American University in Cairo

AUC Knowledge Fountain

Archived Theses and Dissertations

2-1-2003

A hybrid method for solving the non-rigid point matching problem
in 3D

Nahla El Said
The American University in Cairo AUC

Follow this and additional works at: https://fount.aucegypt.edu/retro_etds

6‘ Part of the Information Security Commons

Recommended Citation

APA Citation

El Said, N. (2003).A hybrid method for solving the non-rigid point matching problem in 3D [Thesis, the
American University in Cairo]. AUC Knowledge Fountain.
https://fount.aucegypt.edu/retro_etds/1611

MLA Citation

El Said, Nahla. A hybrid method for solving the non-rigid point matching problem in 3D. 2003. American
University in Cairo, Thesis. AUC Knowledge Fountain.
https://fount.aucegypt.edu/retro_etds/1611

This Thesis is brought to you for free and open access by AUC Knowledge Fountain. It has been accepted for
inclusion in Archived Theses and Dissertations by an authorized administrator of AUC Knowledge Fountain. For
more information, please contact fountadmin@aucegypt.edu.

https://fount.aucegypt.edu/
https://fount.aucegypt.edu/retro_etds
https://fount.aucegypt.edu/retro_etds?utm_source=fount.aucegypt.edu%2Fretro_etds%2F1611&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=fount.aucegypt.edu%2Fretro_etds%2F1611&utm_medium=PDF&utm_campaign=PDFCoverPages
https://fount.aucegypt.edu/retro_etds/1611?utm_source=fount.aucegypt.edu%2Fretro_etds%2F1611&utm_medium=PDF&utm_campaign=PDFCoverPages
https://fount.aucegypt.edu/retro_etds/1611?utm_source=fount.aucegypt.edu%2Fretro_etds%2F1611&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:fountadmin@aucegypt.edu

g i g e

Z&oLAB

The American University in Cairo
School of Sciences and Engineering

A Hybrid Method for Solving the Non-Rigid Point
Matching Problem in 3D

A Thesis Submitted to

Computer Science Department

In partial fulfillment of the requirements for
the degree of Master of Science

By
Nahla ElSaid

B.Sc. of Engineering

under the supervision of

Prof. Amr Goneid
Dr. Ahmed Sameh

December 2002

ool és

The American University in Cairo
School of Sciences and Engineering

A Hybrid Method for Solving the Non-Rigid Point
Matching Problem in 3D

A Thesis Submitted by Nahla Elsaid to
The Department of Computer Science
December 2002
In partial fulfillment of the requirements for
The degree of Master of Science
has been approved by

Prof. Dr. Amr Goneid

Thesis Committee Chair/Adviser

Affiliation

Dr. Ahmed Sameh

L
A
]
£ i
B
(i
FHE
g4
e
211

e
S

Thesis Committee Chair/Adviser

A

Affiliation

Dr. Hoda Hosny

Thesis Committee Reader/Examiner

Affiliation

Dr. Sherif El-Kassas

Thesis Committee Reader/Examiner

Affiliation /\D\r(&

Prof. Dr. Abdel-Badie Salem
Thesis Committee Reader/Examiner

Affiliation__. P

Department Chair/ Date
Program Director X 3 } 0

e

SR

ACKNOWLEDGMENTS

There are many people who helped me obtain my Master degree. First and foremost, 1
would like to thank my thesis advisors, Prof. Dr. Amr Goneid, and Dr. Ahmed Sameh

who guided me through this work, and with their advice they kept me on track.

During my thesis work, my committee members provided much advice on many
topics and their comments on this document greatly improved its final form. In

particular Dr. Hoda Hosny and Dr. Sherif El-Kassas.

Finally, I would like to thank my family. My parents have always been a source of

constant support and encouragement. From them I developed for knowledge and the
desire to work hard to achieve my goals. My last and final thanks go to my fiancé,

Mohamed. Without his support I would have had many more stressful moments.

iti

Il)i

ABSTRACT

This thesis introduces a hybrid method for solving the non-rigid point matching
problem in 3D. The method is based on the ICP (Iterative Closest Point) algorithm,
which starting from an initial configuration of two non-rigid point sets, iteratively
finds their best correspondence. The present method incorporates a non-rigid
transformation parameterization, the “Thin-Plate Spline” or TPS as a prior smoothing
method.

The convergence of the ICP algorithm towards the global minimum is known to
depend largely on the initial configuration of the data and model point sets. The
present method also introduces the center of mass computation as a preprocessing step
to prevent the algorithm from being trapped in a local minimum and miss the

optimum matching.

The performance of the present method, which is represented by the root mean square
(RMS) error versus number of iterations, has been tested using synthetic data
corresponding to three different templates. The results were obtained using the present
method with and without the center of gravity correction, and compared with those
obtained using the Robust Point Matching algorithm (RPM). It is found that the
present method prevents the ICP from being trapped in a local minimum. Also it made
the ICP algorithm work more efficiently with respect to accuracy after a few iterations
(ie. 5-15 iterations), however the RPM algorithm did not produce any reasonable

results before a relatively large number of iterations.

iv

TABLE OF CONTENTS

Acknowledgment...................venenenne. OO USEOTOU PRSP iii
ABSIFQCE oooooeoeeeeeeeeeeeeeeeeeeee e eeeeas et e s st s s aas b s e e e ae bbb R bR e RS b e s e s v
TABIE Cf COMIEBLS ..o s st s b 1%
LISECSTADIES ...t e s b vii
LiSt Cf FIGUPES ... eeveessssisssiosioseeens s s s st et s s Vil
Chapter 1: INIOQUCHIONcooeeemniainirirrinsiesissisis s s 1
1.1 T0208 REGISAION ... oo smsrsssssssesssessssssssssssssssescssssssssssmssssrmssesssssoess 1 |
1.1.1 Computer Vision and Pattern ReCOZNIION.evveriverimeiamnimnnsssisrisiis s 2 :
1.1.2 Medical HNage ABAIYSIS.......ovserismensnsssmrrsre s esss st s st s i 8 L
1.1.3 Remotely Sensed Data PLOCESSIMEoovuercimmmermmrensrsrimssssssssssssssssssssisssssssmsassssssssssassassases 10 3?3
1.2 Steps of IMAe REGISHAONcou.vuueverrvmirnnnsirssssssrssssssssassssnsessnisnecmssssnsnsnsisssnssess 10 i:
1.3 The Non-Rigid Point Matching Problem ... 12 7
1.3.1 Transformation and Correspondenceeeveicrernemrestscneee e e 12
1.3.2 Difficulty of the Non-Rigid Point Matching Problem.........ccvrevimminimrieiisisinns 13
1.3.3 A General Definition for the Non-Rigid Point Matching Problem..................... .15
1.4 Thesis Objectives and Organization retereestbeterebetea et eRea s eret s e s r s aeTarares 16
Chapter 2 3D Matching problem: Literature Reviewcoevniinniiiniiinninn. 18
2.1 Extended Gaussian Image (EGT) ..o 20
2.1.1 The Gaussian Image . tren et e ae e e ne e 20
2.2 Spherical Attribute Image (SAI) ...t 21
2.3 Curvedness-Orientation-Shape Map On Sphere (COSMOS) ... 22
2.4 High Order Tangent Curves (HOT) teeeteseeraverenteseseseassseteetcnt e aesareteararas 24
2.4.1 HOT Curves RECOUSIUCHONvcvevevrreecrenesisnsismieseornrentese st saesessesctsssssnassssasssssssersasiens s 25
2.5 Splash RePreSEntationco.oueionrinrussinmsssssnmsenssmseisemssssmssie i s s sns s 26
2.6 The Spin Image Representation ..o ssessesssasnonss 28
2.6.1 Oriented Points - reeemaeasasrea eyt s s e er s s raes 28
2.6.2 Spin IMAZe GENETALON.cocververrescvsssrsnssmsssesre st ssenssisssesec s s 30
2.7 Harmonic Shape Images (HSI) ...oooevrmiiieiieieiicnitcenennicnnimini i sannsnss 31
2.7.1 Generation of Harmonic SHape IMBZesccvrereiiercreimnncsnecce s sasasaees 32
2.7.2 Properties of Harmonic Shape TMAZEScouurererserrseassremecmseriinnsnnesiiss s ssan s 34
2.8 Robust Point Matching (RPM)........ccuimimmmmnesssenisesniii s 36
2.8.1 Point Matching as Joint Estimation of Correspondence and Transformationcececveenes 37
2.8.2 Softassign rererereseb st sas b e 38
2.8.3 Deterministic ANNEALNGocoveveverrecereiesisemremeeteisssnssssss st ssssisiusssreres b sasssssessusasssisstenss 40
2.9 Herative Closest Point algorithm (FCP)........coocecmemvomnimicinereineienennesiccncensnss 41
2.9.1 ICP algorithtn SLALEINONL.couvuiveereieeersiesstsmsssrsesessssmsims s s et ass s sast s simsssans s smssaneees 43
2.9.2 CORVErgence TREOTENYoveeveemsseessensecressinesesserssssrss s s ssssa s s 43
2.9.3 The Advantages of the ICP Matching AlZOrithim........ccoceeriimnimmisi e 45
2.9.4 The Disadvantages of the FCP Matching AIZOrithm......ooocermeeei e 46
2. 10 DHSCUSSION ..vveveevesiereeenreresiesensesessassestessss sessasvessoseonsssssasnsss sesamsnsonssbasssssnsarsssssnasssssrsssnans 47
v

kaapter 3 A New Non-rigid Point Matching Algorithm

3.1 Incorporation of Different Transformationccceceecoveereensmmsiniminrisisimsssssssssesenns:
3.1.1 Center of Mass -

3.1.2 The Thin-Plate Spline (TPS)

3.1.2.1 Closed Form Solution for TPS

3.2 ICP Pseudo-Code reresainieresseretsret et eaase st et enteaesbsneresasarn 53

3.3 Experiments tetesevessessessresreasareseeiesaestertesninneee 53

3.3.1 A SINPIE EXBIMPLC.....oneeversremsscerivcisreesm e sressss s s bbb st s b s s 54

3.3.2 Setup of the SyRthetic CXPETIMENLS.ovvrrververeemscrrearresssmmsensesssammisrssarss s s s ises 54

3.3.3 Results of the Synthetic eXPeriMents. ... ueuncuresreemssssssrmemsssssessessssssisssssnisssssssssisssees 56

3.4 DiSCUSSIONeceevevriiree e csssssisissnssrenes eeeeseree e bR R ettt tr e e eh et r st oA sn R bt 65

Chapter 4 CORCIUSIONS................oueveeeeereiereenieieeisesisi st 66

4.1 Conclusions and CONIBULIONScwrermieeceeeenesereiissrissnmmissresasssasssissssssssssssesssnsnss 66

" 4.2 Future Workccovvmcrcvceninnincnnae ‘ trreseecaresenresessesseentesssssssenn 67

Appendix A: ICP Algorithm and Its VariQnis.............cocvvncvcnininininnn, 68

A.1ICP using Invariant Features (ICPIF)ornnnicininnecncscecinscinns, 68

A.1.1 Notation........... eestesbesmisebeerhataa ke s sn e oAb st st et ek s e R s Ao e e s R e R b e bes .68

AL2 ICPIF AIZOTHHIovovvvsseceessssssssssssssmenesnssnssssssssssesees s ssssssssssssssssssesssssssnmses 69

A13 Analysis Of ICPIF ...t snssssrs s ses s tesssensem st ssspesss s s snsnssnsened 69

A.2 ICP using SIC-range (Successful Initial Configuration).........oocccvvccvcvnnninnnnn. 70

A.2.1 SIC-range eeesveeetestetasesiabesestetesTate TS SRR SRS TSR oS A RS RS e AR et s s bepe s s as RSSO s 70

A.1.2.1 SIC-range of 2D Objects 71

A122 SIC1ange 0f 3D ODJECLScoeeecee s innsemrsestnssssss st comsinssessscsss s - 71

A3 ICP uSINE Z-DULTETS «..ovee st sns s ssnss 74

A 3.1 ICP algorithm acceleration by using @ Z-buffer.......o.veveioeniiiimecs 75

A.4 Levenberg-Marquardt Optimization for ICP (LM-ICP).....coovevvvvnccivininnnnianns 76

Appendix B: EXperiments’ COAE..........u.unmniunenunsissrisscinisinsescmis s 79

REfErenCesooeoeeeeeeievevreeretetin ettt s 128
vi

LIST OF TABLES

Table 2.1: Comparison of some SUrface representations.evereeseecereeumeesssrsienss 36

Table 3.1: Results of different algorithms with the first templatecooccceiennn.d 56

Table 3.2: Results of different algorithms with the second templatecccec...... 59

Table 3.3: Results of different algorithms with the third template ... 63

Table 3.4: RMS error and time of different algorithms with 23 iterations 64

Table 3.5: RMS error and time of different algorithms with 42 iterations 64
vii

LIST OF FIGURES

Chapter 1

Figure 1.1: Rigid objects in 3-D SPACE........c..wmercwececcerererrreceneiisssesse s seseninss3
Figure 1.2: Wire-frame representation of ahead ... 4
Figure 1.3: CSG and surface boundary representation of a solidccccooovvncnrene. 5
Figure 1.4: Intensity image of a human face surface ... 5
Figure 1.5: Intensity image of a vertebral body representation.............ccoooevivuevinennnnee 6
Figure 1.6: VOxel VOIME.........cooceeueurinrimerisiinaresianennannesc i ecnneienenessnensisnsnsesd 6
Figure 1.7: Cubes Representing OCtIee........c.uveurmemieiemeuecimineeeie e 6
Figure 1.8: Octree Simple EXample ... 7
Figure 1.9: Different ways to decOmPOSE @ CUDEcovemrmemrmnvererciicccciccnee 7
Figure 1.10: Examples of 2D transformationsoeeveerieninnninnnnicnnsd 9
Figure 1.11: A simple non-rigid point matching problemc.ocoooviiiniiinicnncees 13
Chapter 2

Figure 2.1: The EGI 02 BIOCKeeemmmeeneirtee s 20
Figure 2.2: Examples of objects with the same EGI ... 21
Figure 2.3: Object recognition using SATL ..o, 22
Figure 2.4: Range images of 3D free-form objects ..o 22
Figure 2.5: Parabolic curves, limiting bitangent developables, and their projections .25
Figure 2.6: HOT CUIVE TECONStUCHON ..v.....vvveevessoeseresessesoeesessssseessseessessssassasesesssnnen 26
Figure 2.7: An illustration of the “splash” representation scheme...............cococeeenn. 27
Figure 2.8: An oriented point basis created at a vertex in a surface mesh 29
Figure 2.9: Spin images for three oriented points on a surfaceccocccecuvree. 31
Figure 2.10: Illustration of point-based and patch-based surface matching................. 32
Figure 2.11: Examples of surface patched and harmonic shape Images 34
Figure 2.12: Different degrees of fuzzy correspondenceoooorccivnrmencisinns 39
Figure 2.13: A global-to-local search strategy................; .. 40

viii

[T

ELE

Chapter 3

Figure 3.1: A simple 2D eXamPpleoovireieeiicc 54
Figure 3.2: Template point sets for synthetic eXperimentsccoorveniciinenniens 55
Figure 3.3: Original point sets of the first femplate ..., 56
Figure 3.4: A graph showing the results in Table 4.1 oo 57
Figure 3.5: Original point sets of the second template...........coovvrriiininnn. 58
Figure 3.6: ICP with TPS using 53 iterations.........ccccocruirmrmmmmemminnn e 58
Figure 3.7: Center of mass applied to the original point sets in Figure 4.5 58
Figure 3.8: ICP with TPS and CG using 53 {erationsoccovmmmniiiiincscinnenens 59
Figure 3.9: A graph showing the results in Table 4.2oocovenvciiii 60
Figure 3.10: Original point sets of the third EMPIALE ...t 61
Figure 3.11: ICP with TPS using 53 iterations .. cevetersrerenrassasnnssssssscsnscnenssenensO1
Figure 3.12: Center of mass applied on the ongmal point sets in Figure 4.10 62
Figure 3.13: ICP with TPS and CG using 53 Herationscccoeermmmnmnnsinscinninnn. 62
Figure 3.14: A graph showing the results in Table 4.3 ..o 63
Appendix A

Figure A.1: Configuration and associated SIC-range (black SeCtors)covveuererrarannes 71
Figure A.2: The SICMAP ..ot 72
Figure A.3: Examples of S0me SIC-MaPS .ovnrrmrececiciiiiiriencencnies 73
Figure A.4: Two renderings of an ancient COM ... 75

ix

CHAPTER 1

Introduction

Non-rigid point matching is an important problem, as non-rigid transformations are
needed for image registration tasks of deformable objects. Analyzing non tigid motion
has become a major rescarch problem not only in computer vision and image
processing, but also more dominantly in medical imaging, where most of the objects
being studied are deformable, such as biological shapes which change non-rigidly-
finger bends, heart beats. . .efc.

A basic non-rigid point matching problem can be defined as follows: given two sets of
points (essentially their coordinates), we would like to find the non-rigid
transformation that best maps one set of points onto the other and/or the set of

correspondence between the points.

In the few existing literature finidings on the non-rigid matching, most authors are not
looking at minimizing a criterion, but their atteﬁtion was rather focused on the type of
smoothing or physical model of deformation to be used. In this thesis we propose to
put the non-rigid matching problem into a criterion minimization framework and to
use ICP (Iterative Closest Point) as the basic algorithm to be adapted to non-rigid
matching.

Before launching into a detailed description of non-rigid point matching, we briefly

describe the fundamental concepts in the domain of image registration.
1.1 Image Registration

Registration [9] is a fundamental task in image processing used to match two or more
pictures taken, for example at different viewpoints.

To register two images, a transformation (spatial mapping) must be found so that each
location in one image canbe mapped to a new location in the second. This mapping
should “optimally” align the two images wherein the optimality criterion itself
depends on the actual structures/ objects in the two images that are required to be

matched.

The need for image registration arises in many practical problems in diverse fields. As

pointed out in [9], registration is often necessary for:

Integrating information from different images

Finding changes in images taken at different times or under different

conditions.

Inferring three-dimensional information from images in which either the

camera or the objects in the scene have moved, and

For model-based object recognition.

Image registration has a significant impact on a wide range of various research fields

such as:

e Computer vision and pattern recognition
e Medical image analysis
e Remotely sensed data processing
Those research fields will be introduced separately so that they may be used as
examples that give a complete description of the registration task.

1.1.1 Computer Vision and Pattern Recognition - for numerous

different tasks such as segmentation, object recognition, shape reconstruction,

motion tracking, stereo- mapping, and character recognition.
One goal of computer vision Tesearch is to give computers humanlike visual

capabilities so that machines can sense the environment in their field of view,

understand what is being sensed, and take appropriate actions as programmed. i

Vision involves the physical elements of illumination, geometry, reflectivity, and

image formation as well as intelligence aspects of recognition and understanding.
As an example of 2 computer vision problem is: Stereomapping to recover depth or
shape from disparities. Examples of Pattern Recognition are character recognition,

and signature verification.

As this thesis’ final goal is to solve the non-rigid point matching in 3D, so we are

interested in three-dimensional object recognition {5].

o Mathematical Problem Formulation|5]

It is often beneficial to define a problem in a stricter mathematical form to eliminate
possible problem ambiguities. For example, we have not yet discussed how a system
should respond if several distinct objects appear to be identical from a given
viewpoint.

; Each object occupies space, and at most one object can occupy any given point in
! space. It is necessary to describe the spatial relationships between each object and the
E rest of the world. One way to describe spatial relationships is through the use of

coordinate systems. For reference purposes, we assume the existence of a world

coordinate system that is placed at any convenient location. Objects are positioned in
space relative to this coordinate system by means of translation and rotation
parameters. We rtefer to the translation parameters of an object as the vector o and to

the rotation parameters of an object as the vector 8. The number of parameters for

each vector depends on the dimension of the depth-map recognition problem. For

example, the 2-D problem requires a total of three parameters. For the 3-D case, we

write the necessary six parameters as follows: i
a=(o,p,y)and 6=, ¢, 'P).

Figure 1.1 Rigid objects in 3-D space have 6 degrees
of freedom. Translation = o.=(a, B, 7); rotation and 8=
6.9, ¥)

Figure 1.1 explains the meaning of these parameters. We define our world model W
as a set of ordered triples (object, translation, rotation):

W=((A; o 0)
We consider object A, to be the sensor object with position , ap and orientation .

If a time-varying world model is required, all objects and their parameters can be
functions of time.

o Object Representation

The object representations commonly used by contemporary computer-aided-
design (CAD) geometric solid-object-modeling systems are categorized as one of
the following:

(1) Wire-frame representation. A wire-frame representation of a 3-D object
consists of a 3-D vertex point list and an edge list of vertex pairs, or it can be
formatted as such. This representation became quite common owing to its
simplicity. Although fast wire-frame displays are still popular, solid modeling
has replaced wire-frame modeling because a wire frame is an ambiguous
representation for determining such quantities as the surface area and volume

of an object. Figure 1.2 shows an example of a wire-frame model.

Figure 1.2. Wire-frame representation oi' a head

(2) Constructive solid geometry representation (CSG). The CSG
representation of an object is specified in terms of a set of 3-D volumetric
primitives (blocks, cylinders, cones, and spheres are typical examples) and a
set of Boalean'epemtors: union, infersection, and difference. Figure 1.3(c) is
an example of aCSG description of an object. The storage data structure isa
binary tree, where the terminal nodes are instances of primitives and the
branching nodes represent Boolean set operations and positioning information.
CSG trees define object volume and surface area unambiguously and are
capable of representing complex objects with a very small amount of data.

However, the boundary evaluation algorithms required to obtain usable
surface information are computationally intensive.

Also, general sculptured surfaces, such as the human face surface shown in
Figure 1.4, are not easily represented using CSG modelers. A general-purpose
modeling system must be able to represent such surfaces.

@ ® (©)
Figure 1.3. CSG and surface boundary representations for a solid
(@) Solid ; (b) a boundary representation ; (c) a CSG Representation

(3) Surface boundary representation (B-Rep). Surface boundary representations
define a solid object by defining the 3-D surfaces that bound the object. Figure 1.3(b)
shows an example of the boundary representation concept. The simplest boundary
representation is the triangle-faced polyhedron, which can be stored as a list of 3-D
triangles. Arbitrary surfaces are approximated to any desired degree of accuracy by
utilizing many triangles. The human face surface shown in Figure 1.4 was displayed
from a list of triangles and quadrilaterals that approximate a smooth surface (which is
stored using a rational B-spline surface representation).

Figure 1.4 Infensity image of human face surface. [38]

A slightly more compact representation allows the replacement of adjacent,
connected, coplanar triangles with arbitrary n-sided planar polygons. This type of
representation is popular because model surface area and volume are well defined,

and all object operations are carried out using piecewise-planar algorithms.

() Spatial-occupancy representation. Spatial-occupancy representations use
nonoverlapping subregions of the 3-D space occupied by an object to define that
object. This method unambiguously defines an object’s volume. The following single-
primitive representations of this type are commonly used:
(a) Voxel Representation.
Voxels are smafl-volume elements of discretized 3-D space. They are
usually fixed-size cubes. Consider the vertebra body shown in Figure
1.5 which can be represented by the list of voxels occupied by the

object as stiown in Figure 1.6. This representation is memory intensive,

but algorithms using it tend to be very simple.

«n T
Figure 1.5 Intensity image of a vertebral body Figure 1.6 Voxels volume Rep
(b) Octree representation . An octree is a hierarchical representation of spatial

occupancy. Volumes are decomposed into cubes of different sizes as shown in

Figure 1.7, where the cube size depends on the distance from the root node.

Figure 1.7 Cubes Representing Octree

Each branching node of the tree represents acube and points to eight other
nodes that describe object volume occupancy in the corresponding octant
subcubes of the branching node cube. This representation offers the
advantages of the voxel description but is more compact. Its compactness
requires more complicated algorithms for many computations. The basic idea
of octrees is displayed by considering the 2-D analog of octrees (usually
referred to as quadtrees). Figure 1.8 shows a simple example of the octree

representation.
’E’

(c) Tetrahedral cell decomposition representation. Decomposition of 3-D
space regions into tetrahedral elements is very similar to the lower
dimensional analog of decomposing flat surfaces into triangles as shown in
Figure 19. (The tetrahedron is a 3-simplex, whereas the triangle is a 2-
simplex.) Tetrahedral decompositions define volume and surface area

unambiguously and are useful for mathematical purposes.

G(WWWWSG(WWWWWWWS)S§)

Figure 1.8 Octree Simple Example

Figure 1.9 Different ways to decompose a cube to 5 or 6 tetrahedra

(d) Hyperpatch representation. Each volume element in this representation is
a hyperpatch: a generalization of bicubic surface patches. A hyperpatch
defines volume, surface area, and internal density variations of a solid
clement. It is more general than most solid models, which allow only uniform
density within a solid primitive; but a price is paid in memory and algorithm

complexity (192 scalars are required for each volume element).

1.1.2 Medical Image Analysis

The classification of the used registration methods is based on the criteria formulated
by Antone Maintz and Viergever [29].

The main dichotomy of their criteria are :

1) Dimensionality
The main division here is whether all dimensions are spatial (spatial registration
methods), or that time is an added dimension (Registration ¢f time series), which
can be used for various reasons, such as monitoring of bone growth in children
(long time interval), monitoring of tumor growth (medium interval), or post-

operative monitoring of healing (short interval).

2) Nature cf Registration basis

Image based registration can be divided into extrinsic, i.e. based on foreign objects
introduced into the image space, and infrinsic methods, i.e. based on the image
information as generated by the patient.

3) Nature and Domain ¢fthe transformation
The nature f the transformation, canbe rigid, affine, projective, elastic, or non-
rigid transformation as shown in Figure 1.10.

Rigid

Affine

Projective

Curved
Figure 1.10 Examples of 2D transformations [29].

Domain cf the Transformation, A transformation is called “global” if it applies to
the entire image, and “local” if subsections of the image each have their own

transformation defined.

4) Optimization Procedure
e Parameters computed

e Parameters searched for

The parameters that make up the registration transformation can either be
computed directly, i.. determined in an explicit fashion from the available
data, or searched for, i.e. determined by finding an optimum of some function

defined on the parameter space.
5) Subject
. Intra Subject
3 Inter Subject
o Atlas

When all of the images involved in a registration task are acquired of a single patient,
it is referred to as intrasubject registration. If the registration is accomplished using
two images of different patients (or a patient and a model), this is referred to as
intersubject tegistration. If one image is acquired from a single patient, and the other

B LR 2

image is somehow constructed from animage information database obtained using
imaging of many subjects, it is called atlas registration. In the literature, many
instances of registration of a patient image to an image of a “normal” subject is
termed atlas registration. However it is referred to this type of registration as
intersubject, to keep the class distinctions clear. Intrasubject registration is by far the
most common of the three, used in almost any type of diagnostic and interventional
procedure.

As examples of medical image analysis problems:

1) Integrate structural information from CT or MRI with functional information from
radiomucleic scamners such as PET or SPECT for anatomically locating a
metabolic function.

2) Digital Subtraction Angiography (DSA) - registration of images before and after
radio isotopc injections to characterize functionality. Digital Subtraction
Mammography to detect tumors, early cataract detection.

1.1.3 Remotely Sensed Data Processing [9]

This class includes civilian and military applications in agriculture, geology,
oceanography, oil and mineral exploration, pollution and urban studies, forestry and

target location and identification.

As an example is the problem of interpretation of well-defined scenes such as
airports; locating positions and orientations of known features such as runways,
terminals, and parking lots. Another example is the natural resource monitoring,

surveillance of nuclear plants, urban growth monitoring.

1.2 Steps of Image Registration

Due to the diversity of the research fields of registration, it is impossible to design a
universal method applicable to all registration tasks. Every method should take into
account not only the assumed type of geometric deformation between the objects but
also application-dependent object representation, required registration accuracy and

noise corruption.

10

Nevertheless, the majority of the registration methods consists of the following three
steps:

1. Choosing the basis information best suited for matching.
2. Determining an adequate similarity metric or measure.

2. Searching for optimal or satisfactory values for the unknown variables

characterizing the similarity measure.

The first step is to decide what kind of information can be extracted and used to
represent the images for the purpose of matching, This information could very well be
restricted to the set of image intensities at each pixel (voxel, if in 3D), this type of
method is fundamentally characterized by its direct reliance on pixel information;
consequently, they are referred to as (intensity-based methods).

On the other hand, it could also be certain features extracted from the images. These
features can represent salient structures such as strong edges, structural contours, line
intersections and points of high curvature within the images, these methods seek to
achieve registration indirectly through the alignment of the geometrical features. They
are commonly called (feature based methods).

In the second step, a similarity metric is chosen to provide a consistent way to
evaluate the relative merit of a match. Such a choice is very dependent on the task at
hand. The similarity measure is usually a function of some transformation parameters

such as rotation, translation etc.

Then, in the third step, certain search strategies are implemented to search through the
parameter space characterizing the similarity measure. The search is carried out until
an adequate solution (again, whose definition depends on the task at hand) is found.

Implementation of each registration step has its typical problems. In the first step, we
have to decide what kind of features is appropriate for the given task. Usually, the
physical interpretability of the features is demanded. Detected feature sets in the
reference and sensed elements must have enough common elements, even in the
situations when the images do not cover exactly the same scene or when there are

object occlusions.

11

In the second step, problems caused by incorrect feature detection or incorrect
acquisition can arise. Physically corresponding features can be dissimilar due to
different imaging conditions and/or due to the different spectral sensitivity of the
sensors. The choices of the feature description and similarity measure have to

consider these factors.

Finally in the third step, the type of mapping functions should be chosen according to
a priori information about the acquisition process and expected image degradations. If
no a priori information is available, the model should be flexible and general enough
to handle all possible degradations that might appear. The accuracy of the feature
detection method, reliability of feature correspondence estimation and the acceptable
approximation error need to be considered too. Moreover, the decision as to which
differences between images have to be removed by registration has to be taken (i.e.
noise that should be rejected). It is desirable not to remove the differences we are
searching for if the aim is a change detection. This issue is very important and

extremely difficult.

1.3 The Non-Rigid Point Matching Problem [13]
1.3.1 Transformation and Correspondence

A basic non-rigid point matching problem can be defined as follows: given two sets of
points (essentially their coordinates), we would like to find the non-rigid
transformation that best maps one set of points onto the other and/or the set of
correspondence (including possible outliers 1 between the points.

The point-sets can be aligned with a good transformation/spatial mapping, which
takes one set of points and warps them closely onto the other set. The correspondence
basically informs us as to which point in one set is the counterpart of a point in the
other set. Usually an answer for the transformation/correspondence is considered to be

a good answer when identical or similar structures presented within the two point-sets

1Pointsinompointsetthathavenosuimbk,oountexparlsinthnotherandhmuneedtobemjectzdduﬁngthematchingpmms.

12

Data Point S et

_1'? Temptate doint Set
+ 4 "
s f‘ﬂ%‘r
+ * %)
-+ -+) %,
+ 5)
-+ 2])
" “+ O Q
Q [
4 [>]
3 Q4 a 4 .
4 [y o
+ + o o
’ * .L-H'“ég 2
'+ + o
s L [© &
B %q% p
_5:1
Ly

Figure 1.11: A simple non-rigid point matching problem. Two point-sets are shown. The goal is to
align these two point-sets by deforming one of them (the template point-set depicted using dots) onto
the other (the data or target point-set depicted using crosses)

The transformation and the correspondence are normally regarded as the two
unknown variables in a point-matching problem. They share an intimate relationship.
Once one variable is known, the solution for the other is actually mostly trivial. Given
the set of correspondences (including the set of outliers), finding a good
transformation is often a straightforward least-squares problem. On the other hand,
given a transformation, we can apply it to one point-set and determine the set of
correspondences using some proximity criteria. Consequently, if either variable is
deemed known, the point matching problem is considered solved. This is the main
reason why the point matching problem can be represented as a problem using either
variable (transformation or correspondence), or both. While it may seem simpler to
define the problem using a single variable, we will see that it is not necessarily the

case for non-rigid point matching.

1.3.2 Difficulty of the Non-rigid Point Matching Problem

A search through the variables’ parameter spaces is required in order to obtain a
reasonable solution to non-rigid point matching. The search becomes computationally

expensive when the dimensionality of the parameter space is high.

Correspondence is one of such high dimensional variables. Even without bringing
outliers into the picture, a simple problem of matching of a set of N points to another
set of N points would lead to a total of N! permutations.

13

Any of these permutations can be the possible best solution for correspondence. As
the value of N increases, it quickly leads to a combinatorial explosion, making the
problem impossible for any simple exhaustive search strategy. Once outliers are
inchuded, the situation can be even worse due to the increased number of possibilities.
Consequently, as we will discuss later in this chapter, the solution for correspondence
has always been carried out with some simplifying assumptions to cut down the

search space in all previous methods.

Turning to the transformation, insofar as only rigid mappings arc considered, the
search often gets restricted to four parameters (rofation, translation and scale) in 2D
and nine parameters in 3D. However, we arc primarily interested in non-rigid
transformations; in this case, the number of parameters grows with the number N of
points that are being matched. Furthermore, the non-rigid mapping parameters are

real-valued making the search more difficult.

In short, the high dimensionality of the two unknown variables, the non-rigid
transformation and the correspondence, composes the main intrinsic® factor that
makes non-rigid point matching a hard problem. In addition to this intrinsic difficulty,
there are other factors that can be encountered in real-world situations that pose
further challenges.

The ideal situation for point matching is when the data sets are “exactly matchable”.
There are two ways of construing that term. First, it means that each point in one set
has exactly one counterpart in the other. There are no spurious points (outliers) in
cither set. The second sense of the term is that there is no noise. Thus, through an
appropriate non-rigid transformation, we can map a point exactly onto its counterpart.

The residue error will be zero in this case, which is an ideal case.

In real-world situations, since the feature points themselves are obtained through
feature detectors from possibly corrupted images, there usually is a certain irreducible
amount of point “jitter” and outliers. The feature points are therefore corrupted and

are not “exactly matchable”.

7 It Is “intrinsic” becanse these variables are indispensable for the non-rigid peint matching proble m. Other factors such as data
quality (e.g. noise) arc application dependent and not considered intrinsic.

14

One common problem is noise that arises from the processes of image acquisition and
feature extraction. Noise adds jitter (disturbance) to the feature point location. The
consequence is that the exact mapping in the ideal point matching scenario no longer
holds. To prevent overfitting (fitting not only the data but also the noise), the
algorithm needs to figure out where the true locations of the data points are and
conduct the estimation of the non-rigid mapping accordingly. Deciding on the extent
to which the data points should be matched is not an easy problem specially when
taking into account of the enormous flexibility of the non-rigid transformations

involved here.

Another even more difficult factor is the presence of outliers — points in one point-
set that have no suitable counterparts in the other and hence need to be rejected during

the matching process.

To be able to handle outliers, the algorithm needs to match a subset of one point-set
with an appropriate subset of the other. The size of the subsets is not known is
advance. This further increases the already enormous parameter space of the

correspondence, thus making the problem more difficult.

1.3.3 A General Definition for the Non-Rigid Point Matching Problem

Taking these real-world considerations into account, we definea general non-rigid
point matching problem to be the following: given two point-sets with only the
points’ location/coordinate information, we are required to find the correspondences
between the two point-sets, reject possible outliers and determine a good non-rigid
transformation that can map one point-set onto the other, while the mapping should

not be adversely affected by the possible existing noise.

15

1.4 Thesis Objectives and Organization

A major goal in this work is to develop a general purpose non-ri gid point matching

algorithm which is also well suited to real-world registration tasks.

We are mainly interested in one type of feature-based registration — non-rigid point
matching. More specifically, in this work,

1. We focus on the feature-based approach.

2. We intend to use the point feature.

3. We seek to develop an algorithm for the feature point registration problem that is
capable of handling non-rigid transformations.

The point feature was chosen for the following reasons:

e The point feature is the simplest form of all features. In fact, it often serves as
the basis upon which other more sophisticated feature representations, such as
curves and surface, are built to incorporate additional information besides the
coordinate information.

e With point feature being the foundation of all features, the point matching
problem can be regarded as the most fundamental problem in the domain of
feature-based registration as well. A careful investigation of point matching in the
abstract setting should not only result in improved point feature-based re gistration
but should also provide opportunities for advances in other feature-based
registration methodologies as well.

This thesis consists of four chapters. The following statements summarize the scope

of each chapter.

o Chapter 1 introduces the registration and relevant topics and emphasizes its
applications of the 3D registration in computer vision, pattem recognition,
medical imaging, and remotely sensed data processing and finally the definition
of the thesis problem.

e Chapter 2 contains an overview of the 3D matching research in general.

16

f o Chapter 3 introduces the ideas implemented and the non-rigid matching
b algorithm using ICP with other incotporated algorithms, with experiments and

results.

e Chapter 4 summarizes the thesis results and contains conclusions and areas of

further research.

17

CHAPTER 2

3D Matching Problem: Literature
Review

A considerable amount of research has been conducted on 3D matching. The
approaches used to solve the problems can be classified into two categories according
to methodology. Approaches in the first category try fo create some form of
representation for input 3D objects and transform the problem of comparing the mput
3D objects to the simplified problem of comparing their representations. These
approaches are used most often in model-based object recognition. In contrast,
approaches in the second category work on the 3D objects directly without any kind
of representation. One data set is aligned to the other by looking for the best
transformation, using optimization techniques to search the six-dimensional pose

space. These approaches are mainly used for surface registration.

According to the marmer of representing the shape of an object, existing
representations of 3D free-form objects may be regarded as either global or local.
The global methods assume one particular coordinate system attached to an object and
represent the object as an implicit or parametric function in this coordinate system.
The resulting representation is global in that the implicit function represents the entire
shape of the object or of a large portion of the object.

Examples of global representations spherical representations such as EGI (extended
Gaussian Image)[24], SAI (Spherical Attribute Image)[22], and COSMOS
(Curvedness-Orientation-Shape Map On Sphere)[14], HOT (High Order T angent)
curves [27]. Although global representations can describe the overall shape of an
object, they have difficulties in representing objects of arbitrary topology or arbitrary
complexity in shape. Moreover, global representations have difficulty in handling

clutter and occlusion in the scene.

Many local representations are primitive-based. In [36], super-segments and splashes
are proposed to represent 3D curves and surface patches with significant structural
changes.

18

T R R e

S

In [12], a three-point-based representation is proposed to register 3D surfaces and
recognize objects in chittered scenes. On the scene object, three points are selected
with the requirement that (1) their curvature values can be reliably computed; (2) they
are not umbilical points; and (3) the points are spatially separated as much as possible.
Then, under the curvature, distance, and direction constraints, different sets of three
points on the model surface are found to correspond to three points on the scene
objects. The transformations computed using those scene-model correspondences are
verified to select the best one. A similar approach was proposed in [40], using a
representation called SPS (Surface Point Signature), as special points on the surface
are identified, then surface registration is performed by matching SPS images of
different surfaces and hence finding corresponding points in each surface.

Another a local representation called Spin-Images is proposed in [26]. HSI (Harmonic
Shape Images) in [41]. Although local representations can not provide an overall
description of the object shape, they have advantages in handling clutter and

occlusion in the scene.

Among the other class of approaches that attempts to match set of points directly
without any prior surface fitting (3D surface registration algorithms) , Iterative
Closest Point (ICP) [6] in which the distance between point sets is computed and
minimized to find the best transformation between model and scene. This approach
does not require any surface segmentation or surface fitting. The main drawback of
this approach is that, like any minimization technique, it requires an initial guess of
the transformation between model and scene or data. We will focus on this approach
in the next chapter. A K-D tree structure was also used in [41] to speed up the
process of finding the closest point. More recently, an approach called RPM (Robust
Point Matching) was proposed in [13], which is capable of handling the non-rigid

point matching problem.

Most of the previously mentioned methods work well only for rigid transformations.
When it comes to non-rigid mappings, the huge number of transformation parameters
usually renders these methods ineffective. For non-rigid matching, most authors are
not looking to minimize a criterion, but attention has rather focused on the type of
smoothing or pbysfcal model of deformation to be used.

In the subsequent sections, we will review many of the above approaches in detail.

19

FISRR A AR

2.1 Extended Gaussian Image (EGI)

The Extended Gaussian Image (EGI) of an object records the variation of surface area

with surface orientation. The EGI is a unique representation for convex objects.
Before we go through the Extended Gaussian Image (EGI) we first define what is the

Gaussian Image.

2.1.1 The Gaussian Image

Surface normal information for any object maybe mapped onto a unit (Gaussian)
sphere by finding the point on the sphere with the same surface normal:
This mapping is called the Gaussian Image of the object when the surface normals for

each point on the object are placed such that:

e Tails lie at the center of the Gaussian sphere.

e Heads lie on the sphere at the matching normal point

So, in areas of convex objects with positive curvature, no two points will have the

same normal, and rotations of the object correspond to rotations of the sphere.

We can extend this process so that
e a weight is assigned to each point on the Gaussian sphere equal to the area of
the surface having the given normal
o This mapping is called the extended Gaussian image (EGI).
o Weights are represented by vectors parallel to the surface normals, with length
equal to the weight.

An example of such an extended Gaussian image is shown in Fig. 2.1 i

@) Block () EGI of block

Figure 2.1 The EGI of a block

20

VAR

St

i
|
i

Disadvantages:
o EGIs only uniquely define convex objects.

e An infinite number of non-convex objects can possess the same EG] as shown

in Figure 2.2.

‘Amwas A+B=C)

: D+E=F]

§ . elc.
A N T
B
C F
A E F. % E

Figure 2.2 Examples of objects with the same EGI

2.2 Spherical Attribute Image (SAI)

This approach [22] begins with a combination of the point set matching and the
original EGI approach. As in the case of the point set matching that avoid fitting
analytical surfaces to represent an object. Instead a representation was used that
simply consists of a collection of points, or nodes, arranged in a mesh covering the
entire surface of the object. This has the advantage that the object can have any
arbitrary shape, as long as that shape is topologically equivalent to the sphere.

As in the EGI algorithms, each node of the mesh is mapped onto a regular mesh on
the unit sphere, and a quantity that reflects the local surface curvature at the node is
stored at the corresponding node on the sphere. Instead of using a discrete
approximation of the curvature, another measure of curvature was used, the simplex
angle, which is entirely defined from a node and its neighbors in the mesh without any
reference to the underlying continuos surface. The corresponding spherical

representation is called the spherical attribute image (SAI).

To determine whether two objects are the same, we only need to compare the

corresponding spherical distributions. The overall approach is illustrated in Fig 2.3

21

R

Figure 2.3 Object Recognition using SAI [22]

A regular mesh is computed from input sensor data; a simplex angle is computed at
cach node of the meshes and the meshes are mapped onto a sphere, the SAL A
fundamental difference between the SAI and other global representations is thata
unique mesh, up to rotation, translation, and scale, can be reconstructed from a given
SAL In the case of the EGI, for example, this property is true only for convex objects.
Another fundamental difference is that the SAI preserves connectivity in that patches
that are connected on the surface of the input object are still connected in the spherical
representation. The latter is the main reason why this approach can handle arbitrary

non-convex objects and in the presence of occlusion.

2.3 Curvedness-Orientation-Shape Map On Sphere (COSMOS)

This representation scheme [14] is mainly for recognizing 3D free form objects.
Figure 2.4 shows some examples for free form objects

Figure 2.4 Range images of 3D free form objects [14]

22

Free Form Surfaces Definition
A free-form surface Sis definedtobe a smooth surface; such that the surface normal
is well defined and continuous almost everywhere, except at vertices, edges, and

cusps.

The goals of the COSMOS (Curvedness—Orientation-Shape Map on Sphere)
representation scheme were; first, to be a general representation scheme that can be
used to describe sculpted objects as well as objects composed of simple analytical
surface primitives. Second, to be as compact and expressive as possible for accurate

recognition of objects from a single range image.

The representation uses the shape index to tepresent complex objects for their
recognition. Koenderink and Van Doom originally propesed the shape index for
graphical visualization of surfaces 128]. An object is concisely characterized by a set
of maximally sized surface pafches of constant shape index and their orientation
dependent mapping onto the unit sphere. The patches that get assigned to the same
point on the sphere are aggregated according to the shape categorics of the surface

components.

The points on the unit sphere are further characterized by a set of support functions
describing the shape, average cur‘vedﬁess, and arca of the mapped patches. The
average curvedness of a surface patch specifies whether it is highly or gently curved;
the surface area quantiﬁ&s its eitént in three-dimensional space; the orientation (mean
sutface normal) of the patch describes how it is directed in 3D space. The relative
spatial arrangement of the vatious patches as encoded by their connectivity is also

built into the representation.

The concept of shape spectrum is also included in the COSMOS framework. This
allows free-form objects views to be grouped in terms of the shape categories of the
visible surfaces and the surface ;areas.

For the recognition purpose, COSMOS adapted a feature representation consisting
of the moments computed from the shape spectrum of an object view. This eliminated

23

w oAre W@ WLV RR B M RdD I N B W WD e

unlikely object view matches from a model database of views. Once a small subset of
likely candidate views has been isolated from the database, based on the views’
spectral features, a detailed matchmg scheme that exploits the various components of
the COSMOS representation is performed to derive a matching score and to establish
view surface patch correspondences. This matching scheme is inspired by traditional
graph matching algorithms and exploits the natural structural information that is being
made explicit in the COSMOS representation.

2.4 High Order Tangent Carves (HOT)

Smooth curved surfaces are described by HOT curves [27], a discrete, non-parametric
representation anchored in different geometry. These curves determine the structure
of the image contours and its' catastrophic changes, and there is a natural

correspondence between some of them and monocular contour features such as

inflections and bitangents.

We say that a tangent vector at some point has contact of order n with the surface (or
more concisely is of order n) when the derivative of order i of the surface equation in
the direction of the tangent is zero for all i <n, and non-zero for i = n .While all
surface points have an infinity of tangents of order two (or greater) in their tangent
plane, only hyperbolic points may have third order tangents. Contact of order four or
higher only occurs along certain surface curves (i.c. parabolic and flecnodal curves),

and fifth order contact only occurs at isolated points along these curves [36].

Additionally, there are other surface curves where a line grazes the surface in multiple
discrete points with at least second order contact in some exceptional manner: the
limiting bitangents, the asymptotic bitangents, and the tritangents. A limiting
bitangent touches the surface at two points sharing a common (bi)tangent plane; an
asymptotic bitangent is an asymptotic direction at one of the two contact points. Each
of these curves has a correspending ruled surface which grazes the original surface
along two curves. Finally, aftﬁtangent grazes the surface in three distinct points and
has a corresponding ruled surface.

The parabolic, ecnodal, limiting and asymptetic bitangent, and tritangent curves form
the basis for a shape representation aimed at automatic model construction and object

24

recognition. We propose to maintain an explicit discrete representation of these _ve
HOT curves (where the surface admits High Order Tangents), recording the position
of each curve point on the surface, the direction of its surface normal, and the
direction of its “special” (bi)tangent.

There is a close relationship between the three-dimensional HOT curves and the two-

dimensional contour inflections and bitangents (Fig. 2.5).

Figure 2.5 Parabolic curves, limiting bitangent developables,
and their projections [27]

2.4.1 HOT Curves Reconstruction

The algorithm for reconstructing the asymptotic lines at parabolic points and the
bitangent line of the limiting bitangent developable surface was implemented, by
placing the object to be modelled on a turntable; this scene is viewed from a nearby
camera in general position (i.e. the image plane is not parallel to the axis of rotation).
In the example shown, a specialv glass bottle was chosen (which is approximately a
solid of revolution), since the parabolic and bitangent developable lines are readily
interpreted. In particular, these curves should be circles centered on the object's axis
while the corresponding visual event curves should sweep lines of latitude on the
view sphere. These methods do not make use of the fact that this object is a solid of

revolution. 280 images were taken at one degree increments.

Figure 2.6.a-c shows a cropped image of the bottle, the detected contours, inflections
and bitangent lines, and the temporal feature tracks. Figure 2.6.d shows the recovered
parabolic curves. In Fig. 2.6.¢ the asymptotic directions are drawn along the parabolic
lines. Fig. 2.6.f shows the recovered limiting bitangent developable surface that lies
on the convex hull. The recovered asymptotic directions, which correspond to lip and

beak events in an aspect graph, are drawn on the view sphere inFig.2.6.g. The

25

X RS SRR

tangent crossing events (the direction of limiting bitangent lines) are shown in Fig.
2.6.h.

&

Figure 2.6 HOT curve reconstruction [27]: a. An image. b. Extracted features. c. Tracked inflections.
d. Reconstructed parabolic curves. e. Asymptotic directions along the parabolic curve (from aside view). f.
Reconstructed limiting bitangent developable surface that lies on the convex hull (from a side view). g. Beak and
Lip transitions on the view sphere. h. Tangent crossing events.

be

2.5 Splash Representation

Geometric indexing has been one of the most used surface indexing techniques
because it used the geometrical relationships between invariant features. However
another form of indexing that uses local shape information has become more popular.
As it is based on structural information local to the neighborhood of a point, this
indexing method is called “Structural indexing”.

Circle of points was first used to describe the underlying surface structure around a
given point. This can be done by decomposing the local surface patch around a
specific point into a series of contours, each of which is the locus of all points at a
certain distance from the specific point.

Stein and Medioni [36] extended this idea further. Instead of decomposing a surface
patch into a series of contouss of different radii, a fow contours at prefixed radii are

extracted as shown in Fig. 2.7. On each contour of points, surface normals are

26

computed. This contour is called a “splash”. A 3-D curve us constructed from the
relationship between the splash and the normal at the center point. This curve is
converted into piecewise linear segments. Curvature angels between these segments
and torsion angels between their binormals are computed. These two features are used

to encode the contour.

AVERDAGE NORMALSY

Figure 2.7 An illustration if the “splash” representation scheme. At specific points on the surface, the
intersections of the surface patches and the spheres of pre-fixed radii are obtained. For cach
intersection a curve representing the average normal of the points in the intersection and the point in
study is obtained. These curves are further used for matching

Matching is performed using the contour codes of points on the two surfaces. Fast
indexing was achieved by hashing the codes for all models in the library into an index

table.

At run-time recognition, the splashes of highly structured regions are computed and
encoded using the same encoding scheme. Models that contain similar codes as the

27

splashes appearing in the scene are extracted. Verification is then performed for each

combination of three correspondences.

2.6 The Spin Image Representation

Spin Images [26] is an approach that can be used for recognition of complex objects
in cluttered 3D scenes. The name spin image was chosen; image because the
representation is a 2D array of values, and spin because the image generation process
can be visualized as a sheet spinning about the normal of a point. The spin image,

comprises descriptive images associated with oriented points on the surface

Through correlation of images, point correspondences between a model and scene
data are established. Geometric consistency is used to group the correspondences
from which plausible rigid transformations that align the model with the scene are
calculated. The transformations are then refined and verified using a modified ICP
algorithm.

2.6.1 Oriented Points

A fundamental component of surface matching representation is an oriented point, a
three dimensional point with an associated direction. Oriented points are static
versions of oriented particles. Oriented points are used to create spin-images. We
define an oriented point O at a surface mesh vertex using the 3-D position of the
vertex p and surface normal at the vertex m. The surface normal at a vertex is
computed by fitting a plane to the points connected to the vertex by the surface mesh.
Specifically, surface normal at a vertex is the eigenvector with the smallest eigenvalue
of the inertia matrix of vertex and the other vertices directly connected to it by the
edges of the surface mesh.

The above eigenvector computation does not determine the inside/outside direction of
the surface normal; for spin-image generation, oriented points should be oriented to
the outside of the object surface. If the surface mesh was created from a sensor witha
single viewing direction, then the normal direction can be chosen as the one pointing

toward the sensor. Otherwise, surface normals of a mesh must be oriented to the

28

outside of the object using the following heuristic. First, a vertex is chosen and the
orientation of its normal is spread to the normals of its adjacent vertices. This process
is repeated until the normals of all of the vertices are consistently oriented to the
inside or outside of the object. Next the orientation (inside/outside) of all of the
normals on the surface is determined by calculating the scalar products of the surface
normal at each vertex and the vector from the centroid of the object to the vertex. If
the majority of scalar products are positive, the normals have been oriented to the
outside. Otherwise, the normals have been oriented to the inside, so they are inverted!
If the object has multiple connected components, this normal orientation procedure is
applied separately to each connected component. To date, we have never encountered
an object where this heuristic would not generate outside oriented surface normals,
although objects can be constructed where it will fail. Given this method fot
computing surface normal, an oriented point can be constructed at each vertex of a

surface mesh using the position of the vertex and its surface normal.

As shown in Figure 2.8, an oriented point defines a 5 degree of freedom (DOF) basis
(p.n) (ie., local coordinate system) using the tangent plane P through p oriented
perpendicularly to » and the line L through p parallel to n.

Figure 2.8 An oriented point basis created at a vertex in a surface mesh [26]. The position of the
oriented point is the 3D position of the vertex, and the direction of the oriented point is the surface

normall at the vertex. Two coordinates can be calculated given an oriented point: o the radial distance
to the surface normal line L and P the axial distance above the tangent plane P.

The two coordinates of the basis are a, the perpendicular distance to the line L, and
B the signed perpendicular distance to the plane P. An oriented point basis is a

cylindrical coordinate system that is missing the polar angle coordinate (because this

29

coordinate cannot be determined using just surface position and normal). Using an
oriented point basis O, we can define a spin-map S0 as the function that projects 3D
points x to the 2D coordinates of a particular basis (p,n) corresponding to oriented

point O.

SRR

S, x> @0 =(\/ﬂ; —p[{z —(n ~(x—p))2,n (x —p)] (2.1

2.6.2 Spin Image Generation

Each oriented point O on the surface of an object has a unique spin-map So associated
with it. When So is applied to all of the vertices of a surface mesh M, a set of 2D
points is created. In this case, the vertices on the surface of M are the pre-image of the
spin-map, and the resulting 2D points are the image of the spin-map. We will use the
term spin-image 10Mto refer to the result of applying the spin-map Soto the vertices
of M. A spin-image is a description of the shape of an object because it is the
projection of the relative position of 3D points that lie on the surface of an object
(vertices) to a 2D space where some of the 3D metric information is preserved.
Figure 3.9 shows three 2D point sets that result from applying the spin-map at a point
on the surface of a rubber duckie mesh model to all of the vertices in the mesh.

Once all the points on the surface have been processed, the 2D array is converted into

a gray image

Then spin images can be compared using linear correlation coefficients. The
magnitude of the correlation coefficients is used as well as the confidence in the
correlation results which is measured by the variance of the correlation coefficient.
Since the linear correlation coefficient is a function of the number of pixels used to
compute it, the amount of overlap between spin images will have an effect on the
correlation coefficients obtained. The more pixels used to compute a correlation

coefficient, the more confidence there is in its value.

An experimental analysis of recognition rate versus the clutter and occlusion shows

that surface matching using spin images degrades gracefully, not catastrophically,

30

with the addition of clutter and occlusion to a scene, making spin images an cffective

representation for object recognition in complex scenes.

21} points sphn-image
i B ' (5]

2-D peints spit-imaege

spirHimage

Ab

Figure 2.9 Spin-images for three oriented points on the surface of a rubber duckie model [26]. The 3D
position of vertices in the mesh are mapped into 2-D using the spin-map for each oriented point basis.
By accumulating 2-D points in discrete bins, spin-images are generated.

2.7 Harmonic Shape Images (HSI)

The key concept of Harmonic Shape Images [41] is to compare surfaces by
comparing patches on them. A surface patch is defined to be a connected region
without holes on a given surface. Harmonic Shape Images are 2D shape
representations of surface patches. Using this representation, the problem of 3D
surface matching is reduced to 2D image matching. The paradigm in Figure 3.10
illustrates this idea.

Given two surfaces SI and S2, most of the previous approaches conduct point-based
matching as shown in Figure 2.10(a). As a result, only point-to-point correspondences
can be established when the representations of two points match. In contrast, the

31

approach proposed in [41] matches patches on two surfaces as shown in Figure
2.10(b). Correspondences between the two patches, ie., correspondences between
every pair of points in the two patches, can be established immediately without any

extra cost once the representations of the two patches match each other.

Making use of surface continuity allows the natural establishment of correspondences
between two surfaces after the matching process. This means that the difficult
problem of finding correspondences on two surface patches becomes trivial. The
matching process does not only provide a matching score, but also the
correspondences, i.e., the correspondences are obtained without any extra
computation. In contrast, if surface continuity is discarded, then the correspondence
between only one pair of points (uéually the centers of patches) can be established.

In order to find more pairs of correspondences, more matching needs to be conducted
and heuristic-guided post-processing has to be done to organize the matched points

into mutually consistent correspondences.

§; 5z
Hsipy WD HsIDy
, (ay (b
Figure 2.10 Illustration of point-based surface matching and patch-based surface matching [41].

This approach describes patch-based surface matching conducted by matching
Harmonic Shape Images of those patches as shown in Figure 2.10(b). Therefore,

creating those images is the core of the patch-based matching.

2.7.1 Generation of Harmonic Shape Images

Given a 3D surface S as shown'in Figure 2.11(al), let v denote an arbitrary vertex on
S. Let D(v, R) denote the surface patch which has the central vertex v and radius R. R

32

is measured by distance along the surface. D(¥, R) is assumed to be a connected
region without holes. D(v, R) consists of all the vertices in § whose surface distances
are less than, or equal to, R. The overlaid region in Figure 2.11(al) is an example of
D(, R). Its amplified version is shown in Figure 2.11(b1). The unit disc P ona 2D
plane is selected to be the target domain. D(v, R) is mapped onto P by minimizing an
energy functional. The resultant image HI(D(v, R)) is called the harmonic image of
D(v, R) as shown in Figure 2.11(c1).

As can be seen in Figure 2.11(al) and (c1), for every vertex on the original surface
patch D(v, R), one, and only one, vertex corresponds to it in the harmonic image
HI(D(, R)). Furthermore, the connectivities among the vertices in HI(D(v, R)) are the
same as that of D(v, R). This means that the continuity of D(¥, R) is preserved on the
harmonic image HI(D(v, R)).

The preservation of the shape of D(v, R) is shown more clearly on the Harmonic
Shape Image HSI(D(v, R))(Figure 2.11(d1)) which is generated by associating shape
descriptor at every vertex on the harmonic image(cl). The shape descriptor is
computed at every vertex on the original surface patch(b1). On HSI(D(v, R)), high
intensity values represent high curvature values and low intensity values represent
low curvature values. The reason for Harmonic Shape Images’ ability to preserve the
shape of the underlying surface patches lies in the energy functional which is used to
construct the mapping between a surface patch D(v, R) and the 2D target domain P.
This energy fumctional is defined to be the shape distortion when mapping D, R)
onto P. Therefore, by minimizing the functional, the shape of D(v, R) is maximally

preserved on P.

Another surface patch is shown in Figure 2.11(a2) and (b2). Its harmonic image and
Harmonic Shape Image are shown in (c2) and (d2), respectively. In this case, there is
occlusion in the surface patch(Figure 2.11(b2)). The occlusion is captured by its
harmonic image and Harmonic Shape Image(Figure 2.11(c2), (d2)). The latter’s
ability to handle occlusion comes from the way the boundary mapping is constructed
when mapping the boundary of D(v, R) onto the boundary of P; because of the
boundary mapping, the images remain approximately the same in the presence of

occlusion.

33

@ 1) (et)

) b2) W2y

Figure 2.11 Examples of surface patches and Harmonic Shape Images [41]. (al), (a2) Surface patches
on a given surface; (bl), (b2) the surface patches in wireframe; (c1), (c2) their harmonic images; (d1),
(d2) their Harmonic Shape Images.

From the above generation progess, it can be seen that the only requirement imposed
on creating Harmonic Shape es is that the underlying surface patch is connected

and without holes. This requirement is called the topology constraint.

2.7.2 Properties of Harmonic Shape Images

Harmonic Shape Images area patch-based representation for 3D free-form surfaces.
For a given surface, asurfacej yatch with radius R can be generated for every vertex

on that surface.

34

This means that a Harmonic Shape Image can then be generated for each surface
patch as long as that surface patch satisfies the topology constraint. The size of the a
surface patch is defined by theradlus R. When R increases, the area of the surface

patch increases and its Harmonic Shape Image consists of more

information of the underlying surface Another point that needs to be noticed about
the patch representation is that ¢ cvery vertex on a given surface is treated equally. No
feature points or special pomtsanaed to be selected in order to create Harmonic Shape
Images. This is in contrast to previous feature-based (or primitive-based)
representations in which the robustness of feature extraction is a difficult issue to cope

with.

Harmonic Shape Images are defined on a simple domain, which is a unit disc. This
simplifies the 3D surface tchmg problem to a 2D image matching problem.
Furthermore, because the unit' drsc is specified as the domain for any given surface
patches, the Harmonic Shape: ;ijizzages of all those patches are defined in the same
coordinate system regardless ofthe actual positions of those patches. This means that

Harmonic Shape Images are pose ‘invariant.

Harmonic Shape Images capture both the shape and the continuity information of the
underlying surface patches. It canbe seen easily from Figure 2.11 that there is one-to-
one correspondence between the.‘i'vertrces on the surface patch and its harmonic image.
In fact, the mapping from the surface patch to the disc domain is a well-behaved
mapping. It is one-to-one an 'onto, 1t is continuous; it is unique; and it is intrinsic to
the original surface patch. Tins property allows the natural establishment of
correspondences between twasmface patches once their Harmonic Shape Images
match. Finally, Harmonic Shépe Images are robust to occlusion and sampling

resolution.

The comparison of some surface representations previously proposed is listed in
Table 2.1. :

35

Table 2.1 Compdrison of some surface representations

Comparison | Opject e of Comparison of
Ttems Representat- | Mapping Representation
Represen® Domain '
tation
SAl Objects with Spherical mapping of | Complete, both
Spherical surface curvature at | surface shape and
topology all points continuity are
represented
Splashes Objects with Gaussian map of sur- | Partial
free-form face normals along a
surfaces geodesic circle
COSMOS Objects with GIobal Spherical mapping of | Partial for non-
free-form - otientation of CSMPs | convex objects
surfaces
Spin-Images | Objects with Local 2D histogram of Partial, surface
free-form distances to the continuity is not
sarfaces reference tangent represented
plane and surface
normal at all points
HSI Obiects with Harmonic map of the | Complete, both
free-form underlying surface surface shape and
surfaces onto a unit disc continyity are
surface curvature is represented.
stored on the map for
all points
2.8 Robust Point Matching (RPM)

RPM [13] is an algorithm th

ointly estimates a one-to-one correspondence and a

non-rigid transformation between two sets of points. It is built upon the heuristic of

softassign, which allows for
the help of the deterministic i

algorithm to overcome many

process.

36

multiple partial correspondences between points. With
nealing technique, this new heuristic enables the

ocal minima that can be encountered in the matching

2.8.1 Point Matching as Joint Estimation of Correspondence and
Transformation | |

Notations

Suppose we have two pomt-setsﬁv and X (in ®%or in R*) consisting of points {v,, a=
1,2,... . K}and fx;i=1,2,... N} respectively. Note that the total number of points
can be different so it is possi‘ﬁifé that K does not equal N. For the sake of simplicity,
we will assume for the moment that the points are in 2D. We always apply the
transformation to one point-set V so that it can be better aligned with the other point-
set X. For this reason, we call point-set ¥ the model and point-set X the target.

We represent the non-rigid u'axjs;fnmaﬁon by a general function f with parameters a..
A point v, is mapped to a new lééation u, = f (v4, &). The whole transformed point-set
Vis then U or { u, }. We use a prior smoothness measure to place appropriate

constraints on the mapping to prevent it from behaving too arbitrarily. To this end, we

introduce an operator L and our ekosen smoothness measure is |2 "Z .

Formally, given two point-sets ¥ and X, point matching can be regarded as the
minimization of the following bigary linear assignment-least squares energy function:
N X . N K
E@® =33 sl 10 A €532 €2
i=1 a=1 : i=1 a=1
Where the parameters A and £ are just constants and the variable Z or {Zai}, with only

possible binary values 0 and 1, i§§s‘ubject to the following constraints,

N+l

Yz, =1 for ac{2,..K}
=1

K+l

§ el for 1eB2N)

a=1

The energy function can be easily dissected. The first term is essentially a similarity
measure to evaluate how gobdfé?a fit is with a set of specific correspondence and
transformation. The second term is the prior constraint on the transformation. The
third term is the robustness ciéﬁtrol term preventing rejection of too many points as

outliers. The parameters , and amthe weight parameters to balance these terms.

The matrix Z or {zx} is called the correspondence matrix [18]. It consists of two
parts. The inner K x N part on defines the correspondence. If a point v, corresponds

37

to a point x;, zy =1:0f Zgi = O;Ftﬁen the points are unmatched and their distance does
not contribute to the total energy The row and column summation constraints
guarantee that the corr&spondencels one-to-one. The outer extra (N +l)th row and

K +1)ﬁl column of Z are introduced to handle the outliers. When a point is rejected as
an outlier, the related inner entné,s all become zero. Then the extra outlier entries will

start taking non-zero values to saﬁsfy the constraints.

2.8.2 Softassign
The basic idea of softassign [18} is to relax the binary correspondence variable Z to be
a continuous valued matrix M m the interval of [0; 1], while still enforcing the row

and column constraints.

The continuous nature of the correspondence matrix M basically allows fuzzy, partial
matches between the point-sets. ’I’he correspondence becomes more like a probability
measure. Now, one point does not necessarily just correspond to only one other point;
it could have muitiple possih i matching partners, while maybe preferring the ones
which are closer to itself a httl;eblt more. This allows the point to “see” further away
to find a potentially ideal mateh. From an optimization point of view, this fuzziness
makes the resulting energy futiction better behaved because the correspondences are
able to improve gradually and ontinuously during the optimization without jumping

around in the space of binary permutation matrices (and outliers). In more formal
snice fuzzy smoothes the energy function and gets rid of

terms, making the corresponde:

poor local minima.

Though allowed to be fuzzy, th%:;porrespondence matrix still has to satisfy the row and
column constraints. This can be enforced via the iterative row and column Sinkhorn
balancing normalization [35] of the matrix M.

There are different degrees of fuzziness. The extremely fuzzy case happens when all
mai are equal, i.c., any point fhinks any point else is probably its partner without any
preference at all. At the other end of the spectrum is the least fuzzy case when a point
only choose one partner, which is most likely the closest, and disregard the rest. This
is the same as the binary cotrespondence. So in fact the binary correspondence can be
regarded as one extreme case of the fuzzy correspondence. Between these two

38

extremes, there can be many 1 ite’rmediate degrees of fuzziness when a point would
only choose a portion of possiﬁie points (neither all of them, nor a single one) as its
partners. The idea of different dégrees of fuzziness is illustrated in Figure 2.12.

Laost Fumy 1B g Cuyampondinne
Fhndasr Fusiy Sarmpotehmw

o tomiasuy: Dxkekds b Barmghas,

Figare 2.12 Diffirent degrees of fuzzy
shown; i_i,iii,iv)-fThe degrees of the fuzx
fuzzy (binary) .

sndence [13]. From left to Tight, i) two point-sets arc
85 gradually decrease from the extremely fuzzy to the least

In the search mechanism using) different degrees of fuzziness, each point is always
actively searching for its pote:ﬁial partners while the searching is regulated by some

“search range”.

In the extremely md:sﬁngmshﬁte case, one point is being matched to almost all the
(g those that are quite far away from itself. At this
e can be interpreted as being so large that it puts all
rching scope, causing the resulting correspondence

points in the other set, even ini
stage, any single point search
other possible points within i
to be very fuzzy.

; point only choose the closest partner, it is as if the

In the least fuzzy case where
“search range” has shrunk to so'small a value that only the closest candidate can get

m.

With an intermediate degree of fuzziness, the search range is neither large enough to
accommodate all candidates, nog'so small that the point can consider no more than the
closest candidate. A scale—s;';ﬁ;e{:j strategy can be easily conceived at this point by
manipulating such a search range thus effectively controlling the degree of fuzziness.
A point can start with searcl ing globally over long ranges for its possible partners,
then slowly reduce the range:to refine the search to more and more local scales. The
idea is illustrated in Figure 2.13.

39

ing Sowch Reoge Cradudly Redwring SechRange

Figure 2.13 A global-to-local scarch:signtegy [13]. By gradually reducing the search range, a point can
first search global for all possible pa ‘and slowly refine the matching. Two point-sets are shown in
each panel. Circles are placed aroun point-set, to which the transformation is being applied (V), to
indicate the current scale of search range. From left to right, the search range is gradually decreasing.

2.8.3 Deterministie Annealing

Deterministic Annealing (DA) [1@] is done by adding an entropy term in the form of
H= Zf; Zf:; m,, logm,, to the griginal assignment energy function (2.2). The newly

introduced parameter T is calle the temperature parameter.

The name “temperatute” originates from the fact that as you gradually reduce T, the
ed by a process similar to physical annealing. The
annealing in DA refers to the procedure of tracking the minimum of the energy
function (with the entropy term‘} while gradually lowering the temperature. In other
words, the minima obtained ateach temperature are used as initial conditions for the
next stage as the temperature is lowered. With the entropy term, the energy function
 the algorithm to overcome many local minima. The
influence of the newly added’ ‘entropy term will gradually decrease as T approaches
zero. So it is guaranteed that he minimum tracked with DA will also always be a
minimum of the original enefgy function (but not necessarily the global minimum).
Once the annealing schedule for the temperature is specified, the whole process is
determined, hence the name detéfministic annealing.

tends to be more convex, enablii

Some intuitive notion of the worjiings of deterministic annealing can be obtained from
observing the effect of the
smaller than 1; the entropy tahn is minimized when all m,; are equal, i.c., the
correspondence is most fuzzy Tigher temperatures, the entropy term dominates the
energy function. The attemist to minimize the emergy function forces the

ppy term in the annealing evolution. Since all m,; are

40

correspondence to be more fuzzy and hence becomes a factor in “convexifying” the
objective function. As T is lowered, the influence of the entropy decreases and less
fuzzy configurations of M are ai!ij#veid. In short, the entropy term always encourages a
certain level of fuzziness. The féievcl is determined by the temperature parameter T.
The larger the T, the higher the level of fuzziness. The temperature parameter T is
acting as the “search range” ﬁisbussed just above. The deterministic technique
basically allows us to conti‘o!‘tlie “search range”, hence control the degree of
fuzziness. E

When T goes to zero, we williget back to the original energy function. At this point,
the correspondence will also aﬁfgroach binary. This is a consequence of the following
extension to the well-known 'moﬁ’avcm Neumann theorem [7]: the set of doubly
substochastic matrices is the ’

outliers. So it can be

vex hull of the set of permutation matrices and
that we will always achieve a one-to-one
correspondence.

2.9 Iterative Closest Point (ICP)

1 (ICP) is an accurate and reliable method for

ways converges monotonically to the nearest local

registration The ICP algorithm

minimum of a mean-square distance metric, and experience shows that the rate of

convergence is tapid during the first few iterations. Therefore, given an adequate set
of initial rotations and translations for a particular class of objects with a certain level
of “shape complexity,” one can globally minimize the mean-square distance metric
by testing each initial registration. For example, a
“data” shape that represents a major portion of the

over all six degrees of fr
given “model” shapeanda
model shape can be registered |in minutes by testing one initial translation and a
relatively small set of rotations o allow for the given level of model complexity. ICP
is efficient, with average case complexity of O (n log n) forn point images.

Now, we will review the ori 1 algorithm proposed by Besl and Mckay [6]. For
variants of the ICP algorithm, réfer to Appendix A.

41

The ICP algorithm can be described in terms of an abstract geometric shape X whose
internal representation must be Imuwn to execute the algorithm but is not of concern
for this discussion. Thus, all ﬁaat follows applies equally well to 1) sets of points, 2)
sets of line segments, 3) sets of flarametric curves, 4) sets of implicit curves, 5) sets of
triangles, 6) sets of parametric sui , and 7) sets of implicit surfaces.

m, a “data” shape P is moved (registered, positioned)
del” shape X. The data and the model shape may be
ble forms. For our purposes, the data shape must be

In the description of the alg
to be in best alighment with 2
represented in any of the all
decomposed into a point set if it i§ not already in point set form. The number of points
in the data shape will be denoted!Np, Let N, be the number of points, line segments, or
triangles involved in the model shape. As described above, the curve and surface
closest-point evaluators impler
triangles to yield the initial paratheter values for the Newton’s iteration; therefore, the
number N, is still relevant fi
accuracy of the approximation.

ted in our system require a framework of lines or

jh’ése smooth entities but varies according to the

The distance metric d between anmdmdual data point p and a model shape X will
be denoted |

4.3 =ng¥n[[3-?’li @3)
The closest point The closest point in X that yields the minimum distance is denoted
y suchthatd(p, y)=d(7,
is O(N,) worst case with expected cost log (N;). When the closest point computation

, where ;eX. Note that computing the closest point

(fromp to X)is performed forech point in P, that process has a worst case O(N, V).
Let Y denote the resulting set ofi¢ ’_0sest points, and let C be the closest point operator:

Y=C (P, X). 2.4)

Given the resultant correspon

fig point set ¥, the least squares registration is
computed as:
G=0(e.1 @)

42

The positions of the data shape pamt set are then updated via P = q(P).

2.9.1 ICP Algorithm Statement
The ICP algorithm can now be stated:

o The point set P with N, pei#ts { E} from the data shape and the model shape X
primitives: points, lines, or triangles) are given.
setting Po=P, g,= [1,0,0,0,0,0,0 and k=0,
The registration vectors are o ed relative to the initial data set Py so that the final
registration represents the complete transformation. Steps 1, 2, 3, and 4 are applied
until convergence within ati ‘ erance 7. The computational cost of each operation

(with N, supporting geomet
. ’I‘he‘l !‘ 3 is. 1!0 l-(ir

is given in brackets.

a. Compute the closest points: Y= C(Pr, X) (cost: O(N, N;) worst case,
O(N,log N, average). '

b. Compute the registration: (a;, di) = Q(Po, Y1) (cost: O(N)).

c. Apply the registration: Pp; = E; (Po) (cost: O(Np)).

d. Terminate the iteration when i ‘ change in mean-square error falls below a preset

thresheld > 0 specifying thé desired precision of the registration: d, ~d,,, <7

If a dimensionless threshold is désired, one can replace 7 with 7,fir(}.,) , where
the square root of the trace of th __/gcévariance of the model shape indicates the rough
size of the mode} shape. '

2.9.2 Convergence Theorem
The key ideas of the convergence theorem of the ICP are that 1) least squares
¢ average distance between corresponding points

registration generically reduc
during each iteration, whereas 2) the closest point determination generically reduces
the distance for eachpoint individually. Of course, this individual distance reduction
v¢ because the average of a set of smaller positive
ate explanation in the proof is shown below.

also reduces the average
numbers is smaller. A more ela

43

algorithm always converges monotonically to a

Theorem: The iterative cl
} mean-square distance objective function.

Tocal minimum with respect to

Proof: Given F, = {-p‘,.,‘} = c}k(P‘o{ : aﬂdX, compute the set of closest points Y, = {}a}
o sntation of X. The mean squared error ¢, of that

given the internal geometric repi
correspondence is given by

e szg;m-— pgﬂ 2.6

The @ operator is applied to get. ak and d, from the correspondence:

&~ R@u)Po~ ‘Inu @7

yint set would yield a smaller mean square error than
ich cannot possibly be the case. Next, let the least

previous correspondence to t ’
square error is still d, , that is

"'"_znyu Pr,tnu . (2.8)

P =1
However, duting the application#f the subsequent closest point operator, a new point
Y,,, is obtained: ¥,,, = C(B,,,; X). It is clear that

sﬁ“},J—;!i¢+,ﬁ foreach i =1 N, (2.9)

because the point ;,,c. was the clefsest point prior to transformation by g, and resides at

some new distance relative m;, T § ;,,M were further from p,,,, than ¥, » then

this would directly contradict (iie ‘basic operation of the C closest point operator.
Therefore, the mean square errors e, and d, must obey the following inequality:

0<d,, <e, <d, <S¢ forallk (2.10)

The lower bound occurs, of cot ince mean-square etrors cannot be negative.

Because the mean-square error'sequence is nonincreasing and bounded below, the
algorithm must converge monotesically to 2 minimum value.
Experimentally, it was found th it fast convergence during the first few iterations that
slows down as it approaches the local minimum. Even at this slow pace, somewhere
between 30 and 50 iterations yie!

Next we will deseribe the advantages and disadvantages of the ICP algorithm as
stated by Besl and Mckay [6].

s excellent results: d, 0.1% of model shape size.

2.9.3 The advantages of the l& ‘matching algorithm are as follows:

o It handles the full six degtes of freedom.

e It is independent of shape representation.

e The surface patch or
entities is essentially ignored by the matching procedure. This is important for
using CAD data in its native aI'j'et'ltn without elaborate user-guided preprocessing.

o It does not require pwpréaessmg of 3-D point data, such as smoothing, as long
as the number of statistical outliers is near zero. This is usually the case with

e segment partitioning of parametric or implicit

accurate noncontact sensors: d for inspection purposes.

» It does not require any derivative estimation or any local feature extraction.

o Almost all aspects of théalgorithm are ideally suited for coarse-grain or fine-
grain parallel architectures. For iarge problems, even remote execution procedures
and distributed file ; ¢m networks of workstations can provide worthwhile
speedup without significant overhead.

¢ Global matching is ac]] at predictable cost based on shape complexity.

e Local matching is achieve at predictable cost based on shape complexity and
the percentage of allowable eeclusion.

45

e It can handle a reasonah e ‘amount of normally distributed vector noise, with

10% of object size.

e It can easily be used in conjunction with other algorithms, such as the

covariance matrix alignment, which preorient the data so that fewer initial rotation

states are necessary.
o Shapes with three sufficightly distinct principal moments (eigenvalues) can be
globally matched at a cost of only four initial rotation states.

e It isrelatively insensitive to minor data segmentation errors as indicated by the
performance of the registratiéh of points with the African mask parametric surface
model. '

e The results of the last iterdtion of closest point registration can be used directly
as inspection results sincs?? the distance to the closest point on a surface is

computed as a byproduct.

2.9.4 The disadvantages of the ICP matching algorithm are as follows:
e It is susceptible to gross ‘
is substituted at some p@iigg{éithcrinpreprocessingorregistration computation)

for outlier detection.
g ‘can get quite large for small allowable occlusion

tistical outliers unless a statistically robust method

e The cost of local matchin
percentages, e.g., 10% or less. It is not recommended to use the ICP method if
feature extraction techniques:will successfully solve the problem.

e As an extension of the wther rejection issue, the stated algorithm does not
solve the segmentation pr lem, of course. If data points from two shapes are
intermixed and matched against the individual shapes, the registrations will be
wrong, and the mean squ: distance metric will be large. This is a problem with
almost all of the shape matching algorithms in the literature.

o For any given fixed initi pet of rotations, the global shape matching capability
can be defeated even wiﬁwut sensor noise by constructing “sea urchin” or
“planctoid” shaped objects based on the set of rofations such that correct
registration cannot be guaﬁmteed On the other hand, for a fixed set of objects and

no sensor noise, one can d&&t‘mme an initial set of registrations in a finite amount

46

~

tee registration in a Rfite amount of time with a

of time such that one can gpar:
sufficiently small probability of error.

o In the limit of very complicated sea urchins or perfectly spherical planets with
a single 1 um bump or in th Timit of very localized matching (1% of object shape
or less) onany object, the K’,‘P élgorithm degenerates to brute-force 3-D template
matching. Feature extractxgm techniques, if possible, are preferable in such

2.10 Discussion
After teviewing most of the rei?afted previous work, we see that the “non-rigid” point
matching has remained largelj? imi‘esolved. Most of the matching methods available
only solve for rigid transform tion

. Improving upon the independent approaches still

CHAPTER 3

major reserarch problem not

more dominantly, in medical
deformable. As demonstrated 1
that are capable (to different ﬁxtents) of handling the non-rigid point matching

the previous chapters, the few existing algorithms
problem have various shortcomings.

Consequently. the objective of the thesis is to develop a general-purpose non-rigid
point matching algorithm thhls also well suited to real-world image registration
tasks. The a!‘gorithm is based mf'thc iterative closest point algorithm (ICP), as for the
methods based on the ICP algomhm, the initial positicﬁsof the point sets need to be
close enough‘for’tl;e regxstrattonfo work properly. So if they are deformed heavily, its
1y as it will be trapped in local minima and cannot
results, so to improve its performance, it would

performance will degenerate q
be recovered to get the most accurd
be a good idea if we entered the data partially transformed (although not very
accurate). This can generate best results with respect to accuracy, and can be achieved
through the center of mass algoriﬂ;m

ICP relies on experimental hemstxcs to handle outliers. For example, outliers are
rejected through a dynamic ¢ oldmg mechanism [15], which depends on the task
at hand, Distances between nearest point pairs are first fit to a Gaussian distribution.

Points with distance measure lues larger than the mean plus L (usually set to 3)

times the standard deviation are t :fi rejected as outhiers.

48

3.1 Incorporation of Diffe’tj Transformations

Different models of transforma‘r&i;‘gnj have their different properties and, hence are
suitable for different applications. An algorithm’s ability to accommodate different
) general tool for many problems. Our algorithm is

transformation models can make’
designed with this in mind. Al ﬂns point, the ICP algorithm is a general framework,
i.e., any specific non-rigid trangfarmatlon can be put in to replace the general notion
of the algorithm. As an examﬁ{;}e; here we discuss the incorporation center of mass
algorithm as well as one specific gmn—rigid transformation parameterization —the thin
plate spline (TPS) [8].

3.1.1 Center of mass

This method originated in physics [1]. The idea is to bring the centers of mass of the
two point sets to coincide toebrred translational mismatch. The centers of mass of
the two point sets are to cometde in order to achieve rough translational correction

before any alignment is perfaimed The center of ‘mass (%,p)of an image / is

computed as

(.1)

(3.2)

where g is the gray scale vahae of the image pixel at the location (7). The pixels
corresponding to the backgrouﬁa of the image are set to zero and so they do not affect
the computaﬁon of the center :0f mass. The center of mass provides us with the
information about the global I(ié;:;ﬁbn of the data. The result is not very accurate but it
is automatic, very fast and easy:in implementation and would prevent ICP from being
trapped in local minima. We 1 I use the term CG to stand for Center of Mass
(sometimes referred to as Centm;:;of Gravity) throughout the rest of the chapter.

49

3.1.2 The Thin-Plate Spline (TPS‘) 18,39]

TPS provides us with a good ex‘a’inple to explain the reason why we need to include a
prior smoothing term for a nonvtig‘id transformation model. As most other splines,
TPS’s main task is to generate an appropriate spatial mapping given two sets of
landmark points. The constramtthat these two sets of landmark points are to be
mapped exactly onto each othet is not strong enough to specify a unique non-rigid
transformation. If we think of a*non-ngxd spatial mapping/transformation as a spatial
displacement ficld, such a reqmtement only tells us the displacements at certain
particular locations, where thozl?eé ;agdmalks happen to be at. Apart from those special
locations, we need to fill in what he displacements are for the rest of the space. Since
the mapping is allowed to be’ ;zi@i—rigid, there are an infinite number of different

choices. To narrow down the choices, we need to add extra information about how the
non-rigid mappings should beha :More often than not, we would prefer the mapping
to be somewhat “smooth”, i.c., it Should not distort the space too much, especially if it
is unnecessary. This kind of ;i‘-“iférence can be enforced via a prior penalty term that
discourages mappings that are toe‘ arbitrary. Since the penalty is often measured by
some kind of “smoothness” of the mapping, we call it the “smoothness
pmr/cﬁnstraintfmeasme . Weean contml the behavior of the mapping by choosing a
specific smoothness measure, whach basically reflects our prior knowledge on the

transformation.

One of the simplest forms of the smoothness measures is the space integral of the
square of the second order denvai?wes of the mapping fanction. More formally, we are

looking for a mapping functio cr) between corresponding point-sets {ya} and {va}

that minimizes the following enefgy function:

Jrps =argminEpys(f) | (33)
- [§ 2 ZLy Ly
=argm}n[§ﬂ 1@,)l e f j[(25t)1dxdy) (3.4)

50

o A

i

Suppose the points are in 2D (D=2). We use homogeneous coordinates for the point-

set where a :point y, is represented as a vector (1, Yo Vay)- With a fixed weight
parameter 1, there exists a unig minimizer f: We call it the thin plate spline (TPS).
This minimizer is parameterized by o which comprises two matrices d and c,

(e={d, c}).
K
fons (5, @) = frps(mds @) =x-d + 2 gllx V)<, (3.5
b=1

Where disa(D+Nx(D+ I)matnx representing the affine transformation and, c is
a K x (D + I) warping coefficient matrix representing the non-affine deformation. The
kemnel function ¢(jx—v,|) is 2 1 x K vector for each point x, where each entry

#,0 =[x, [togx—v,.
If we substitute the solution for £(3.5) into (3.4), the TPS energy function becomes,

? + A trace(c’®,) (3.6)

Ep(d,0)=[Y -V, -0,

Where Y and V are just concatenated versions of the point coordinates y, and v, and
® is a (K x K) matrix ﬁmneéﬁnmﬁe #(v, —v,|) - Bach row of each newly formed

matrix comes from one of th ﬁginal vectors. The matrix @ represents the TPS

kernel . Loosely speaking, the
internal structural relationships, When it is combined with the warping coefficient ¢, 2

non-rigid warping is generated.

§ kernel contains the information about point-set’s

A nice property of the TPS that it can always be decomposed into a global affine
and a local non-affine component. Consequently, the TPS smoothness term in34is
solely dependent on the n rafﬁnc components. This is a desirable propetty,
especially when compared to other splines, since the global pose parameters included

in the affine transformation are {penalized.

51

312 1 Closed Form Selution fo
The separation of the affine an;_ the non-affine warping space is done through a QR

decomposition [39].
R .
r=[alo] ", 3.7)

Where O and Op are K x (D x I) and N x (K — D — 1) orthonormal matrices,

, (3.6) becomes,

With the QR decomposition in pla

En(rd)=J0iY -Q00 | +|glY - Ri-Qf00s +47" 00y (38)

Where c=Qyand y isa (K;D;,-; 1)x (D + 1) matrix. Setting ¢ =0,y (which in tum

implies that ¥¥ ¢ = 0) enables usito
affine term [first and second termsf m (3 8) respectively].

The least squares energy functmn in (3.8) can be first minimized with respect to yand

then with respectto d. The final solutlon for c and d are,
c= QZ(QT(DQZ K—D—I))_IQTY 3.9

d=RYQ[Y-®c) (3.10)

We call the minimum value of the TPS energy function obtained at the optimum

(c,d) the “bending energy”:

Eppring =4 m[g,{gggi:gz + ALy OFYYT). (3.11)

52

haviseric
eenimimin

3.2 ICP Pseudo-code:

We normaliy start the algonthm’s alternating update process by setting the
transfounaxmn parameters o to\ _‘e zeros (so that the transformation is an identity
i s stay at their origin’al place). Then apply center of
mass to make the centers of mass of the two point sefs to coincide. Then we run the
cortesp(mdeme update and ihe"transformatton at each iteration, until optimum

solution is reached or maximum aumber of iterations is reached.

ICP Algorithm Psendo-code
(g a=0, Identity matrik).
two point sets to coincide.

Initialize TPS parameter
Brmgthc centers of mas
: quill ‘Az Iterative Mat
ting Update
StepI: Update ndence parameter M based on current transformation
parameter a based on the closest neighbor criteria (with outlier rejection).
Step IT: Update tra '?sfformation parameter a based on current correspondence
End B
'~ Until convergence or mm;mnn number of iterations is reached

EsdA

3.3 Experimen

We used in our experiment Synthetic data developed by Dr. Haili Chui in the
University of Yale. Aithouéh ey are 2D point sets, yet they can be used as an
initial step to test the algor
examples. These examples

ms used. They represent non- rigid point matching
jill provide a careful evaluation of the algorithm and a
compmson to previous algorithms such as RPM.

We then set out to evaluate the algorithm’s performance or efficiency using the
number of iterations using these

The ground truth (for bofh i*he correspondence and the transformation) is known
for the synthetrc data so thaﬁ we can carry out quantitative evaluations of the
algorithm. ‘We conducted 117 ynthetic experiments covering three templates and
comparing our algorithm similar algorithm but without the contribution of

the center of mass algorithm and also comparing to the RPM algorithm.

We present: some typical exqmples from these synthetic experiments and error
statistics as a measure of evalummn of different algorithms to be compared.

3.3.1 A simple example

We start with a simple césé:: in 2D point matching. Two point sets are shown in

Figure 3.1.

Transformed V + X
Data Point Set

Figure 3.1 A simplc 2D ex;m:ph} ‘Leﬁ Initial position of two point sets V (circles) and X
(crosses). Rzghr Final position usmgpﬁr algorithm.

Global matching using center of mass occurs first and the output is fed into the ICP
algorithm with the TPS mapp ﬂg What we are domg is basically trying to deform
the template point set to fit the! data point set.

3.3.2 Setup of the synthetic ex?penments
As we mentioned before, we used the synthetic data made by Dr. Haili Chui. Three

different templates used heré%: are shown in Figure 3.2. The first template is a
simple one, which can be a footprint, while the second template comes from the

54

outer contour of a tropical fish. It mainly consists of a closed contour with some
very sharp corners. To define a continuos curve, those sharp corners may pose
some challenges because geometrical measures such as the curvature are
discontinuous at those locations. The third comes from a Chinese character. It is a

more complex pattern with multiple curve like strokes that may or may not be

connected to each other.

Modeling such a complex pattern with high level feature representation, such as

curve, might be quite messy, while the simple point representation can avoid these

problems all at once.

We then used both ICP with and without the center of mass as a preprocessing step
to found the TPS mappings that warp the template set onto the target set. And we
compared to the RPM algorithm as well. The errors are computed as the root mean
squared distance between the point sets.

Note that although we know the ground truth correspondence between the template
and data point sets; such information is not being used in matching. We intend to
recover both the correspondence as well as the non-rigid transformation through

our point-matching algorithm.

Figure 3.2 Template point sets for synthetic experiments

55

We conducted a series of experiments on each type of templates. In each series we
changed the number of iterations to be used and we repeated each of those series

ten times to take the average value of the RMS error (root mean square).
3.3.3 Results of the synthetic experiments
After we explained how the synthetic experiments are set up, we now examine the

results by looking at some examples and the error statistics.

Data Point Set

Figure 3.3 Original point sets of the first template

The following is Table 3.1 showing the results using the different techniques used
in the experiments on the template in Figure 3.3.

Number of iterations | RMS error of ICP with | RMS error of ICP with RMS error of RPM
TPS TPS and CG
10 0.122342 0.067810 0.199179
15 0.099882 0.056730 0.203814
20 0.095666 0.056763 0.206080
25 0.08930" 0.056377 0202850
30 0.086253 0.055964 0.164970
35 128 0.055385 0.139995
40 0.054845 0.126533
43 , o 0.054419 0.104823
46 0.085842. 0.054111 0.092452
49 0.085492 0.053402 0.083868
51 0.084719 0.053216 0.077455
53 0.084471 0.053070 0.070130

Table 3.1 Results of different algorithms with the first template

56

The graph representing the RMS error with respect to the number of iterations, 18

shown in Figure 3.4.

RMS etror

0.06 —i —
0_04 1 I 1 1 S |
10 20 30 40 50 60
Number of iterations

Figure 3.4 A graph showing the results in Table 3.1

. * ICP with TPS

F==—""% ICP with TPS and CG

E RPM

As can be seen from the graph, the best results with respect to RMS error are for our
algorithm. Although RPM is working well at the highest number of iterations, but it is

not reliable in lower stages.
Now we will repeat the experiments, to the second template shown in Figure 3.5.

If we applied ICP with TPS mappings on the two point sets, the result would be poor
as the RMS error was computed to be 0.190238 using 53 iterations (normally, an error

57

inima as shown

). As ICP was trapped in local m

ching

beyond 0.1 indicate a poor mat

plate Point Set

Tem

point sets of the second template

50ri": it

Figure 3

Transformed V + X

53 iterations

with TPS

Figure 3.6 ICP

1§

If we apply center of mass, to the o

nal point sets, they coincide and hence rough

gt

Figure 3.7 Center of Mass applied to the original point sets in Figure 3.5

58

Transformed V + X

- Figure 3.8 ICP with TPS and CG using 53 iterations

Figure 3.8 we applied ICP and TPS using 53 iterations on the output shown in
igure 3.7. So the two point sets were nearly “exactly matchable”.

able 3.2 shows the results withfrespect to the second figure, shown in Figure 3.5. It
gives an overall picture for all the three algorithms’ performance or efficiency against

the number of iterations.
'Number of iterations | RMS error of ICP with | RMS error of ICP with | RMS error of RPM
TPS 3 TPS and CG
5 0.316173 1 0.095008 0.393020
10 0222866 0.082544 0.351857
15 0.196807 0.077977 0.252412
120 0.187654 0.077150 0.171334
75 0.189114 0.076168 0.115613
130 0.190221 § 0.075458 0.086319
: lf§3 5 0.190566 B 0.070439 0.072572
440 0.189749 . 0.069702 0.070350
4&3 0.189753 : 0.068793 0.068256
146 0.190637 0.068291 0.066224
49 0.190739 0.067793 0.061299
51 0.190404 0.067439 0.059170
3 0.190238 0.066996 0.057871

* Table 3.2 Results ofﬁ:ﬂ’erent algorithms with the second template

The graph showing the RMS error with respect to the number of iterations used in
 each algorithm is plotted in Figure 3.9.

59

o
b

RMS error
=]
0

0.15¢

0‘:05 3 1 1 1 1 (] 1 1 1 -1
5 10 15 20 25 30 35 40 45 50 55
Number of iterations

Figure 3.9 A graph showing the results in Table 4.2

=% ICP with TPS

R ICP with TPS and CG

Similarly, by analyzing the graph, we can see that using CG with ICP and TPS
mappings, makes the algorithm: work efficiently after a few iterations, however the
RPM afgeﬂtﬁmdoes not produe‘eéany reasonable results before 35 iterations. Also we
notice the wide gap between the%e‘ﬁiciency of the ICP with TPS alone relative to our
algorithm, although they behavé sfmilaffy but the accuracy of our algorithm is much
better through all the iterations. :

Although RPM produces better results after 45 iterations yet we should note that, each
“jteration in RPM is a composite iiei’ation as it is further decomposed into a number of

iterations according to the setting of the temperature in the annealing process (refer to

60

ion 2.8}3.); And this can be revéaled through the time taken to finish each iteration

50 we will mﬂude some other tabfeb related to time later in this section.

Now we wﬁi exanune our algonthm on the third template shown in Figure 3.10 which
ex point set as it is composed of 105 points.

Figure 3.10 Original point sets of the third templatc

By applymg ICP with TPS mapplpgs using 53 iterations, the result will be poor as in
Figure 3.11. with 0.089232 RMS error at this snap shot. Note that we carried out the

same experiment ten times to take the average and used that average in Table 3.3.

Transformed V + X

Figure3.11 ICP with TPS using 53 iterations

61

rithm to the original point sets, the result will be
3.12.

Figure 3.12 Center of Mass applied to the original point sets in Figure 3.10

ow if we applied ICP and TPS on the output of Figure 3.12, the result will be as
shown in Figure 3.13 with 53 itergtions and 0.054924 RMS error, which is better than
e result of %a;‘aiilying ICP and TP tnappings on the original point sets directly.

Transformed V + X

+4

Figure 3.13 [ICP with TPS and CG using 53 iterations

ims applied on the third template in Figure 3.10 is
ent with the analysis extracted from the previous

62

of iiemtions | RMS crror of ICP with | RMS error of ICP with | RMS error of RPM
‘ TPS g TPS and CG
0.134906 ; 0.065367 0.255769
0.115658 , 0.059264 0.262750
0.110010 : 0.059114 0.266250
0.100553 , 0.058931 0.262324
- 0.088624 0.058541 0.213520
' 0.086921 0.058169 0.145293
0.087083 0.057662 0.095455
0.086233 : 0.056919 0.082713
1 0.086169 0.056939 0.077772
0.086857 0.056445 0.073500
0.086694 . 0.055602 0.069766
0.086318 0.055276 0.060945
0.086036 ' 0.054920 0.052823
Table 3.3 Results of different algorithms with the third template

| plotting the results in Table 3.3, We obtain the graph in Figure 3.14.

0.3r

RMS error

———t
.25 30 35 40 45 50 55
‘Number of iterations

Figure 3,14 A graph showing the results in Table 3.3

{1l =% 1CP with TPS

- =% JCP with TPS and CG

et RPM

63

As the ﬁ)ﬂ?d template is the me:

t complex template with respect to both the type of

curvatures or discontinuities any the number of points, the results show that ICP can

be a robust techmque for solving

Also we eonéncted some experin
of 1temh0ns although we cann

'hg non- rigid point matching problem.

nents using time as a parameter instead of the number

j rely on those values in our analysis, but it can be

used only‘ as a rough indicator to the complexity of each algorithm. We carried out
those experiments on a Pentium {1 5300 MHz CPU. Also we should consider the delay
due to tﬁe GUIs in each expemnent but those GUIs are equal in time in all the cases,
the resuli's of running the three algonthms on the three templates for 23 and 42

- xteramm shown in Tables 3 4iand 3.5, respectively.

socond (98 points) Third (105 points)

0.1889977 15 sec 0.100549/ 20 sec
0.067412/]11 sec 0.076493/16 sec 0.058724 /21 sec
0.204712/40 sec 0.123672/145 sec 0.230337/180 sec

Table 3.4 RMS error and Time of Different algorithms with 23 iterations

First (50 feints) second (98 points) Third (103 points)
0.085944/ (16 sec 0.189762/ 30 sec 0.086620/ 35 sec
0.062526/|17 sec 0.069202/ 31 sec 0.057246/ 36 sec

0.060518 /230 sec 0.058632 /305 sec

Table 3.5 RMS error and|Time of Different algorithms with 42 iterations

rigid pcmt matchmg examples’
rigid bedmt, as one of them
camplemﬁés Although we kn
temp}ate aact data point sets,
experimenis, as we recovered |

s usmg three different templates that represent non-
‘ ’”lmch can be a sample to the real world data of non-
a5 2 simple one and the other two constitutes various

v in advance the true correspondence between the
sﬁch information was not used in the matching
poth the correspondence as well as the non-rigid

on through our pomﬂmatchmg algorithm.

periments were evaluated according to two criteria:

The results from the above ex

number of 1terat10ns needed 10

ks ICP with TPS mappi

of the ICP gilgorithm, as it w
bodies on non-rigid point sets

J “ce As these are synthetic data, we measured the

is the speed of convergence. This is simply the
achieve convergence. We used two algorithms as
g and RPM. We did not use the original version
n’t be a fair judgment to use an algorithm for rigid

. results demo]
3 local minimum. Also, it makes the ICP a]gorithm

that our algorithm prevents the ICP to a great

Although our algorithm is expe
the usage*of the center of m
the thlr& fempla’te which is no

that it can’ beusedasa general-pp:

: a;d to work better on points in a closed form, due to
ass algorithm, it demonstrated reasonable results with

'1?:1 a closed form. This fact proves its reliability and
pose algorithm.

65

CHAPTER 4

4.1 Comiusmns and Contributions

important problem, as non-rigid transformations are

Non-rigid poim matching is an
needed fér nﬁnage reglstranon ks of deformable objects. However most of the

is nen-ngld rather than rigid. e have demonstrated in this thesis that the non-rigid
point maeahmg can be solved b ICP after mcorporatlng some other algorithms such
as the center of mass algorithm ap d the Thin Plate Spline (TPS). This new algorithm
is capable of estimatmg both the ~otrespondence and the transformation between two
sets of pomts, and it prevents fhe ICP algorithm from being trapped in a local
‘minimam : :fhe basic algorithm. Aiso this new algorithm can produce reliable results
as it stab‘

izes after a few iterations relatwe to the other algorithms.

Synthetic test data used in the experiments were of different natures, the first of them
was smoothand the second had v ty sharp corners, while the third was a complex one
with multrplz curve like strokes,:‘%
others. Also the first two were in’ lased form while the third was not in a closed form.

at are connected in some cases and disconnected in

Image intensity based registratipn and feature based registration have long been
regarded -as: two totally different @promhes. This does not have to be so anymore.
That is why we are using an intep :%zty-based method, which is the center of mass with
the point feature asa representati: , n‘; and together they produced better results.

66

4.2 Future Work

There "is snll much room for fm"ther improvement. Better feature representation can
«deﬁﬁitef‘ly be explored. While thi i)oint feature representation has the advantage of

bemg sﬁ}hﬂe ané ﬁemble, more d d iled shape information (e.g. local or global shape

the representanve ability and make the matchmg

jpossibljef:' mergmg of these two seg f ingly different registration fields may invoke a lot
of other itmovations that can grpatly benefit the research fields of medical imaging

| and compa 1 vision.

Further work is also needed to ffind better transformation models for the non-rigid

defomauoné

. Most current de ormatmn models used are very generic and not

cific. Physically bas d information is needed to build more realistic
' mudels Hawever, such informa n can hardly be captured during image acquisition.
rimental faces about the Jects properties when in motion are known, these
can ceﬂamiy be used to build bettgr transformanon models.
Finally, our
| potenmal applicability to a varie

as shape m&tehmg and recognitipn problems in computer vision. We hope that some

of this potential can be realized mf

y 6f registration probleéms in medical imaging as well

djeveloped as a general framework. It has enormous

xfe years to come.

67

res (ICPIF)[33}

P using invariant featyres (ICPTF) is used to describe the use of invariant
modified distance fi {ction for correspondence selection. Each data point
eé as the concatena a ﬁ?of its three positional coordinates with & feature

"":g the L, norm in the k+3 dimensional space. The

oints are matched

shall be degioted P and its featiire components (p,), . That is,

p.=(p,.p,>p.)eR’
pf 'ﬁ(lé’ﬁ,P,g,---,Pf,)ERk -
=(p..p,)eR*™.

features describing point p. When necessary,

b~ W

(r.9)=d.(p,9)+d,(p,9)- (A1)

‘where '

d(P9 9= up _QFF

. -4

S

e‘(fpaQ) =

0.9 =[p, -4,

a

The weighted feature distance is defined as
d(p,g)=d,(p.9)+a’d (p,q) (A2)

tribution of the positions and features. The closest
 model to a scene point s according to the distance

68

The ICPIF

CPGs, M).

@

®

measure d,shall be denoted CP(,
measure d, shall be denoted CP(s,

appr&pﬁata value for c.

| AL3 Analys

“algorithm performs

M), and the closest point according to the distance

M).

ICP using closest point correspondences using

At this point, we shall assume that the user has heuristically selected an

~ Build up

Algonihm (iterative Closest Poin Registration using Invariant Features)
Let Sbe a set of N, points, {s,,...s{, }, and let M be the model.

1. LetTobean initial estimate ¢f the transformation.

2. Repeat for k =1..k__ or untjl termination criteria are met.

the set of cotrrespondences

€=U, {(Toy(5,), CPL(Tyy(s.). M)}

“iCompute the new transformation T; that minimizes mean square error

ween point pairs in C.

 of ICPIF

| Theareﬁcat rwults show that ICP
least as well as ICP for all pos

¢ property of monofs
synthetic images suggest that ICPIF converges to the

i tegistration in fewgr iterations than traditional ICP, and that ICPIF is

a] results on real and

ly to be trapped
O PIF converges infe
in searching for nearest neighbors jn the higher dimensional space.

: chooses the correct pointwise correspondences at
ible scenes, and better than ICP for most scenes. In

nic convergence to alocal minimum is preserved.

‘a local minimum compared to traditional ICP.
ver iterations, there is additional overhead involved

69

A2.11 Slﬂmge of 2D objects

For 2D objects, the conﬁguratlon , is three dimensional. A conﬁguration ciis

®

-

@@‘5’@
EIEE

k/

e ®

Figure Al Conﬁguranon (x.3},0) and associated SIC-range (black sectors) [25]

To assess the SIC-range of the pyzzle of Figure A.1, we consider sixteen translations
of the test m a regular grid d the model and, for each translation, 36 evenly

spaced reia‘twe rotations ®. Tsst and model represent the same object, ie.
t‘(c}=§,,,n(X,y, ‘). Figure A.1 piaﬁs the obtained SIC-range. The center of each circle

:mdlcag;qs ﬁmnslaﬁon. The black sectors at every grid position indicate the angles ®

matching is successful.

We cbserve that the SIC-range
gd rs of minor influence. Very roughly, and for small
of this puzzle can be described by o & [+30, -30]

s limited in the rotation range ® and that translation

space C is 6-dimensional and so is the SIC-range.

: is not simple. On one hand, limited computational

rwoureés:f‘itnﬁose a limited number of configurations to be tested, and do not allow a

dense cover of C. On the other hénd, a representation and a fortiori an interpretation

of a 6-dnﬂensmnai SIC-range i3 not simple, anyhow. Therefore, we search for a

71

meamngﬁll SiC—range represe;lla‘lzion of lower order. The space of initial

s can then be defited by the triple (@,0,0) where o and 6 are

' f:.le;enith and azimuth angles of the view axis in the model spherical

reforsaiy ebitn and o designates|the camera rotation angle around this axis.

objects, we assess their SIC-range by exploring the

. testing ICP for successful matching and setting

(4

ensional, the SIC-range can now be visualized by a map similar to the
1 2D objects. This §IC-map is defined in Figure A.2 and examples are
' il circles span the (,8) space of the spherical

systemi wwagected on a plane tan
lie on the same ne circle around the pole and those with same azimuth lie on the same

‘radius. View points from the lowe hemisphere are omitted.

s several steps. Start is from the pole configuration,
irst successful match of the model and test.

“The SIC- y assessment inchud
: pnsc obtained after a

jcomplete (9,0),0) parameter space is explored in

s rotation angle @

t view points and then rotates it around the view axis.

%

q=270
Fighre A.2 The SIC map [25]

72

0) bya
which is

b

running

b4

it can also

¥

s [25]

73

The exact sequence brings the pole axis to the spherical coordinates (o,
rotationhf‘tﬁe test object by zenith angle ¢, around the rotation axis

perpendicular to the great circle of azimuth angle 6. Then, follows the rotation @

3

-

‘view axis.

around the

For every initial configuration the ICP matching algorithm is launched

enough (40) iterations to ensure convergence. Note that the criteria for successful

¢onvergeﬂé:e\ can be chosen diffdrently. It could be a comparison of pose

Figure A.3 Examples of some SIC-map:

‘algotithm and on a segmentation of the sampled
) ﬁem [4]. This multi-z-buffer technique provides a

fly accelerates the search of the nearest neighbors in
nt correspondence between overlapping surfaces.

tion is processed on the surface set.

of the algorithm where all the overlapping parts of
. ted in a set of optimized z-buffers by using Gauss
sphetes Tins space partitioning strongly accelerates the point-to-point
of overlapping surface parts. In the second step, we
1terative optimization. As for all the methods based

mﬂesmnéénce between all pairs

space already greatly accelerates the determination
nde between two surfaces. However, the problem of

* ady inappropriate. This problem becomes clearly

- critical Wi:em 'we have to registe {:greater number of partially overlapping surfaces.

- Our m;xltgfz—buifer technique proy des an efficient solution to this problem. One of its
; prmmpalpmpert operties is to quickl

| process to concentrate on them |even when the surfaces overlap each other only to a

1adem all the overlaps and to allow the registration

However, for the z-buffer or multi-z-buffer technique to work properly, we have to
assmnethatihe surfaces have bee Sampled with a sufficiently high and homogeneous
de-nsitﬁ, This condition is no::I s‘trbng a limitation as nowadays the available range
finders provide high-density data.

74

TR

s orithm acceleration by using a z-buffer

In order w accelerate the ICP algorithm and by assuming that the density of the 3D
| points - is uhomogeneous enough, the proposed method based on a twin z-buffer

j structuire wluch prowdes an exj Iclt space partltlonmg It is similar to two depth

To buaid the twin z-buffer structure, we first chose a direction of projection and two
orthogoual directions. And th¢n compute the minimal box aligned with thesc
directions md which includes §,{J5,. The direction of projection and the width and

height of the minimal enclosing| box define the orientation and size of the twin z:
buffers. Theaa partition each set by projecting its points in the cells of the associated z-
: ;buffer And keep only one point per cell, the nearest one along the direction of
;pmwcn and store all its geo: etncal information. This selection allows us, by

: adjustmg e size of the cells where data are oversampled, to save memory space and

surface correspondence problem.

to reduce | "PU time for solving th

Then, to' match a point £ in cell, (o,) of the first z-buffer, we look for the closest

~ 1pein‘t 1’2 of 1} belonging to an (jr x n) window centered on cell, (w,h) of the second
z-buffer. on[hm

and

‘This way the ICP algorfth

m is heavily accelerated. To reinforce its accuracy
, two matching cfiteria are added: a minimal density of points to test

inside the (n x n) window and a minimal distance to be satisfied by RF, .

75

¥ ‘-Matquardt (LM)a
" the model-dat:

There now!follows a derivation of
i) can be written as thg

.
E@)=) FE(a).
“d=

, iy when the overlap between the two surfaces is

yces are not uniformly resampled in the twin z-

berg-Marquardt Qptimization for ICP (LM-ICP)

e}rithm [17] is an optimization procedure, which

fitting error via nonlinear minimization.

the Levenberg—Marquardt algorithm. The error

sum of N, residuals as follows:

E(a)=Jo.min & (m,~T(.4))

‘minimization. Using the notation above, the goal at

: B = B +x:reduces the error E(a)
E(a+x)=E(a
({mj}i"n {di};{:'
ﬂe(ak)llz

E(a);
VE(a

sing this in terms of ¢, we Have

(iate to the current estimate ag, say X, so that setting
Expanding E(a + x) around a, we obtain

)+ (VE(a)-x) +§1—‘((V2E(a) x) -x) +h.o.t

»2g) (A.3)

=3 eTe
)=2(Ve)'e

V2E(n)=2(Ve)e +2(Ve) Ve

76

We Shaﬂ dmnﬁc that Ny x p Jacobign matrix Ve by J with & ®entry J; =

_OE,
Ba

1ntr0du¢in'g the Gauss-Newton approximation, i.e. neglecting (V?e)e, we arrive at

E(atx

The task aieach iteration is to detg

the apgmmaﬁon to E which we
and eq i ‘Wath zero, yielding

V. A

x

. ,solvmg

on of Gauss-Newton|

; ct 10 the components of a.
v s, and J is Nd x 3).
2. Compute the update x = -(J"J)

3. Setazy =3+ X.

yreTe+x Je+x' T Ix (A9
rmine a step x which will minimize E(a + x). Using
have just derived, we differentiate with respect to x

P(atx)=TTe+ T Ix =0 (A.5)

s equation for x yields the Gauss-Newton update, and gives the algorithm

1CP:

e vector of residuals e(a;), and its Ny X p matrix of derivatives J with

(For a 2D rigid-body transformation, a has 3

Je.

The above strategy does not guarantce that the step taken will result in a reduced error

| Wihether or not it dc

Taylor sems expansion at a;, and o

However, itica

es so depends on the accuracy of the second-order
n the validity of the Gauss-Newton approximation.

| these approximations are good, as they tend to be

itican be shown that WT:
when nemr@e minimum, convergénce is rapid and reliable.

By compansen, an accelerated fur:

2. fiCQmpute the update x

4dient descent approach as used by some previous

: regxm i gorithm [6] is obtainied by replacing step 2 with
F -1

where ' the value of A controls
small A, the iteration moves a lon

short step. In contrast to Gauss-1

providing A is sufficiently largg.

dismally slow.

e distance traveled along the gradient direction. For
way along the downhill direction; large A implies a

Newton, gradient descent does guarantee to reducc E,

‘However, its convergence near the optimum is

77

The Levenberg-Marquardt algor
way in order to achieve good perf

2.Compute the update x =

Now large A corresponds to s

ithm combines both updates in arelatively simple
ormance in all regions. Step 2 is replaced by

—(J"T+ AN e,

all, safe, gradient-descent steps, while small A allows

fast convergence near the minimum. The art of a good Levenberg-Marquardt

implementation is in tuning A after each iteration to ensure rapid progress even where

the Gauss-Newton approximatio:

The LM-ICP algorithm, summariz

function a = Imicp ({m,})5,{d.}]
Set A 1o an initial valhie

Seta=ag

repeat .

Compute ek = e(a) —One closest-

are poor.

red as follows:

N,
>2,)

‘point computation

Compute J —p closest-point computations

Modify A until a, =a—(1"J + I

11%e, reduces the error ne(a,c)n2)

—One or more closest-point computations

Seta= ag
until A is large —So only a small)

gradient descent step reduced the error.

78

Appendix B

Experiments’ code

All the experiments were carried out on MATLAB with Image Processing toolbox.
Note that the code for implementing RPM as a benchmark (from Dr. Haili Chui) was
embedded..

[

Non_rigid Point Matching (ICP} Demo:

oP o

P o

Purpose:
1. A small GUI. ‘
2. load a few non-rigid point matching examples.
3. run CG and ICP and!RPM.

oC o

o o o@

[

Usage: [] = icp demo; |
1. Click the buttons in figure(2) to run the examples.
2. The matching proce;s and results are displayed in figure(l).
3. You can resize fig?re(l), if it is too small.

o o

Notes: There are a total of 4 examples included to demonstrate

o ol o® o

e e e e e e e e o e e o o e e e e —

o0

function [] = icp_demo (cmdistr);
|

global x y frac T_init T_finalfac disp _flag m method laml lam2

perTmaxit
global c dm

% Init the command

if nargin < 1 ;
figure(l); delete(l); % Clean up previously opened figures.
figure (2); delete(2); ‘
cmd _str = 'init';

end;

if strcemp (cmd_str, ‘init')
% Init the figure windows.
hl = figure(1); set(gcf,'position’, [10 10 600 500]);
set (gcf, 'color', [0 0 01);
h2 = fiqure(2); set(gcf,’'position', [10 10 620 40],
'menubar’?, 'none');

% Init the command button$.

h fig = h2;

col ex0 = 10;
row:exo = 5;

col exl = 10+100;
row _exl = row_ex0;
col ex = 30;

79

row_ex = 30;

h_jnk = uicontrol (h fig, ‘*style', ‘text', ...
'position’, {[col ex0 row_ex0 100 row_ex], ...
'string', 'Load Data:', 'fontsize',15);

h_exl = uicontrol (h fig, 'style', 'pushbutton', ...
'callback’, ‘icp demo(''load ex1"");"',...

i 'position', [col_exl row_ex0 col_ex row_ex],

- ‘string', *1'); 1

h_ex2 = uicontrol (h_fig, 'style', 'pushbutton’',
‘callback’, ‘icp demo(''load ex3''};"*,.
'position', [col_exl+{col_ex*l) row_ex0 col ex row ex],
‘string’, '2%};

h_ex3 = uicontrol (h_fig, 'style', ‘'pushbutton', ...
‘callback’, 'icp demo{'‘load ex4'');"',...
'position’, [col exl+(col ex*2) row_ex0 col_ex row ex], ...
'string', '3%):

h_ex4 = uicontrol (h_fig, 'style', 'pushbutton', ...
'callback', 'icp demo{'*load ex5''});’,...
'position’, [col_exl+(col_ex*3) row ex0 col ex row ex],

‘ 'string', "4'};

- h_ex5 = uicontrol (h_fig, 'style', 'pushbutton', ...

o 'callback', 'icp_demo(''load ex5'');’', ...
'position’, [col_exl+(col_ex*4) row ex0 col ex row_ex],
*string', '5'}); ‘

L

11
oe

o o o

col run0 = 10+100+30*5+20;
row_run{ = 5;
col_runl = col_run0+100;
row_runl = row run0;
col_run2 = col_runl+80;
Iow_runZ2 = row_runl;
col_run 80;
row _run = 30;
h_jnk = uicontrol (h_fig, ‘'style', 'text®, .
'position', [col_run0 row_run0 100 row run], ...
'string', ‘'Run:','fontsize’,15);
h_run_cg = uicontrol (h_fig, 'style', 'pushbutton’,
f 'callback’, 'icp_demo('‘run _cg'');’',...
‘ 'position’, [col_runl row_run0 col_run row_run],
'string', 'CG');
h_run_rpm = uicontrol {(h_fig, 'style', 'pushbutton', ...
‘callback'®, Ticp demo('’run rpm'');',...
'position’, [col:iun2+(col_fﬁn*l) row_runl col run row run],

[T B

If

'string', 'RPM');

h_run_icp = uicontrol (h fig, ‘style', ‘pushbutton’,
‘callback’, 'icp_demo(''run icp'');’',...
'position’, [col_ runl+(col run*l) row_run0 col_run row_run],

'string®, 'ICP');
% Init all the parameters:
load demodata_ex1;
x =xl; y = yl;

frac = 1;
T_init = 0.5;
i T finalfac = 500;
: disp flag = 1;
. m_method = "'mix-rpm’;

80

(2

laml
lam2

0.01;

perTmaxit

-

Load data

o
°

H

a_exl

'load exl1l"')
demo ('reset all'); load demodat

’

y = vyl

icp
= x1;

elseif strcmp (cmd_str,
X

o~

b

e_

el

®

e}

~

[}

W]

[> TS

'Y

B O o~

(SR

~ @ >

o i
~ E O
Q00 >
n HE
e O I
™ oNnT N
o_f.d X
g 4@
¢ OO
T R

-

[0]

——
o
%
e_
i)
©
(o]
v~
LN
Y]
IS N
%
T O, o~
£ |m
O ™ >
&
g
w B Q D
Q0 g
n N U
- BT m
T, 0 »®
T o]
ene!
Q O~ X
T 0
—
0}

demo disp;

elseif strcmp (cmd_str,

'load ex4')

-
7

y2a*2

load demodata ex4

;

y

.
4

x1*2

X

demo_disp;

*load_ex5')

$x = load('bun000.dat");

elseif stremp (cmd_str,

.
7

load({'bun045.dat')

sy =

load demodata ex5;

y25
[sizl, tmp]

7

x =x1; ¢y =

H

size (x)

[siz2,tmpl=size (y)

14

s

demo disp

Run:

o®

'run_cg')

md str,

elseif strcmp (c

temp=x

theta = 0;

sum (sum(x.*y))

arr=zeros (12,1)

Bmaxm

’

y—temp(1l,:))"2 + (y(2,:)-temp(2,:))"2);

g fx=Ffftshift (fft2(fftshift(x)))

.

smaxm=sqrt ((v (1,

7

fy=fftshift (ffe2(Eftshift(y)))s

g
c

%arr (1,1)=maxm;

=size (X);

[sizl, tmpl

81

[sizl, tmpl=size (x)
[siz2, tmp]=size(y)

% xtemp=x;

o

valxl=sum(xtemp(:,1))
valyl=sum{xtemp (:,2))
valzl=sum({x(:,3))

o

@

o

refxl=sum{valxl)/sizl
refyl=sum(valyl) /sizl
refzl=sum(valzl)/sizl

o0

o

P

valx2=sum({y{:,1));
valy2=sum(y(:,2));
valz2=sumi{y{(:,3));

o o®

0P

refx2=sum(valx2) /siz2
refy2=sum(valy2) /siz2
refz2=sum(valz2)/siz2
xshift=refxl-refx2;
yshift=refyl-refy2;
for i=l:sizl
xtemp (i,1)=x{i,1)-xshift;
xtemp{i,2)=x(1i,2)-yshift;
% x{i,3)=x{1,3)-zshift;
end

ol

@

o@

o

@ o o

o

o 0000002 2 22000
3T333%3%%%5%%%%3%%

4
o

$%%%

oe
o\

22260
€600

valxl=sum(x{:,1}))
valyl=sum(x(:,2))
valzl=sum(x(:,3))

o

refxl=sum(valxl)/sizl
refyl=sum({valyl)/sizl
% refzl=sum(valzl)/sizl

valx2=sum(y(:,1));
valy2=sum(y(:,2));
% valzZ=sum(y(:,3));

refx2=sum(valx2)/siz2

refy2=sum{valy2)/siz2

$refz2=sum(valz2) /siz2
xshift=refxl-refx2;

G yshift=refyl-refy2;

e for i=l:sizl
x(i,1)=x(i,1)-xshift;
x{(i,2)=x(i,2)-yshift;

% x(i,3)=x(i,3)-zshift;
end

demo_disp;

elseif strcmp {(cmd_str, ‘run_rpm')

lc,d, m]=cMIX2 (x,y,frac,T_init, T _finalfac);

82

disp ('RPM point matching done ...');
elseif stremp (cmd str, 'run icp')

[c,d, m]=cMIX2 (%,y,frac,T_init, T finalfac,1,'icp3');
fid = fopen{'match.txt', 'w');

fprintf(fid, '%6.8f \n',m);

% fprintf(fid, '$6.8f \n',v,
fclose (£id);

disp ('ICP point matching done ...'});

14

*$3.2f\n',1,'%3.2f\n"',j};

end;

83

% Non-Rigid Point Matching (ICP) Demo:

2020 0

000

£280900008280600

function {] = demo_disp;
global x vy
global axis_save

figure{l); clf;
cplot{x, y}; hold on;

jnk = axis; fac = 10;
xmin = jnk(l); xmax = jnk(2); ymin = jnk{3); ymax = jnk({4);
xmin = xmin - (xmax-xmin)/fac;
xmax = xmax + (xmax-xmin}/fac;

ymin = ymin - (ymax-ymin)/fac;

ymax = ymax + {(ymax-ymin)/fac; axis_save = [xmin xmax ymin ymax];
[Jnk,itmp]l = max{x(:,2));

pttmp = x{itmp,:);

htmp = text (pttmp(l,l), pttmp(l,2}+(ymax-ymin)/fac/2,
'Template Point Set');

set (htmp, ‘*color*, 'g', 'fontsize', 12});

[jnk,itmp] = max({y(:,2));

pttmp = y{(itmp,:};

htmp = text (pttmp(l,1l), pttmp(l,2)+ (ymax-ymin)/fac/2, 'Data
Point Set');

set {htmp, 'color', 'r', ‘'fontsize', 12);

axis{axis_save); axis('off');

84

% Non-Rigid Point Matching (ICP) Demo:

Usage:

Optional ones:

[c,d] =

[c,d] =

[w] = ¢cMIX (x, v, z, sigma, frac,

[w] = cMIX (%, y, 2z, sigma, frac,

fw] = cMIX (x, vy, z, sigma, frac,
_method,

icp_sigma);

[Ytps', 'xbf'l.

OF ¥ o0 0P a® O G0 = oP o @ o o o @ o E\O g@ oo 0@ ¢ of

Notes: the program will set transformation

[c,d,m] = cMIX (x, y, frac, Tinit, Tfinalfac);

[c,d}] = cMIX (x, vy, frac, Tinit, Tfinalfac);
cMIX (%, y, frac, Tinit, Tfinalfac, disp_flag);
cMIX (x, y, frac, Tinit, Tfinalfac, disp flag, m method);

Tinit, Tfinalfac}):;
Tinit, Tfinalfac, disp_flag);
Tinit, Tfinalfac, disp_flag,

type automatically.

icp' -- ‘iep0*, 'icp3', ‘ticp5'. --> to set k_sigma.

function {o0l,02,03} = cMIX (inl,in2,in3,1in4,1in5,1in6,1n7,1in8,1n9%);

figure(1l); clf; whitebg('k'); set(gcf,'color’, [0 0 01);

% set{gcf,'DoubleBuffer’, 'on')

Init control parameters:

%
%
perT maxit 7
relax maxit = 1;
anneal rate = 0

lamdal init = 1;
lamda2 init = 0.01;

disp_flag = 1;
m_method = 'mixture';

debug_flag = 0;

% check input:

% --- {c,d] = cMIX (x, y, frac, Tinit,
if {nargin == 5)
x = 1inl;
Y4 = in2;
frac = 1n3;
T init = in4;
85

Tfinalfac)

If

T fipalfac in5;

trans_type = 'tps';
disp ('TPS');

z = X5
sigma = 1;
& -— lc,d} = cMIX (x, y, frac, Tinit, Tfinalfac, disp flag) --------

elseif (nargin == 6) & (length(in3) == 1)

X = inl;
y = in2;
frac = in3;
T_init = in4;
T finalfac = in5;
disp flag = in6;

trans_type = 'tps';
disp ('TPS');

z = x;
sigma - 1;

o

--- [¢,d] = eMIX (x, y, frac, Tinit, Tfinalfac, disp flag,

m_method) ------
elseif (nargin == 7) & (length(in3) == 1)
X = 1inl;
vy = in2;
frac = in3;
T init = in4;
T finalfac = in5;
disp flag = iné6;
m_method = in7;

trans type = 'tps';
disp ('TPS');

z = x;
sigma - 1;
% ——— [w] = cMIX (x, y, z, sigma, frac, Tinit, Tfinalfac) ----—--—-—-

elseif (nargin == 7) & {(length{in3) > 1)

X = inl;
\ = in2;
zZ = in3;
sigma = in4;
frac = in5;
T _init = iné6;
T finalfac = in7;

trans_type = 'rbif’;
disp ('RBF');

Il
[

disp flag

% —— [w] = cMIX (x, y, %, sigma, frac, Tinit, Tfinalfac,
disp_flag) -----

86

lig

w BN

11

elseif (nargin

== 8) & (length(in3) > 1)

X = inl;
y = in2;
z = in3;
sigma = in4;
frac = in5;
T init = iné;
T finalfac = in7;
disp flag = in8;
trans_type = 'rbf';
disp ('RBF');
cMIX

$ -—= [w] =
{

X,¥,2,8igma, frac,Tinit, Tfinalfac,disp flag,m method); ---

elseif (nargin
X =

== 9) & (length(in3) > 1)
inl;

% = in2;

z = in3;

sigma = in4;

frac = in5;

T init = iné6;

T finalfac = in7;

disp flag = in8;

m_method = inY;

trans_type = 'rbf’;

disp ('RBF');

% --- [theta, tx,ty] = cMIX (x, y, frac, Tinit,
elseif (nargin == 3} & {(nargout == 3}

® = inl;

y = in2;

frac = in3;

T_init = ind;

T finalfac = in5;
trans_type = 'r+t';

disp ('R+T'")

theta = 0; t

f

= geros {2,1); s = 1;

disp flag = 1;

2 = X7

sigma =1;
% ——- {[theta,t

elseif (nargin
x =
v =
frac =
T _init =
T finalfac =
disp flag =
trans_type = '
disp ('R+T")

Tfinalfac)

x,ty}] = cMIX (x, y, frac, Tinit, Tfinalfac, disp_flag)

== 6) & (nargout == 3}
inl;
in2;
in3;
ind;
in5;
inb;

r+t’;

-
7

87

NN

theta = 0; t = zeros (2,1); s = 1;
z = X;
sigma = 1;
% ——— [theta,tx,ty] = cMIX (x, vy, frac, Tinit, Tfinalfac,disp_flag,
m_method); ---
elseif (nargin == 7} & (nargout == 3)
X = inl;
y = in2;
frac = 1in3;
T _init = in4;
T finalfac = in5;
disp_flag = in6;
m_method = in7;
trans_type = 'r+t';
disp ('R+T');
theta = 0; t = zeros (2,1); s = 1;
z X3
sigma = 1;
else

disp ('# ERROR #: cMIX -- wrong input!');

help cMIX; return;
end;

% take care of 'icp' k_sigma stuff.

if (strcmp{m method(1:3), 'icp"))
if length(m_method) == -
k_sigma = 0;
m_method = 'icp';
else
k_sigma
m method = 'icp';
end;
else

% init %,vy,z:

[xmax, dim] = size({x); x = x (l:frac:xmax,
size (x);
fymax, tmp] = size(y); v =

size(y);
[zmax, tmp] = size(z};

if strcmp(trans_type, 'tps')
z = X}

end;

X

Xmax
ymax

= strZnum{m method(4});

v (l:frac:ymax,

88

RS N

.

- F

)i

[xmax,

[ymax,

dim]

tmp]

il

t

m = zeros {xmax, ymax);

TO = max(x{:,1))"2;

moutlier = 1/sqrt {T0) *exp(-1}; % /xmax *0.001;
% moutlier = 1/xmax*0.01;

m_outliers row ones (1,ymax) * moutlier;
m_outliers col = ones (xmax,l) * moutlier;

% init transformation parameters:
theta 0; t = zeros (2,1); s = 1;

c_tps = zeros (xmax,dim¥l};
d _tps eye {dim+1, dim+l);

w zeros (xmax+dim+l, dim);

% icp: perT maxit = 1:

if stremp (m _method(l1:3),'icp')
perT maxit = 1;

end;

% Annealing procedure:

@

+
|

= T_init;

T final = T_init / T_finalfac;
T final =25 * T final;

VX = X7

vy = ¥i

it_total = 1;
flag stop = 0;
while (flag stop ~= 1)

i for i=l:perT maxit % repeat at each termperature.
£ f % Given vx, y, Update m:
v if debug_flag; disp (‘*calcm ...%); end;

m = cMIX calc m (vx, y, T, m_method, ...
m_outliers_row, m_outliers_col,it_total,k_sigma);

o % Given m, update transformation:
. vy =m *y ./ ((sum(m'))' * ones(l,dim));

lamdal = lamdal init*length(x)*T;
lamda2 = lamda2 init*length{x)*T;
%lamdal = lamdal init;
$lamda? = lamda2 init;

if debug flag; disp {'calc c,d ..."); end;
[c_tps, d _tps, wl] = cMIX calc_transformation (trans_type, ...
lamdal, lamda2, sigma, X, vy, z);

w(l:length{z),:}) = w(l:length{z},:)*0
d tps = d_tps * 0 + eye(dimtl,dim+l);
c_tps = c_tps *0;

@ A o

i if debug flag; disp ('calc new x ...%'); end;
?”': [vk] = cMIX warp pts (trans_type, %, z, c_tps, d_tps, w, sigma) ;

g 89

A
44

end % end of iteration/perT

T = T * anneal rate;

ol@

Determine if it's time to stop:

o

oe

when T <= cluster variance, stop.
if T < T_final; flag_stop = 1;

% [dl,d2]=size{m);
% match matrix=zeros({dl, 3);
$for i=1:d1
% for j=1:d42
% if (m(i,j)~= 0)
match matrix(i,1)= i;

o

% match _matrix(i,2)= j;
% match matrix(i,3}= m(1,3);
%end;
% end:
%end

str = sprintf ('%s, T = %.4f:\t lamdal: %.4f lamda2: %.4f', ...
m_method, T, lamdal, lamda2);
disp (str);

it_total = it_total + 1;

if (disp_flag == 1) | (flag _stop == 1) | ...
{disp_flag ==2 & mod{it_total,10)==0) | ...
(it total == 1)
figqure(l); clf;
cMIX plot_simple (2, x, vy, 2z, vXx, m, 1l/xmax, T, ...
trans_type, ¢_tps, d_tps, w, sigma, m _method);
pause (0.5} ;

end;

end % end of annealing.

% return outputs:

if stremp (trans_type, 'tps')

ol = c_tps
02 = d_tps
o3 = [];
elseif strcmp (trans type, 'rbff)
ol = w;
02 = [1;
o3 = [];
elseif strcmp (trans type, 'r+t')
ol = theta;

ERNY

02 = tx;
03 = ty;
end
03 = m;
%m(1:98,1:98)

S

o
o

@ o
o

o
e
o = oo

o° o

20008220

of @ o

o0 oo
o
o0

o¢ oe

Update m (correspondence) .

o\

% Usage:

% [m] = cMIX calc m (vx, y, T, 'icp');

% [m] = cMIX calc m (vx, y, T, 'mixture’);

% [m] = cMIX calc m (vx, y, T, ‘rpm'};

% Notes: for "icp", set k_sigma = 0 -- no outlier.
o

% 01/31/00

function [m, m cutliers_row, m outliers_col] = cMIX calc_m
(vx, y, T, m method, m outliers_row, m_outliers col, it total,

icp_sigma);

[xmax,dim] = size({vx);
[ymax,dim] = sizel(y);
iCP ——-

if strcmp (m _method, 'icp')

k_sigma = icp_sigma;

[m, dist threshold] = cMIX calc m ICP (vx, y, k_sigma);
m = m + randn(xmax, ymax) * (1/xmax) * 0.001;
[r,cl=size(y);

diff=(y(:,1y-vx(:,1))."2 + (y(:,2)-vx(:,2))."2;

error=sum(diff)/r;

error=sqrt (error);
Serror=diff/abs (vx);
%error=norm(diff,2);
%rms=nerror/sqrt (nerror) ;
fprintf('error = %f \n', error}):;

L e i e st e one way

mixture ---
elseif strcmp (m method, 'mixture')

% Given v=tranformed(x), update m:
y _tmp = zeros (xmax, ymax);
for it dim=1:dim
y tmp = y_tmp + (vx(:,it_dim) * ones(l,ymax) - ones(xmax,1) *
y(:,it_dim) ") ."2;

91

end;

m_tmp 1/sqrt{T) .* exp (-y_tmp/T);
m tmp = m tmp + randn(xmax, ymax) * (1/xzxmax) * 0.001;

m = m_tmp;
normalize accross the outliers as well:

sy = sum {(m) + m _outliers row;
m =m ./ (ones(xmax,l) * sy);

I

sx = sum{m')' + m_outliers col;
m2 =m ./ (sx * ones(l,ymax));
m = {m+m2)/2;

P o o

%%%%%My part for test only

[r,cl=sizely);
diff=(y(:,1y-vx{:,1)).%2 + (y(:,2)-vx(:,2))."2;

error=sum (diff)/r;
error=sqrt {errorj;
fprintf {(error = %f \n', error);

o

RPM —-—-
elseif strcmp (m method, *mix-rpm‘)

% Given v=tranformed(x), update m:
y_tmp = zeros (xmax, ymax);
for it _dim=l:dim
y tmp =y tmp + (vx{:,it dim} * ones(l,ymax) - ones(xmax,1)
y{:,it_dim) ") ."2;
end;

m_tmp = 1/sqrt (T} .* exp (-y_tmp/T);
m_tmp = m _tmp + randn(xmax, ymax) * (1/xmax) * 0.001;

m = m_tmp;

[m, junkl, junk2}] = cMIX normalize m (m_tmp, m_outliers_col,
m_outliers_row);

% normalize accross the outliers as well:
sy = sum (m) + m_outliers_row;
m =m ./ (ones(xmax,l) * sy);

oe oo

%$sx = sum(m') "' + m_outliers_col;
$m2 =m ./ (sx * ones(l,ymax));

$m = (m+m2)/2;
§ o e RPM, double
normalization ---

elseif strcmp (m method, ‘rpm')
% Given v=tranformed(x), update m:
y_tmp = zeros (xmax, ymax);
for it dim=1l:dim

92

—— mixture

*

y_tmp =y tmp

y(:,it dim) "} .”2;

it

m_outliers_row
m_outliers col

= exp (-y_tmp/T);
m_tmp + randn(xmax, ymax) * (1/xmax) * 0.001;

double normalization, but keep outlier entries constant.
1/xmax * 0.1;

ones (1,ymax) * moutlier;

ones {xmax,l) * moutlier;

junkl, junk2]

m_outliers_row);

RMS error

[r,cl=size(y);
diff=(y(:,1)-vx(:,1))."2 + (y(:,2)-vx(:,2)).72;
error=sum{diff) /r;
error=sqrt (error);
fprintf ('error

normalization —--
elseif strcmp (m_method,
Given v=tranformed(x), update m:
y_tmp = zeros (xmax, ymax);

for it _dim=1:dim

Il

if (it _total

y tmp = y tmp + (vx{:,it_dim) * ones(l,ymax) - ones(xmax,1) *
y{:,it_dim)')."2;

exp (-y_tmp/T);
m_tmp + randn(xmax, ymax) * {1/xmax) * 0.001;

% double normalization, also update outlier entries.

+ (vx(:,it_dim) * ones{(l,ymax) - ones(xmax,1l) *

cMIX normalize m (m_tmp, m outliers_col,

$f \n', error);

'rpm~old"')

1)

m outliers_row

m_outliers col =

[m, m outliers row, m outliers_col] = ¢MIX normalize_m (m_tmp,
m_outliers_col, m outliers_row);

disp ('# ERRCR #: cMIX calc m —-- wrong input!’};

= 1/xmax * 0.1;
ones (l,ymax) * moutlier;
ones (xmax,1) * moutlier;

% Non-Rigid Point Matching (ICP) Demo:

Plot points.

Usage:

[] = cplot (x);

[1 = cplot (x,y);
[1 = cplot (x,y,2);

[1 = cplot (x, marker_ str, marker_ size);

_marker_size);

OC A P O O P 00 g of oP o o ol

function [] = cplot (inl,in2,in3,in4,in5,1in6);

% check input:

[] = cplot (%, xmarker str, xmarker size, y, ymarker str,

if (nargin == 1} &% ——————=—————mmm (%)
x = inl; xmarker_str = 'go'; xmarker_size = 6;
y = [1; ymarker str = ‘r+'; ymarker size = 6;
z = []; zmarker_str = 'bo'; zmarker_size = 6;
elseif (nargin == 2) % —————————-———————————————— (x,V)
x = inl; xmarker_str = ‘go'; xmarker size = 6;
y = in2; ymarker_ str = 'r+'; ymarker size = 6;
z = []; zmarker_str = 'bo'; zmarker size = 6;
elseif (nargin == 3) & {(~isstr({in2))} % --—————- (x,V,2)
®x = inl; xmarker str = ‘'go'; xmarker size = 6;

y = in2; ymarker str = 'r+'; ymarker_size = 6;
z = in3; zmarker_str = 'bo'; zmarker_size = &

elseif (nargin == 3) & (isstr(in2)) % ———— (%, 'go',
x = inl; xmarker_str = in2; xmarker_size = in3;
y = 11
z = [l;

elseif (nargin == 6} % ———————- (x, 'go, 3, y, 'r+',
x = inl; xmarker_str = in2; xmarker_size = in3;
y = in4; ymarker_str = in5; ymarker_size = in6;

z [1:

else
disp ('# ERROR #: cplot —-- wrong input!’');
help cplot; return;

end;

% plot x:
[n, dim] = size(x);

if (n >= 1); cplot_lpointset (x, xmarker_str, xmarker_ size)}; end;

hold on;

o

% plot y:
[n, dim] = size(y);

if {(n >= 1); cplot_lpointset (y, ymarker str, ymarker_size); end;

% plot z:

94

3)

3)

[n, dim] = size(z);
if {(n >= 1); cplot lpointset (z, zmarker str, zmarker size); end;

hold off;
} 29090
H 0000 O
: % 1 % %%% cplot_lpointset
999999—9290/90/0/9/0/99999‘99Q‘l9—220—929999299/9%99299999/92299999° &
DOODOVPDODOOCOCDDDODODDOO0D0O OGOV OO OO 0O 20000 DP0O000COGOCCDODO
299090
[~RV R0 s Ao
% Plot one point set.
%
% Usage:
% [] = cplot lpointset (x, zmarker_ str, xmarker_size);
%
% 02/01/00
function [] = cplot lpointset (x, xmarker str, xmarker_ size);

[n,dim] = size(x):
if (dim == 2)
h = plot (x{:,1), x(:,2}, xmarker str, 'markersize', xmarker_ size);
axis{'equal');
-l hold on;
elseif (dim == 3)
h = plot3 {(x(:,1)y, xt(:,2), x{:,3}, xmarker str, 'markersize',
xmarker size); axis{‘equal’);
axis(‘equal’); set (gca, 'box', 'on');
hold on;
end;

i e i

] 95

% Usage:

$ [1 = cplotg (x, y);

% [1 = cplotg (x, y, m);

g [1 = Cplotg (%, Y, m,

% [1 = cplotg (x, y, m,

% [1 = cplotg (%, y, m,

%

function [] = cplotg(x,

% check input:

[n, dim] = size (x);

if (nargin == 2)
m = eye (n,n);
threshold = 0;
gcolor_str = ‘'y:';

elseif (nargin == 3)
threshold = 0;
gcolor_str = 'y:';

elseif (nargin == 4)
gcolor_str = 'y:';

elseif (nargin == 5)

gcolor_str =

Plot links between 2 corresponding point sets.

Non-Rigid Point Matching {(ICP) Demo:

m
th

e

y

o o

e.
r 0.
threshold):;

threshold, color_str);

threshold, color str, marker_ str);

y, m, threshold, color_str, marker_str);

color_str;

elseif (nargin == 6)
;

else
disp ('# ERROR #: cplotg -- wrong input!');
help cplotg; return;

end:

$keyboard

switch (dim)

o
°

case 2

c

% normal plot:
if {nargin < 6)
% Reformat data:

o\

xy = [x; yI;

[sizl, temp] = size(x);

[siz2, temp] = size(y);

[indexi, indexj] = find {(m > threshold });

96

index = indexi + (indexj-1) * sizl;

msp = zeros(sizl,siz2):;
msp {(index) = 1;

madj = [zeros({sizl), msp;
msp',zeros (siz2)];

axis ('equal'); axis('off');
gplot (madj, xy, gcolor_ str);

% otherwise, i want to change the color:

else
[sizl, temp] = size (x);
[siz2, temp] sizely):

il

[indexi, indexj] = find (m > threshold);
n = length{indexi);

hold on;
tmp = [x(indexi(i},:); y({indexj{i},:)]:
plot (tmp(:,1), tmp(:,2), ...
‘color®, color str, 'linestyle', marker str);
axis ('equal'):;
end;
end;

case 3 % - oo 3D -~

[sizl, templ] = size(x);
[siz2, temp] sizely);:

[indexi, index]j] = find (m > threshold):
n = length(indexi);

hold on;
tmp = [x({indexif{i},:); ylindexj(i),:)];
plot3 (tmp(:,1), tmp(:,2), tmp(:,3), ...
'‘color’', color str, 'linestyle', marker str);
end;
otherwise;
end;

97

go oe

o

of o° o o o0 o° g ¢ O oP o

“fu

%

Non-Rigid Point Matching (ICP) Demo:

Purpose: Generate all parameters for TPS.

Usage:

[K] = ctps_gen (x};

[K] = ctps_gen (X, v};

[c,d] = ctps_gen (x, y, lamdal);

[c,d] = ctps_gen (X, y, lamdal, lamdaZ);
[ql,92,R,K] = ctps_gen (x);

[ql,92,R,K,c,d] = ctps_gen (x, y, lamdal);

1l

nction [0l,02,03,04,05,06] ctps_gen (x,y,lamdal,lamda?2);

check input.

if nargin <= 1 | nargin >= 5

en

ol
o2
03
o4
05

06 =

>3

©

if

%

el

el

disp ('# ERROR #: ctps_gen -- wrong input !');
help ctps_gen; return;
d;

]

{1:
= [1;
[1;
[1;
[1;
[1;

i

--— [K] = ctps gen (X} —————————=-—mmmr s
nargin == 1 & nargout == 1

[n, dim] = size (x}; x = {ones(n,1l), x1;

[K]l = ctps gen K (x,x);

ol = K;

-—— [K} = ctps gen (x,y} ————=—----—----—mom—mm oo
seif nargin == 2 & nargout ==

[n, dim] = size {x}; x = [ones(n,l), x};

[m, dim] = size (y); ¥y [ones (m,1), yl;

[K] = ctps_gen K (x,y);

ol = K;

--- [c,d] = ctps_gen (lamda, t, yJ ————=————=m——m—m—m—m oo
seif nargin == 3 & nargout == 2

[n, dim] = size (x); x = [ones({n,1), x];

[m, dim] = size (y); y = [ones(n,1l), yl;

[K] = ctps_gen_K (x,x);

[ql,q92,R] = ctps_gen_qr (x) 7

[c,d] = ctps_gen_cd (lamdal,ql,q2,R,K,y);
ol = ¢c;

02 = d;

98

g

% -—— [c,d] = ctps gen (x, vy, lamdal, lamda?)

elseif nargin == 4 & nargout == 2
[n, dim} = size (x); x = [ones{n,1), x};
[m, dim] = size (y); y = [ones(n,1), yI;
[K] = ctps_gen K (x, X)};
[al,92,R] = ctps_gen gr (x);
[c,d} = ctps_gen cd regularized (lamdal,lamda?,ql,q2,R,K,y);
ol = ¢;
o2 = d;
% --- [g1,92,R,K] = ctps gen {X)} ————=—-—m—m—mmm e
elseif nargin == 1 & nargout ==
fn, dim} = size (x); x = [ones(n,l), x];
[K] = ctps_gen_K (x, x);
[gql,92,R] = ctps _gen gr (x);
ol = qi;
02 = q2;
03 = R;
o4 = K;
% --- [q1,92,R,K,c,d] = ctps_gen (x, y, lamdal) ------------o-—mm—
elseif nargin == 3 & nargout ==
[n, dim] = size (x}; x = [ones(n,1), xI;
[m, dim] = size (y); y = [ones(n,1), yl;
[K] = ctps_gen K (x, x};
{al,g2,R] = ctps_gen qgr (x);
[c,d] = ctps_gen cd (lamdal,ql,q2,R,K,y);
ol = ql;
02 = q2;
03 = R;
od = K;
o5 = ¢;
o6 = d;
else
disp ('# ERROR #: ctps gen -— wrong input!');
help ctps_gen;
end;
% 1 % 3%% ctps _gen gr
R e L L T T

29909

Purpose: Genrate QR decomposition for pts (set x).

Q.

]

%

% Usage:
% Notes:
o

o
%

5 01/21/00

function [gl,qg2,R]

[ql,92,R] =
X =

ctps_gen_gr (x);
fql:q2] * r;

nxn [nxM, nxn-M] * nxM

= ctps _gen gr (x);

99

[n,M] = size (x);

fa,r] = q(x);

ql a(:, 1:M);
g(:, M¥l:n);
= r{l:M,1:M);

prote]
N>
[

$%%%

2 % %%% ctps_gen_ K

Bt Er s R R b bt t R R Rt LR A R SRR R e R At t L bt R LR AR
$%%%

Purpose: Generate K {TPS kernel}) matrix.
Usage: [K]l = ctps_gen K (x,z);
Notes: (x,z should be expanded before feed into here!).

o° oF o of o o 0 of oP oo

01/21/00
function [K] = ctps_gen K (x,z);

% Format:

[n, M] = size (x);
[m, M] size (z);
dim M - 1;

]

1

calc. the K matrix.
2D: K=1xr"2 * logr
3D: K= -r

= zeros (n,m);

o¢ o

o

for it_dim=1:dim
tmp x(:,it_dim+l) * ones{l,m} - ones(n,1) * z(:,it_dim+l)"';
tmp = tmp .* tmp;
K=K + tmp;

end;

if dim ==
mask = K < le-10; % to avoid singularity.
K=0.5* K .* log(K + mask) .* (K>le-10);
else
K = - sqrt(K);
end;

%$%%%%

% 3 % %%% ctps_gen_cd
252555222535 2%55%%%%5%% %5555 95252%252%%5%%%%
%%%%%

% Purpose: Calc. normal TPS c,d.

% Usage: [c,d] = ctps_gen_cd (lamdal,ql,q2,R,K,y)}
%

$ 01/21/00

function [c,d} = ctps_gen_cd (lamdal,ql,q2,R,K, V)’

160

i

[n,M] size(y);

gamma = inv (g2'*K*g2 + lamdal*eye(n-M, n-M)) * q2' * y;
c = g2 * gamma; .
d = inv(R) * gl' * (y-K*gq2*gamma);

0.000

5660

4 % %%% ctps_gen_cd _regularized
st E LT L LT LLLLLLLLLLRLES%S
0.9.0.9.

0000

Purpose: Calc. regularized TPS c,d.
(Reqularize the affine transformation as well).

Usage: [c,d] = ctps_gen_cd regularized (lamdal,lamda2,ql,q2,R,K,y)

o0 of o® SO o o0 o° P of o¢ o

01/21/00

function [c, d] = ctps gen cd regularized
(lamdal, lamda2,ql,q92,R, K, v);

[n,M] = size(y);
dim =M - 1;

gamma = inv (g2'*K*qg2 + lamdal*eye(n-M)) * g2' * y;

c = gZ2*gamma;

% add regularization for "d"™ as well:

% d = inv{(R) * gl' * (y-K*g2*gamma);

A = inv{R'*R + lamdaZ * eye(length{R},length(R})) * (R'*gl'*(y-
K*g2*gamma) - R'*R);

d = A + eye(dim+l,dim+l);

101

oe

Non-Rigid Point Matching (ICP) Demo:

@

o
[¢]
[
o
| h
el
0]
fee]
E]

Generate Radial-Basis-Function spline parameters.

o

¥
o®

¥
o¢ oP @

Usage:
- Usage:
% [phi] = crbf _gen (x, z, sigma kernel);
% [phi,w] = crbf gen (x, vy, z, lamdal, sigma kernel);
% [phi,w] = crbf gen (%, y, z, lamdal, lamda2, sigma_kernel);

o

oe

X —- pts to be warpped.
y —-- target pts.
z -~ basis pts.

P

e

function {ol,02] = crbf gen (x,y,z, lamdal, lamda2, sigma_ kernel);

-l % check input:

[

--- [phi] = gen crbf (x, z, sigma_kernel) -—————-———---————————--—
=il if (nargin == 3);

- sigma_kernel = z;

_ z = y;

il

i “ [erlm]
: P

size(x);
length(z});

[phi] = crbf_kernel (x, z, sigma_kernel);

ol = phi;
% --- [phi,w] = crbf_gen (x, y, 2z, lamdal, sigma_kernel) -----—-—--—=
elseif (nargin == 5);

sigma kernel = lamda2;

lamda2 = 0;

[L,dim] = size(x):

P = length({z);

[phi] = crbf kernel (x, z, sigma_kernel);

G = eye(L,L); % assume no outlier in "x".
Iw = zeros (P+dim+1l, P+dim+l);

Iw (1:P,1:P) = lamdal * eye(P,P);

Iaffine = zeros (P+dim+1l, P+dim+l);

Taffine (P+1:P+dim+l, P+1:P+dim+l) lamda2 * eye (dim+l,dim+l);
w = invi{phi' * 6 * phi + (Iw + Iaffine)) * phi' * y;

ol = phi;
o2 w;

102

RYLIL I

% --- [phi,w] = crbf gen (x,

elseif (nargin == 6);
[L,dim] = size(x);
P = length{(z);

[phi] = crbf kernel (x, z,

G = eye(L,L);
Iw

Iw {1:P,1:P)
Iaffine

Iaffine (P+1:P+dim+1, P+1:P+dim+1)

yr 2, lamdal, lamda2, sigma_kernel) ----

sigma_ kernel);

% assume no ocutlier in "x".

zeros (P+dim+l, P+dim+l);
lamdal * eye(P,P);

= zeros (P+dim+l, P+dim+l);
lamdaz * eye (dim+1,dim+1);

ft

w = inv(phi' * G * phi + (Iw + Iaffine)) * phi' * y;

ol = phi;
02 = w;
else

disp ('# ERRCOR #: crbf gen -- wrong input!'});

help crbf gen;
end;

el
©
e
=
c

20000

o o ol
o o\
OO - o)
o ol
of g0 o

oe

Calc. BRF kernel "phi™.

@ oo

ae

Usage:

o

oe o

01/26/00

function f[phil = crbf kernel

i

size(x):
length(z);

{L,dim]
P

[

phi = zeros(L,P);

for it_dim=l:dim

o 0900000000 000000000000 .2.0.0.000800820000900.000
%%% crbf kernel $%%%%%%%%3%5%33%3%3%%%%%%%3%2%%%29%9%%%9%%%%%%5%%

[phi} = cgtm calc kernel (x, z, sigma_kernel)

(%, z, sigma_kernel)

tmp = x{:,it_dim} * ones(1,P) - ones(L,1l) * z(:,it dim)’;

tmp = tmp .* tmp;
phi = phi + tmp;
end;

103

if dim == 2
phi = exp(-phi/(sigma_kernel”2)); % gaussian basis fn.

else
phi = - sqrt{phi);
end;
phi = [phi, x, ones(L,1)1; % x, ones: affine part.

104

L

Non-Rigid Point Matching (ICP) Demo:

e

o o\
@]
P
e’

| 19
o]
Jomd
[o]
| (e
(e}
2l
H.
jo 7
=

oo
)
'.J.
1]
ol
e
s 1)
g
3
g
[#5]
(o))
o]
Hh
:
0]
jo3
(o]
[
‘_A.
o}

e oo

oe e
o
—t

{

= ctps_plot_grid (x,y,c,d)};

= ctps_plot grid (x,y,lamda);

[1 = ctps_plot_grid (x,vy,c,d, resolution, resolution gridj;
= ctps_plot grid {x,v,lamda, resolution, resolution_grid);

0@ o
—
—

&0
—
ot

|

e

ed

for (x,y,c,d)
x —— TPS basis points.
y —-- points to be warped.

oo

o

for {x,y,lamda)
x -- TPS basis points and points to be warped.
y -- target points

o o o

o@

function [] = ctps plot_grid simple (x,y,c,d,..
resolution, resolution grid)s;

o

t {7,6; 10,9; 1 1; 1 15; 15 1; 15 151;
\ [11,7; 7,10; 1 1; 1 15; 15 1; 15 15}1;
[c,d] = ctps_gen (t, vy, 1);

i

o

]

o

[

check input.

if (nargin == 3); % input (x,v,lamda);
lamda = c;

[c,d] = ctps_gen (x,y,lamda);

tmp = x; y = ¥X; X = tmp;

o\@

4;
3;

resolution
resolution grid

o

=9

elseif (nargin == 4); % input (%,y,c,d);

resolution = 4;
resolution grid = 3;
elseif (nargin == 5); % input {x,y,lamda, resolution, resolution_grid);
lamda = Cj
resolution = d;
resolution _grid = resolution;
[c,d] = ctps_gen ({(x,y,lamda);

tmp = x; y = X; X = tmp;

elseif (nargin == 6); % input {(x,y,Cc,d,resolution, resolution_gridj;
% do nothing.

else
disp ('# ERROR #: ctps_plot_grid -- wrong input!'};

help ctps_plot_grid; return;
end;

% generate grid points.

105

L
B
5

{[grid_pts, controls] = ctps_plot_grid_gen (x, resolution,
resolution grid);

% Warp the grid:

Il

ori_color = ones({l,3) * 0.7;
new color = 'b';

ctps_plot gridbox {1, grid pts, controls, ori color, ':'); hold on;

ctps_plot gridbox {1, grid new, controls, 'b','-'); hold on;
%axis('equal'); axis ('off');

106

Nen-Rigid Point Matching (ICP) Demo:

oR 0@

oe
Q
o
g
5
et
O
l(‘f
(o]
=
F_J.
|Q~
Q
[0}
jor]
2

Generate grid points for displaying TPS deformation.

e

o ¢ oe

Usage:

[grid pts, controls] = ctps plot_grid gen (x);

[grid pts, controls] ctps_plot_grid gen (x, resolution,
resolution_grid);

o

o

0P oo

x¥% ®eontrols® are for: ctps plot gridbox.

o

function [grid pts, controls] = ctps_plot_grid gen (x, resolution,
resolution_grid);

% check input:
if (nargin == 1); % input (x), set the other 2.

resolution = 4;
resolution_grid = 3;

elseif (nargin == 3}; % input (x, resolution, resolution gridj);
else

disp ('# ERROR #: ctps plot grid gen -- wrong input!'};

help ctps_plot_grid gen;
end;

% set grid range:

xrange fmin{x{:,1)), max{x(:,1)}}1;
yrange = [min(x(:,2)), max{x{(:,2))];
% expand a little bit:

expand_ratio = 5;

xrange (1) = xrange (1) {xrange {2) -xrange (1)) /expand_ratio;

xrange (2) = xrange (2) + (xrange(2)-xrange(l))/expand_ratio;
yrange (1) = yrange (1) - (yrange(2)-yrange(l))/expand ratio;
yrange (2) = yrange (2) + (yrange{(2)-yrange{l))/expand ratio;

% Generate the grid points:

[grid pts, rows, cols, points _row, points_col] = cgrid generate
(xrange {l), xrange{2), yrange{l), yrange{2), resolution,

resolution grid):

ow

controls = zeros {4,1};
controls(l) = rows;
controls (2) = cols;
controls (3) = points_row;
controls(4) = points_col;

107

L

5%%%%

% 1 % %%% cgrid generate.m
8000

VOO0V OV0O0VDOO00000DTODVDOO0ODDLD0O0VODVDDDOOTLO0OODLLDD

29800

£5 I > o e]

% Generate grid.

%

% Input: x/y -- one of data sets.

%

% Output: grid pts -- grid points, same format as x/y.
% rows,cols -- grid dimensionality.

% points row, points cols -- points along each
% row and col.

B e e e e ——_———— e —
C

% Last modified: 09/27/99

function {[grid pts, rows, cols, points_row, points_col] =
cgrid generate (xrangel, xrange2, yrangel, yrangeZ,
resolution, resolution grid);

xrange = [xrangel, xrangel]l;
yrange [yrangel, yrangeZ];

1l

% a: grid square size.
a = min(xrange (2)-xrange(l), yrange(2)-yrange(l)) / resolution;
grid step = a / resolution grid;

fl

LOWS ceil ((yrange (2)-yrange(l)) / a + 1);
cols = ceil(({xrange{2)-xrange(l)) / a + 1);

yrange (2) = yrange{l) + {(rows-1l)*resolution grid*grid step;
xrange (2) xrange (1) + (cols-1)*resolution grid*grid step;

il

%keyboard

grid pts = [];
% points _row = floor((xrange{2)-xrange(l))/grid step);
points_;gw = {cols-1) * resclution grid + 1; % two ending points.
for i=l:rows

tmp row = [[xrange{l):grid_step:xrange(2)]’',

ones{points row,1} * (i-1) * a + yrange(l)];

grid pts = [grid pts; tmp row];

end;

% points _col = floor{(yrange(2)-yrange(l))/grid step);
points col = (rows-1l) * resolution grid + 1; % two ending points.
for j=l:cols
tmp_col = [ones{points_col,1l) * (j-1) * a + xrange(l),
[yrange (1) :grid step:yrange(2)1'];
grid pts = [grid pts; tmp col};
end;

% Non-Rigid Point Matching (ICP) Demo:

108

o\

ctps_plot gridbox.m

Plot grid box for TPS demonstration.

ol® o o

o

Usage:
[1 = cplot gridbox (grid method, grid, controls);

o0 o

e

grid method: 0 —-- pts
1 -- pts + linking lines.
controls: (rows, cols, points_row, points_col).

o o o

function [] = ctps_plot gridbox (grid method, grid, contrels,
marker color, marker_type);

rOows = controls{l};
cols controls(2);
points_row = controls(3);
points_col = controls(4);

i

switch (grid method)

case 0
plot (grid(:,1), grid{:,2), '.', ‘'color',
marker color, 'markersize', 5);

case 1
for i=l:rows
tmp = grid ((i-1)*points_row+l:i*points_row,:);
plot (tmp(:,1), tmp(:,2), 'color', marker color,
*linestyle', marker_type};%, ...
%'erasemode', 'background'):
hold on;
end;

start_index = rows * points row;
for j=l:cols
tmp = grid ((j-1)*points_col + start_index + 1 : j*points_col
+ ...
start index, :);
plot (tmp(:,1), tmp(:,2), 'color', marker color,

[}

'linestyle', marker type):%, ...

% 'erasemode®, 'background');
hold on;
end;
otherwise;
disp ('ERROR: cplot gridbox -- wrong input parameters');
end;

% Non-Rigid Point Matching (ICP) Demo :

% Purpose: Given TPS [t,c,d], warp pts x --> x1.
% (z is the basis point set).
% (x1 is in normal coordinate, not expanded !).
%
% Usage:
109

% [ptsl]l = ctps_warp pts (pts, x, ¢, d);
% [ptsl] = ctps warp pts (pts, x, y, lamda);
% [ptsl] = ctps warp_pts (pts, %, ¥); lamda default = 1;

o\

function [ptsl]= ctps_warp pts (pts, %, ¢, d);

% check input.
if nargin <= 1 | nargin >= 5

disp ('# ERROR #: ctps_warp pts -- wrong input !');
help ctps warp pts; return;
end;

[diml, dim2] = size{d); % d —— affine: dim > 1

% lamda -- par: dim = 1.
% -—— [ptsl] = ctps _warp pts (pts, x, ¢, d) ———————————— -~
if diml > 1

K = ctps_gen (pts,x);

% Warp pts —-> ptsl:
[n,dim] = size(pts); pts = [ones(n,l), pts];
ptsl = pts*d + K¥*c;
ptsl = ptsl (:,2:dim+1);

end;

% [ptsl] = ctps_warp pts (pts, x, y, lamda) --------------m---——-——m-

if diml ==

X = X3
y = c;i 3y is taking c's position as input now.

if (nargin == 3)

lamda = 1;
else

lamda = d; % lamda is taking d's position as input now.
end;
K = ctps_gen (pts,x);

[c,d] = ctps_gen (x,y,lamda);

% Warp pts --> ptsl:
[n,dim] = size(pts); pts = [ones(n,l), ptsl;
ptsl = pts*d + K*c;
ptsl ptsl (:,2:dim+l);
end;

1

% Non-Rigid Point Matching (ICP) Demo:

o o 999
$ 3 % %%% cMIX warp_pts

e oo 00000000‘009ODC’,.DOQ,OODOOO Q 200 0 0200200002000 0000000.0
Rt R R Tt e P e Pt e P Lt T R R L R At L]
20000

5%%%%

function [vx] = cMIX warp pts (trans_type, x, z, c_tps, d_tps, w,
sigma_kernel);

110

switch (trans_ type)

case 'tps'
vx = ctps_warp pts (x, z, ¢_tps, d_tps);
case 'rbf'

vx = crbf_ warp pts (x, z, w, sigma kernel);
% case ‘gtm_tps'
vx = cgtm warp pts ('tps_style', x, z, w, 0);
otherwise;
disp ('# ERROR #: cMIX warp pts -- wrong input!');
end

oe

133

% Non-Rigid Point Matching (ICP) Demo:

o

Plot the cMIX progress. (no Cx, just T -- as isotropic covariance).

oF o o

Usage:
[1 = cMIX plot_simple (method, x, y, 2z, vx, m, m_threshold, T,
transformation type, c tps, d tps, w, sigma_kernel);

0@ @

o@

function [] = cMIX plot_simple (method, x, y, z, vx, m, m_threshold,
T, ...
transformation_type, c_tps, d_tps, w, sigma_kernel, m_method);

2.

% configure:

xmarker = 'go'; xsize = 6;
ymarker = 'r+'; ysize = 3;
zmarker = 'go'; zsize = 6;
inter marker = 'g+';

[sizl,dim] = size (x);

[siz2,dim] = size (y);

c = c_tps;

d = d_tps;

$ —--- 2D data ———— -~ —- - - - oo oo oo oo oo oo

if (dim == 2)

switch (method)
case 2

h _subl = subplot ('position', [0.05 0.6 0.2 0.3]1);

cplot (x, xmarker, xsize); hold on;

cplot (y, ymarker, ysize);

axis ('equal'); axis ('off'); title ('Original V and X');

o° of g

o®

e

h_sub2 = subplot ('position®, [0.05 0.1 0.2 0.31);

cplot (vx, xmarker, xsize); hold on;

cplot (v, ymarker, ysize);

axis ('equal'); axis ('off'); title ('Transformed V + X');

o o

o

h_sub3 = subplot ('position’, [0.3 0.1 0.4 0.7]);
cplotg (vx, y, m, m_threshold); hold on;
if ~(strcmp{m method, 'icp'})
cMIX plot mixture simple (vx,T,'b-'); hold on;
end;
cplot (vx, xmarker, xsize); hold on;
cplot (y, ymarker, ysize); hold on;
axis ('equal'); axis ('off'); title ('Transformed V + X');

112

o

h sub4 = subplot {'position’, [0.75 0.6 0.2 0.3]);
switch (transformation_type)
case 'tps'
ctps plot grid (x, x, ¢, d);
axis('equal'); axis{('off');title ('TPS Warping');
case 'rbf'
crbf plot grid (x,z,w, sigma kernel);
axis('equal'); axis('off');title ('RBF Warping');
% case 'gtm_tps'
cgtm plot grid simple ('tps_style', x,v,z,w, 0);
axis('equal'); axis('off');title ('GTM Warping');

o o

o\@

oR o P of
o0 op

oe

% end;
% vx2 = [ones{sizl,l), x] * d; vx2 = vx2(:,2:dim+l);
% cplot (y, ymarker, ysize); hold on;
¢ cplot ({vx, xmarker, xsize); heold on;
% cplot {vx2, inter marker, xsize);

[

axis('equal'); axis('off’); %title ('TPS Warping');

h_sub5 = subplot ('position', [0.75 0.1 0.2 0.3]);

& vy =m*y ./ { {(sum{(m'})' * ones(l,dim));
% cplot (y, 'xr.', ysize); hold on;
% cplot (vy, ymarker, xsize);

cplot (%, =xmarker, xsize);

cplot (vx, inter_marker, xsize};
cplotg(x, vx);
axis{'equal'); axis('off'}; title ('Estimated Shape Y=MX'};

oC oo op

oe

[sizl,temp] = size (x);
cplot_2g (x, m*y, 0,0,0,1, eye(sizl), m_threshold);
title ('m*y w/ links');

o o

[

case 0

cplotg (vx, y, m, m threshold); hold on:;

cplot (vx, xmarker, xsize); hold on;

cplot (y, vymarker, ysize); hold on;

cMIX plot mixture simple (vx, T); title ('Transformed V + X');

case 1

h subl = subplot (’position', [0.05 0.6 0.25 0.3]);

cplot (x, xmarker, xsize); hold on;

cplot (y, ymarker, ysize); .

axis ('equal'); axis ('off'); title ('Original V and X');

h_sub2 = subplot ('position', [0.05 0.1 0.25 0.3]);

cplot (vx, xmarker, xsize); hold on;

cplot (y, ymarker, ysize);

axis ('equal'); axis ('off'); title ('Transformed V + X');

h sub3 = subplot ('position', [0.35 0.1 0.55 0.7]);

cplotg (vx, y, m, m_threshold); hold on;

cMIX plot mixture simple (vx, T};

axis ('equal'); axis ('off'); title ('Transformed V + X');

otherwise;
end;

113

% -—— 3D data -

else

switch (method)
case 1
set ({(gcf, 'coler', [0 0 0]);
hold off;

h subl = subplot ('position', [0.05 0.6 0.25 0.3]); axis
{'equal'); axis ('off'});

cplot (x, xmarker, xsize); hold on;

cplot (y, ymarker, ysize); title {'Original V x and Y');

set (gca, 'box', 'on');

h_sub2 = subplot ('position’, [0.05 0.1 0.25 0.3]); axis ('off');
cplot (vx, xmarker, xsize); hold on;

cplot (y, ymarker, ysize); title (’Transiormed V x + Y');

set (gca, 'box', 'on');

h sub3 = subplot {’position', [0.35 0.1 0.55 0.7]);

% cMIX plot mixture simple (vx, T}; title ('Transformed V_x +
Y');

% Reyboard

cplotg ('black', vx, y, m, m threshold); hold on;

cplot (vx, xmarker, xsize); hold on;

cplot (y, ymarker, xsize); title ('Transformed V_x + Y'); held

on;
axis{'on'}; setf{gca, 'box', 'on'}; rotate3d on;
% view (6, 88);
disp ('yahhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh');
case 2
set ({(gcf, ‘color', [0 0 0});
hold off;

h_subl = subplot ('position', [0.05 0.6 0.2 0.3]); axis
(Tequal');

cplot (x, xmarker, xsize); hold on;

cplot (y, ymarker, ysize); title ('Original V_x and Y'});

set(gca, 'box', 'on');

h sub2 = subplot ('position’, [0.05 0.1 0.2 0.31};
cplot (vx, xzmarker, xsize); hold on;
cplot (y, ymarker, ysize); title ('Transformed V_x + ¥Y'};

set (gca, ‘'box', ‘'on');

h_sub3 = subplot ('position', [0.3 0.1 0.4 0.71);

cMIX plot mixture simple (vx, T);

cplo{g ("black', vx, y, m, m_threshold); hold on;

cplot (vx, xmarker, xsize); hold on;

eplot (y, ymarker, xsize); title ('Transformed V_x + Y'); hold
on;

axis('on'); set(gca, 'box', ‘on'); title ('Transformed V_x + Y');

h_sub4 = subplot ("position', [0.75 0.6 0.2 0.3]);
% if mod(it total,3) == % this is expensive.

114

switch (transformation_type)
case 'tps'

cplot {y, ymarker, ysize}; hold on;
if sum(sum{c)) ~= 0
% ctps_plot_grid simple('', vxl, vy, c¢,d); axis('equal');
% axis('off');title ('TPS Warping');
vx2 = [ones(sizl,l), x} * d; vx2 = vx2(:,2:dim+1);
ctps_plot_grid simple ('', x{:,1:2), y{(:,1:2),
c(:,1:3),d(1:3,1:3})}):

$cplot (vx, 'g+', xsize); hold on;

cplot (vx, xmarker, ysize); hold on;

axis('equal'); axis('off');title ('TPS Warping');
end

case 'gtm_tps’
cgtm plot grid simple ('tps style', x,y,z,w, 0);
axis('equal'); axis('off');title ('GTM Warping'):

case 'gtm gaussian'
cgtm plot grid simple ('gaussian style', x,y,z,w, sigma kernel);
axisT‘equgl‘);_axis('off');title_('GTM Warping');
otherwise; disp ('no');
end;

h_sub5 = subplot ('position®, [0.75 0.1 0.2 0.3]);

vy =m*y ./ ({sum{m'))' * ones(l,dim));

% [vz] = cMIX warp pts (transformation_type, z, z, C_tps,
d tps, w, sigma kernel);

[P,ink] = sizelz);

cplot (y, 'r.', ysize); hold on;

cplot (z, =xmarker, xsize}; hold on;

%cplot {vz, 'g+', xsize); hold on;

%cplot (vy, ymarker, xsize); hold on;

$cplot 2g_simple ('', z, vz, eye(P?,P), 0); title ('V_z + V_y'");
end;

end;

115

oR

Non-Rigid Point Matching (ICP) Demo:

o

% CMIX plot_mixture_simple.m

% Plot the clusters as bunch of ecllipses.

%

% Usage: [] = cMIX plot_mixture_simple (vx, Tj);

oe

function []

|
Q
=
bt
!I><
bl
|
[e]
I(‘l’
=]
H.
¥
-+
ol
[
](D
:
o]
e
M
2
%
~
+3
~
Q
[}
foed
@]
IH
{n
ps
=

% check input:

o

if (nargin == 2)
color str = 'b-'; % default.
end;

[c,dim] = size (vx);

il

sqrt (T) ;
= sqrt(T);

oW
|

@

Generate the ecllips:

step_theta = 20;

tmp theta = [l:step theta:360+step thetal'/360*2%pi;
tmp pts = [a.*cos(tmp_theta), b.*sin(tmp_theta)];
n = length({tmp theta);

for i=1l:c
if (dim == 2)
% Draw the ecllips:

plot (tmp pts{:,1) + vx(i,1), tmp pts(:,2)+vx(i,2), color_str);
hold on;
else
% disp ('plot3');
plot3 (tmp pts(:,l)+vx(i,1l}, tmp pts(:,2)+vx(i,2),
zeros(n,l)+vx{i,3), color_str); hold on;
$plot3 (zeros(n,l)+vxz(i,1), tmp pts(:,1)+vx(i,2),
tmp pts{:,2)+vx(i,3), color_str); hold on;
gplot3 (tmp_pts(:,1}+vx(i,1), zeros(n,1l)+vx(i,2),
tmp pts(:,2)+vx(i,3), color_str); hold on;

%[X,Y,2] = sphere(8);

$X1L X*T + vx{i,1);
%Y1 = Y*T + vx(i,2);
%21 = Z2*T + vx{i,3); hold on;
gmesh (X1, Y1, Zl); caxis({1l9 19.0000000011);hidden off;
end;
end;

116

o

Rigid Point Matching (ICP) Demo:

oF o
Q
2
(=]
| <
=
o}
H
=2
Q
el
l__].
N
[0]
|
=]
=

Double normalization of m (with outlier col/row).

o

of o

% Input: m, m outlier_col, m outlier row -- m entries.
% Output: m, m outlier col, m outlier row -- normalized.
 m e e ————————————

function [m, m outlier col, m_outlier row] = cMIX normalize m {m, ...
m outlier col, m outlier row);

% Parameters:
norm threshold = 0.05;
norm maxit = 10;

[xmax, ymax] = size(m);

norm_it = 0;
while (1 > 0)

2,

% --- Row normalization -~~——————=————-—-——mmmmm o

fl

5%
m =m ./ {(sx
m outlier col

sum{m'}' + m cutlier col;
* ones(l,ymax}):
m outlier col ./sx;

% --- Column normalization ~----—-—----——————~-----—-----—oo—o— oo

1l

sy sum{m) + m_outlier row;
m = ./ (ones{xwax,l)*sy);
m_outlier row = m outlier row ./sy;

% time to quit?

err = ((sx-1y'*(sx-1) + (sy-1)*({sy-1)')/(length(sx)+length(sy)):
if err < (norm threshold .* norm_threshold); break, end

% run out of time:

norm_it = pnorm_ it + 1;

if norm it >= norm maxit; break; end

end

% Non-Rigid Point Matching (ICP) Demo:

G e e
% 2 % %%% cMIX calc transformation

R R A R R R TR L LRt r R Rt R R R R R R R AR R R

5%5%%%

%

4

function [c_tps, d tps, w] = cMIX calc transformation

{transformation_type, ...
lamdal, lamda2, sigma_kernel, x, vy, z);

[1:
[1:
[1:

]

c_tps
d_tps
w

n

switch (transformation_type)
case 'tps’

117

prmmcen s

{c_tps,d_tps] = ctps_gen (x, vy, lamdal, lamda2);
% [c_tps, d tps] = ctps generate cd regularized (lamdal, lamdaZ,
X, vy); B B
case 'rbi'
[phi, w] = crbf gen (x, vy, 2z, lamdal, lamdaZ2, sigma kernel);
%case 'gtm tps'

$ [phi, w] = cgtm calc_w ('tps_style', x, vy, z, lamdal, lamdaZ,
0);
otherwise;
disp ('# ERROR #: cMIX calc_ transformation —-- wrong input!'};
end

118

e e

o

Non-Rigid Point Matching (ICP) Demo:

o

& oo

@ o

Calc. two-way ICP m.

¢

Usage:
[m, dist threshold] = cMIX calc m ICP (vx,y);
[m, dist threshold]
[m, dist_ threshold]

o o

oF o
i

Il

@

Notes: which way —-— specify one way ICP m.
0 -- both way (default).
1 -- x toy.
2 -- y to x.

o° o oR of

function [m, dist_threshold] = cMIX calc_m_ICP
{vx,y,k_sigma,which way);
% check input:
if (nargin == 2)
k_sigma = 0; % default, no outlier rejection.
which way = 0;

elseif (nargin == 3)
which way = 0;

elseif (nargin == 4)

else

cMIX calc m ICP (vx,y,k_sigma);
cMIX calc m ICP (vx,y,k _sigma,which_way);

disp ('# ERROR #: cMIX calc m ICP -- wrong input !');

help cMIX calc m_ICP; return;
end;

if k _sigma == 0;
dist_ threshold flag = 0;

dist_threshold = leld;
else

dist_threshold flag = 1;

dist_threshold = 0;

end; % no outlier.

size(vx); xmax = sizl;
size(y); ymax = siz2;

[sizl, dim]
[siz2, temp]

%2 Find nearest neighbour for each pt in x:

cICP findneighbours (vx, y)i
cICP_findneighbours (y, vx);

M1, dist_x]
(M2, dist_y]

if dist_thresheld flag ~= 0
dist = [dist_x; dist_yl;

n = length (dist);
mean_x = sum (dist) / n;
sx = std({dist); % sqrt (1 / (n-1) * sum (

{dist - mean x)));

119

{dist - mean_x)

*

dist threshold = mean x + k_sigma * sx;

end;

% this update thing of threshold doesn't work !!!
% ___
% xdist _sum = sum (xdistances);

% dist _threshold = xdist_sum / (sizl/frac) * 3;
ml = zeros {xmax,ymax); m2 = ml;

for i=l:xmax

i
s
N

if dist_x(i) > dist_threshold; Ml (1} -1; else; ml(i, M1(i)})
end;
end;
for j=l:ymax

if dist y(j) > dist threshold; M2 (3)
end;
end;

]

-1; else; m2{M2(3), 3) = 1;

if (which way == 0)
m = (ml +m2)/2;
elseif (which way == 1)

m = ml;
elseif (which way == 2)
m = m2;
end;
%%%%%
% 1 % %%% cICP_fnneighbours
2222228532555 %%%5%%%%%3555555%%%%5%%%3%%%%%

oe
0@
@
oe

Find nearest neighbour in template t for each point in x. 3d/2d

Usage: [M, distances] = cICP_findneighbours (x, t);
Notes:
M -— M(1) = 10, y(10) is nearest from x(1);
distance —-- distance (x(i)-t(j))"2

o0 o Of P P o of o O o o

02/01/00
function [M, distances] = cICP fnneighbours (x, t);

[m, dim] = size(x);
[n, dim] = size(t);
M = zeros (m,1l);

% |x-t| matrices:

xttmp = zeros (n, m);
for i=l:dim

xtmp = ones(n,1) * x(:,1)}';

ttmp = t{:,1) * ones(l,m);

xttmp = xttmp + {xtmp - ttmp} .* (xtmp - ttmp);
end;

% M + min dist list:

[min dist, min_index] = min{xttmp);
distances = (sqrt(min_dist))';

120

M = min_ index';
% Non-Rogod Point Matching (ICP) Demo:

% Find nearest neighbour in template t for ecach point in x. 3d/2d

% Usage: [M, distances] = cICP_findneighbours (x, t);

% Notes:
% M -—- M(l) = 10, y(10) is nearest from x(1);
% distance -- distance (x{i)-t{3j))"2

function [M, distances] = cICP_findneighbours (x, t);

[m, dim] = size(x);
[n, dim] size(t);
M = zeros (m,1);

% |x-t] matrices:

xttmp = zeros {(n, m);
for i=l:dim

xtmp = ones(n,l) * x(:,1i}';

ttmp = t{:,1i) * ones(l,m);

xttmp = xttmp + (xtmp - ttmp) .* (xtmp - ttmp);
end;

ol

M + min dist list:
[min dist, min index] = min(xttmp);
distances = (sqrt(min_dist))';

M = min_index’;

% theta = transformation (1);

% t(l) = transformation (2);

% t{2) = transformation (3};

% s = transformation (4);

% ¢cs = cos{theta); sn = sin(theta); R = [cs, -sn; sn, cs];
% ry = y*R'*s;

% tr y = ry;

% for k=1:2, tr y{:,k} = tr_y(:,k} + t(k);, end

oe

for i=l:xmax

% dist_tmp = 0;

% dist_min = 0;

% index = -1;

% dist min = ({tr_y(l,:) - x{i,:)) * (tr_y(l,:) - x(i,:))");

% index =1;

% for j=2:ymax

%

% dist_tmp = ((tr_y(j,:) - x(i, =)y * (tr_y(3,:) - x(i,:))")7
121

o

if dist _tmp < dist min
dist min = dist_tmp;
index = j;

o o

% end;

% end;

% M(i) = index;

% distances(i) = sqrt(dist_min)j;
% end;

o

Non-Rogod Point Matching (ICP} Demo:

oe o
Q

o

o

V)]

]

foet

e

3

Draws a graph between RMS error and # of iterations
with each algorithm
errl={0.141748
0.1394893
0.128503
0.126911
0.120476}%;
errll=[0.,135105
0.130635
0.126646
0.124283
0.118614];
errl2=[0.126322
0.081379
0.072285
0.070807
0.0726431;

o° ¢ Q©

@

err2=[0.086228
0.086076
0.08589%44
0.08508
0.0844671;

err21=[0.066240
0.065467
0.065034
0.064833
0.062526];

err22=[0.152867
0.134787
0.109486
0.094657
0.067378];

err31=[0.190278
0.190288
0.188762
0.189561
0.1902427;

err32=[0.075294
0.069818
0.069202
0.068947
0.0673321;

122

timell=[38
490

46

52

60];

timel2=[39
41
47
53
61];

timel3= [90
100
110
125
140];
time2l1=[35
38
43
46
551;

time22= [36
39
44
47
561]:;

time23=[65
75
90
105
120];

iterl= [31
37
42
45
5517

iterl2=[155
185
210
225
2751;

erl=[0.153069
.151312
.149068
.140519
.138637
.133971
.127891
.125256
.123791
.122858

— OO0 oo O

~~

er2=[0.140544

123

.138880
.135669
.132285
.129080
.126033
.122944
.120331
.119079
.118672

O QOO OoOC OO O

1:

r3=[0.178279
.164624
.143055
.093813
.076645
.072770
.07142¢6
.071482
.072257
072602

e

21={

.122342
.099882
.095666
.089309
.086253
.086128
.0858989
.085908
.085842
.085492
.084719
.084471

COOODO0O QT OO OCOD —-OOCOOOTCOOOD

1;
er22=|

.067810
.056730
.056763
.056377
.055%64
.055385
.054845
.05441%
.054111
.053402
.053216
.053070

;

—_- O OO OO COOOOOQ

er23=]
0.189179
0.203814
0.206080
0.2028590
0.164%70

124

0.139995
0.126533
0.104823
0.092452
0.083868
0.077455
0.070130
1

er31={0.316173
0.222866
0.196807
0.187654
0.18%8114
0.190221
0.190566
0.189749
0.189753
0.190637
0.150739
0.190404
0.190238
1;

er32=[0.095008
0.082544
0.077877
.077150
.076168
.075458
.070439
.069702
.068793
.068291
.067793
.067439
.066996

7

ol DD DO OO OO OO

er33=[0.393020
.351857
.252412
.171334
.115613
.086319
.072572
.070350
.068256
.066224
.061299
.059170
.057871

O OO0 OO OO0 OO

0

0.115658
0.110010
0.100553
0.088624
0.086921

125

.087083
.086233
.086169
.086857
.086694
.086318
.086036

;

Rl oo I wo B e R oo I o Y et 8 0

er42=[0.065276
.059264
.059114
.058931
.058541
.058169
057662
.056919
.056939
.056445
.055602
.055276
.054920

— OO OO OO O OOO0O

~

erd3=|

.255769
.262750
.266250
.262324
.213520
.145283
.095455
.082713
077772
.073500
.069766
.060945
.052823

-

I O OO OO OO OO OO

N =
o ;o Wt
[0}
[

i

[

ww N
(6 N 28]

s s D s
W oy Wwo

vt
W =

1;
figure (l);
gtitle('Different results relatied to figure 4');

hold on

plot (iter,er4l, ‘'- r*', 'LineWidth',2);

Stext (0.126, 47, '\leftarrow ICP with TPS only', 'FontSize', 12);
plot (iter,er42, '- b*', 'LineWidth',2);

126

$text(0.132, 35,7ICP with TPS & CG \rightarrow', 'FontSize', 12,
'HorizontalAlignment', 'right');
$figure (2)

plot (iter,er4d3, '- g*', 'LineWidth',2);
%title ('RPM results related to figure 1');
hold off

ylabel ('RMS error');

xlabel (*Number of iterations'):;

%set (gca, 'XTick',5:10:55)

%set{gca, "YTick',~-0.1:0.05:0.3)

%set (gca, 'YTickLabel', {'0','0.05','0.17,'0.15",70.2",70.25",'0.3"})

Y%text(0.125, 50, \leftarrow ICP with TPS only', FontSize', 12};

127

References

[1] P. K. Banerjee and AW. Toga. Image alignment by integrated rotational and
translational transformation matrix. Physics in medicine and biology, 39:1969—
1988,1994.

[2] G. Barequet and M. Sharir, Partial Surface and Volume Matching in Three
Dimensions, IEEE Trans. Pattern Analysis and Machine Intelligence, 19(9), Sep
1997

[31S. Belongie, J. Malik and J. Puzicha, Matching Shapes, International Conference
on Computer Vision ICCYV, 2001.

[4] R. Benjemaa, and F. Schmitt, Fast Global Registration of 3D Sampled Surface
Using a Multi-Z-Buffer Technique, Proc. 3DIM, 1997.

[5] P.J. Besl and R.C. Jain, Three-Dimensional Object Recognition. Computing
Surveys, Vol. 17, pp. 75-145, March 1985.

[6] P.J. Besl and N.D. McKay, A Method for Registration of 3-D Shapes, [EEE
Trans. Pattern Analysis and Machine Intelligence, vol. 14, no. 2, pp. 239-256,
Feb. 1992,

[7] R. Bhatia. Matrix Analysis, volame 169 of Graduate Texts in Mathematics.
Springer, New York, NY, 1996. page 38.

[8] F. L. Bookstein. Principal warps: Thin-plate splines and the decomposition of
deformations. IEEE Trans. Patt. Anal. Mach. Intell., 11(6):567-585, June 1989.

[9] L. G. Brown, A survey of image registration techniques. Computing Surveys, Vol.
24, pp. 325-376, December 1992.

[10] K. Brunnstrom and A.J. Stoddart, Genetic Algorithms for Free-Form Surface
Matching, 13th Int. Conf. on Pattern Recognition, pp D689-673, Vienna, Austria,
1996.

[11] M. Celenk, Three-dimensional object recognition using cross-sections, 27th
Southeastern Symposium on System Theory (SSST'95), March 12 - 14, 1995

[12] CS. Chua and R. Jarvis, 3D free-form surface registration and object
recognition, Int'l J. of Computer Vision, Vol. 17, pp. 77-99, 1996.

[13] H. Chui, Non-Rigid Point Matching: Algorithms, Extensions and Applications.
Ph.D. Thesis, Yale University, 2001

128

[14] C. Dorai, A. Jain, COSMOS - a representation scheme for 3D free-form objects,
IEEE Transaction Pattern on Pattern Analysis and Machine Intelligence, 19(10):
pp. 1115-1130, 1997.

[15] J.S. Duncan, and N. Ayache, Medical Image Analysis: Progress over Two
Decades and the Challenges Ahead, IEEE Trans. Pattern Analysis and Machine
Intelligence , Vol. 22, No. 1, Jan 2000.

[16] J. Feldmar and N. Ayache. Rigid, affne and locally affne registration of frec-
form surfaces. Intl. J. Computer Vision, 18(2):99-119, May 1996.

[17] A.W. Fitzgibbon, Robust Registration of 2D and 3Dpoint Sets. Department of
Engineering Science, University of Oxford

[18] S. Gold, A. Rangarajan, C. P. Lu, S. Pappu, and E. Mjolsness. New algorithms
for 2-D and 3-D point matching: pose estimation and correspondence. Patfern
Recognition, 31(8):1019-1031, 1998.

[19] S. Gold and A. Rangarajan, A Graduated Assignment Algorithm for Graph
Matching, IEEE Transactions on Pattern Analysis and Machine Intelligence,
18(4):377-388, April 1996.

[20] S. Granger, X. Pennec, and A. Roche, Rigid Point-Surface Registration using
Oriented Points and an EM variant of ICP for Computer Guided Oral
Implantology, Research report RR-4169, INRIA, 2001.

[21] E. Guest, M. Fidrich, S. Kelly, E. Berry, Robust Surface Matching for
Registration, 3DIM, 1999.

[22] M. Hebert, K. Ikeuchi and H. Delingette, A spherical representation for
recognition of freeform surfaces, IEEE Transactions on Pattern Analysis and
Machine Intelligence, 17(7): 681- 689, July 1995.

[23] L. S. Hibbard and R. A. Hawkins. Objective image alignment for three
dimensional reconstruction of digital autoradiograms. J. Neurosci. Methods,
26:55-75, 1988.

[24] BK.P. Horn, Extended Gaussian Image, Proc. IEEE, Vol. 72, pp. 1671-1686,
1984.

[25] H.Hugli, C. Schutz, Geometric Matching of 3D Objects: Assessing the Range of
Successful Initial Configurations. 0-8186-7943-3/97 IEEE

[26] A. Johnson, Spin-Images: a representation for 3-D surface matching, Ph.D.
Thesis, CMU-RITR-97-47, Robotics Institute, Carnegic Mellon University,1997.

[27] T. Joshi, J. Ponce, B. Vijayakumar and D.J. Kriegman, HOT curves for modeling

and recognition of smooth curved 3D objects, Proc. IEEE conf- Computer Vision
and pattern recognition, Seattle, Wash., pp.876-880, June, 1994.

129

IMICIECNCE, 1J3.2, PP TT7-I0Z T,

130

== 1

	A hybrid method for solving the non-rigid point matching problem in 3D
	Recommended Citation
	APA Citation
	MLA Citation

	tmp.1636792406.pdf.TrEj_

