope of the rising portion of the curve. The larger the value 

of C2 the less steep the slope is. On the other hand, C1 is responsible for the maximum 

overshoot reached. The larger the value of C1 the higher the value of the maximum 

overshoot reached. To adjust the untuned numerical model shown in blue in Fig. 3-4 
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to respond similar to the experimental model shown in red, the reported value of C1 

was decreased by a factor of 10% while C2 reported value was increased by 10%.  

The dynamic friction coefficient mildly affects both the maximum overshoot and the 

rising slope. Finally, the static friction affects the final value reached by the motor. 

The tuning factors and the rest of the physical parameters of the motor and cart are 

shown in Appendix A. 

Because the position control loop is simple gain controller, the motor does not 

settle exactly at the desired final value, the presence of the static friction coefficient 

prevents the motor from reaching the desired position.  

The graph shown in Fig. 3-4 is for controller gain of 25 and desired final value of 

0.6m. Different scenarios of gain and desired positions were tried, but not shown for 

briefness. All runs showed close agreement between the numerical and experimental 

models. 

3.2.2. SLOSHING MODEL 

The tuned parameters of the motor numerical model are now integrated in the 

combined model described in section 2.4.  The response of the numerical integration 

of the FE model combined with the motor and cart dynamics is shown in Fig. 3-5. 

Figure 3-5 Undamped numerical model versus experimental data 
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The controller gain for the run in Fig. 3-5 is 25, the desired final position of the 

cart is 0.6m and the water height in the tank is 4cm. Clearly, Fig. 3-5 shows 

discrepancy between the two responses. However, some observations were useful to 

help building an improved model. The main source of discrepancy is the damping 

effect especially evident after the motor settles at 1.5 s  

 

From the exponential shape of the decay curve, the type of damping is expected 

to be viscous damping, where the damping force is related to the velocity of the fluid 

particles.   

The second source of discrepancy is the natural frequency of vibration. Although 

both the numerical and experimental responses have nearly an identical period time 

for the first two cycles (emphasized on the graph by the ellipse), errors in the 

frequency starts building up afterwards.  

The first discrepancy was mitigated by adding a damping term proportional to the 

velocity of the FE nodes and the stiffness matrix. The value of the damping 

coefficient was adjusted by trial and error to be 0.0025 to match the experimental rate 

Figure 3-6 Damped numerical model versus experimental data 
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of decay. On the other hand, the second observation may be attributed to 

nonlinearities due to the tank's small dimension, such as surface tension force and 

viscous effects. However these effects were neglected in the present study for 

simplicity. The modified model with the addition of damping proved to be sufficiently 

accurate for the purpose of this research. The results in Fig. 3-6 shows a close 

matching between the FE and experimental responses. 

 

 

More insight into the system is gained by examining the response spectrum by 

performing Fast Fourier Transform (FFT) of both the experimental and numerical 

model data. 

Fig. 3-7, 3-8 shows the FFT spectrum for the experimental data and numerical 

model of the previous run respectively. Two remarks are worth mentioning 

concerning the FFT analysis. The Theoretical (closed-form solution) values of the 

first and second mode of vibration are 2.57 Hz and 3.93 Hz respectively. 

Figure 3.7 Frequency spectrum of the experimental data of the water level 

Third mode 
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The experimental data shows a distinct peak at the first mode at 2.576 coinciding 

with the theoretical value. The second mode peak is less distinct. It shows a range of 

frequencies from 3.6 up to 5 Hz. However the theoretical value of the second mode 

lies almost at the middle of the range. 

The reason behind this close matching between theoretical experimental 

frequencies is that the frequency domain is less prone to sensors’ errors, due to the 

summing nature of the transform that tends to cancel errors. The response spectrum of 

the FE numerical model in Fig. 3-8 is in very good agreement with the experimental 

results, which illustrates the model’s credibility and reliability. 

As indicated in Fig. 3-7, and Fig. 3-8, there is a peak at a frequency of around 

0.66 Hz. This peak is unexplainable since it is lower than the first mode peak. It 

cannot be attributed to any experimental deficiencies either since it appears both in 

the experimental and numerical spectrum. The most reasonable explanation of this 

hump is the motor effect. When the motor starts motion at t = 0, the water inside the 

tank is subjected to a step excitation (from rest to motion), this excitation produces 

 
Figure 3.8 Frequency spectrum of the numerical model of the water level 
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certain response. When the motor stops motion at t = ts where ts is the motor settling 

time, the water inside the tank is subjected to another step excitation (from motion to 

rest). This excitation is expected to produce the same response as the first excitation. 

In this case, the entire response of the water to the two step responses delayed in time 

can be considered a wave in itself, since essentially it is a signal repeating itself with 

certain time delay. This explanation is further supported by the fact that the motor 

settling time of the previous run is 1.5 s, which corresponds to a frequency of 0.66 Hz 

exactly. To further validate this explanation the experiment is repeated with the 

desired final position of the cart reduced to 0.4m instead of the 0.6m in the previous 

run, in order to reduce the settling time of the motor and examine the effect on the 

spectrum. The motor cart responses for 0.4m and 0.6m are shown in Fig. 3-9. In the 

case of 0.4m desired final position the motor settles in 1.15 s, while it settle in 1.5 s in 

the case of 0.6m. The spectrum of both runs is shown superimposed in Fig. 3-10. The 

low frequency shifts from 0.66 Hz in the first run to 0.88Hz in the second run, while 

the rest of spectrum remains essentially unchanged. The low frequency hump matches 

the motor settling time in both situations. 

 

 

 
Figure 3-9 Experimental results of the motor response at desired final position of 0.6 and 0.4 
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 Figure 3-10  Frequency spectrum of the water level response at different final cart 

positions 
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CHAPTER 4 

4. INPUT SHAPING DESIGN USING OPTIMIZATION 

In the previous two chapters, both the numerical and experimental models were 

presented and validated. In this Chapter the numerical model will be used to supply an 

optimization scheme with the time response for a reference command prefiltered by 

an input shaper. The optimization variables will be the shaper parameters and the 

objective function will be based on the time response. 

4.1. LINEAR INPUT SHAPER 

As mentioned in Chapter 1, although input shaping design is a straightforward 

procedure in the case of linear systems, the presence of nonlinearities complicates this 

process. Theoretically speaking within certain limits sloshing can be regarded as a 

linear phenomenon. However, in this application, the coupling of the sloshing with 

the cart's movement and the nonlinearities inherent in the motor response precludes 

the trivial linear solution. To illustrate this concept practically, a zero vibration (ZV) 

input shaper is designed based on the first natural frequency following the procedure 

mentioned in section 1-2 using equations 1-9, 1-10. For the case of a water height of 4 

cm the first natural frequency is 2.57 Hz. The linear shaper parameters are listed in 

Appendix C. The response of the water to this shaper is shown in Fig 4-1. This 
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response is identical to the unshaped case
1
. In other words the shaper failed to reduce, 

or even to affect the performance of the system. This failure is explained in [2] and is 

attributed to the motor nonlinearity.  

 

 

The discussion in Sornesen [2] addressed the case when the control variable is the 

velocity. In such case the slew rate
2
 of the motor affects the shaper performance. Fig 

4-2 shows 8 motors responses with different values of slew rate, as well as the 

                                                 

 

1
 The unshaped response graph could not be superimposed on the linear shaper response for 

comparison because they are perfectly identical. 

2
 Slew rate is a nonlinearity that describes the rate at which the motor responds to the changes in 

the applied velocity command. A theoretical motor with zero slew rate will have infinite acceleration 

response. 

Figure 4.1  Experimental Response to linear shaper 
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velocity shaper command. Sorensen showed that the acceptable slew rate range lies in 

the portion where the motor speed will reach the first desired speed value, 50% in this 

case, before the time of the second desired speed value. In simpler terms if the motor's 

response is slower than the ZV second impulse timing, the input shaper will not 

perform its function. In fact in this case the input shaper is expected to have minimal 

or no effect on the response, since it fails to follow the input shaper's commands. 

  

Similar argument can be applied to the case when the control variable is the position 

of the motor rather than its speed. The linear shaper commands are superimposed to 

the motor response in Fig 4-3. By comparing Fig 4-2 to Fig 4-3 it is clear that the 

linear shaper lies in the unacceptable range, since the motor response is not fast 

enough to track the linear shaper command. This explains the reason the linear shaper 

response is identical to the unshaped response. This kind of nonlinearity was not 

Figure 4.2  Motor slew rate effect on input shaper design [2] 
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captured in the simple linear shaper design. However, it will be taken into account in 

the optimization design. 

 

 

4.2. METHODOLOGY OF INPUT SHAPER DESIGN BY OPTIMIZATION 

The numerical model discussed in Chapter 2 and validated against the 

experimental model in Chapter 3 offers an invaluable insight of the system behavior. 

Using this model the time history response of the system can be evaluated for 

different shaper scenarios. Thanks to the computational power of today's PCs and the 

rapid advancements in global optimization methods, this current problem lends itself 

to numerical optimization. The procedure to design input shaping using optimization 

was addressed in the work of Meshreki [5] and proved to be fairly simple successful, 

Figure 4.3 Motor Response for linear input shaper 
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and most importantly nonlinearities can be integrated in the analysis. The basic steps 

are as follows: 

1- Shaper is suggested by the optimization scheme (will be discussed later) 

2- The numerical integration code uses the shaper parameter to return the time 

history response of the water level.  

3- The performance of the shaper is evaluated using certain performance index 

according to the requirements of the problem. 

4- The performance index (or objective function value in the optimization 

terminology) is returned to the optimization scheme to decide the next shaper 

parameters.  

Once the optimization scheme is chosen and correctly adopted to the specifics of 

the problem in hand, the shaper design reduces to the identification of the 

requirements and formulating the performance index accordingly to reflect these 

requirements. The rest of this chapter will present number of input shaper design 

procedures. In each design, the performance index will be stated clearly and will be 

chosen to suit certain design criteria. The results obtained from the experimental 

model will be presented and discussed as well.  

4.3. ZERO VIBRATION (ZV) INPUT SHAPER 

Because the ZV shaper has only two variables, namely the time of the second 

impulse and the amplitude of the first impulse, its design is straightforward. No need 

to resort to complex global optimization schemes as the number of variables is very 

limited. In the case of ZV, Optimization can be performed by enumeration of all 

possible combinations in the feasible range and selecting the best results by searching 
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for the minimum value of the performance index. Thus the problem reduces to finding 

the feasible range of each of the two variables, and choosing the performance index.  

In the present study the range for the time of the second impulse is taken from 0.2 

to the settling time of the motor in the unshaped case. In section 4.1 it was shown that 

a second impulse at 0.2 does not affect the performance of the system. The 

enumeration step is taken to be equal to the digital resolution of the experimental 

controller (0.01s). As for the first impulse amplitude, a plausible range would be from 

0 to 1. However, it is unlikely that the first impulse would be outside the range of 0.25 

to 0.75. The enumeration step is 0.015. This step corresponds to 1 mm in the case of 

0.6 m final value. Thus, for the aforementioned ranges of the two variables, the search 

space becomes 3570 possible scenarios. Given that the single run of the objective 

function takes around 0.3 s, the total run time is expected to be in the order of 18 to 20 

minutes on an average PC. This is an acceptable optimization computational time, 

especially that enumeration will give the exact solution not a near optimum solution 

as in the case of global optimization schemes. It is worth noting that the choice of the 

upper and lower limits of the feasible range, and the search step, for the enumeration 

might changes according to the constraints and limitations of each design problem. 

The discussion above is only to provide an example of the rational behind choosing 

the values of the limits and search steps. Different ranges might be used for other 

situations. For example, had the computational time been prohibitively long, tighter 

ranges could have been used according to the requirements of the problem. 

The performance index was chosen to be simply the maximum amplitude of the 

residual vibration after the settling time of the motor.  
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The maximum amplitude of the residual vibration is more is affected by the 

second impulse timing (T2) more than it is affected by the amplitude of first impulse 

(A1). This is predicted since the input shaping is generally more sensitive to 

parameters dependent on the natural frequency of the system (T2 in this case) than it is 

sensitive to parameters dependent on the damping ratio (A1 in this case, as shown in 

equation 1-10). This is evident from Fig 4-4 which shows a 3D plot of the residual 

vibration amplitude Vs T2 and A1. The slope in the A1direction is relatively small, and 

smooth, while, the function is harmonic in the T2 direction. 

 

 

To illustrate the effect of T2 more, the maximum residual amplitude is plot Vs T2 

while A1 is held constant at its value that corresponds to the global minimum. The 

plot is shown in Fig 4-5 

Figure 4.4  Residual Amplitude of slosh Vs. ZV Input shaper parameter 



 51 

 

 

4.3.1. ZV PERFORMANCE IN THE TIME DOMAIN 

The experimental results for the zero vibration shaper designed based on the 

enumeration optimization is shown in Fig 4-6. The parameters of the ZV shaper are 

listed in Appendix C. 

 

 
Figure 4.6  ZV Shaper Vs Unshaped water response 

Figure 4.5  ZV shaper global optimum using enumeration 
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The maximum residual vibration amplitude after the motor settling time in the 

unshaped case was 0.92 cm. This value was reduced to 0.16 cm after applying the 

input shaper. Thus, the shaper succeeded in eliminating 82% of the residual 

amplitude. The reduction of the residual vibrations comes at the cost of increasing the 

motor settling time as shown in Fig 4-7 from 1.01 sec in the unshaped case to 1.34 sec 

in the shaped case.  

 

 

4.3.2. ZV PERFORMANCE IN THE FREQUENCY DOMAIN 

Similar to Chapter 3, more insight can be gained by examining the response 

spectrum of the residual vibration. Fig 4-8 shows the frequency spectrum of the 

residual vibration of the shaped command together with the unshaped command. 

The experimental frequency spectrum shown in Fig 4-8 conforms perfectly to the 

theory. The action of the input shaper is even more evident in the frequency domain 

Figure 4.7  ZV shaper increase in motor settling time 
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than it is in the time domain, since input shaping is essentially a filtering technique. 

The first mode is more accentuated in the unshaped plot than it was in Fig 3-7, since 

the FFT analysis is performed for the residual vibration after the settling of the motor 

only, and not the entire response. Therefore, the water vibration signal is not 

corrupted by the tank movement. 

 

 

The second and third modes of vibration appear also very close to their theoretical 

value. On the other hand, the first mode of vibration in the shaped spectrum response 

was largely suppressed. The amplitude of the vibration corresponding to the first 

natural frequency was reduced from a magnitude 0.6 in the unshaped spectrum 

response, to a magnitude of 0.047 in the shaped spectrum response. This is a 

reduction of 91%. From the previous subsection the time domain analysis showed a 

reduction in the residual vibration of 82%. The difference between the two values is 

due to the fact that the first mode accounts for 88% of the magnitude of the residual 

Figure 4.8  Frequency spectrum of the experimental residual vibration for the shaped and 

Unshaped runs 
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vibration in the unshaped case. Thus, the observed 82% reduction of the absolute 

magnitude of the residual vibration in the time domain is the expected value based on 

the frequency spectrum response. The second mode of vibration remained unchanged 

after the application of the shaper. This is very clear in Fig 4-8 where it is shown that 

the second mode value changed only from 0.05 in the unshaped response, to 0.045 in 

the shaped response.  

The fact that the input shaper succeeded to eliminate the first mode only and not 

the second mode is expected, since the ZV shaper has only one degree of freedom. 

The filtering in ZV shaper is done by two impulses only. Therefore, only one signal 

can be suppressed at a time. Since the first mode is the dominant wave in the 

unshaped residual vibration the optimization gave the shaper that would suppress the 

first mode only.  

Multi-mode shapers are mentioned repeatedly in literature [3] and can be 

designed easily by increasing the degree of freedom of the shaper. This is done by 

designing a shaper for each mode and convolving the two shapers together to give a 

four impulses shaper that is capable of suppressing the first and second modes. 

However, for most practical applications in sloshing, the first (or fundamental) mode 

is dominant and is sufficient to reduce the residual vibration of the liquid. 

4.3.3.  ZV SENSITIVITY 

The main advantage of ZV input shaper is the simplicity and straightforwardness 

of the design procedure. However, this simplicity comes at the cost of increased 

sensitivity to modeling errors or parameters variation as discussed earlier. In Chapter 

1 it was shown in Fig. 1-6 that for a typical second order system, input shaper 

performance degrades sharply for a change or measurement error of the natural 
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frequency of a mere  3%. Therefore, to examine the applicability of the input shaper 

presented in this section, sensitivity has to be studied and accounted for in the shaper 

design. 

In the literature review in Chapter 1, it was shown in [1] that linear ZV shapers 

are more sensitive to errors in the natural frequency than they are to errors in the 

damping ratio. In the Cart/Tank model at hand, the height of the water is the variable 

that controls the natural frequency of sloshing of the liquid inside the tank. Fig 4-9 

shows the variation of the natural frequency versus the water height in the tank. 

 

 

Fig. 4-9 is constructed for a tank with the same dimensions as the experimental 

setup, and water height ranges from 50% up to 500% of 4 cm. It is clearly evident that 

natural frequency saturates at a value of 2.8 as the normalized water height increases, 

Figure 4.9  Effect of water height on the fundamental natural frequency of the water 

inside the tank 
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while decreases sharply for values of the height less than 4 cm.  The graph shown in 

Fig 4-9 is the key to interpret the results shown in Fig. 4-10.  

Figure 4-10 is the result of numerical simulation. The optimum shaper designed 

in this section is applied to the Tank/Cart model while varying the water height in the 

tank from 50% of the design height (4 cm) up to 300% of the design height. The 

maximum amplitude of the residual vibration is recorded and drawn on the y axis. 

The minimum value is at a normalized height of 1 as expected. The curve saturates for 

values greater than 1 while shoots up for values less than 1. This conforms to the 

results obtained from the frequency plot in Fig. 4-9. 

 

 

The maximum residual amplitude shown in Fig. 4-10 is for the absolute values of 

the residual vibration recorded in cm. Fig. 4-11 shows the residual amplitude in a 

relative manner as a percentage of the unshaped command's residual amplitude. 

Figure 4.10  Numerical Simulation of ZV/Unshaped Maximum Residual Amplitude of 

vibration at different operating water heights 
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At the design height the percentage residual vibration of the shaped command is 

around 28% of the unshaped command. However, this percentage increases sharply 

for changes of the water height in both directions. Shaper results in detrimental effects 

for heights less than 50% of the design height, since the percentage exceeds 100%.  

Fig. 4-10 and Fig. 4-11 together give insight into the ZV shaper performance at 

water heights different from the height the shaper is designed at. Fig. 4-10 suggests 

that for water heights less than the design height, the residual water sloshing will 

increase in magnitude, while for heights larger than the design height the magnitude 

of the residual sloshing will largely saturate. 

 

 

On the other hand, Fig.4-11 suggests that the effectiveness of the ZV input 

shaper, characterized by the ability of the shaper to reduce the residual amplitude 

compared to an unshaped command, will deteriorate for changes in the water height 

both in the positive as well as the negative directions.  

Figure 4.11  Numerical Simulation of ZV percentage reduction of residual vibration 

compared to the unshaped case at different operating heights 
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In practical applications the emphasis is placed on the absolute value of residual 

vibration. It is usually the interest of the designer to maintain the residual amplitude at 

its minimum regardless of the effectiveness of the shaper. Also, in most practical 

applications of moving tanks filled with liquid in production lines, liquid is poured out 

of the tank and the its height is reduced over the production cycle.  Therefore the need 

arises for designing input shapers that are insensitive for water height changes 

especially in the negative direction. 

4.4.  ZERO VIBRATION DERIVATIVE (ZVD) INPUT SHAPER 

As mentioned in Chapter 1, the problem of shaper sensitivity has been tackled in 

the literature by adding an extra constraint in the design of the shaper in addition to 

the traditional zero vibration constraint. The additional constraint is to set the 

derivative of the residual vibration with respect to a certain model parameter, 

typically the natural frequency, to zero. This has the effect of flattening the sensitivity 

curve near the modeling parameter, which improves the insensitivity of the shaper to 

changes in this parameter as shown in Fig. 1-6. The cost of adding extra constraint is 

that an extra degree of freedom has to be added as well. Therefore, the length of 

shaper is increased from 2 impulses in the case of ZV to 3 impulses in the case of 

ZVD. A 3 impulses shaper has 6 variables. However, since first amplitude timing is 

taken at zero and the 3 amplitudes are constrained to sum up to unity, the number of 

variables of the ZVD reduces to 4. 

The four variables of the ZVD preclude the use of enumeration to determine the 

optimum shaper. Therefore, more elaborate optimization scheme has to be employed. 

Given the harmonics shown in Fig. 4-4 of the residual vibration amplitude case of the 

two dimensional ZV. It is obvious that local search methods will get trapped in one of 
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the local minima and miss the global minimum. Because of the limited number of 

variables, and the expected harmonic nature of the objective function, it was decided 

to use real-coded genetic algorithms (GA) [24].  

There are mainly two challenges in optimization problems. First, to transform the 

qualitative design requirements into a quantitative performance index, in order to be 

able to state an objective function that captures all the elements of the design 

requirements. Second, the optimization scheme itself has to be fine-tuned based on the 

characteristics of the problem at hand. Appendix B lists the various parameters 

employed in the present GA scheme, together with a sample plot showing GA 

convergence. 

4.4.1. ZVD OBJECTIVE FUNCTION 

As mentioned above the first step to build an objective function is specifying the 

design requirements in a qualitative manner. For the case of the ZVD, the design 

requirements are: 

1-Creating minimum residual vibration at the design water height.  

2-Should the water height decrease, the ZVD has to remain effective in suppressing 

the residual vibration. 

3-The shaper time should be minimal to avoid the trivial solution of achieving good 

residual amplitude response at the cost of increasing the motor settling time 

indefinitely. 

Having stated the design requirements, they can now be transferred into 

mathematical relations that describe the performance of each shaper. Later, the terms 

representing each requirement will be manipulated and normalized to suit the 

optimization scheme. 
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The first requirement is represented by the largest magnitude of the residual 

vibration after the settling of the motor. Other variables have been tried such as the 

water settling time, and average magnitude of residual oscillations. However, the 

largest magnitude was found to represent this design criterion more accurately. 

Equation 4-1 shows this condition,  

 

1 max( )f

s

t T

t Tobj U 

  

At designoperating HH   

where U is the time response of the displacement of the extreme node of the FE 

numerical model, Ts is the settling time of the motor, Tf is the final time value. The 

response U is taken for water level height in the tank equals to the design water level 

height.  

The second design requirement stated at the beginning of this subsection has to do 

with the robustness of the ZVD shaper. The shaper has to be able to suppress the 

sloshing residual vibrations at water heights that are less than the design height. Fig. 

4-10 shows the water maximum amplitude of residual vibration on the Y axis as a 

function of the water height in the tank normalized by the height the shaper is 

designed for, 4 cm in this case, on the X axis. It is evident that the function is 

decreasing almost linearly at the region between 0.5 and 1 on the X axis. The 

objective of the ZVD is to flatten this slope.  

Numerous objective functions representing this criterion have been suggested and 

tried. These functions will be briefly mentioned here for completeness. However, the 

4-1 
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results will be shown only for the function that was thought to be giving the best 

results for the scope of this study.  

One suggestion for this part of the objective function was the backward numerical 

derivative of the residual amplitude of vibration with respect to water height in the 

tank. This is a straightforward line of thinking, since it is a replication of the linear 

zero vibration derivative constraint expressed in numerical format. However, this 

objective function was not suitable for the optimization scheme. This is mostly 

attributed to the non-uniform behavior of the ZVD shaper in the specified design 

range, namely the 0.5  1 of the normalized water height on the X axis. While Fig 4-

10 shows almost a straight line with constant negative slope for the sensitivity of the 

ZV shaper in the design range, the ZVD shaper's sensitivity response is not uniformly 

linear. In fact as will be shown later in this Chapter, for the optimum ZVD, the 

sensitivity curve slope changes direction in this range Fig. 4-12. Such non-uniform 

behavior can not be captured by the simple backward numerical differentiation.  

Another objective function suggested was similar to the specified insensitivity 

(SI) input shaper proposed by Singhose in [8]. In this function, a tolerable level of the 

increase of the residual sloshing amplitude as a percentage of the minimum amplitude 

at the design height is specified by the designer. For example the designer states that 

values greater than 25% increase in the residual vibration amplitude due to changes in 

the water height are unacceptable. In this case the objective function solves for the 

height that satisfy this requirement. The height is incorporated in the objective 

function so that the optimization scheme maximizes it. The advantage of this 

objective function is that it turns the insensitivity into a design variable. However, the 

function was numerically exhaustive. Also, the part where the function solves for the 
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height that satisfies the specified level of insensitivity suffered from numerical 

problems, due to the multiple zero crossings of the function. 

Finally it was decided to express the robustness part of the objective function in a 

simple format, which proved successful at the end. Similar to the first design 

requirement, the robustness part of the objective function was stated as the residual 

amplitude shaped command at 75% and 50% of the design height. This is shown in 

equation 4-2 

Obj2 = (Residual Amplitude @ 0.5 Hdesign) + (Residual Amplitude @ 0.75 Hdesign) 

 

The last part of the objective function mentioned at the beginning of this 

subsection has to do with the settling time of the motor. This is a straightforward part 

of the objective function. It was represented by the increase of the settling time of the 

motor in the shaped command compared to the unshaped command. This is shown in 

equation 4-3 

Obj3 = (Ts (shaped) – Ts (unshaped) ) 

Equations 4-1 through 4-3 are the three parts of the objective function. However, 

in order to be able to add them algebraically, all three objectives must have 

comparable magnitudes, so that no one objective dominates the others. This was done 

by normalizing the three objectives as will be shown. Factors were added to give 

different weight for each objective according to the requirements of the problem. The 

final version of the objective function is stated hereunder.  
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Where Ki is the weighting factor for each design criterion, h is the operating 

height, hnominal is the design height, C is factors vector = [1,0.75,0.5], Ts and U defined 

earlier in equations 4.1 and 4.3 respectively. 

4.4.2. RESULTS AND DISCUSSION OF ZVD PERFORMANCE 

Fig. 4-12 shows numerical run of the sensitivity of the ZV and ZVD in the range 

from 0.5 to 3 of the design height (5 cm in this case). The actual parameters of the 

ZVD shaper are listed in Appendix C. The performance of the unshaped command is 

superimposed on the curve as well for comparison reasons. The following weighting 

coefficients were used in the objective function of the ZVD shaper whose curve is 

shown in Fig. 4-12, K1= 3, K2=2, K2=2, K3=1. 

It is very clear from the figure that both the ZV and ZVD are superior to the 

unshaped command almost over the entire range of operation. It is also clear that the 

designed ZVD was successful in reducing the residual vibration amplitude 

significantly in the 0.5  1 range. The maximum value of the ZVD residual vibration 

in this range was 2.75x10
-3

 m, whereas in the ZV case this value shoots to 0.01 m. 

 

 
Figure 4.12  Numerical Simulation comparison of ZV/ZVD/Unshaped residual amplitude 

for different operating heights 
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This improvement in the performance comes at the cost of deteriorating 

performance in the range from 1  3, however, it still remained below the unshaped 

command. This deterioration is expected since no factor of the objective function 

reflects the performance of the ZVD shaper in that range. The improvement comes at 

the cost of increased motor settling time as well. 

Due to limitation on the experimental setup the results showed in Fig. 4-12 could 

not be validated over the entire range. The maximum height of the water tank is 8 cm, 

given that the water sloshing during the motion of the motor is in the range of 2-3 cm 

the maximum operating height should not exceed 5 cm. On the other hand the 

minimum operating height is 3 cm. Less water height causes the sensor to hit the 

bottom of the tank during motion which affects the results negatively. As shown in 

Fig. 4-12 the residual amplitude of sloshing for both the ZV, and ZVD, is almost 

identical in the range from 0.71 on the X axis. For a design height of 5 cm this 

corresponds to a range of 3.5  5 cm. Given the physical constraints of the device, 

the range where the ZVD shows superior performance to the ZV is mostly 

unattainable. 

However, in order to validate the results obtained, experiments were conducted 

for the ZV, ZVD designed at Hnominal = 5 cm, and unshaped commands. The 

experimental data is compared to the time response of the numerical model. The 

results are summarized in table 4-1. The time responses (both numerical and 

analytical) are shown in Fig. 4.13 through Fig. 4-18.  
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The numerical and analytical data compares favorably, especially in relative 

manner. The results and plots reveal the strength of both ZV and ZVD in suppressing 

residual vibration, and the robustness of the ZVD shaper. It is also noticed that the 

ZVD results in the lowest water level throughout the entire motor motion. This 

property is emphasized in the next section by adding motion constraint. 

Table 4-1 Numerical/Experimental residual amplitude for ZVD,ZV, Unshaped input  



 66 

 

 

 

Figure 4.14 Numerical Run ZV/ZVD/Unshaped @ water height = 3 cm 

Figure 4.13  Experimental Run ZV/ZVD/Unshaped @ water height = 3 cm 
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Figure 4.16 Numerical Run ZV/ZVD/Unshaped @ water height = 4 cm 

Figure 4.15  Experimental Run ZV/ZVD/Unshaped @ water height = 4 cm 
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Figure 4.18 Numerical Run ZV/ZVD/Unshaped @ water height = 5 cm 

Figure 4.17  Experimental Run ZV/ZVD/Unshaped @ water height = 5 cm 
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Inspection of these curves reveals that both the ZV and ZVD shapers yield lower 

residual vibrations levels as compared to the unshaped response. Furthermore, the 

ZVD shaper, with its improved robustness, gives a better performance than the ZV 

shaper at water heights other than the one they were designed at. This also agrees well 

with the numerical predictions. 

4.5. DEFLECTION LIMITING INPUT SHAPER 

The convenience of the numerical model, and shaper design using optimization 

techniques, make the addition of more objectives and motion constraints very 

attractive. One constraint repeatedly addressed in the literature is the deflection 

limiting [17]. In Deflection limiting (DL) the maximum magnitude of structural 

deflection is limited to a certain predefined value. This constraint is attractive in the 

problem of moving tank to prevent spilling.  

 

 
Figure 4.19 Experimental response of Deflection limiting input shaper 
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In the optimization scheme the DL can be expressed as a constraint, where a 

penalty is applied to the objective function should the maximum amplitude of 

vibration of any of the (FE) nodes exceeds a predefined value. Since DL is a hard 

constraint the weighting factors (Ki vector in equation 4.4) have to be chosen 

carefully to relax other objectives in favor of the constraint. For example, it is 

expected that the DL constraint would cause the settling time of the motor to increase. 

Physically, this means that fast motor maneuver and limiting the maximum sloshing 

of the water inside the tank are two contradicting objectives and one of them has to be 

relaxed to be able to accomplish the other. In the experimental run shown in Fig. 4-19 

the maximum (positive) amplitude of vibration was limited to a value less than 1cm. 

The weighting factors applied were [3,1,1,0.5] as defined by equation 4.4. The actual 

parameters of the DL shaper are listed in appendix C. The graph shown in Fig. 4-19 is 

the experimental response of the resulting shaper. Comparing the DL response to the 

unshaped response in Fig 4-1 where the maximum amplitude of vibration was 2.3 cm, 

and the residual vibration was 0.95 cm, while these values were 0.9 cm and 0.15 cm 

respectively in the case of the DL shaper, shows the benefit of the input shaping 

technique clearly. The improved performance comes at the mere cost of 0.42 (s) 

increase in the motor rise time. 
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     CHAPTER 5 

5. CONCLUSIONS 

The work presented in this thesis demonstrated how input shaping techniques can 

effectively be applied to mitigate sloshing effects in liquid tanks undergoing point-to-

point maneuvers. To this end, the liquid behavior is modeled using finite element 

analysis. A numerical model was also developed to simulate the dynamics of a motor-

driven cart/tank system. These models were then integrated to simulate the behavior 

of the coupled system. The nature of such a modeling technique permitted the 

incorporation of nonlinearities, such as motor saturation and friction, into the 

numerical model. The  input  shaper  parameters  were optimized  to  find  the  

commands  that  would  result  in minimum  residual  vibration. The objectives were 

to minimize residual vibration, as well as the motor settling time. Other objectives, 

such as improved robustness and motion constraints, including deflection limiting, 

were also incorporated in the optimization scheme. An experimental setup consisting 

of a small motor-driven water tank that is precisely guided to undergo rectilinear 

motion, was built. Numerical results were shown to capture the experimental behavior 

quite remarkably, which validated the accuracy of the adopted methodologies. The 

two main input shaping techniques addressed in this work were the Zero Vibration 

(ZV) and Zero Vibration Derivative (ZVD) schemes. Both demonstrated improved 

performance over unshaped commands. While ZV was capable of reducing residual 

vibration by nearly 80%, its sensitivity was outperformed by the ZVD scheme, which 

showed a larger range of acceptable performance allowing more room for modeling 

errors and parameter variation. The concept of deflection limiting, originally 
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developed in the literature to minimize structural swaying during commanded motion 

was implemented herein to limit the amplitude of liquid sloshing over the entire 

length of the tank motion, thus reducing the chances of spilling.  The results obtained 

suggest that input shaping is an effective method for suppressing liquid sloshing.  

Suggestions for future work include tuning the objective functions, as they were 

found to have a considerable effect on the system performance. Other parameters in 

the model, such as the proportional control gain adopted in the position control loop, 

may be treated as optimization variable for further enhance the effectiveness. Other 

types of control, including PD and PID control, can also be potential candidates for 

improved positioning response. 
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APPENDICES 

APPENDIX A: EXPERIMENTAL PARAMETERS 

Cart Mass (Kg) Mcart 0.815 

Motor Armature Resistance (ohm) Rm 2.6 

Back emf constant (volt/rad s
-1

) Km 0.00767 

Gear box ratio Kg 3.7 

Motor pinion gear (m) r 0.00635 

Back emf tuning factor  C2 1.1 

Volt tuning factor  C1 0.9 

Cart velocity threshold value (m/s)   0.025 

Cart friction coefficient μ 0.01 

Motor saturation voltage (volt)   ±5 

Cart encoder resolution (count/rev) - 512 * 4 

Cart encoder calibration const. (cm/count) - 0.00454 

Water level encoder resolution  (count/rev) - 1024*4 

Water level encoder calibration const. 
(cm/count) - 0.0087 

 

APPENDIX B: GA PARAMETERS  

Number of variables 4 

Population size 60 

Number of generation 20 

Uniform mutation 4 

Boundary mutation 4 

Arithmetic cross over 2 

Simple arithmetic 2 

Whole non-uniform mutation 4 

Heuristic cross over 2 

None uniform mutation parameter  6 

Simple cross over parameter 10 

Q 0.1 

 

Table A-1: Experimental setup parameters, tuning factor and sensors resolution 

 

Table B-1: GA basic parameters used in optimization 
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APPENDIX C: OPTIMUM SHAPERS PARAMETERS 

  
Design h 

(cm) A1 A2 t2 t3 

ZV 4 0.4 - 0.52 - 

Linear ZV 4 0.5 - 0.19 - 

ZVD 5 0.2 0.19 1.02 1.22 

DL 4 0.167 0.22 0.22 0.44 

 

Table C-1: Optimum parameters for ZV,ZVD,DL shapers 
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