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ABSTRACT 

Properties of material under extreme conditions, whether high pressures, high 

temperatures or low temperatures, are rather interesting. Understanding the 

properties of any given material at such extreme conditions provides a much 

clearer conception of the properties of this material in general. Although until 

recently studying the nature of matter under such extreme conditions was not 

possible via the traditional experimental or traditional methods, it was made 

possible by the utilization of computer simulation methods. 

Carbon tetrafluoride has been gaining wide interest in recent years due to its 

important role in the semiconductor processing industries. It is one of the 

most preferred etchants used today on a number of different silicon films. 

The importance of CF4 has resulted in a vast interest in studying the molecule 

under all possible conditions of pressure and temperature. 

The nature of CF4, it's crystal structure and phase transitions was investigated 

from 0 K to 450 K and from 0 GPa to 35 GPa, using the Molecular Dynamics 

simulation technique. Keith Refson's Moldy was the software we decided to 

use in our research. The results we were able to arrive at were compared with 

experimental findings and they were quite in agreement. 
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INTRODUCTION 

 For Decades, there existed a clear distinction between different 

sciences. Chemistry, Physics, Biology, Mathematics, Computer science and 

other classes of science, were being treated and viewed each as a school on 

its own. That was until scientists started noticing how closely interrelated all 

the sciences are, and also how vital it is to understand one class in order to 

fully comprehend the other. It was then that the scientific community started 

introducing such terminology as physical chemistry, chemical physics, 

quantum mechanics, biophysics, mathematical physics and computational 

physics to describe those areas of study where the distinction between two or 

more sciences seems to diffuse at the interface of these sciences.  

 This new theory became the basis of many revelations in the scientific 

world today. As a matter of fact, many of these outbreaks wouldn't have been 

possible were it not for this concept that I like to refer to as 'the mingling' of 

the sciences. 

 As a chemist, I have always been quite fascinated by the nature of 

matter. However, what fascinated me even more was the fact that Chemistry 

was often being referred to as the 'central science' for its ability to connect 

Physics to other branches of science. Perhaps this is one of the major reasons 

I chose to research this particular topic, 'Phase transitions of a molecule as it 

is subject to different pressures and temperatures'.  

 Until a few decades back making such a study was rather difficult, 

timely and not of very high accuracy. That is mainly due to the fact that 

studying such molecules was only possible via two methods neither of which 

could enable us to monitor the molecule during the course of a chemical 

reaction. If the molecule had been studied experimentally, which is the first 

of the two methods, not only does the study require very sophisticated 

equipment, but also there is almost no way to closely monitor the changes 

that the system undergoes as the reaction proceeds. One can stop the system 

at any given moment and take the readings they may require, however what 
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exactly happens as bonds break, form or interchange and how and when the 

system goes from one phase to another, cannot be monitored. 

 The second method utilizes complicated mathematical equations to 

analyze a given system. A mathematical model is devised to find analytical 

solutions of the system enabling us to predict the behavior of such system 

given only certain parameters and initial conditions. Such mathematical 

equations, like the Schrodinger equation, which was used to solve the 

Hydrogen atom as well as other simple systems, are usually very complicated 

and very specific. Not all systems can be analyzed by a mathematical 

equation and not all systems have specifically constructed equations to be 

used in analytically solving them at any point in time. 

 Hence, neither the experimental nor the analytical methods proved 

very helpful after all. Although the areas where the two methods fail are 

vastly different, and although the analytical method may help on many levels, 

the results derived from both methods always seemed somehow lacking. 

Luckily, for all scientists wishing to explore the world of chemical reactions 

under different physical conditions, a third alternative has recently emerged.  

 Computer simulation has, during the past few decades, become the 

winning horse. As the study of computer science developed and as computer 

languages became much more comprehensible to non-specialized users, the 

utilization of computer simulations to study chemical systems has proven 

very successful. Computer simulations, as will be discussed, were able to 

blend the previous two methods into a method of higher accuracy, easier 

manipulation and more tangible results. It requires no sophisticated 

equipment, usually it requires less time than either of the other two methods, 

although it requires that a highly trusted computer program be devised. 

 Having access to such a method, it became possible to study a number 

of systems which could not have been studied otherwise. With the growing 

interest in the semiconductor processing industry a number of different 

molecules became particularly important. A number of organic tetrahedral 

molecules in are being heavily relied  upon in different stages of the 
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processing of semiconductors. Studying the nature, structure and phase 

transitions of these molecules makes it possible to utilize them in the most 

useful way through setting the conditions which optimize their output. 

Tetrafluoromethane is one of these molecules whose application scope has 

been widely expanded over the past few decades.  

 Tetrafluoromethane, usually referred to as Carbon tetrafluoride is an 

organic tetrahedral halocarbon that is widely used in semiconductor 

processing as an etchant for a variety of films such as silicon, silicon oxide 

and silicon nitride. It is also an important precursor of the polymeric films. 

Furthermore, Carbon Tetrafluoride is utilized in the fabrication of 

microelectronic and optoelectronic devices. It is used in plasma etching in the 

gas phase and is also used in dry etching at different temperatures and 

pressures according to the etching technique being used.  

 This makes it very important to investigate the phase transitions and 

record the properties of Carbon Tetrafluoride as well as its structures at all 

possible phases. CF4 has already been studied at temperatures between 100K 

and 300K both experimentally and via simulation methods. It has also been 

studied at pressures ranging from 0 GPa to 15 GPa. the structure and phase 

transitions of CF4 at temperatures and pressures beyond these limits remain 

vague. Moreover, studying high pressure states probes the interatomic 

interactions and thus allows broader understanding of chemical systems.  

 That is why we have decided in this thesis to explore the structure and 

phase transitions of CF4 within a large temperature range including areas 

previously studied as well as areas which have not been tackled before, 

particularly the temperatures from 0 K to 100 K and from 300 K to 400 K. 

Furthermore we also expanded our study to pressures higher than 15 GPa. 

 

 

 



   

- 14 - 

 

CHAPTER 1: COMPUTER SIMULATIONS 

1.1 THE COMPUTER SIMULATION PROCESS 

 Computer simulations can be defined as 'a computer program or 

network of computers that attempts to simulate an abstract model of a 

particular system'.[1] They have become very functional in mathematical 

modeling of many natural systems in Chemistry, Physics, Biology as well as 

many other fields. Computer simulation models are able to solve the most 

sophisticated of systems taking into accounts all external factors, which were 

almost completely ignored by the analytical method, as well as all internal 

interactions, which are completely unresolved by the experimental method. 

The model can also be adjusted to account for certain errors which may crop 

up during the course of the simulation thus providing us with output results 

which are highly accurate.  

 We may be able to further describe the role of the simulation 

technique if we are able to relate it to other methods of research. Computer 

simulations can be thought of as an intermediary between theoretical and 

experimental studies in the sense that one uses the theory to design a valid 

model and then uses the experimental results to examine the validity of that 

model. Not only does the simulation approach provide for an alternative 

method of research, but it may also in some instances be the only usable 

method. Studies of certain systems under extreme conditions may not be easy 

if it were not for the simulation method. This method has, for example, made 

it possible to examine systems under very high/low temperatures and 

pressures. 

 The computer simulation approach can be summarized in the 

following series of steps [2,3]: 

1. Formulating the problem: During this step, the system to be 

studied is chosen and relevant information is collected. All 
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aspects of the problem must be fully understood and accounted 

for. 

2. Data Collection: This stage is very important since in order for the 

model to be accurate one needs to collect all the possible data about 

the theoretical background. Many aspects of the system to be 

examined should be made clear. The range of data required for a 

simulation shall be discussed in more detail at other points in this 

study.    

3. Tailoring a computer program: During this stage, a relevant computer 

program is chosen (if one readily exists) or is tailored to fit the specific 

needs of the researcher and suit the specific criteria of the system.   

4. Constructing the model: The models used in computer simulations are 

referred to as symbolic models, where properties of the actual real-life 

systems are represented by symbols like mathematical equations. At 

this stage, the model is constructed or built taking into account all 

internal and external aspects of the system. The system itself is 

regarded as a collection of entities which are logically related. Each of 

these entities is of interest to a particular application and must 

therefore be taken into account when building the model. Features of 

the system that are important when devising a model are [3]: 

a. Environment and interdependency: All external factors 

which affect the system. 

b. Sub-systems: The system itself can be broken down into 

subsystems the properties of each being of importance. 

c. Organization: The system is made up of highly 

organized elements or components which work closely 

together in order to ensure functionality of the system. 
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d. Change: The present state or condition of the system may vary 

with time especially when the system is subjected to certain 

factors such as the variation in temperature or pressure. 

 Relevant variables of the system under study are either 

 'uncontrollable variables' which are givens and are not 

 to be changed or manipulated, or 'controllable 

 variables' which are manipulated during the course of 

 study in order to arrive at the solution. The choice of 

 controllable and uncontrollable variables depends upon 

 the system as well as the scope of study. 

 One must also identify the 'exogenous variables' and the 

 'endogenous variables'. The exogenous variables are those 

 whose values are not affected during the course of the 

 simulation while the endogenous variables are those 

 determined by other variables during the course of the 

 simulation.   

5. Model Validation:  At this stage a series of test runs are executed to 

ensure that the computer program as well as the stochastic model is fit 

for the purpose of the study. Usually this is carried out via using 

results attained from previous studies carried out analytically, 

experimentally or even by a different computer simulation program. 

The aim is to determine the degree to which the simulation model 

represents the real world or the part of the real world we are intending 

to study.   

6. Implementing the model: Once validated the model can be 

implemented to study the characteristics of the system that we 

wish to explore. If the model proves to be indeed successful it 

can even be improved and utilized in researching other areas 

of the system. slight modifications of the model may give a 

wide range of possible research areas. 
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7. Analyzing the solutions: Output received from the simulation 

program are closely analyzed, studied and put in its final result 

format.   

 This flow chart is a representation of the steps adapted during 

a computer simulation [4,2]. 

 

 

Figure (1.1): The steps adapted in a Molecular Dynamics simulation 
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1.2 COMPUTER SIMULATION TECHNIQUES 

 Over the past decades, and since the beginning of utilizing computer 

simulations in research, a number of developments have been introduced. 

Not only did a number of different techniques develop but also many 

developments have taken place within these various techniques. Perhaps the 

most widely used computer simulation techniques in the field of science are 

the Monte Carlo simulation techniques and the molecular dynamic simulation 

techniques.  

 The Monte Carlo technique in its basic form utilizes probabilities. It 

relies on repeated random sampling to calculate the results of the 

computational algorithm studied. It is usually referred to as a 'stochastic 

strategy' [5]. This particular technique generates a large number of 

microstates of the equilibrated system via the process of transforming from 

one microstate to the next within the statistical ensemble. During such 

process, the positions of the species as well as their orientations and 

conformations undergo a series of random changes. By averaging the 

quantities of interest over the microstates being examined one can reach the 

results being researched.  

 The Monte Carlo has a number of advantages, which have made it one 

of the most prominent techniques to date. Such advantages include the ease to 

extend it to simulate a large number of different ensembles, the flexibility one 

experiences when choosing the sampling functions and the underlying matrix 

or trial move, which must satisfy the principle of microscopic reversibility as 

well as timesaving as only the potential energy is required [6]. The Monte 

Carlo technique has many applications in computational physics, physical 

chemistry and other applied fields. The technique is used for statistical field 

theory calculations as well as for providing solutions to the many-body 

problem for quantum systems [7]. 

 There is also the Brownian Dynamics technique which is best utilized 

for simulations involving large polymer molecules or colloidal particles [8,9]. 
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However, the most detailed technique that can be used in molecular modeling 

is the Molecular Dynamics method. This method was first used by Alder and 

Wainwright to study the interactions of hard spheres [10,11]. It was 

introduced during the late 1950's from which point it has had many important 

breakthroughs concerning the behavior of simple liquids [12]. However, one 

of the major advances made via the use of this technique was carried out in 

1964 by Rahman who was able to carry out the first computer simulation for 

liquid Argon using a 'realistic' potential [12]. This particular advance was the 

one which later led to a much more important breakthrough; the first 

molecular dynamics simulation of a realistic system. This study was 

performed by Rahman and Stillinger in their simulation of liquid water in 

1974 [12]. Since then a large number of simulation techniques have evolved. 

There are now many specialized techniques for very specific problems, 

including 'hybrid' quantum mechanical - classical simulations. 

 Unlike the Monte Carlo technique, this method calculates in principle 

the real dynamics of the ensemble. Having done so, one can then calculate 

the properties of the ensemble within a specified time frame. The process by 

which this is performed can be described as a 'Cartoon Movie' process. A 

long series of consecutive simulation runs is carried out each giving solutions 

to the equation of motion at a certain instant in time. When integrated over a 

time limit it provides positions of the molecules at that time. In other words, 

Molecular Dynamics can be described a simulation of physical movements of 

atoms and molecules. The researcher allows the atoms and molecules to 

interact for a certain period of time, after which in most cases we are able to 

determine the trajectories of these atoms through numerical solutions of the 

equation of motion.   

 Molecular dynamics is perhaps the most detailed molecular simulation 

method. It proficiently evaluates various properties and dynamics of the 

system, which cannot otherwise be obtained by applying the Monte Carlo 

technique. This brings us to the important conclusion that this is a more useful 

tool, specifically in our field of study, than other available simulation 

techniques. In physics research MD simulations are used to examine and 
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explore certain dynamics of phenomenon on atomic level which would 

otherwise be extremely difficult to observe. 

 The method allows the prediction of the static and dynamic properties 

of molecules directly from the underling interactions between the molecules 

[12]. Molecular dynamics being a deterministic approach actually simulates 

the time evolution of the molecular system and provides the actual trajectory 

of the system. This is yet another aspect where molecular dynamics differs 

from the Monte Carlo technique. Whilst there is no direct relation between 

successive configurations of Monte Carlo simulations, molecular dynamics 

provides information about the time dependence of certain properties being 

examined. This makes it possible to predict these properties at any point of 

time whether in the future or the past. It also allows us to calculate time 

correlation functions during a molecular dynamics run. The information 

generated can be used to fully characterize the thermodynamic state of the 

system, which gives this technique a depth and versatility that no other 

technique possesses. For example, molecular dynamics simulations have a 

kinetic energy contribution to the total energy. The presence of the kinetic 

energy factor makes it possible to test the system for a total conservation of 

energy or estimate optimal velocities. In practice, the simulations are 

interrupted long before there is enough information to derive absolute values 

of thermodynamic functions; however the differences between 

thermodynamic functions corresponding to different states of the system are 

usually computed quite reliably[8].  

 Having mentioned all the above relative advantages of molecular 

dynamics, it was chosen as the technique we shall use in our study. Utilizing 

this method will make it easier for us to view the system at successive points 

in time and relate its state at one particular point in time to its state at another 

point in time thus monitoring the changes, the significance of these changes 

as well as their consequences. MD shall give us dynamics; where other 

methods would have only been able to provide us with an ensemble (smeared 

picture), MD is able to provide us with movie like results. 
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CHAPTER 2: MOLECULAR DYNAMICS 

2.1 BASICS OF MOLECULAR DYNAMICS (MD) 

 Molecular Dynamics has provided the methodology for 

detailed microscopic modeling on a molecular scale. One cannot 

ignore the fact that the characteristics of matter can only be studied 

through the understanding of the nature of its constituents and also 

the dynamics of matter is contained in the solution of the N-body 

problem. It is only through computational tools that scientists can 

observe the movement and dynamics of individual molecules and it 

is best done through molecular dynamics. The theoretical basis of 

MD has been developed by a number of well known scientists in the 

analytical mechanics field such as Euler, Hamilton, Lagrange and 

Newton [13]. 

 Normal equilibrium MD corresponds to microcanonical 

ensembles of statistical mechanics. However, when we are required 

to study certain properties at constant temperature and/or pressure 

the equation of motion is modified to produce the required system.  

 In its simplest form MD simulation is based on consecutive 

numerical solutions of the equation of motion (or their Newton-Euler 

equation of motion). The Newton equation of translational motion is 

related to force, which is given by [14]: 


j b a

iajbi fF        (2.1) 

 This is the force in a diatomic molecule of atom a in 

molecule i on atom b in molecule j. 

 For a simple atomic system Newton's equation of motion 

may be written as [14]: 
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     (2.2) 

where mi is the mass of the i
th

 atom and fi is the force acting on the atom, 

which in this case is assumed to be only due to interactions with other atoms. 

The force as we see from the above relation is derived from the potential 

energy of a complete set of 3N atomic coordinate system.  

 The potential energy is given by [14]:  

    (2.3) 

 Therefore, we can arrive at another important relation for force 

relating it to the above equation: 

    (2.4) 

Thus, the total energy may be written as: 

    (2.5) 

 Another important factor is torque, the tendency of force to 

rotate an object about an axis. The laws described here relate the 

motion of the center of mass of a rigid body to the sum of forces and 

torques acting on it. The torque may be defined as the turning force 

of an object. It is related to the center of mass of the molecule (given 

by 
a iaia

i

i m
M

rR
1

) via the following equation:  

 
a

iaiiai r f)R(        (2.6) 
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The Euler equation for rotational motion is the one that utilizes the torque as 

per the following relation:  iiiiii 


ωIωωI    (2.7) 

where i  is the angular velocity and i, is the inertia tensor given by:  

  )1( 2

iaiaiaiai pm ppI         (2.8) 

where pia is the atomic site co-ordinate relative to the center of mass of the 

molecule and given by  iiaia Rrp   . 

 

2.2 CLASSICAL MOLECULAR DYNAMICS  

As mentioned earlier, our interest is in the classical molecular 

dynamics. In that aspect we are focused on the dynamic behavior of the 

macro molecular systems. The description is fully microscopic in the sense 

that the unknowns are positions,  momenta, , velocities 

and similar quantities of all the atoms in the system [15]. All atomic 

trajectories supposedly obey the classical Hamiltonian equations of motion. 

The use of quantum theory in classical MD is limited to the construction of 

the interaction potentials in relation to the Born-Oppenheimer approximation. 

This potential is usually of very special structure. It is made up of a sum of 

atom-to-atom potentials resulting from various types of interactions between 

the atoms. Most of the interactions occurring within the molecule (binding 

forces representing bond structures) are of nonlinear vibrational nature. This 

means that most typical MD simulations have 'nonlinear highly-oscillatory 

behavior on multiple time scales in which the fastest vibrations have periods 

of about a few femtoseconds' [15]. This is one of the problems that may face 

us while using this technique and we shall fully focus on such aspects in later 

chapters. 

Having mentioned the classical approach we must make it clear that 

there are three distinct cases to which one can apply the Newton-Euler 
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equations which we have illustrated above. It is a known fact that these 

equations describe the combined translational and rotational dynamics of a 

rigid body.  

The first, and perhaps the simplest of cases to which we may apply 

the Newton-Euler equation, is the MD simulation of hard spheres. This is 

where we simulate the motion of N colliding particles according to the laws 

of elastic collision using event-driven simulations. Such simulations are 

commonly applied to predict properties of physical systems at the atomic 

level. This includes motion of gaseous molecules, dynamics of chemical 

reactions, atomic diffusion, sphere packing, phase transitions and front 

propagation as well as many other domains which involve modeling of 

particle systems.  In this type of system the model is 'idealized'. The particles 

interact via elastic collisions with each other and with the reflecting 

boundary. No other forces are exerted, which means that the particles travel 

in straight lines at constant speed between collisions.  

This system is governed by the laws of conservation of energy and 

linear momentum and the simulation of such system is carried out via one of 

two techniques. The first technique is referred to as a time-driven simulation. 

It discretizes time into quanta of size dt; the position of the particle is 

monitored via observations after every dt unit of time and the velocities are 

updated. The second technique is referred to as an event-driven simulation 

where the focus is on these points in time during which interesting events 

occur. When this system is simulated we can determine the next pair of 

spheres to collide, calculate when the collision will occur, calculate the 

positions of all spheres at the collision time. Furthermore, we can determine 

the new velocities of the two colliding spheres after collision by applying the 

principle of conservation of linear momentum. 

The second situation where the Newton-Euler equations may be 

applied is one where the particle is subject to a constant external force 

between collisions [16]. This is the case where a charged particle moves 

within a constant uniform electric field. Simulations of such ionic systems 
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would require inclusion of long-range electrostatic forces. The particle feels a 

force that is independent of its velocity (perpendicular to its velocity) and 

hence the path of the particle changes and so does the direction and 

magnitude of the velocity. The force acting on the particle may be donated 

by:  

Fi = qiE         (2.9) 

where qi is the charge of the particle and E is the electric field. 

The third and definitely most complicated application of the Newton-

Euler equations is in situations where there is a dependence on the relative 

position of the particle. In other words, the force acting on one particle at any 

point in time depends on the position of that particular particle in relation to 

the other particles constituting the system. In such case the force is described 

the first partial derivative of the potential energy function as given by the 

second half of equation (2.2) as follows [14]:  

      (2.10) 

The potential U defines a force f at every point r in space, and hence 

the set of forces is usually referred to as a force field.  

Due to the complexity and unpredictability of particle motion, the 

above mentioned situation is almost impossible to study analytically. That is 

why this situation is the one where molecular dynamics is most useful. The 

first two situations can be studied analytically although it requires a lot of 

efforts and certain conditions to abide by. The third situation however can 

only, in most cases, be studied via the application of MD. This particular type 

of problem shall be fully analyzed in following chapters.  

 

 

 

http://en.wikipedia.org/wiki/Force_field_(physics)
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2.3 MOLECULAR DYNAMICS WITH CONTINUOUS POTENTIALS 

As we briefly stated earlier, when dealing with realistic (less 

idealized) systems, the force is dependent on positions, not only of the 

particle monitored, but also of all the particles with which it interacts. That is 

every time the position of the particle 'i' changes the force on it shall change, 

and also every time the position of any of the particles with which this 

particle 'i' interacts changes, the force on particle 'i' shall change. The 

situation becomes a many-body-system rather than a one-body-system, and 

in order to be able to fully analyze it we must study the continuous potential 

energy function. Under the conditions of this continuous potential the many-

body-problem is tackled in the normal manner. 

The potential functions for non-bonded energies are obtained by 

summing over the interactions between particles. The potential energy in that 

case can be calculated from the sum of contributions of energies between 

atom pairs.  The Lennard-Jones potential is an example of such non-bonded 

potential [16]. However, in many-body potentials the potential energy does 

not only depend on the interacting pair. It includes contributions and effects 

of three or more particles. The potential energy cannot be simply found by a 

sum over pairs of atoms, since these interactions are calculated 'explicitly' as 

a combination of higher-order terms. The equations of motion for this 

particular type of problem cannot be solved by normal methods and hence 

there are certain techniques that have been especially developed for obtaining 

solutions for the many-body problem. One of these methods is referred to as 

the finite difference method, and it is a form of integration that is utilized to 

solve the equations of motion [17,18].  In its essential form this method 

provides approximations of the solutions of differential equations using finite 

difference equations to approximate derivatives. 

2.3.1 The Finite Difference Method 

As we have explicitly discussed before, when carrying out a 

molecular dynamics simulation one is trying to arrive at certain results, 

which in many cases involves the prediction of the positions and velocities of 
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particles at any point in time. For a many-body system the finite difference 

technique is utilized to illustrate trajectories with continuous potential 

models. We shall assume that these trajectories are pair wise additive. The 

integration of the Newton-Euler equation is broken down into a number of 

consecutive stages which are separated from each other in time by a certain 

time interval t . The total force on any one particle at any time t is calculated 

using vector sums of the particle's interactions with other particles in the 

ensemble. Having arrived at a value for the force, which is assumed to be 

fixed during a time step, one can now calculate the acceleration. Now that we 

have the positions, velocities and accelerations of the particles at time t, we 

can use them to calculate the positions and velocities of the particles at time 

t+ t . Now the forces and accelerations of the particles at their new positions 

are calculated, from which we can determine the positions and velocities of 

the particles at time    t + 2 t . The process is a repetitive pattern which lasts 

as long as the determined number of time steps. The diagram below describes 

how the finite difference method relies on discretizing a certain function [19]. 

 

Figure (2.1): The finite difference method relies on discretizing a function on a grid 
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The first question that comes to one's mind at this point is how we can 

approximate the derivatives of a known function by finite difference 

formulas based only on values of the function itself at discrete points. Many 

algorithms for integrating the equations of motion using the finite difference 

method have been developed over the years among which some are very 

often used in MD calculations. The core of these algorithms is the 

assumption that all dynamic properties of the system can be approximated by 

utilizing Taylor series expansions. Taylor series expansions of the basic 

dynamic quantities of a system (position, velocity, acceleration...etc) are 

shown below [20]: 

 . . .)c(
24

1
)(b

6

1
)a(

2

1
)v()(r)(r 432  ttttttttttt    (2.11) 

 . . .c
6

1
)b()a(vv  )(

2

1
)()( 32 ttttttttt    (2.12) 

 . . .)tc(t
2

1
)tb(ttatta 2  )()(     (2.13) 
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The first derivative of position with respect to time gives the velocity 

(v), the second derivative with respect to time gives the acceleration (a) and 

the third and fourth derivatives of position with respect to time are denoted 

by (b) and (c) respectively.  

Having established this point so far, we now have to choose the most 

suitable integration method to work with.  

2.3.2 Different Integration Algorithms 

There is a large number of integration methods with which we may 

proceed to solve the above problem. All of these techniques are sufficient; 

however some of them require more efforts than others. When choosing the 

most suitable technique one must take a number of factors into account. First 

and foremost we must evaluate the computational effort required for that 
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technique. We must also take the cost effectiveness of the algorithm into 

consideration. The energy conservation factor is also of great importance and 

it can be easily established via calculating the root-mean-square fluctuation, 

which is a statistical measure of the magnitude of a varying quantity, and 

plotting it against time step. Different algorithms vary in the rate at which the 

error varies with the time step [16]. The method should also conserve 

momentum, be time reversible and permit the usage of long time steps. The 

memory required and the synchronization of positions and velocities are also 

important factors to be considered when choosing the most suitable algorithm 

as well as how easy it is to program. It is also important that the algorithm be 

able to give accurate results (as precise as computationally possible), i.e. 

same results as an exact analytical trajectory. 

Among the Integration techniques which have proved very successful are 

[7,20,21,22,23,24,27]: 

1. The Verlet algorithm [21]: This method is the most commonly used in 

MD. It uses two sets of coordinates namely the positions and 

accelerations  at time t and the accelerations from the previous run r( t - 

t ) to calculate the positions at (t + t ) and r( t + t ). By addition of 

simple simultaneous equations we arrive at the relation:  

r( t + t )=2r(t)- r( t - t )+ t 2
a(t)     (2.15) 

where r is the position and a is the acceleration. The equation does not 

give the velocities, however they can be calculated using a straight 

forward relation of the form: 

 v (t) = [r (t+ t )-r (t- t )]/2 t       (2.16) 

As we may see, the Verlet algorithm is a direct approach which has 

proven very successful especially with its modest storage requirements. 

However it has also proven to have a lower degree of precision due to the 

fact that the components being added together while calculating positions 

are not of the same magnitude. That is where we add two relatively large 
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quantities 2r(t) and r(t- t ), to a relatively smaller quantity ( t 2
a(t)). This, 

as well as the fact that there is no direct way to obtain the velocities is 

among the major disadvantages of this method. One other disadvantage is 

that the Verlet technique is not a self starting method. That is acquiring 

new positions is dependent on current and previous positions. 

2. The Leap-Frog algorithm [24]: this second technique is a variation of 

the Verlet algorithm. This method calculates velocities v(t+1/2 t ) from 

the velocities calculated at time (t-1/2 t ) and acceleration at time t. From 

these calculations, the positions are obtained. That is the velocity at time t 

is calculated by the relation: 

 v(t)=1/2[v(t+1/2 t )+ v(t-1/2 t )]     (2.17) 

where: 

 v(t+1/2 t )= v(t-1/2 t )+ t a(t)     (2.18) 

And positions are given by: 

 r(t+ t )=r(t)+ t v(t+1/2 t )     (2.19) 

As we can see this method is straightforward. Unlike the Verlet 

Algorithm, the leap-frog algorithm explicitly includes the velocities and it 

does not have calculations including quantities of highly varying 

magnitudes. However, it too has its disadvantages the most obvious of 

which is that the positions and velocities are not synchronized which 

inhibits the ability to acquire a number of important quantities like the 

Kinetic Energy contribution to total energy. 

3. The Velocity Verlet Method [12,22,24]: This algorithm is a corrected 

version of the Verlet technique which allows acquiring positions, 

velocities and accelerations and at the same time has a higher degree of 

precision. This method uses the following equations: 
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r(t+ t )=r(t)+ t v(t)+1/2 t 2a(t)    (2.20) 

v(t+ t )= v(t)+1/2 t [a(t)+a(t+ t )]    (2.21) 

4. The Beeman Integration Scheme [12,21]: This is one of the more 

accurate techniques available. It was designed to allow for high numbers 

of particles in MD simulations. The expression it gives for velocity does 

not allow for a high degree of error and thus is highly proficient. Having a 

more accurate description of the velocity allows for better conservation of 

energy since Kinetic energy is obtained directly rather than through 

assumptions or estimations. The technique is rather expensive however it 

is cost effective. There are two variations of the method, the first of which 

was introduced in 1973 [21] is known as Beeman's method and as 

mentioned above it is a direct variation of the Verlet method that uses 

different formulas for velocities. The second variation is one that was 

introduced later in 1976. It is the direct variant of the third order method 

in the predictor corrector technique. The Beeman algorithm is related to 

the Verlet method and uses the following equations [23,24,28]: 

r(t+δt)=r(t)+δtv(t)+2/3δt
2
a(t)-1/6 δt

2
a(t- δt)   (2.22) 

v(t+δt)=v(t)+1/3δta(t+δt)+5/6δta(t)-1/6 δta(t- a)  (2.23) 

This integration scheme is widely used today with its predictor corrector 

variation to attain the best, most accurate results. The more complex 

calculations and equations make this algorithm more expensive than 

others. 

2.3.3 The Predictor Corrector Integration Method: 

This method is a more advanced family of algorithms which was 

developed at a later stage than the Verlet variations. In its core, it somehow 

depends on the various Verlet techniques, however it has introduced the 

ability to choose a method that is correct to a given order. As suggested from 

the name, this algorithm predicts the degree of error in its calculations and is 

able to provide means of correcting them. It is a highly systematic method 
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which in its core relies on first calculating a rough approximation of the 

desired quantity, this is the prediction step. The correction step comes next 

where the initial approximation is refined using other means. By definition 

the predictor corrector methods 'proceed by extrapolating a polynomial fit to 

the derivative from the previous points to the new point (predictor step), then 

using this to interpolate the derivative (the corrector step)' [25]. In MD, the 

first step of the method is one where new positions, velocities, accelerations 

and any other terms of higher order are predicted via the use of a regular 

Taylor expansion as previously discussed. The second step involves 

evaluating the forces at the new positions using the potential energies and 

then deriving the new accelerations a(t+ t ). Having evaluated these 

velocities, the next step is to compare these values with those predicted from 

the Taylor series expansion, a
c
(t+ t )  and then the difference (which is 

assumed to be the error) is applied, as a corrector, to positions, velocities and 

other calculated amounts.  

The correction stage proceeds in the following order [26,27,30]. 

∆a(t+δt)=a
c
(t+δt)- a(t+δt)      (2.24) 

THEN, 

r
c
(t+δt)=r(t+δt)+c0∆a(t+δt)      (2.25) 

v
c
(t+δt)=v(t+δt)+c1∆a(t+δt)      (2.26) 

a
c
(t+δt)/2=a(t+δt)/2+c2∆a(t+δt)     (2.27) 

b
c
(t+δt)/6=b(t+δt)/6+c3∆a(t+δt)     (2.28) 

The best values for the coefficients c0, c1, c2, c3...etc depend 

on the order of the Taylor series expansion and hence vary from one 

situation to the next [29,32].  

The Predictor Corrector method is a modification that can be applied 

to any of the integration techniques discussed earlier. In our research, as shall 

be discussed in more detail in following chapters, we used the modified 
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version of the Beeman integration scheme. This particular procedure which 

was proposed in 1976 by Beeman [30,31] is one of the most accurate 

algorithms in the Verlet family for calculating velocities. The Beeman 

algorithm which is based on equations (2.22) and (2.23) ensures that 

calculations of velocity and position are synchronized. First it evaluates the 

new positions using the current positions, velocities and accelerations as well 

as previous accelerations. Then the forces are reevaluated on basis of the new 

positions. The forces are then used to update the velocities and accelerations. 

As we see, like most other Verlet methods, this algorithm is not self starting. 

The Modified Beeman's Algorithm may only be derived for a fixed 

time step. It was found to give the most stable computations. The modified 

Beeman's algorithm calculates velocities and forces self-consistently. In the 

equations of the modified Beeman algorithm the symbol x is used to denote 

any dynamic variable (including but not exclusive to: MD cell edge, centre-

of-mass co-ordinate, quaternion etc). The symbol x
•(p)

 represents the 

'predicted' velocities and x
•(c)

 represents the 'corrected' velocities. The 

algorithm may be described in the below stated series of equations [31]: 
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The final step is to replace 
)()(

with  
cp

xx


and go to step 2 

until it converges. That is we should apply the predictor corrector 

method to steps 2 till the end of the cycle until the predicted and 

corrected velocities converge and the error (discrepancy) becomes 
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minimal. This should not require more than three of four cycles if 

the initial configuration and conditions are accurate.   

Now that we have calculated the velocities and positions, 

which in this method are dependent on accelerations at time (t-δt) 

and (t+δt), we can deal with the translational aspect of the molecular 

motion. The following step it to start dealing with the rotational 

motion aspect which is also of great importance in understanding the 

dynamics of the system. 

Perhaps one of the most commonly used notations for 

representing orientations and rotational motion of objects in three 

dimensions is unit quaternions [33]. Quaternions, also referred to as 

versors, are used to represent an orientation or a certain rotation 

relative to a reference position. Quaternions provide a simple 

method to represent such space rotations via the encoding of the axis 

vector and the angle of rotation which are the components used in 

the representation. The quaternions encode these axis-angle 

components in four numbers followed by the application of the 

corresponding rotation to a position vector that represents a certain 

point relative to the origin. Unit quaternions are given by [34]: 

      (2.33) 

     (2.34) 

The quaternions are related to rotations around an axis by the 

following equations [35]: 

       (2.35) 

      (2.36) 

      (2.37) 

      (2.38) 
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where α is a rotational angle and cos(βx), cos(βy) and cos(βz) are directional 

cosines related to Euler's method. 

Compared to Euler angles, not only are they easier to compose and 

simpler algebraically, but they also help arrive at equations of motion which 

have no singularities. This is an important factor when running an MD 

simulation since it helps avoid energy and force overflow during the 

simulation. The same factors apply when comparing quaternions to rotation 

matrices which may be less numerically stable. There are a number of 

algorithms and simple computational codes which help convert quaternions 

to Euler angles format. The following equations relate quaternions to Euler 

angles [36]: 
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Given that the vector form may be expressed as follows: 

 q (q0,q1,q2,q3)       (2.43)

 Furthermore, Pawley has defined specific algebraic methods to solve 

quaternions [35,36]. For example, when multiplying quaternions we deal 

with each as a four element vector and use a matrix product technique to 

come up with the solution. So if we have two quaternions denoted by q and r, 

then the four-vector format of each shall be q≡(q0;q1;q2;q3) and r≡(r0;r1;r2;r3),  

then their product may be expressed as follows [35]: 
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We may also define the conjugate of the quaternion as 

q*=(q0
'
,q1',q2',q3') and the norm 
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Having established this, and since our work requires that we find the 

time derivative of the quaternions and weave it into the equation of motion 

there are a number of important relations we need to understand as 

follows[37,38]:  

),0(2 pqq 


       (2.45) 

The above equation establishes a relation between the time derivative 

of a quaternion and the principal frame angular velocity ( p ). The second 

derivative is for the above equation is given by[39,41]: 
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        (2.47)                   

Given the relations above we can now utilize the quaternion and their 

derivatives as dynamic variables for the rotational aspect of motion. The 

components of the quaternion shall be treated independently and solved via 

the regular algorithm techniques we described previously. 

2.4 LIMITATIONS AND CONSTRAINTS OF MD SIMULATIONS: 

In order to be able to make proper use of MD simulations, we should be well 

aware of its limitations. There are a number of limitations which are of more 

importance than the rest. These limitations are [40]: 
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1. Quantum Effects:  Certain dynamical events usually involve quantum 

effects such as changes in the bonding structure, tunneling and presence 

of certain intermediaries. These effects cannot be accounted for by 

straightforward force field simulations. It can be solved via the use of 

quantum or ab initio MD.  

2. Reliability of interatomic potentials: Results of the simulation will only 

be realistic if potential energy function is an imitation of the forces 

experienced by the real atoms. Therefore designing a good force field is a 

very tricky aspect of the simulation. 

3. Time limitations: Perhaps the most severe problem of MD simulations is 

the time limitation. The time scale for some chemical processes may 

extend over many orders of magnitude. There are always limitations on 

the time scales that can be investigated. Usually simulation runs are short 

(in the range of nanoseconds). In a very few cases it may extend to 

microsecond ranges. Wrong choice of the time step has negative 

consequences on the results of the simulation runs. Therefore one must 

test whether or not the simulation has reached equilibrium before we can 

fully rely on the averages calculated from that run.  

The length of the run depends on the size of the system as well as its 

physical properties. There are no fixed rules for choosing the most 

suitable time step. If the time step chosen is too small the trajectory will 

only cover a limited proportion of the phase space. If it is too large it may 

give rise to high energy overlaps between atoms and hence may result in 

instabilities in the integration algorithm. This shall increase the error and 

thus give inaccurate result which has discrepancies with the analytical 

results since the energy and linear momentum conservation would be 

violated. Furthermore if the violation is too high it may result in a total 

failure of the program resulting from numerical overflow. The diagram 

below shows an example of the two extremes. If the time step is very 

small (as on the left) the phase space is covered rather slowly. If the time 

step is too large (as in the middle) this gives rise to instabilities. With the 
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appropriate time step (as on the right) the phase space is efficiently 

covered which helps increase the efficiency of the simulation run and thus 

provide more accurate results [42].  

 

 

 

 

            

 

 

 

 

 

 

 

Figure (2.2): A very small time step (left) phase is covered very slowly; a large time step (middle) 

gives instabilities. An appropriate time step (right) phase space is covered efficiently and collisions 

occur smoothly. 

In most MD problems, it is very important to choose a time step that is well 

balanced with the correct trajectory. That is for a small time step much more 

computer time shall be needed, and for a rather large time step we give rise to 

the largest errors to arise, furthermore a large time step can result in blowing 

up the trajectory (taking it out of proportion). This has placed a very severe 

limitation on the time step: the time step must be approximately one order of 

magnitude smaller than the shortest motion. Furthermore experience has 
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given us researchers a chance to estimate appropriate time steps for certain 

systems. The table below briefs this point [42]: 

System Types of motion 
Suggested time step 

(seconds) 

   

Atoms Translation 10
-14

 

Rigid Molecules Translation and rotation 5x10
-15

 

Flexible molecules, rigid 

bonds 

Translation, rotation, 

torsion 
2x10

-15
 

Flexible molecules, 

flexible bonds 

Translation, rotation, 

torsion, vibration 
10

-15
 or 5x10

-16
 

Table (2.1): Suggested time steps for different types in motion present in various systems. 

4. Surface Effects: The system we are dealing with, particularly if it is in 

the gaseous or liquid phase, shall in most cases be contained in any sort of 

container which itself is made up of particles. This means that it is really 

difficult to isolate the system we are studying from interactions with the 

particles in the walls of the container. This problem presents itself in a 

more obvious way when the number of molecules used in the simulation 

is small. 

5. Size Limitations: The rules which apply to choosing the time step also 

apply to choosing the size of the MD ensemble. Furthermore, the length 

of the time step places certain limitations on the size of the problem. For 

large systems the evaluation of forces is computationally more 

challenging and therefore each integration step takes a longer time period. 

The simulation box size is of as much importance as the simulation time 

step. In short, the MD box size must be large enough to avoid boundary 
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condition effects. Boundary conditions are usually used when the sample 

size is small and the surface effects are not of particular interest. The size 

of the box must be large enough in order to prevent periodic artifacts from 

occurring as a result of unphysical topology of the simulation. If the box 

is too small, a macromolecule may interact with its own image in a 

neighboring box which results in highly unphysical dynamics in most 

macromolecules. The appropriate box size in relation to the size of the 

molecules depends on a number of factors, namely the length of the 

simulation (time step), the desired accuracy as well as the anticipated 

dynamics. 

A number of these limitations, particularly the last two, can be avoided 

(to a certain extent) via the use of a technique referred to as the Periodic 

Boundary Conditions. 

2.4.1 Periodic Boundary Conditions: 

A simple definition of Periodic Boundary Conditions (PBC) is that it 

is a tool which makes it possible for MD simulations to use a relatively small 

number of molecules to study the properties and behavior of the overall 

system. In any MD box we may describe it a fast substitution system which 

leaves the number of molecules within the unit cell constant. That is the 

moment one molecule moves out of the central cell another molecule 

instantly moves in its position from the opposite side of a second cell. The 

total number of molecules inside the central cell remains constant.    

So in short, periodic boundary conditions are those boundary 

conditions that are' often used to simulate a large system by modeling a small 

part that is far from its edge' [12,44]. In a more up-to-date sense, these 

conditions represent topologies of some video games. In practice, a unit cell 

or simulation box is set to be suitable for three dimensional tiling. When a 

certain object passes through one face of the unit cell, it is reflected on the 

opposite face with the same velocity. The atoms in a computational unit cell 

are replicated throughout the space to form an infinite lattice. The idea of 

PBC can be best illustrated by the diagram below [43]: 
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Figure (2.3): Schematic representation of the idea of periodic boundary conditions 
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The periodic boundary conditions are usually applied to simulate bulk 

gases, liquids, crystals or mixtures. They are particularly useful for 

simulating parts of a bulk system with no surface present. In many cases it 

may be used with Ewald summation methods to account for electrostatic 

forces in the system.  

Periodic boundary conditions are also used to truncate and 

modify the strain field arising from inhomogenuity of solid systems. 

In ionic systems on the other hand it may be used in conjunction 

with other factors to avoid summing to an infinite charge, i.e. the net 

electrostatic charge must be zero. Under the PBC, linear momentum 

is conserved whilst angular momentum is not.   In certain cases it is 

not best to use the PBC since it may alter the sampling of the 

simulations. Such cases are when we are dealing with 

microcanonical ensembles where particle number, volume and 

energy are constant, also referred to as the MD ensemble. In such 

case PBC shall alter the sampling due to the conservation of linear 

momentum as well as the position of the center of mass. The 

conservation of such quantities introduce certain artifacts to a 

number of important factors such as the statistical mechanical 

definition of temperature, the departure of velocity from its mean 

Boltzmann distribution as well as the violation of the equipartition 

for systems containing heterogeneous masses. 

Periodic boundary conditions also require the unit cell to be in shape 

to be perfectly tiled into a 3D crystal. This makes the cubic or rectangular 

prism most intuitive and a highly common choice along with the hexagonal 

prism, the elongated dodecahedron, the rhombic dodecahedron and the 

truncated octahedron. On the other hand it makes spherical and elliptical 

droplets very difficult to use. However, in certain cases non-cubic shapes are 

used for example when trying to eliminate the influence of the cubic 

symmetry on a shape of crystal nucleus in certain liquids. The figure below 

shows, a rhombic dodecahedron, an elongated dodecahedron, a hexagonal 

prism, a truncated octahedron and a Parapellepiped unit cell [45,46,47].     
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Figure (2.4):Different periodic cells used in computer simulations. From the left (top) a rhombic 

dodecahedron, an elongated dodecahedron, a hexagonal prism, (bottom) a truncated octahedron 

and a Parapellepiped unit cell 
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2.5 TRUNCATING POTENTIALS 

Perhaps the most time-consuming part of a simulation is the 

calculation of the non-bonded forces and energies at every time step. The 

time required for this part of the simulation run for a pair wise potential 

energy model is directly proportional to the square of the number of 

molecules in the ensemble.  

There are a number of methods that can be used to reduce such 

effects. When calculating the potential energy of a system with a certain 

configuration we first assume that the potential is pair wise additive whilst 

the effect of three-body or higher level many body interactions are ignored. 

Let's assume we are studying the system in the following diagram [48]: 

 

Figure (2.5): Periodic boundary conditions: a 2D periodic lattice where the unit cell contains five 

particles 
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In order to calculate the force and the potential energy involving 

molecule '1'we shall follow our previous assumption that the potential energy 

is pair wise additive and ignore other interactions. Now we start by taking the 

interactions of molecule '1' with all other molecules in the MD box. While 

proceeding to add these interactions we will find that we must take into 

account the interactions of molecule '1' and the images in the replica boxes. 

This will lead to an infinite number of interactions which are impossible to 

calculate in practice. Let's take the Lennard-Jones potential as an example. 

The L-J potential is a 'mathematically simple model that approximates the 

interaction between a pair of neutral atoms or molecules'.[49,50] It is most 

commonly expressed by the following relations [51]: 

     (2.48) 

This particular potential is not the most accurate, it is however one of 

the simplest. That is why it is most commonly used in computer simulations. 

As previously discussed it is practically impossible to calculate the desired 

quantities due to the infinite number of interactions present. This gave rise to 

the truncated potentials. This method was established to save computational 

time. The idea of truncation is based on the fact that foe short range 

potentials, main contributions to energy and force are from nearby particles. 

We can therefore choose to truncate the potential at some certain distance 

which we refer to as the cutoff radius (rc). We then assume that the potential 

contributions at any distance beyond (larger than) rc is zero. The L.J potential 

for example is often truncated at a cutoff radius of rc = 2.5σ or 3.2 σ [51] 

where: 

  (2.49) 

That is, at the cutoff radius, the L-J potential VLJ is about 1/60
th
 of its 

minimum value. However, a simple truncation of potential may result in a 

new problem: whenever a particle pair ``crosses'' the cutoff radius, the energy 
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makes a small jump. When these events are repeated a large number of times, 

it is likely to spoil the energy conservation in a simulation. The L-J potential 

method takes into account this discontinuity that may result from truncation. 

To avoid the described leap discontinuity at the cutoff radius, L-J potential is 

shifted upward by a minimal amount so that at the cutoff radius the truncated 

potential is exactly equal to zero. That is, the potential is often shifted in 

order to vanish at the cutoff radius. So, given the L-J potential relation 

mentioned above, we can deduce the truncated L-J potential which is 

expressed as follows [50,51]: 

  (2.50) 

Truncation does of course have an effect on the physical quantities, 

yet it is not easy to estimate truncation effects particularly for geometries 

with low symmetries. However truncation effects are usually large for 

quantities like surface energy.  

 

2.6 MINIMUM IMAGE CONVENTION AND LONG RANGE CORRECTION: 

As previously mentioned, since the number of interactions involved 

when calculating the force and energy are infinite, this makes it impossible to 

calculate them in practice. In order to overcome this issue an approximation 

method has been introduced. The 'minimum image convention' 

approximation method in essence relies on the placing a restriction on the 

force range. That is in short-ranged force, the only interactions involved in 

the calculations are those which take place among the particles closest to 

particle 1. We may assume that particle 1 is the center and then construct a 

smaller box with the same size and shape as the original one. This box is now 

referred to as the minimum image convention box. Now we will only 

consider the interactions which take place between particle 1 and all other 

particles whose centers are inside the minimum image convention box. Now 
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the summations which involve particle 1 can be limited to a number of N-1 

which facilitates matters to a very large degree [16].  

The minimum image convention limits the terms involved in 

calculating energy and force to 1/2 N(N-1). This is a reasonable range for 

simulations using a relatively small number of molecules. For simulations 

with a number of molecules within the range of say several thousands, the 

simulation shall still be computationally intensive. This is where we use the 

truncation method in conjunction with the minimum image convention 

method. The cutoff radius is chosen, now further limiting the molecules with 

which particle 1 is assumed to interact. In order to keep the cutoff radius 

consistent with the minimum image convention, it must not be larger than 

half the box length and in order not to change the properties of the material 

extensively it must not be too short [52].  

Until now we have dealt with all the interactions that may be referred to 

as short ranged interactions/forces. These are the forces or interactions whose 

effects vanish at any distance beyond the cutoff radius. In most cases, a 

potential is defined to be short range if and when it decreases r faster than or 

equal to r
-(d-1)

 where d is the dimensionality of the system. However if a 

potential does not fit the above description it cannot be assumed as short 

range. Now we need to deal with the long range forces, which may in some 

cases, be of crucial importance. Such cases include [52,53]: 

 Coulomb interactions: when ions are involved. 

 Dipole-dipole interactions: when particles are neutral but polarized. 

 Vander Waal's attraction: when there are induced dipole moments. 

Under these conditions, we cannot estimate a cutoff radius since 

it is essential that we take into account the interaction of each 

particle with all other particles within the MD box. We cannot also 

use the minimum image convention method since the particle would 

also interact with its own image. The interactions coming from far 
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away particles are not negligible. Although this type of interaction 

decreases with distance, the number of interaction increases so that 

the total contribution of all far away particles can in certain cases 

have a weight or contribution to the total interactions as that of the 

neighboring particles. This is where a technique referred to as the 

long range correction method presents itself. This technique is 

usually used in simulations of bulk fluids, as well as those involving 

gas-solid interactions. It is a method which poses an assumption that 

the radial distribution function for pair wise interactions is unity 

beyond a certain cutoff radius. There are a number of methods used 

to deal with the long range forces among which the most commonly 

used are the Ewald summation method which we shall discuss in 

detail as well as the Particle-Mesh Ewald method and the reaction 

field method. Less commonly used is the cell multiple method 

[16,54].  

 

2.7 THE EWALD SUMMATION: 

The Ewald summation method is one of the most commonly 

used methods when it comes to estimating long range interactions. 

In definition it is 'a technique for evaluating the potential, subject to 

periodic boundary conditions, due to a lattice point charge, plus a 

screening background'. It was named after Paul Peter Ewald, who 

first introduced it in 1921 [48]. It may be treated as a special case of 

the Poisson formula. The procedure by which the Ewald summation 

solves the long range interaction problem is that it decomposes the 

interaction potential into two components: a short range component 

that is summed in real space, along with a long term component 

summed in Fourier space [55,56]. 

The diagram below describes how the Ewald summation 

method replicates the simulation box to convergence in a small 

system versus the use of the radial cutoff method [55]. 
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Figure (2.6): (A) A small system and Ewald sum replicates the simulation box to convergence. (B) 

Radial cutoff method showing a larger system reaching convergence 

This diagram below describes the Ewald summation in terms of the 

Gaussian distribution where the set of charges in real space are cancelled out 

by those in the Fourier (reciprocal) space (2.8)[48]. 

 

 

 

 

 

 

 

 

 

Figure (2.7): The Ewald sum components of a one-dimensional point charge system. The vertical 

lines are (+ / -) unit charges and the Gaussians are also normalized to unity.  
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Under PBC, the total Coulomb energy (Ewald Sum) of a system of N particles 

in a cubic box of size L and their infinite replicas with no external field is given by: 

VCoulomb = VR + VF − VS + VB(єr)          (2.51)  

The Ewald summation method transforms the 'conditionally 

convergent sum' into four components: the real space term (VR), the 

Fourier (reciprocal) space term (VF), the self interaction term (VS) 

and the boundary term VB(єr)  which is a function of the dipole 

moment of the simulation cell and the dielectric constant 

surrounding the media of the periodically replicated cells. The first 

three components are given by [16]:  

     (2.52) 

     (2.53) 

       (2.54) 

where rij is the distance between charges i and j, erfc is the 

complementary error function and Qk is the density squared at wave 

vector k and is given by [16]: 

 (2.55) 

given that L is the length of the simulation box and V=L
3
. 

If we assume that the MD box is spherical and is divided into 

cubic cells all of which have the same dimensions (length of side 

=L) and all of which are surrounding a central cell, then the position 

of any of the cubic cells can be described by a certain vector 

operation with integral components that are multiples of L. The 
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charge interactions of the particles can be described by the following 

relation [16,48]: 
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If the box is three dimensional there will be six nearest 

neighboring cells to the central cell whose positions may be given by 

the coordinates (0,0,L), (0,0,-L), (0,L,0), (0,-L,0), (L,0,0) and (-

L,0,0). These replica cells are separated from the central cell by a 

distance rbox. Thus the interactions between the charges in the central 

cell and those in the replicas can be given by[16,54]: 
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Now if we accumulate the charge-charge interactions within 

the central cell with the charge-charge interactions between particles 

in the central cells and those in the six nearest replicas surrounding it 

we arrive at the following relation: 
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We then need to consider the contribution of interactions between the 

central cell and surrounding medium including points outside the MD box. A 

correction term is introduced which depends on the properties of the 

surrounding medium. Permittivity is amongst the properties which highly 

affects the definition of the correction term. That is if the permittivity is 

infinite the effect of the surrounding medium is negligible and we can ignore 

the correction term. That is the case when the surrounding material is a 

conductor. If however the surrounding medium has a relative permittivity of 

1 it is considered to be a vacuum space and this correction term must be 

introduced [56]:   
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given that ri is the distance between the particle of interest and the border of 

the unit cell.  

For a convergent series, which converges rather slowly, like the one 

introduced in equation (2.58) above, the time it would take to solve this 

equation may be very long and thus affect the results of our simulation. 

Increasing the time boundaries is not always the best method since it has its 

negative aspects as we have discussed earlier. So another method was 

introduced to serve as an intermediary for solving this matter. The series is 

divided into two convergent series, the first summed in the real space and the 

other summed in the Fourier space. This was fully described at the beginning 

of this section. However, it may also be carried out via the usage of Gaussian 

distributions for each charge. We shall assume that each charge involved in 

the system is surrounded by a Gaussian distribution of charges of equal 

magnitude and opposite direction (thus neutralizing the system). We shall 

design two Gaussian distribution the first of which shall include a group of 

positively and negatively charged particles distributed in proportion around 

the real system. This will result in a contribution to the potential energy 

which corresponds to the real space. The second Gaussian distribution shall 

represent the Fourier (mirror) space and shall counteract the first distribution.  

If the Gaussian distribution is given by [16,57]:  
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then we can convert the sum representing the charged particles into another 

representing all interactions including the neutralizing factor. Now we may 

write an equation denoting the interactions of the central MD cell as well as 

the Gaussian distribution for real space as follows[16,54,55,56]: 
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where α is the damping or convergence parameter with units of Å
-1

 and erfc 

(the error function) is given by: 
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Equation (59) is a rapidly convergent series representing real space, 

whilst the following series (also a rapidly converging series) shall represent 

the reciprocal space:  
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where k represents reciprocal vectors and are given by 2πn/L
2
.   

There are three parameters which control the convergence of the sums 

given above. These parameters are: 

 nmax: an integer representing the range of the real space and 

controlling its maximum number of vectors 

 mmax: an integer representing the summation range in the reciprocal 

space as well as its maximum number of vectors 

 The Ewald damping (convergence) parameter (α): an amount 

representing the relative rate at which the real and reciprocal sums 

converge. 

As we see in equation (2.61), the damping parameter α appears in the 

numerator and thus the larger its value the higher the accuracy of the 

calculation of the interaction contribution of the central cell. In equation 

(2.63) on the other hand the damping parameter appears in the denominator 

thus inversing the effect since we would require a smaller value as possible 
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for α to include a smaller number of terms as possible. It is very important 

that we choose the optimal value for the damping parameter. It must be a 

value that balances the effect of the parameter in the two equations thus not 

heavily affecting either. That is it cannot be too big as to interfere with 

equation (2.63) yet not too small to reduce the efficiency of equation (2.61). 

There are many ways we can choose the optimal value for α which includes 

comparisons with either experimental data or previous results. In our field of 

study the optimal value for the damping parameter which gives the best 

results for simulations was found to be in the range of (α= 5/L). 

To summarize this, there are a number of factors we must consider when 

choosing Ewald parameters. These factors are [48]: 

1. System size: A larger system requires a large damping 

parameter and/or cutoff radius in order to limit the number of 

pair-wise interactions such that the real-space sum converges 

faster. 

2. Accuracy desired: Choosing a larger cutoff radius, nmax, or 

mmax usually yields more accurate results. However 

sometimes this may be inefficient. 

3. CPU time consumed: The larger the damping parameter the 

less the work that shall be done in the real sum which is 

usually the most time consuming part. 

4. Cutoff radius: The smaller the cutoff radius the larger we 

must make the damping parameter so that the real sum can 

converge rapidly with a reasonable number of vectors. 

5. the reciprocal sum: Usually the reciprocal sum is the once 

which is calculated more efficiently and hence it would be 

better to choose the damping parameter to minimize the real 

sum. 
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6. Large systems: For systems with N more than 10,000 Rycerz 

and Jacobs suggested a value for the damping parameter given 

by [48]: 

       (2.64) 

Having arrived at the best terms for the sums representing the 

real space as well as the reciprocal space we must now introduce the 

self interaction component which is given by: 
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Now adding the three components we arrive at: 
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The Ewald summation method is applied to calculate other quantities 

such as force, total energy and other.  
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CHAPTER 3: TETRAHEDRAL MOLECULES AND 

TETRAFLUOROMETHANE 

3.1: MOLECULAR GEOMETRIES 

When studying a certain molecule, whether solid liquid or gas, it is very 

important to understand the geometry and orientation of that molecule. Molecular 

geometry is usually defined as 'the three dimensional arrangement of atoms that 

constitute a molecule'[57]. It determines a number of properties of the substance 

including polarity, reactivity, phase, phase transitions, color, magnetic properties, 

point groups, biological activity, and electron affinity as well as a number of other 

properties which are all of high importance in understanding the nature of that 

substance. The type of bonding as well as electronic configuration of the molecule is 

also of great importance. Both these properties greatly affect the electronegativity of 

the molecule and thus its reactivity towards other substance of the same or different 

kind. Furthermore, the nature of the chemical bond determines the position of each 

atom relative to other atoms. Bond lengths, bond angles, and torsion angles also play 

an important role in describing the geometry of the molecule, its orientation and 

reactivity. 

MD simulations are one of the very important tools used to study geometries 

and related characteristics of the atoms. Knowing the geometry of a molecule and the 

other factors described above then facilitate the modeling stage of simulations aimed 

towards studying other aspects of the molecule including phase transitions. They also 

give a brief overview of the range within which we may expect our results to turn out. 

They are also important when deciding on the boundaries of the simulation. The 

bulkier the molecule, the longer the time needed for the system to equilibrate. The 

bulkier the molecule, the harder it would be to include a large number N in the 

simulation. So it has a role in deciding the time step as well as the number of 

molecules. It also has a rule in deciding the optimum conditions to set for the 

simulation such as temperature, pressure, cutoff radius and other factors. 

The geometry of the molecules differs vastly. It may be determined by various 

methods including a number of spectroscopic methods along with a range of 
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diffraction methods. The vibrational and rotational motion of the molecule allows 

techniques like Infra Red spectroscopy, Raman Spectroscopy and Microwave 

Spectroscopy to determine the geometries. For solids, x-ray crystallography and 

electron diffraction are among the most commonly used methods for determining the 

geometry of the molecule. The first of these two methods uses the distance between 

the nuclei whilst the second one uses the concentration of electron density. For small 

molecules in the gas phase we may use Gas electron diffraction to determine the 

geometry.  

There are a huge number of geometries and orientations that molecules adapt, 

all of which are in basis related to one of the more common geometries. The most 

common geometries, according to the Valence Shell Electron Pair Repulsion theory 

are: linear, trigonal planar, bent, tetrahedral, octahedral, pyramidal and square planar.  

The table below shows the shapes of the basic classes of Molecular Geometries 

[57,58]: 

Geometry Shape 

Linear  

Trigonal Planar  

Bent  

Tetrahedral  

Octahedral  

Pyramidal  

Square Planar  

Table (3.1): Molecular geometries and their shapes 
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3.2: TETRAHEDRAL MOLECULES 

A Tetrahedral Molecular Geometry is one of the less complicated 

molecular geometries present. Tetrahedral molecules have four pairs of 

electrons around the central atom.  Each electron pair forms a covalent bond 

with one of the corner atoms. This will leave the central atom with no lone 

pairs of electrons and four bonding pairs of electrons. The bonding pairs of 

electrons repel each other as much as possible which results in the tetrahedral 

orientation. In three dimensional space a tetrahedral molecule will have four 

identical faces (identical in all aspects only when the four corner atoms are 

the same). Each of the faces is an equilateral triangle making the molecule 

perfectly symmetrical. The diagram on the left shows the equilateral 

triangular faces of a tetrahedral molecule while the one on the right shows the 

Lewis structure of a tetrahedral molecule [59,60]. 

Figure (3.1): Left: equilateral triangular faces of a tetrahedral molecule. Right Lewis structure and 

atomic orbital orientations of a tetrahedral molecule 

In organic compounds the central atom is a Carbon atom (C). In the 

simplest hydrocarbon, methane (CH4), the four corner atoms are Hydrogen. 

In other hydrocarbons, the central C atom is surrounded by four substituent 
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atoms. A substituent is an atom or group of atoms substituted in place of a 

Hydrogen atom on the parent chain of a hydrocarbon at the corners of a 

tetrahedron [60,61].  

 

Figure (3.2) Tetrahedral methane molecule with the central C atom surrounded by 4 H atoms at the 

corners of a tetrahedron with bond angles of 109º 

So in such geometry where there is one atom located at the center 

with four other atoms located at the corners of a tetrahedron the bond angles, 

when all four of the corner atoms are the same, are equal to cos
-1

(-1/3) which 

is equivalent to an angle of approximately 109.5
o
. The tetrahedral geometry 

is most common in the first half of the periodic table and more so in organic 

compounds [60].  

However, not all molecules where the central atom has four lone pairs of 

electrons are tetrahedral. In cases where one lone pair is not shared the 

resulting geometry of the molecule is triangular pyramidal. The triangular 

pyramidal is also a tetrahedron; however it differs from a tetrahedral 

molecule in the location of their central atom. In a pyramidal shape molecule 

the central atom is located at the apex of the pyramid whilst in a tetrahedral 

molecule the central atom is at the center of the tetrahedron. An example of a 

molecule with pyramidal geometry is ammonia (NH3). The images below 
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show the difference between a tetrahedral molecule and a pyramidal 

molecule [62].  

Figure (3.3) From the left: Lewis structure of methane (CH4) -bond angles in tetrahedral (CH4) - 

Lewis structure of Ammonia (NH3)- bond angle in pyramidal (NH3) 

In the figure below, the black cloud on the top vertex of the 

tetrahedron in a pyramidal geometry is the electron cloud formed due to the 

presence of a non-bonded lone pair of electrons[62]. 

Figure (3.4): The difference in geometries between a tetrahedral molecule (left) and a pyramidal 

molecule (right) due to the presence of a non-bonded (lone) pair of electrons in pyramidal molecules 

We must note that not all tetrahedral molecules are perfectly 

symmetric. They can be chiral. That is 'a type of molecule that has a 

non-superposable mirror image' [57,63]. In more simple terms, it is a 

molecule where the four faces are not identical. In Tetrahedral 

http://en.wikipedia.org/wiki/Molecule
http://en.wikipedia.org/wiki/Mirror_image
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molecules this is the case when all four substituent atoms are 

different. The difference in nature, electronegativity and other 

factors alter the tetrahedron orientations, bond angles and thus 

symmetry of the molecules. This is reflected in the point groups 

assigned to these molecules. 

 

3.3: CRYSTAL STRUCTURE 

The crystal structure of a molecule is defined as the 'unique 

arrangement of atoms or molecules in a crystalline liquid or solid' 

[63]. It is composed of a pattern where the atoms are arranged in a 

definitive manner and the lattice is highly ordered. The lattice, also 

known as the Bravais Lattice is a repetitive pattern generated by a 

set of discrete translation operations and vectors. The points form 

identical unit cells which fill the entire lattice. The lattice is 

described by a set of parameters known as the lattice parameters 

which consist of the lengths of the sides of the unit cells as well as 

the angles between them. The unit cells are therefore considered the 

simplest repeating unit in a crystal.  

The positions of the atoms inside a unit cell are described in 

terms of (xi,yi,zi). The entire structure of the crystal is described in 

terms of its unit cells. The unit cell itself is defined in terms of the 

lattice points or all the points in space about which the particles are 

free to vibrate. August Bravais showed that crystals can be divided 

into 14 unit cells.[64] These unit cells have certain criteria among 

which the most important are: the opposite faces of a unit cell are 

parallel and every edge of the unit cell connects equivalent points. 

There is a total of 14 unit cells which fall into seven categories. The 

figure below shows the 14 Bravais unit cells [65]: 



   

- 62 - 

 

 

Figure (3.5): 14 Bravais Lattice Systems 
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The 14 unit cells are subcategorized into 7 groups which differ in the 

lengths of the sides of the unit cells (a,b,c) as well as the three internal angles 

(α,β,γ). The 7 groups are described in table (3.2). 

Lattice Type Side Lengths Internal Angles 

      

Cubic  a=b=c  α=β=γ=90
o
  

Tetragonal  a=b≠c   α=β=γ=90
o
  

Monoclinic  a≠b≠c  β=γ=90
o
≠α  

 Orthorhombic a≠b≠c  α=β=γ=90
o
  

 Rhombohedral  a=b=c α=β=γ≠90
o
  

 Hexagonal  a=b≠c β=γ=90
o
≠α (α=120

o
) 

 Triclinic  a≠b≠c α≠β≠γ≠90
o
  

Table (3.2): 7 Bravais Lattice Groups with relative side lengths and bond angles 

The figure below shows the difference between the three cubic unit 

cells: simple cubic, body-centered-cubic (BCC) and face-centered-cubic 

(FCC) [66,67]: 

Figure (3.6): The difference between a simple cubic unit cell (a), a body-centered cubic unit cell (b) 

and a face-centered cubic (c) unit cell 
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 In the simple cubic cell, also referred to as primitive cubic, 

there is one lattice point at each corner of the cube. This means 

that each of the atoms placed at one of the vertices of the unit 

cell is shared equally between eight adjacent unit cells and 

thus the total contribution of the atom towards one unit cell is 

1/8. Multiplying (1/8 * 8) we get 1 atom per unit cell in this 

particular structure. The side length in terms of the radius of 

the atom is given by a=2r. The packing fraction of the unit 

cell (volume of sphere/volume of unit cell) is 52%. 

 For a BCC unit cell there is one lattice point at the center of 

the unit cell. This atom fully belongs to the unit cell and is not 

share by any adjacent cells and thus its contribution to the unit 

cell is 1. There is also the one lattice point at each corner also 

shared by eight adjacent unit cells and contributing to the unit 

cell by 1/8. Therefore the number of lattice points (or atoms) 

per unit cell is equal to (1+ (1/8 * 8))= 2. The side length in 

terms of r is given by: a=4r/√3. The packing fraction of the 

unit cell is 68.01%. 

 An FCC system has one lattice point at each corner as well as 

one lattice point on each of the six faces of the cube. As 

explained before the points located at the vertices each 

contributes by 1/8. Each of the faces of the cube is shared by 2 

adjacent cells thus contributing to each of them by 1/2. The 

total number of lattice points from the faces is therefore (1/2 * 

6 = 3), which makes the total number of lattice points (or 

atoms) in an FCC = ((1/8*8) + (1/2*6)) = 4. The side length in 

terms of r is given by: a=4r/√3. The packing fraction of the 

unit cell is 74.05%. 

The figure below emphasizes the points stated above. It shows the packing 

style of each of the three cubic unit cells [68]. 
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Figure (3.7): A ball and stick model(top), a space filling cutaway model that shows the portion of 

each atom that lies within the unit cell (middle)   and an aggregate of several unit cells (bottom) for 

the three types of cubic unit cells 

 

 3.4: MOLECULAR SYMMETRY 

Molecular symmetry describes the symmetry present in molecules as well as 

the classification of these molecules on basis of their symmetry. It helps predict a 

molecule's chemical properties including dipole moment, spectroscopic transitions, 

phase transitions, reactivity and other properties of equal importance. 

Therefore it is very important when studying the properties 

and behavior of certain molecules, that we understand the symmetry 

of that molecule. Molecular symmetry is a very important field 

whether in chemistry, physics or biology. A small change in the 

symmetry of a molecule may result in changing its properties 
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completely. It is perhaps enough to say that carbon nanotubes, coal 

and diamonds are all made up of exactly the same material and the 

only difference between them is their crystallography which in its 

essence depends on the symmetry of the molecule and the phase 

within which it exists. Certain cyclic molecules differ vastly in their 

properties on bases of the position of the functional group. A 

molecule with a functional group in the meta positions for example 

may have a melting point, boiling point, color, odor or reactivity 

which differs completely from the exact same molecule with the 

exact same functional group in the ortho or para positions.  

A molecule's symmetry may be determined via a number of 

methods. There are a number of practical techniques which include   

X-ray crystallography and a number of of spectroscopic techniques 

such as IR and Raman spectroscopy. Other frameworks for studying 

Molecular symmetry include the point group approach which shall 

be discussed in detail later. 

Some objects are more symmetrical than others; some are 

highly symmetric while others are completely asymmetric. A sphere 

for example is more symmetric than a cube, since it looks exactly the 

same after rotation around any angle about the diameter. A cube on 

the other hand only looks exactly the same of rotated through certain 

angles and around certain axis. For example, a cube would look 

exactly the same after a rotation of 90
o
 around an axis passing 

through the center of any of its opposite faces. Similarly, it would 

look the same if rotated by an angle of 120
o
 around an axis passing 

through any of its opposite corners.  

This approach provides another definition for symmetry 

which may be expressed as a molecules possession of a number of 

indistinguishable configurations. The following diagram shows the 

rotation of the trigonal planar BF3 by an angle of 120
o
  leaving it 

indistinguishable from its original orientation [69,70].  

http://en.wikipedia.org/wiki/X-ray_crystallography
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Figure (3.8): Symmetry operation performed on a BF3 molecule leaving it indistinguishable from its 

original orientation 

Generally, any action or move which leaves the molecule looking exactly 

the same after the transformation as it did before is referred to as a symmetry 

operation. There are a lot of symmetry operations among which the most 

applicable and most widely used are rotations, reflections and inversions. 

Each of these operations is associated with what we refer to as a symmetry 

element which is either a point, line (axis) or plane with respect to which the 

symmetry operation is performed. The most important symmetry operations 

and their corresponding symmetry elements are described as follows 

[69,70,71,79,80]:  

 Identity (E): This operation is about not moving the molecule at all. 

The entire object may be treated as a symmetry element. All 

molecules possess this operation. Those which only have the Identity 

operation are the least ordered or the most asymmetric. Examples may 

include C3H6O3, CHClBrF, and lysergic acid denoted by the formula 

below: 

 

 n-fold rotations (Cn): This operation is a rotation about an n-fold axis 

of symmetry. Cn is describes as a rotation by an angle of 360/n. That is 

C1 is a rotation through 360
o
 (same as E) whilst C2 is a rotation 

through 180
o
. Water, (H2O) for example possesses this symmetry 
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operation at an angle of 180
o
. That is it possesses one twofold axis, 

C2. Ammonia (NH3) molecules have one threefold axis C3. Hence an 

ammonia molecule has two rotations the first one being C3 at an angle 

of 120o and the other at an angle of -120
o
 (or240

o
). The benzene 

ring on the other hand, C6H6 has one six fold axis C6 and six twofold 

axes C2. The largest Cn is referred to as the principal rotation axis. 

Linear molecules have an infinite number of axis C∞. The following 

figures describe the process of the proper rotation around a C3 axis, 

[72] and the rotational axes of the Benzene ring [73].. 

 

Figure (3.9): A C3 axis has two symmetry operations associated with it; rotation by 120
o
 in 

a clockwise or counterclockwise direction providing two different orientations 

 

Figure (3.10): axes of rotation in a benzene ring 
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 Horizontal Mirror Plane σh: Mirror plane perpendicular to the 

principal axis of rotation. The Benzene ring for example has a C6 

principal axis and a horizontal mirror plane.  

 Vertical Mirror Plane σv: Mirror plane that is parallel to and 

encompasses the principal rotation axis. A Dihedral mirror plane σd is 

a vertical mirror plane that bisects the angle between two C2 axes. 

Water for example, H2O, has two vertical planes of symmetry. The 

representation in the figure below describes a number of the mirror 

planes present [72]: 

 

Figure (3.11): Mirror Planes in a water molecule 

The Benzene ring has three vertical mirror planes one σv plane and 

two σd associated with the three C2 axes and containing the principal 

axis C6 The diagrams below shows the rotation axes as well as the 

mirror planes for the Benzene ring (3.13) [74]: 
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Figure (3.12): Rotational axes (top) and mirror planes (bottom) of the Benzene ring 

 Inversion (i) through the center of symmetry: This operation 

transforms all coordinates of the object according to the rule (x,y,z)           

(-x.-y,-z).  In other words, the inversion center, also referred to as the 

center of symmetry exists in a molecule if for any atom in the 

molecule there is an identical atom which is diametrically opposite the 

center of inversion and at n equal distance from it. The benzene ring 

has a center of inversion exactly at the center of the ring. Inversion 

may be described by the image below [72]. 

 

Figure (3.13): Inversion in a tetrahedral molecule 
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 n-fold Improper rotation Sn: The improper rotation can be described 

as a  combination of two successive symmetry operations. The first is 

a rotation by an angle of 360/n and the second is a reflection through 

the plane perpendicular to the axis of rotation. Neither of these 

operations needs to be a symmetry operation on a stand-alone basis. It 

is the end results which we are considering. The CH4 for example, has 

three S4 axes. Each of the three consists of a rotation of 90o about the 

axis followed by a reflection through a mirror plane perpendicular to 

the axis. The improper rotation may be the hardest to visualize, 

however the following figure of the S4 rotation of methane (a 

tetrahedral molecule) might make it a bit easier[72,73].  

 

 

Figure (3.14): Improper rotation S4 around a C4 axis in a tetrahedral molecule 

3.5: POINT GROUP 

As we have seen in the previous section, the symmetry of a molecule 

which is located on a symmetry axis, cut by symmetry planes or centered on 

an inversion center is referred to as point symmetry. Having identified the 

symmetry operations and elements of a certain molecule, one can now group 
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certain molecules according to the similarities in their symmetries. In other 

words we can say that the collection of symmetry elements present in a 

molecule form a group typically referred to as a point group. The name 'point' 

group comes from the fact that all symmetry elements in a molecule (whether 

points, lines or planes) will intersect at one single 'point'. The Group theory 

has made it much easier to classify molecules according to their symmetries. 

According to the theory, certain symmetry operations may be members of a 

group if they satisfy the following group axioms [75,80]: 

1. The successive application of a set of operations (two or more) shall 

give an end result equivalent to that of the application of a member of 

the group. So in mathematical terms we may say that if operations A, 

B and C are all operations belonging to the same group then we can 

say that A.B=C (generally A.B is not equivalent to B.A) 

2. All groups have the Identity operation E. Therefore we may say that 

A.E=E.A=A 

3. The reciprocal of each operation in the group is also an operation in 

the group. That is A
-1

=B. It is important to note that A.A
-1

=A
-1

.A=E 

4. The multiplication of two or more symmetry operations is associative. 

That is A.B.C= (A.B).C= A.(B.C). 

Following the rules above one can easily identify the elements belonging 

to a certain group which in turn shall make it easy to assign a point group to 

any molecule. This describes one of the approaches used to identify the point 

group of a molecule which depends on character tables. A character table is a 

matrix showing all the symmetry operation belonging to a certain point 

group. These tables give all the information required on the symmetry 

operations of a certain group as well as its irreducible representations.  We 

can simply find all the symmetry elements and then refer to the character 

tables to in order to find the group to which the molecule belongs. Each point 

group has a unique character table organized into its own matrix. The column 

headings are the symmetry operations which are grouped into classes. The 
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first column from the left identifies the name of the point group and then the 

Symmetry representation labels which also provide information about the 

degeneracies. Rows are called irreducible representations of the point group. 

The top row describes the symmetry operations present. The last two 

columns are referred to as symmetry functions and they provide information 

about vectors and atomic orbitals. The main body of the table consists of 

characters (numbers) labeling the symmetry properties of the Molecular 

Orbitals or modes of molecular vibrations [76,77].  

C2v E C2(z) σv(xz) σv(yz) 
Linear 

rotations 
Quadratic 

 A1 1 1 1 1 Z x2, y2, z2 

 A2 1 1 -1 -1 Rz Xy 

 B1 1 -1 1 -1 x, Ry Xz 

 B2 1 -1 -1 1 y, Rx Yz 

Table (3.3): C2v Character table 

The representations are labeled according to certain criteria. Those are: 

1. A: if the rotation around a principal axis is symmetrical (degenerate) 

2. B: if the rotation around the principal axis in asymmetrical 

(degenerate) 

3. E and T: are doubly and triply degenerate representations respectively 

4. The value 1: the symmetry operation leaves the sign or phase of the 

vector or orbital unchanged (symmetric) 

5. The value -1: The symmetry operation results in a change in sign or 

phase of the vector or orbital (asymmetric) 

6. For point groups with an inversion center: the subscript g (gerade) 

denotes an even operation with no change in sign. 
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7. For point groups with an inversion center: the subscript u (ungerade) 

denotes an uneven operation which results in a change in sign. 

8. For the groups C∞v and D∞h the symbols describe the angular 

momentum  

The water molecule H2O, for example, belongs to the C2v point group 

[78]. 

 

Figure (3.15): Symmetry operations in a water molecule which belongs to the C2v point group 

As seen from the diagram above, a water molecule has the following 

Symmetry elements: 

 Identity E 

 One rotation about a C2(z) axis 

 One reflection in the σv(yz) plane 

 One reflection in the σv(xz) plane 
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To make it even easier, assigning the point group to a certain molecule 

can be done via the use of the flow chart depicted below [72]: 

Figure (3.16): Point group decision tree 

It is possible with the above flow chart and careful examination of drawings 

and three dimensional models of a molecule to assign the point group with reasonable 

efficiency after some practice.[81] A list of point groups has been developed to 

further simplify matters. The table below [82] has been developed to show the basic 

characteristics of every point group. Molecules containing these characteristics can be 

automatically placed under that group. The table however assumes that all ligands 

(atoms or groups of atoms) attached to the central atom are identical [81].  
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Table (3.4): Point groups and the symmetry operations associated with each 

For a molecule with different ligands around the central atom 

are not all the same then the symmetry will be lower and the 

molecule would belong to a lower symmetry point group.  
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Further description of the symmetry of a molecule at this 

level is done via Molecular Orbital diagrams, Walsh diagrams as 

well as Tanabe Sugano diagrams. However, for the purpose of our 

study assigning point groups and there from space groups which we 

shall discuss in detail below, is sufficient. 

 

3.6: SPACE GROUPS 

However, there is yet another level where we can take this. 

The symmetry of a molecule may be further investigated. Another 

known identification method which has existed for centuries is the 

pane symmetry group [83]. This was a form of mathematical 

classification of two-dimensional repetitive patterns on basis of the 

symmetries on the pattern.  

What was first introduced as 17 groups was developed over 

the centuries by Schonflies (1891), Fyodorov (1891), Barlow (1894) 

and Burkhardt (1967) [84] to become one of the most important 

classification methods for crystal structures in three dimensions [84]. 

They are now referred to as space groups and can be described as a 

blend between the 14 Bravais Lattices and the 32 Crystallographic 

point groups. The resulting description becomes some sort of 

combination of the translational symmetry of a unit cell including 

lattice centering, the point group symmetry operations of reflection, 

rotation and rotinversion as well as the screw axis (rotation about an 

axis followed by a translation along the direction of the axis) and 

glide plane (a reflection in a plane followed by a parallel translation) 

symmetry operations [85].  

These various combinations have resulted in a total of 230 

different space groups describing all possible crystal symmetries 

[85]. The following table shows the names and symbols given to the 

14 Bravais lattices [86,87,89]. 
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Symbol 
Point 

Symmetry 
Name 

      

aP I Primitive triclinic 

mP 2/m Primitive monoclinic 

mC 2/m One-face-centered monoclinic 

oP mmm Primitive orthorhombic 

oC mmm one-face-centered orthorhombic 

oI mmm Body-centered orthorhombic 

oF mmm (all)face-centered orthorhombic 

tP 4/mmm primitive tetragonal 

tI 4/mmm Body-centered tetragonal 

hP 6/mmm Primitive hexagonal 

hR 3m Rhombohedral 

cP m3m Primitive cubic 

cI m3m Body-centered cubic 

cF m3m Face-centered cubic 

Table (3.5): Point Symmetry and space groups 

A full table of the 230 available space groups is available in many 

chemistry and physics books on symmetry. 
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3.7: SYMMETRY, POINT GROUPS AND SPACE GROUPS OF 

TETRAHEDRAL MOLECULES 

 As previously mentioned, tetrahedral molecules is made up of a 

central atom surrounded by four ligands. The perfectly symmetrical 

tetrahedral molecule (tetrahedron), where all four ligands are the same, 

belongs to the point group Td. All tetrahedral molecules with the formula 

MX4 are perfectly symmetrical and all have a Td point group. As seen in the 

above table, the Td group has an order of 24; it has the following symmetry 

elements: E, 4C3, 3C2, 3S4 and 6σd. The symmetry operations for this group 

are: {E, 8C3, 3C2, 6S4 and 6σd} [88]. 

However not all tetrahedral molecules are perfectly symmetrical since 

they do not always have four similar ligands around the central atom, and 

furthermore, they do not always have four ligands around the central atom. 

the broader definition of a tetrahedral molecule states that it is a molecule 

with a central atom and four surrounding lone pairs of electrons. If all four 

pairs of electrons are covalently bonded to four identical ligands we have a 

perfectly symmetrical tetrahedral molecule with a Td point group.  

If all four lone pairs are bonded to a combination of different atoms 

the symmetry changes. For example the molecule CHCl3 belongs to the C3v 

point group, the molecule CH2F2 belongs to the C2v point group and the 

molecule CHFClBr belongs to the C1 point group. Similarly, If only three 

pairs of electrons are bonded and a lone pair remains the molecule is 

tetrahedral however the point group is not Td. An example is Ammonia 

(NH3), which can be classified as tetrahedral if we consider the lone pair a 

fourth ligand. Ammonia belongs to the C3v point group. Water (H2O) can be 

placed under tetrahedral molecules if we assume Oxygen is the central atom, 

with two pairs of electrons bonded to the two Hydrogen atoms and two pairs 

left unbounded. Water belongs to the C2v point group.  

Since space groups are combinations of point group symmetries and 

Bravais lattice structures, the variations in either of these quantities shall 

cause a variation in the space group of the molecule. So a tetrahedral 
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molecule in the Td group in FCC shall have a space group different from the 

same molecule in the same Td group but in BCC. Similarly 2 molecules in 

the FCC lattice structure with different point groups shall have different 

space groups. The alternations are many and that is why we have almost 230 

space groups and more than 15 describing Td molecules alone [89]. Methane 

for example is a tetrahedral molecule belonging to the Td point group. It 

exists in a number of lattice structures among which FCC, BCC and HCP 

(hexagonal close packed) are the most common. Henceforth, methane exists 

in different forms each belonging to a certain space group including Fm3c 

and Fm3m [90].  

3.8: TETRAFLUOROMETHANE CF4 

Carbon Tetraflouride, Tetrafluoro Carbon, Methane tetrafluoride, 

Tetrafluoromethane are all names given to the molecule with the formula 

CF4. Tetrafluoromethane is the IUPAC name, however carbon tetrafluoride is 

the name most commonly used and therefore we will be using it throughout 

this thesis. CF4 belongs to the haloalkane family (specifically halomethane); 

it is the simplest fluorocarbon. Carbon tetrafluoride is one of the strongest 

bonded haloalkanes due to the nature of its constituent atoms. The carbon and 

four fluorine atoms are bonded together by means of a polar covalent bond as 

seen below [91]. 

 

Figure (3.17) Tetrafluoromethane 
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As a matter of fact fluorine is the most electronegative atom in the 

periodic table. It has an electronegativity of 4.0 on the Pauling scale [92,93]. 

Carbon on the other hand has an electronegativity of 2.55 on the Pauling 

scale [92,93]. Electronegativity is defined as an atom's tendency to attract the 

bonded pair of electrons towards itself. Thus the central carbon has a 

significant positive charge due to the displacement of the bonded electrons 

towards the Fluorine atom. The difference in electronegativities of the atoms 

and the displacement of partial positive and negative charges towards carbon 

and fluorine respectively provide an ionic character to the molecule which 

shortens and highly strengthens the four C-F bonds. The diagram below 

describes to point stated above [94]: 

 

Figure (3.18): Partial positive charge on the central Carbon atom as a result of the displacement of 

the bonded electrons towards the highly electronegative Fluorine atoms 

Although the large difference in the electronegativities results in 

partial polarity of each of the constituent atoms, the molecule itself is 

nonpolar. This is due to the symmetric shape of the molecule and the 

tetrahedral arrangement of the atoms which evenly distributes the partial 

charges thus avoiding a displaced polarity. The high stability of CF4 due to 

the strength and shortness of the C-F bonds (bond energy of 515 kJ/mole) has 

resulted in the inertness of the molecule towards most acids and hydroxides. 

It is however strongly, and sometimes explosively reactive towards alkali 

metals. Combustion of CF4 produces toxic gases including hydrogen fluoride, 
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carbonyl fluoride and carbon monoxide. CF4 is insoluble in water under 

normal conditions, however it is miscible in most organic solvents.  

In nature, CF4 is a gas, which is odorless, colorless, inflammable and 

highly inert. It is a greenhouse gas too, that is it absorbs and emits radiation 

within the thermal infrared range being one of the many gases which 

contribute to the greenhouse effect. Carbon tetrafluoride is produced when 

any carbon compound or pure carbon is burned in a fluorine atmosphere. It is 

prepared via a number of methods among which the most commonly used are 

the fluorination of carbon dioxide, carbon monoxide or phosgene. Industrial 

manufacture of CF4 is usually prepared from either dichlorodifluoromethane 

or chlorotrifluoromethane. Other methods for the preparation of CF4 include 

the following [95]: 

1. Treatment of metal carbides with Fluorine at 20
o
 C for 90 min or with 

CoF3 at 440
o
C for 9 hours. The yield of CF4 in this process is between 

68% and 90%. 

MnCm + F2        
20ºC, 90 min

       CF4 + C2F6 + C3F8 + C4 F10 

2. Fluorination by the use of BrF3 of tetrachloromethane or 

tetraiodomethane under available conditions or tetrachloromethane at 

yields around 60% CF4 

Cl4 + BrF3     
 
       

RT 
           CBr2F2 + CF4 

3. Electrolysis of concentrated trifluoroacetic acid solutions with platinum 

electrodes. 

CF3CO2H     
  electrolysis

        CF4 + C2F6 + CO2 + O2 

4. Electrochemical fluorination of dimethyl sulfide in the presence of HF 

yields 60% CF4 

SMe2      
HF electrolysis

          CF4 + (CF3)2SF4 + CF3SF3 + SF6 

 

http://en.wikipedia.org/wiki/Absorption_(electromagnetic_radiation)
http://en.wikipedia.org/wiki/Emission_(electromagnetic_radiation)
http://en.wikipedia.org/wiki/Infrared#heat
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5. Oxidation of tetrafluoroethylene with dioxygen 

C2F4          
Oxygen

 
           

CF4 + CO2
      

 

Carbon tetrafluoride is used in many applications. It is utilized as a 

refrigerant at low temperatures. Due to the reactivity of the fluorine atom, 

and the mixed nature of the molecule itself (ionic, polar and neutral) it is one 

of the most commonly used compounds in a number of plasma assisted 

electronic chip manufacture processes. In semiconductor processing and 

preparation as a plasma etchant for silicon, silicon dioxide and silicon nitride 

and a number of other films.  Another important process in semiconductor 

processing is strip resistance which again is one of the applications of CF4. 

Furthermore CF4 is mixed with oxygen and used for plasma cleaning of 

Chemical Vapor Deposition (CVD) reactors.  Perhaps it is for this reason that 

carbon tetrafluoride has gained all this wide interest. It can, under certain 

conditions, be used in semiconductor manufacture which due to its 

availability and relatively reasonable price makes it an ideal tool. Much 

research is being carried out today in order to regulate the use of tetrafluoro 

carbon in semiconductor processes. The fact that it is a greenhouse gas with 

high greenhouse warming potential is alerting. a number of available 

recovery/recycle technologies have been introduced to exhaust gases 

containing CF4 (and perfluorocarbons (PFCs) in general) from semiconductor 

manufacturing. Such techniques include cryogenic condensation/distillation, 

pressure swing absorption and membrane separation.  

The molar mass of CF4 is 88.0043 g/mol. Its melting point is at 90K 

and boiling point is at 145 K.  CF4 is a tetrahedral molecule (diagram 3.17), 

with a C-F bond length of 1.32 +/- 0.02A [96]. Carbon tetrafluoride is known 

to exist in a number of phases thus existing in a number of different crystal 

lattice structures including monoclinic, FCC and BCC. It belongs to the Td 

point group and with the variations in its crystal structure its space group 

varies too. It is assigned a number of space groups including cP21/c and C2/c. 

This shall be discussed and analyzed in detail through our simulation results 

[97].  
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CHAPTER 4: MOLECULAR DYNAMICS SIMULATION: 

METHODOLOGY, SET UP AND ANALYSIS 

There is a wide range of molecular dynamics software packages that 

one can use to carry out a simulation. Different software has different 

features and their own merits. There are certain criteria one must satisfy 

when choosing the appropriate software to use in their work. First and 

foremost the program must be user friendly. It is preferable that the program 

be suitable to use with more than one operating system. It should be designed 

to provide output data which includes all or most of the information we are 

intending to study in order to avoid using more than one program at a time. 

Preferably the program should be as general as possible so as to treat any 

system within its designed PBC.  

For the purpose of our study we have chosen to use Keith Refson's software 

named Moldy (Molecular Dynamics) [41]. Moldy is a 'highly portable C 

program for performing molecular-dynamics simulations of solids and 

liquids using periodic boundary conditions' [41,98]. Its code is reasonably 

easy to understand and utilize. It has also been optimized as to give the 

highest possible performance whether used in serial mode on a conventional 

workstation or on parallel system via interfacing. The Program has the 

following specifications [41,98], most of which we have already discussed in 

previous chapters: 

1. It uses a standardized system whose information is fully detailed in an 

input file which also specifies the run time as well as the constitution 

of the system which can be made of any number of atoms, ions, 

molecules or mixtures of these constituents in any ratio. 

2. The input file, referred to as system specification file, includes 

information on the nature of the system, the type and number of each 

species, the interaction potential used as well as the initial 

configuration.  
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3. Information needed to initiate and control a run is given in a file 

named control file. The control file should include all parameters 

governing the simulation run including but not limited to the number 

of time steps, the length of each time step, the frequency of the output, 

the name of the output file, the name of the specification file, as well 

as any other files to be read from or written to.   

4. The program does not support many-body forces, polarizable atoms, 

point dipoles or higher multipoles. 

5. Molecules are treated in the rigid molecule approximation and the 

system is assumed to contain atoms and molecules interacting via pair 

wise potentials. 

6. Rotational motion is modeled using quaternion method. 

7. MD cell does not necessarily have to be cubic which means the 

program can simulate both solids and liquids. 

8. Equations of motion are integrated using the modified Beeman 

algorithm. 

9. All simulations are performed in NVE ensembles or isobaric / 

isothermal ensembles. 

10. It supports L-J potential functions; however the minimum image 

convention method is not used. Instead the program takes into account 

interactions of all images of a particle present within the cutoff radius. 

11. The Ewald summation method is used to calculate long range 

electrostatic forces. 

12. Moldy provides a number of output files. Most important are the 

periodic output file, which contains instantaneous values of a number 

of thermodynamic quantities, the restart file for state information and 

the dump files which store permanent record of the particle trajectory.  
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Having chosen the most appropriate and compatible program, and having 

also decided on the system and the problem being studied one may now 

proceed with the simulation. 

 

4.1 THE INITIAL CONFIGURATION OF THE SYSTEM 

It is quite important when starting a simulation to provide as 

much information as possible about the system. As previously 

mentioned, we need to specify the type and number of molecules in 

the system. Furthermore, the initial configuration of the system must 

be specified too. That is, we must specify the initial positions and 

initial velocities of each and every atom as well as a number of other 

quantities depending on the type of simulation we shall be 

performing, whether it shall be constant temperature, constant 

pressure, both or neither. However, first we need to establish the 

main structure of the system with its positions and velocities at the 

beginning to the MD run [98].  

4.1.1 The Initial positions and velocities 

Positions of atoms and their orientations within a unit cell 

may be chosen randomly. As the simulation run proceeds the system 

will rearrange itself and shall adapt the equilibrium position, which 

we can find through the analysis of the dump file. For further runs 

we may either choose to place the atoms randomly as we had done 

before or we may use the equilibrium positions which had been 

provided by the previous run, a process known as the skew start 

method [98]. Furthermore, positions of atoms within the unit cell in 

relation to one another may be attained from previous experimental 

or analytical data. The figure below [99] shows the placement of 

atoms at the lattice points in the initial configuration of a Molecular 

Dynamics system.  
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Figure (4.1): Placement of atoms at lattice points in the initial configuration structure adopted 

during a Molecular Dynamics Simulation 

Usually, one of the well known Bravais lattice structures is used to 

describe the initial configuration of the system. When it is one of the possible 

structures of the system, the Face Centered Cubic (also referred to as cubic 

close packed) unit cell structure is the one most commonly used. As a matter 

of fact this is the structure we shall be using an initial configuration 

throughout our work. 

In FCC, the system contains a number of molecules equal to 4M
3
, 

where M={2,3,4,5,...}. This is why the system must consist of a number of 

molecules equal to {32, 108, 256, 500, 864....}. In our work we used systems 

containing 108, 256 and 500 molecules. 

  The standard orientations of the molecules within this type of unit cell 

may be used as the initial orientations of the molecules in the system. 

Otherwise, we may use random orientations or we may randomize the 

standard orientations of a given structure. In our work we randomized the 

orientations suggested by the FCC lattice structural parameters. However, it 

is very important to know that the closer the orientations are to the real 

orientations of the atoms and molecules, the faster the simulation shall 
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proceed. It is always best to choose those orientations which somehow reflect 

the expected orientations which the molecules shall adopt as the system 

equilibrates. 

As in all molecules in the FCC structure, the packing percentage is 

somewhere in the range of 74%. relating this information to the relative 

density of the molecule can be useful when deciding upon the system size. 

The figure below shows the CF4 crystal in FCC/ccp arrangement 

[97]. 

 

Figure (4.2): Carbon Tetrafluoride in a Face-Centered Cubic lattice structure 

Up until this point things seem rather easy. However, when it comes 

to setting the initial velocities of the atoms in the system, things are a little 

more complicated. Whether the positions have been chosen randomly or on 

basis of a previous run, or via the use of the skew start, the initial center of 

mass velocities shall be defined using the Maxwell-Boltzmann distribution at 

the temperature which has been specified for the simulation. In other words, 

initial velocities shall be chosen from a set of random numbers belonging to a 

Gaussian distribution, and shall then be normalized to achieve a probability 

density p(v) of x,y,z components of the velocity of molecule k. That is we will 

be measuring the probability that an atom will have a certain velocity when 

that atom of given mass is in a certain position at a fixed temperature. This 

relation for the probability distribution is given by [98]: 
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     (4.1) 

With a random number generator one can now generate several 

random numbers Rik with unit variance. Using the random number Rik we 

arrive at the following equation to describe each component of velocity [98]: 

       (4.2) 

The 'k' in this equation specifies the direction vector for x,y or z 

components. 

Having specified the velocities of each point in the system, we must 

now find the angular velocities which measures the rate of change of angular 

displacement and which is particularly important in our work [100]. The 

same procedure used to assign the velocities is now used to assign the 

angular velocities. First we have the probability distribution function given 

by [98,101]: 

   (4.3) 

The quantity ikI  is the moment of inertia of molecule i  around the k  

direction. 

Second, a random number generator is used to assign a random 

number velocity given by the following relation [98]: 

       (4.4) 

Moldy uses quaternions to describe angular coordinates. The 

quaternions equations which we have previously described are treated to give 

us the following relations for the first and second derivatives: 
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       (4.5) 

       (4.6) 

It is worth mentioning that if and when a molecule has less than three 

degrees of freedom, their corresponding angular velocities are set to zero. 

Now that we have decided upon the initial positions, velocities and 

angular velocities of the system, we need to decide on the quantities which 

we shall keep fixed or constant throughout the molecular dynamics run. 

Usually the total energy 'E' of the system is conserved throughout the time of 

the run.  That is, at each time step the sum of the kinetic energy and potential 

energy is zero. A number of constraints may be applied in order to minimize 

the fluctuations in total energy during a run. Furthermore, the total linear 

momentum 'P' of the system is set at a value of zero in order to avoid the 

movement of the molecular dynamics lattice (box) during the run. This is 

simply achieved via simple arithmetic steps involving the division of total 

linear momentum in each direction by the mass of the system thus giving 

velocities of the particles which is then utilized to adjust the momentum to 

zero. This is also repeated at each time step to ensure conservation of the set 

quantities. 

4.1.2: Temperatures and Pressure 

The initial temperature and pressure of the MD simulation are very 

important. Therefore they need to be thoroughly understood in order for us to 

be able to assign the most suitable values for both quantities at the beginning 

of each run.  The trajectories produced for each particle are quite sensitive to 

small perturbations in the initial conditions provided, which makes precision 

a must. The temperature and pressure of a system are among the most 

important equilibrium properties and assigning them correctly shall help 

greatly in producing correct results. Some MD simulations are performed 

under conditions which conserve energy, volume and momentum. The 

regular most commonly used ensemble is one where number of molecules N, 
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volume, V and energy E are kept constant. Such microcanonical system is 

commonly referred to as an NVE ensemble. However, In certain situations it 

is desirable to perform simulations of a fluid for particular values of 

temperature and/or pressure or under conditions which allow energy and 

volume to fluctuate. The ensemble thus becomes an NVT or NPT rather than 

NVE. There are a number of methods which involve performing MD 

simulations under constant temperature and/or pressure. In these methods, the 

time averages of properties are equal to averages over either the isoenthalpic-

isobaric, canonical, or isothermal-isobaric ensembles. These methods are 

particularly important when studying certain problems such as pressure 

induced phase transitions, temperature induced phase transitions, and 

isothermal-isobaric experimental ensembles.  

 4.1.2.1 MD simulations at constant Temperature 

  At constant temperature, the energy of a system of N particle 

fluctuates. In order to perform simulation on such a system a mechanism for 

introducing energy fluctuations must be devised.  

The relation between temperature and K.E of the system (calculated from the 

K.E for every degree of freedom) of an unconstrained system may be given 

by [101]:  

TNkK BNVT 2

3
        (4.7) 

In order to perform MD simulations at constant temperature one should 

simply keep the kinetic energy of the ensemble constant by scaling the velocities 

at each time step. However, this when performing this simulation method, one 

cannot be sure that the configurations produced belong to the canonical 

ensemble. However, a constraint method has been introduced by Hoover et al 

where an additional velocity dependent term is inserted into the relation and 

summed up with the force to maintain a constant total kinetic energy [102]. 

Thus, the produced canonical ensemble shall only involve potential energy terms 

for the kinetic energy fluctuations shall be suppressed. 
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So if we use the method of velocity scaling, the scaled velocities are 

given by [101]: 

vi (t+∆t/2)= vi(t + ∆t/2)β + Fi(t) ∆t/m     (4.8)   

Where: β
2
= (3(N-1)kTr/m) /



N

i

v
1

i
2
(t - ∆t/2)    (4.9) 

The removal of three degrees of freedom by placing a constraint of zero 

to the total linear momentum is what results in the introduction of the factor N-1 

rather than N in the above relation.  

Now that the velocity is scaled for each particle, the change in the 

temperature of the system from the temperature T(t) at time t when the velocities 

have been scaled by a factor λ is given by: 

 
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 


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     (4.10) 

   tTT 12         (4.11) 

 tT

Tnew         (4.12) 

Having arrived at a simple factor linking the new temperatures (the 

required one) with the current temperature T(t), one can easily control the 

temperature by simply multiplying the velocity at every time step by the factor 

given by equation (4.12). 

Another method to keep control over the temperature is to bring the 

system into contact with an external heat bath, also referred to as a thermostat 

[102]. The temperature of the thermostat is fixed prior to the experiment in 

order to provide or remove thermal energy from the system as per our 

simulation requirements. Under these conditions, the probability of finding 

the system in a given energy state is simply given by the Boltzmann 

distribution. This constant temperature method was first proposed by 
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Andersen in hope to achieve a certain overall temperature for the system. The 

velocities, as before, shall be scaled at each time step. 

The rate at which the temperature changes is proportional to the 

difference between the temperature of the system and that of the external 

thermostat. This relation below is what we shall use to scale the velocities 

accordingly. Assuming  is the coupling parameter, then: 

 )(
1)(

tTT
dt

tdT
bath 


      (4.13) 

The change in temperature after every time step is given by: 

 )(tTT
t

T bath 



        (4.14) 

which results in a velocity scaling factor given by: 














 1

)(
12

tT

Tt bath        (4.15) 

However, the previously mentioned methods cannot be applied to all 

ensembles. They are particularly not suitable in some cases to the extent that 

the results acquired may be so far from the real values. This is where 

Anderson's advanced coupling method proved very useful. This approach, 

also referred to as the stochastic collisions method couples the system to an 

external heat bath. The coupling may be represented by stochastic impulsive 

forces that act occasionally on randomly selected particles. [102,103] The 

collisions of the system with the heat bath transports the system from one 

energy shell to another. Between these stochastic collisions, the system 

evolves at constant energy. The collisions ensure that all accessible constant-

energy shells are visited according to their weight in the Boltzmann 

distribution. To perform the simulation, two terms must be decided upon; the 

first is the desired temperature 'T' and the second is the mean rate at which 

each particle is subjected to stochastic collisions 'ʋ'. The probability that a 

particular particle is suffers a stochastic collision in any small time interval is 
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given by 'ʋ∆t'. Furthermore, a random number generator is used to decide 

upon the time intervals between successive collisions of each particle. The 

intervals are described according to: 

       (4.16) 

Having chosen the initial set of positions and velocities, the Hamiltonian 

equation of motion is integrated until the time of the first stochastic collision. If 

the particle suffering from this first collision is given the name 'i', the value of 

the velocity of particle 'i' is chosen at random from a Boltzmann distribution at 

temperature T. The same is applied to the momentum of particle 'i' [103]. The 

changes to velocity and momentum takes place instantly and then the equation 

of motion is solved for all particles until the occurrence of the next stochastic 

collision and so on. The results obtained by this procedure is a trajectory 

specified by positions, velocities and/or momenta which is then used to calculate 

time averages for any other function. The time average for any of the functions 

that we calculate from this resulting trajectory is equal to the ensemble time 

average of the function for the canonical ensemble at temperature T.  

The effect of the overall process described by the stochastic 

collisions method is analogous to a series of microcanonical 

simulations set at a series of different energy levels represented by a 

Gaussian function. However, a more capable method was later 

introduced by Nose and developed by Hoover [104]. The method is 

referred to as the Nose-Hoover thermostat method and it is a 

deterministic method. The main idea behind this method is that it 

considers the thermostat or heat bath as an integral part of the system. 

Furthermore, it fixes the average temperature of the system under 

simulation but meanwhile allowing for a fluctuation of the temperature 

with a distribution of canonical nature. The heat bath used is introduced 

with an extra degree of freedom (s).   The potential energy of the 

reservoir is described by    sTkf B ln1 , with f being the number of 

degrees of freedom and T the desired temperature. Furthermore the 
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velocities of the real atoms in the system (excluding those posed by the 

external thermostat) are given by :   

dt

d
s i

i

r
v    where ri is the position of particle i.   (4.17) 

4.1.2.2 MD simulations at constant Pressure 

At constant pressure the volume of the system of N particles is 

allowed to fluctuate. Constant pressure simulations require PBC. The 

pressure is controlled via dynamically adjusting the size of the unit cell and 

rescaling atomic coordinates (other than those of fixed atoms) during the 

simulation [103]. The change in the simulation cell can be isotropic where 

the shape of the cell remains unchanged, or it can be anisotropic where the 

shape of the cell changes.  

To describe the fluctuations in the volume of the system under 

constant pressure, a molecular dynamics method is devised where the volume 

of the system is treated as a variable rather than a constant. So for example 

we may have a simulation of solid-state phase transition which allows for 

changes in the size or symmetry of the unit cell. This is particularly important 

for our work, for it allows us to know the new structure, symmetry, point 

group and space group of the system after a phase transition since we had 

allowed the size and symmetry of the cell to fluctuate. 

Anderson's introduction of the constant pressure MD method was a 

breakthrough in the MD simulation field [103]. Anderson introduced a 

modification to the MD method where the average volume was to be 

determined by the ratio between internal and externally set pressure. Having 

determined the volume, it is then allowed to fluctuate. Anderson's ensemble 

was referred to as an HPN ensemble since it required enthalpy conservation. 

Anderson's ensemble was developed by Rahman and Parrinello to allow for 

changes in the shape of the MD cell [103]. Today, the Extended Lagrangian 

Method is the most commonly used for simulations at constant pressure. 

According to this method, the pressure tensor shall depend on the chosen 
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coupling scheme. The virial is the product of the positions and the derivative 

of the potential energy function. According to the virial theorem the atomic 

and molecular pressure of a system of N molecules are given by [105]:     

    (4.18) 

    (4.19) 

However, there are a number of simpler arithmetic to be used when 

dealing with constant pressure simulations. Allowing the volume of the 

system to fluctuate we can then relate the relative fluctuation to a factor 

referred to as the isothermal compressibility 'β' where: 

TP

V
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K 
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


1
       (4.20) 

The isothermal compressibility factor is a measure of the relative 

change in the volume of the system as a response to a change in pressure. 

The compressibility factor is very important. at constant pressure it is directly 

proportional to changes in volume, whilst at constant volume it is inversely 

proportional to changes in volume. Furthermore, for an isobaric system, a 

variation in volume may be induced by either a one dimensional or a three 

dimensional volume change. The mean square volume displacement is 

related to K by [101]: 
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
        (4.21) 

There are a number of methods that are used to control the pressure 

during a simulation. Among these methods the most widely used are: the 

Berendsen Method, the Andersen Method and the Parrinello-Rahman method 

[102,106]. The Berendsen et la method is the one we shall focus on. It relies 

on the weak coupling to an external bath. The Langevin equation of motion is 
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then modified, eliminating the stochastic force and replacing it with a 

constant friction term with a variable friction proportional to the constraint. 

The equations utilized in this particular method are simple thus allowing for 

easy implementation. According to this method the rate of change of pressure 

with time is described by the following relation: 

 )(
1)(

tPP
dt

tdP
bath

p




       (4.22) 

given that
p  is the coupling constant also referred to as the relaxation 

constant, bathP  is the pressure of the designed bath, and P(t) is the actual 

pressure at time t. Now we may proceed to introduce a scaling factor 'λ' to the 

volume of the system 

 bath

P

PP
t

K 



 1       (4.23)  

The same factor is applied to scale the coordinates by a factor λ
 1/3

. 

The new positions are now calculated using the following equation:  

ii rr 3/1\          (4.24) 

We may experience difficulty when it comes to determining the ensemble 

on which these results are based. Anderson was the first to introduce a new 

method to overcome such problem. The extended system method of Andersen 

introduced an additional degree of freedom which leads to mass dependent 

oscillations in both volume and pressure. Andersen preserved the shape of the cell 

while allowing the volume of the cell to change isotropically. The basic idea of 

the system is to treat the volume of the cell as a dynamic variable. Then the 

Lagrangian of the system is modified so that it contains a term in K.E with a user 

defined mass and a potential term which is derived from an external pressure 

acting on the volume of the system like a piston. In this case we have a (NTP) 

ensemble where the MD cell is considered a cube of length V
1/3 

with real 

coordinates ri being expressed as: 
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ri = V
1/3

xi        (4.25) 

where xi is a scaled coordinate with values of its components being limited to a 

range from 0 to 1. Similarly the velocity is expressed by: 

ṙi = V
1/3

ẋi        (4.26) 

The coupled Newtonian equations of motion for this type of system is 

given by: 

     (4.27) 

       (4.28) 

 Moldy utilizes the 'extended-Lagrangian' methods of Nose and 

Hoover as well as Parinnello and Rahman to implement the isobaric and 

isothermal ensembles when required. 

4.2 RUNNING THE SIMULATION 

 Now that we have decided upon the initial conditions as well as the 

initial positions, velocities and ensemble type we shall be using, we are ready 

to run the program. The control as well as the system specification files is 

written, the first to provide the parameters governing the run and the second 

to define the system itself. Moldy is given the code to start the run. If for any 

reason the run does not immediately start one must revise the input file.  

 As the simulation run proceeds, a number of trajectories are being 

calculated at each time step. The potential function at each time step is very 

important. Integration on the function provides the force on each atom at 

every time step. For atoms governed by the Lennard-Jones potential, the 

force on atom i by atom j is given by [101]: 
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 Knowing that the force on atom i by atom j is equal in magnitude and 

opposite in direction, thus the force on atom j is equal to the negative of the 

force on atom i. That is:  fij = - fji. This simplifies matters for it enables us to 

calculate the forces between any pair of atoms only once. 

4.2.1 Phases of the MD Run 

 Once it has begun, the MD run shall smoothly continue unless given a 

termination order. The system automatically adopts the ensemble which has 

been designed. Integration algorithms are carried out on basis of the method 

we have previously chosen and the type of potential used is the Lennard 

Jones potential. As the run continues it passes through a number of stages 

each having its own properties which when compiled with those of the other 

stages provides means of simplifying the output files and clarifying it as 

much as possible.  

 As suggested by the chart below, the molecular dynamics run may be 

segregated into two distinct phases: the equilibration phase and the 

production phase [107].  

 

Figure (4.3): Phases (stages) of a molecular dynamics run 



   

- 100 - 

 

4.2.1.1 The Equilibration phase 

During the equilibration phase the system is driven from the initial 

state to the equilibrium state. Once the desired temperature has been reached, 

the simulation system continues through which time several properties are 

mentioned, particularly the structure, the pressure, the temperature, the 

velocity and the energy. The aim of the equilibration phase is to run the 

simulation until these properties have stabilized with respect to time.  

Once the desired temperatures and pressures are reached then the run 

can be terminated. During the equilibration phase, and on basis of the 

ensemble type we have used, we must monitor certain quantities very closely. 

In the case of a microcanonical ensemble for example, we must monitor the 

total energy at every time step. Once we have reached a stage where the 

variations in total energy can be disregarded, (i.e. within one in10
4
) we can 

say that the system has reached equilibrium since we have now reached a 

point where we have conservation of the total energy. For an NVT ensemble 

we must monitor the temperature and the kinetic energy at every time step, 

similarly with the NPT ensemble we may need to monitor the changes in 

volume and/or structure of the unit cell. 

To sum it all up, it is very important to remember that the 

equilibration phase is the most important part of the simulation. In order for 

us to make the best use of this phase one must be very careful while deciding 

when to terminate the equilibrium phase and start the production phase. In 

order to do so, a number of properties are to be closely monitored during the 

time of the simulation particularly those quantities which we expect to 

conserve or drive to a certain value during the simulation. Such quantities 

include, as we have mentioned before, the total energy for a microcanonical 

ensemble and the temperature for an isothermal ensemble. Besides these 

quantities, we must also monitor certain parameters which describe the 

overall structure of the system. Such structural parameters are referred to as 

'order parameters'.   
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Order parameters give us an idea about the degree of order/disorder 

present in a certain system at a certain point in time. It is usually defined as a 

set of observable physical quantities which are able to distinguish between 

two distinct phases [108]. It is usually zero in one phase (usually above the 

critical point) and non- zero in the other thus allowing us to differentiate 

between the two. Furthermore, it characterizes the onset of order at the phase 

transition. There are a number of order parameters including, the translational 

order parameter, the rotational order parameter, the tetrahedral order 

parameter and the bond orientational order parameter. among these the most 

commonly used, and particularly in our work, are the translational and 

rotational order parameters which may be described as follows[109]: 

 Translational order parameter: Used to distinguish between the solid 

and liquid phase of a system. In our work we have decided to start the 

simulation in the solid phase (FCC structure), while we expect that in 

a number of runs the simulation shall terminate with the system in the 

liquid phase. To measure the translational order parameter of a system 

initially having an ordered FCC structure Verlet introduced the 

following relation: 

 zyx 
3

1
      (4.30) 

Where a is the length of the side of a side of the unit cell and: 
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At the beginning of the simulation the Cartesian coordinates are all 

multiples of a/2 and the translational order parameter is unity. As the 

simulation time advances it comes to a point when all positions are 

randomized, at which time the translational order parameter gradually 

decreases to zero. As the system reaches equilibrium the translational 

order parameter fluctuates in inverse proportion to the square of the 

size of the unit cell i.e. proportional to N/1 . 
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 Rotational order parameter: Used to determine the orientation state of 

the system and degree of order exhibited. Viellard was able through 

his work with Baron to suggest a relation for the rotational order 

parameter which is now commonly used in most MD simulations. The 

rotational order parameter is given by: 
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      (4.32) 

where  i  is the angle between the current and original direction of the 

molecular axis of molecule i. When the molecules are perfectly 

aligned the value of Pi is unity. Complete rotational disorder is 

characterized by a value of zero. Fluctuations about the average is also 

proportional to N/1 . 

4.2.1.2 The Production Phase 

Once we have reached this state of dynamic equilibrium the runs can 

be terminated. The following phase of the MD run is referred to as the 

production phase during which thermodynamic parameters as well as other 

information is calculated. During this phase, yet another set of factors must 

be checked and monitored in order to ensure that the results we have obtained 

are indeed sampled from the ensemble we had used. In addition to the 

conservation of energy, we must also ensure that the resulting velocities 

describe a Boltzmann distribution, and similarly the kinetic energy must be 

equally distributed among the three Cartesian directions. During the 

production phase a number of temporary output files are produced at regular 

intervals including such information as the positions, energies, velocities and 

other dynamical quantities of the system at certain times intervals. These 

folders are important when defining certain quantities. The positions for 

example are extracted from one of the imtermediate files written during the 

production phase, namely known as the Dump file. In addition to the above, 

if we need to start a run from the last configuration of a previous run then the 

dump file is utilized as an initial configuration for the new run.   
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Furthermore, it is during this production phase that a number of 

critically important parameters are calculated. That is simply because the 

production phase is the only period in the term of the simulation run when 

the system is physically stable/consistent.  

Molecular Dynamics properties are functions of positions and 

velocities both being function of time. When we need to measure a physical 

quantity during the simulation, a time average of this quantity is performed, 

given that the quantity is averaged over the total time of the production phase 

rather than the entire simulation time for the same reasons mentioned above. 

In numerical language, a certain quantity A can be expressed in terms of 

coordinates and velocities of the particles in the system as follows [98, 101]: 

 )(),......(),(),......()( 11 tvtvtrtrftA NN     (4.33)  

With the fact that the coordinates and velocities are functions of time, 

the average for quantity A may be given by:   
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       (4.34) 

where t denotes an index which extends over the time steps from 1 to NT 

(total number of steps). The average of quantity A can be calculated via one 

of two methods. Both methods are equivalently efficient but the first one is 

easier. 

1. The quantity A at time t is calculated at every time step throughout the 

MD run. Having the A(t) we then simply find the sum of A(t), t
tA )( , 

after each time step, which is also automatically updated. At the end of 

the simulation run the average is directly obtained from dividing the 

t
tA )( by the number of time steps. 

2. Quantities which are periodically being dumped in one of the 

intermediate production files like the dump file may not be automatically 

averaged at the end of each time step or at the end of the simulation. 
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Another program may be used in conjunction with the main program to 

read the dump files and calculate the desired quantities.  

Regardless of the method we use, there is a number of important 

quantities that are calculated during the production phase of the run. These 

quantities are described in the following sections. 

4.2.1.2(a) Potential Energy 

For any given system, the total potential energy is given by:  

     (4.35) 

The potential energy function denoted by is the key to 

deriving the forces which in turn are important in determining the dynamics 

of the system. The average potential energy is computed using summations 

of instantaneous values. For example the two-body interactions in a system 

can be described by [98]: 
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4.2.1.2(b) Kinetic Energy 

The kinetic energy of a system at any instant in time (t) is given 

by[98,101]: 
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This is used to calculate the total kinetic energy of the system. The 

kinetic energy is then used to calculate a number of important quantities 

including for example the effective temperature of the system which is given 

by the ensemble average of its kinetic energy.   
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4.2.1.2(c) Total Energy 

The total energy is the sum of potential and kinetic energies. It 

can be simply calculated via the relation H= K + V. Furthermore, it is a 

conserved quantity in Newtonian dynamics and thus does not require to 

be calculated at every time step. However it is common practice to do 

the calculation at each time step in order to make sure that it is indeed 

conserved. The total energy must remain constant throughout the run 

despite any fluctuations in its components. The potential and kinetic 

energies are sort of exchanged throughout the simulation so that the 

overall fluctuation in their sum remains almost zero.  

There is no way to ensure that the sum in fluctuations of K(t) 

and V(t) will equal zero. Practically the total fluctuations may not be 

zero and thus the total energy may fluctuate throughout the simulation. 

However these fluctuations should be almost negligible, that is they 

must be less than a certain value beyond which one can say that there is 

something incorrect with the conditions of the system thus resulting in 

these fluctuations and making the energy non conserved. The typical 

amount of fluctuations in total energy that we may accept in a 

simulation is in the range of 1/10
4 

or less (one part in 10
4
). If the 

fluctuations exceed this limit it cannot be ignored. It may of course be 

caused by a number of factors among which is the incorrect (usually 

longer) value for the time step. In such case, the fluctuations in total 

energy are simply reduced by reducing the time step. [110] Energy 

conservation may also be violated if the cutoff method chosen is not 

sufficiently good or if the computer itself in numerically limited. The 

following plot illustrates the conservation of total energy throughout a 

simulation run [111]: 
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Figure (4.4): Energy conservation in a MD simulation run 

Furthermore, the figure below [42] shows an example of the 

results concerning energy measurements throughout a MD run. 

 

 

 
Figure (4.5) Variation in total energy versus time for the production phase of a molecular dynamics 

simulation of 256 argon atoms at a temperature of 100K and a density of 1.396 

 



   

- 107 - 

 

4.2.1.2(d) Pressure 

The approach usually adapted to calculate the pressure P is a molecular 

simulation involves an ensemble average of the instantaneous microscopic 

pressures. Yet there are a number of methods to do so. The virial theorem of 

Clausius is the most commonly used. [111][102] The virial can be defined as the 

expectation value of the sum of the products of coordinates (xi) of the particles 

and the first derivative of the momentum along that coordinate (
ix

p


) which 

according th Newton's second Law is equivalent to the forces acting on them.  

The virial theorem states that the virial W is equal to (-3NkBT). That 

is[101]: 

TNKpxW Bxi i
3



      (4.38) 

For an ideal gas, the only forces acting on a certain particle is a result of 

the interactions between the gas particle and the container within which it is 

placed. In such case the virial is simply -3PV, which corresponds to the value 

obtained from the relation PV= NkBT  

For a real gas, or a liquid, the forces between the particles among 

themselves have an effect of the value of the virial. The total virial in such cases 

is equal to the sum of the virial of the ideal gas and a term corresponding to the 

contribution by the interactions between the particles. This gives the following 

relation: 
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This gives a direct relation for the pressure of the system given by: 
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4.2.1.2(e) Temperature 

In a canonical ensemble the total temperature of the system is constant. 

However, for a microcanonical ensemble the temperature fluctuates and is 

directly proportional to the kinetic energy. The relation between temperature and 

kinetic energy is given by [98][101]: 
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where pi is the total momentum and mi is the mass of a particle.  

According to the theorem of equipartition of energy each degree of 

freedom contributes kBT/2 to the kinetic energy. Therefore, if there are N 

particles in a system, each having three degrees of freedom, and then the kinetic 

energy will be given by: 3NkBT/2. The term Nc given in the equation (105), 

represents the number of constraints on the system. During the simulation, the 

total linear momentum of the system is usually constrained to a value of zero. 

This is equivalent to removing three degrees of freedom from the system and 

hence we may substitute 3 for Nc. A value of Nc is used for every type of system 

according to the constraints it is placed under. 

4.2.1.2(f) Radial Distribution Function 

The radial distribution function (RDF), denoted by g(r), and also referred 

to as the pair distribution function, is a very effective way of describing the 

average structure of disordered molecular systems such as liquids, as well as 

some disordered and ordered solids. In simple terms, the radial distribution 

function describes how density varies as a function of distance from a reference 

particle. It describes the probability that an atom will be found at a distance r 

from another atom with reference to the ideal gas distribution. The general 

algorithm depicted in this method is to determine how many particles are found 

within a distance r and r+dr from another particle. This is usually achieved via 

the calculation of the distances between all particle pairs. 



   

- 109 - 

 

The RDF for a certain crystal will show an infinite number of sharp 

peaks. The heights of these peaks as well as the separations amongst them is 

characteristic of the lattice structure of the crystal. On the other hand, the radial 

distribution function for a liquid is characterized by a small number of peaks, 

with short distance intervals between them which decays to a constant value as 

we move farther away from the central atom. The radial distribution function is 

zero for distances which are shorter than the atomic diameter. This is a direct 

result of the strong repulsive forces present within that distance [98,101,111]. A 

typical RDF is shown below (4.5) [112]: 

 

Figure (4.6) Radial distribution function determined from a 100 ps molecular dynamics simulation 

of liquid argon at a temperature of 100 K and a density of 1.396 

In order to calculate the RDF from a simulation, the neighbors around 

each atom or molecule shall be categorized into distance histograms. The 

number of neighbors within every histogram is the averaged over the entire 

simulation. To further describe the process, let us consider a spherical shell of 

thickness r  at a distance r from a certain atom. The shell is shown below (4.6) 

[101]: 
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Figure (4.7): : Radial distribution functions use a spherical shell of thickness 

The volume of the shell is given by:  
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ρ is the number of particles per unit volume. Therefore we can find the total 

number of atoms in the shell which shall be given by rr  24 . If the entire 

space around the atom is segmented into cells each of which having a 

thickness of r and each having a number of atoms equal to r , the number 

of atoms inside each shell can be calculated and compared with ideal gas 

distribution. Furthermore, if the number of atoms in every cell is given by 

n(r) then the local density ρ(r) will be ρ(r) = n(r)/4 πr
2
dr. In molecules with 

more than one type of atom, the radial distribution function is used to 
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calculate a number of site-site distribution functions. For CF4 we have three 

distinct functions namely: g(C-C), g(F-F) and g(C-F). The information 

provided by these functions is used to describe the orientations of the CF4 

molecule. 

  

4.3 ANALYSIS OF RESULTS 

Now that the run has terminated and all the data produced has been 

extracted we have arrived to the most critical point in the series of steps of 

carrying out the computer simulation; that is analyzing the trajectories. In 

general,  there are two types of parameters that may be computed during the 

molecular dynamics run. The first include all long term averages of quantities 

like energies, temperatures, cell vectors, pressure, viral, mean square forces, 

mean square torque and dipole moments. The second set of parameters 

includes the radial distribution functions, as well as other values which are 

not potential oriented. Yet a third set of parameters is calculated separately 

after the completion of the MD run. These may include correlation function 

as well as complex thermodynamic averages. 

There are a number of parameters that are of high importance to our 

work. Combined together, these parameters allow us to study the system 

thoroughly and be able to detect any change in the structure which would 

mean that the system has experience a phase transition. The changes that may 

take place are detected via a number of indicators which work together to 

monitor the state of the system during a series of molecular dynamics runs. 

These indicators are particularly important for us since we are primarily 

interested in the phase transitions of the system at given pressures and 

temperatures. We can summarize these indicators as follows:   
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4.3.1 The Caloric Curve 

The caloric curve is one of the most important indicators of a phase 

transition. The caloric curve depicts the relation between the total energy of the 

system and its temperature or pressure. Once the total energy H, and the 

temperature T or pressure P are measured in different runs corresponding to 

different thermodynamic states, the caloric curve H(T) or H(P) can be 

constructed. A jump or sharp and sudden change in the H(T) caloric curve 

implies a first order phase transition, whilst a jump in the derivative of the H(T) 

implies a second or higher order phase transition.  

The most common firs-order transition which can be observed via this 

method is melting. That is a phase transition from an ordered crystal solid phase 

to a partially disordered liquid phase. As the system abandons the crystalline 

structure and becomes disordered, a sharp change is observed on the H(T) curve. 

The sharp change shall occur at the latent heat of fusion of the system. In simple 

terms, at this point the system absorbs heat but no change occurs to its overall 

temperature. This results in the sharp and sudden change in the slope of the 

caloric curve which to us is an indication of the process which had just taken 

place. Usually such change takes place at a temperature higher than the 

theoretical melting value of the system. This is justified by the fact that at this 

particular moment the system undergoes hysteresis effects due to the necessity to 

wait for a seed of the liquid phase to appear. Once the liquid seed containing a 

few atoms is formed, the liquid phase starts to grow as the solid phase 

disintegrates simultaneously. Typically in a molecular dynamics run, one must 

'overshoot' and set the temperature 20-30% above the real melting temperature 

in order to be able to actually observe melting [113]. The graph below is a 

typical caloric curve for the MD simulation of 256 molecule of methane at 

constant pressure (4.7) [101]. 
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Figure (4.8): The caloric for the MD simulation of 256 molecules of methane at constant pressure 

4.3.2 The Binder Fourth Order Cumulant 

The analysis of the behavior of the fourth order cumulant of certain 

physical quantities like order parameters of energy is a well used approach to 

characterize the order of a phase transition. The fourth order cumulant of 

energy is given by [114]: 
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where H is the total energy of the system. For two identical systems in every 

aspect except the number of molecules in each, an intersection point on the 

curve of their fourth cumulants indicates a phase transition. The graph below 

shows a typical fourth order cumulant intersection plot [101]: 
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Figure (4.9): Binder fourth order cumulant curves for 2 methane models (108 molecules and 256 

molecules) simulated at constant pressure of 100 MPa 

4.3.3 The Translational and Rotational Order Parameters 

A full account of these quantities has been discussed in previous 

sections. In summary the translational order parameter is used to distinguish 

between a solid and liquid phase of the system, whilst the rotational order 

parameter is used to determine the orientation of the system that is it 

determines the degree to which the system is ordered/disordered.  

A graph of the translational order parameter versus temperature or 

pressure for a series of MD run can provide information about the melting 

point of the system. On the other hand, a plot of the rotational order 

parameter versus temperature or pressure can determine any change in the 

orientation of the molecules in the system. Below are typical translational 

and rotational order parameter plots from the MD simulations [42,101]. 
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Figure (4.10): Translational order parameter of MD simulation of methane at P=100 MPa, and 

N=256 molecules. 

 

 

Figure (4.11): Rotational order parameter of MD simulation of methane at T=295 K and N=256 

molecules. 
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CHAPTER 5: PHASE TRANSITIONS OF CARBON 

TETRAFLUORIDE: RESULTS 

Carbon Tetrafluoride is one of the major sources of fluorine or 

carbon-fluorine free radicals used in a number of wafer-etch processes in the 

manufacture of semiconductors. It is used with oxygen to etch polysilicon, 

silicon dioxide and silicon nitride. The interest in chemical dry etching has 

considerably increased in the recent years due to its advantages over other 

etching techniques. Due to the spatial separation of the excitation and 

reaction volume, the surface processes taking place do not in any stage 

involve charged particles. Instead they are totally controlled by chemical 

reactions of neutral particles. As a result of the reduction of energetic 

particles, charge induced effects are almost negligible. In addition to that, dry 

etching also reduces the handling and disposal of toxic chemicals such as hot 

phosphoric which is one of the chemicals used in the process. Carbon 

Tetrafluoride is relatively inert under standard conditions. High purity CF4 

gives way to better dimensional and profile control of the etching process. 

Furthermore, experimental studies have shown that the etch rate in silicon 

based compounds by Carbon Tetrafluoride can be manipulated via the 

introduction of N2 into the process. This has caused a large industrial demand 

on CF4 as one of the most preferably used gases in the etching process.  

 For the reason above, as well as the incorporation of CF4 in other 

areas of the semiconductor manufacturing processes such as chamber 

cleaning, MEMS etching applications and Flat Panel Display etching 

applications, Carbon Tetrafluoride has attracted the attention of a lot of 

researchers. The aim of most research was to fully understand its properties 

and characteristics, particularly those related to the ability to work as an 

etchant. Furthermore, CF4 is also widely used today in electronic components 

surface cleaning, solar battery production, laser technology, space 

technology, metal smelting, meteorological insulation, low temperature 

refrigeration and many other applications. 
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 The use of CF4 in etching processes remains the most important of the 

applications of Carbon Tetrafluoride. This became an incentive that much 

research be carried on the crystalline structure of CF4. The crystal lattice, 

orientations, point groups and space groups of the different phases are 

particularly important when studying the physisorption of CF4 onto graphite 

as well as determining the thickness of the CF4 to be used under each set of 

work conditions. However, studying the structural phase transitions of CF4 

proved to be a complicated matter. Despite the closeness in structure between 

CF4 and other simple tetrahedral molecules including methane, the phase 

diagram of Carbon Tetrafluoride is not as simple as that of others. There have 

been a number of researches performed to probe the interatomic interactions 

of the molecule at high pressure. Unfortunately the results of these various 

researches have not been in agreement.  Similarly, the phase diagram of CF4 

at low temperatures is still a vague area whereas it is rather important to 

investigate the structure of the molecule within low temperature ranges. This 

is due to the fact that such conditions of low temperatures are usually 

imposed in certain industrial processes where higher temperatures may 

interfere with the chemical reaction rate and mechanism. In the etching 

process for example, the relational between etching rate and temperature is 

not always linear, which means that in order to optimize the results we 

should be able to use the etchant at any temperature needed.  

 Furthermore, the crystalline structures which CF4 adapt are not fully 

agreed upon. Many high pressure studies have been carried out to test 

whether the structural arrangements shall vary and although it did prove that 

the positions of the molecules are considerably displaced under conditions of 

high pressure, the crystalline structure itself, and particularly the space 

groups have yet to be resolved. This controversial nature of the crystalline 

structure and phase transitions of CF4 is what encouraged us to extend the 

research in order to probe this issue under conditions of low temperatures and 

high pressures. 
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5.1 PREVIOUS WORK 

When validating our model, the comparisons with experimental and 

previous analytical results was rather important. For this cause we have 

utilized experimental and analytical results that have been agreed upon and 

validated by a number of credible research papers and scientific journals. 

Such results have given us details on the structure and phase diagram of CF4 

as follows: 

 According to the latest Raman Spectroscopic results, at room 

temperature CF4 undergoes the following transitions [114,115]: 

 From a liquid phase to the first solid phase (I) at a pressure of 1.6±0.30 

Gpa. 

 From solid phase (I) to solid phase (II) at a pressure of 2.83±0.25 GPa. 

 From solid phase (II) to solid phase (III) at a pressure of 3.45±0.15 

GPa. 

 Furthermore, a number of other studies using both Raman 

spectroscopy and X-ray diffraction methods have given the following 

information which has not yet been supported by simulation methods or other 

experimental data[115,116,117,118]: 

 A transition to phase (III) at a pressure of 9GPa was obtained by 

Shindo et al [117] and verified by Nakahata et al [118]. 

 A transition from the solid phase (III) to solid phase (IV) at a 

pressure of 13.6GPa was also obtained in the work of Shindo et al 

[117] and Nakahata et al [118]. However, particularly this 

transition was not observed in any other works. Instead Lorenzana 

et al [116] in their work have observed what they assumed to be a 

solid-solid transition from phase (III) to phase (IV) at a pressure of 

16GPa. 

 In our work we have tried to revisit the particulars on phase 

transitions mentioned above particularly numbers 4 and 5. We have also tried 
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to simulate the system at pressures higher than 16GPa to study the behavior 

of CF4 molecules and whether or not they undergo any phase changes. 

Furthermore we have also worked on a range of constant pressures to observe 

phase transitions at low temperature. This shall be discussed in full detail in 

the following section.  

 Another important aspect of our work was to study the changes which 

the crystal structure undergoes as subject to changes in the temperatures 

and/or pressure. The crystal structure, lattice structure and space groups of 

the solid phases of the CF4 is also a controversial matter. Particularly phase 

(II) which is referred to as α-CF4 is surrounded by some ambiguity. IR and 

Raman spectroscopic results have suggested that α-CF4 is a well ordered 

tetragonal lattice with S4 symmetry [116]. However this was not in 

agreement with the X-Ray diffraction results which suggested that α-CF4 is a 

well ordered monoclinic lattice belonging to either a Cc [117,120] or a P21/c 

[118,121] space group. Later studies conducted by Satay et al [122] 

suggested that the space group of α-CF4 is C2/2 which is deduced from the 

P21/c previously suggested by Bol'shutkin et al [120]. Space groups of phase 

III have also been quite controversial, however it was finally agreed by a 

number of researches that the space group of that phase is a P21/c [115]. The 

actual symmetry type, lattice structure and space group of CF4 in all its 

phases and particularly the α-CF4 still needs further investigation in order to 

remove the ambiguities which have been surrounding it so far. This too is 

part of the work we have carried out. 

 Given the above information, the phase diagram below was suggested 

for CF4 [116].  
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Figure (5.1): Proposed phase diagram for CF4 

 

Unfortunately, the lack of credible information, the discrepancies in 

results and the ambiguity surrounding certain phases has resulted in the 

above phase diagram which is clearly not a complete one. As we see in the 

proposed phase diagram (5.1) there isn't enough information on the structure 

of CF4 at high pressures neither is there enough information about the 

structure at low temperatures. That is why we have decided to focus our work 

on those two areas in order to come up with as much clarification as possible 

as to the structure of CF4 at high pressures in the ranges between 10 and 20 

GPa and also at low temperatures in the ranges from 0-100 degrees Kelvin. 
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5.2 PROPOSED MODEL 

As thoroughly discussed in previous chapters, Carbon Tetrafluoride is 

a tetrahedral molecule, which in its simplest state belongs to the Td point 

group as shown below [123]:  

 

Figure (5.2): Tetrahedral Carbon Tetrafluoride 

 

The gaseous state of CF4 is one of the easiest states to describe. It is a 

standard phase where particles are easily dealt with as hard spheres and the 

spherical shell model is sufficient to describe interactions and potentials. 

However, when dealing with liquid and solid phases of CF4 the situation is 

not all that simple. The potential model utilized must be sufficient to take 

into account all particle-particle interactions both short and long range. A 

site-site interatomic potential becomes necessary, In our work we followed 

the footsteps of Nose and Klein [124] and used the interatomic Lennard-

Jones potential however, unlike them we explicitly included the electrostatic 

force. The relation used is as follows: 
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    (5.1) 

In the relation we point out the distance between any atoms in the 

term rij and we also point out the nature of the atom ( C or F) referring to 

them by α and β respectively. Furthermore, the collision diameters is 
  

and depth of the potential well is
  where both are LJ parameters. The 

relation between atoms of the same nature is described by the parameters 

used by Singer et al and Murad and Gubbins in their work [125,126]. Other 

parameters are obtained using Lorentz-Berthelot mixing rules as follows 

[109]:  

 
1

2
CF CC FF           (5.2)  

and  

FFCCCF          (109) 

Altogether, the set of LJ parameters is given in the table below: 

Parameter  BCC K/

 
BFF K/

 
BCF K/

 
CC  CC  CC  

Value  51.2 K 52.8 K 51.99 K 3.35 Ǻ 2.83 Ǻ 3.09 Ǻ 

Table (5.1) Lennard Jones Parameters on Carbon and Fluorine atoms 

 

Atomic partial charges may easily be obtained using the partial 

equalization of orbital electronegativities. This method is one of the most 

precise approaches which provides results usually consistent with 

experimental values. The masses and partial charges on the Carbon and 

Fluorine atoms are given below: 
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Atom  Partial charge (e) Mass (amu) 

Carbon  0.5617 12.01 

Fluorine  -0.1404 18.9984 

Table (5.2): Partial charges and atomic masses of Carbon and Fluorine atoms 

 

5.3 SIMULATION SETUP 

It was not easy deciding upon the most appropriate conditions under 

which we should run our simulations. Knowing the importance of choosing 

the correct number of molecules, time step, as well as other factors like 

pressure, temperature...etc we had to be very precise with our choices. 

Finally we decided that in order to closely simulate the system we need to at 

least three MD boxes. So we chose to use MD boxes containing 108, 256 and 

500 molecules. The runs were initiated using the FCC as our initial 

configuration since this particular lattice is most suitable for CF4. As 

discussed earlier, we used the software 'Moldy' to carry out our runs and 

calculations.  

As previously explained, Moldy allows the use of boundary 

conditions, which we have chose to impose in all directions. Furthermore, we 

allowed the variation in size shape and symmetry of the MD box in order for 

the system to fully equilibrate particularly in the solid phases. The integration 

algorithm utilized to provide the solutions of the Newtonian equations of 

motion is the Beeman Algorithm which we have discussed in detail in 

previous chapters. We have used the isobaric-isothermal ensemble which 

allows us to provide definite values for the temperature and pressure at the 

beginning of each simulation run. in an isobaric-isothermal ensemble 

simulation, the molecules experience energy and volume fluctuations driving 

the system to equilibration. Throughout the runs we were closely monitoring 

the equilibration to make sure we have allowed enough time for the system to 
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reach equilibrium and for the trajectory to cover the entire phase space yet 

not too long so that we do not allow a rise to high energy overlaps between 

atoms and hence instabilities in the integration algorithm [42]. 

 

5.4 OUTPUT ANALYSIS 

Termination of the simulation runs is only the beginning of what may be 

considered the hardest stage of the entire process. This stage involves the 

analysis of the data that we have extracted from each simulation run. We then 

proceed to produce caloric curves, Binder fourth cumulant curves, RDF's, 

and order parameters curves in order to describe the system at various 

conditions. Furthermore, careful analysis of the given results and produced 

curves was carried out to allow us to isolate temperatures and pressures 

where there might have been a phase transition and to identify the type of 

transitions as well as the structure and symmetry of the system at each phase. 

These calculations were either entirely carried out using Moldy, or the data 

was extracted from Moldy and then dealt with separately either by the use of 

another computational program like MATLAB or by simply utilizing an 

excel spreadsheet. The process by which data was extracted and analyzed 

may be summarized as follows: 

1. Data is extracted and used to calculate the fourth order cumulant. For 

constant temperature simulations the fourth order cumulant is plotted 

against pressure and in constant pressure simulations it is plotted 

against temperature for two system sizes (either 108 and 256 or 256 

and 500 or 108 and 500). The points at which the curves for the two 

systems intersect indicate  phase changes.   

2. Data is obtained and utilized to draw caloric curves at specified 

constant temperatures (Total Energy Vs. Pressure) or at specified 

constant pressures (Total Energy Vs. Temperature). A discontinuity or 

sudden change in the slope of the caloric curve indicates a phase 

change. 

3. The translational order parameter is plotted to distinguish between a 
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solid and a liquid phase. 

4. The rotational order parameter is plotted to specify the rotational 

order/disorder. 

5. Lattice constants, both positions and angles (a, b, c, α, β, γ) are 

extracted in order to identify the lattice structure and space group. 

6. Finally the RDF is obtained and the number of nearest neighbors and 

next neighbors is directly extracted from the output file. 

 

5.5 RESULTS OF CONSTANT PRESSURE SIMULATIONS 

As discussed earlier, it was rather important to us to revisit previously 

probed areas as well as try to explore the areas which have not yet been fully 

developed. We carried out a series of runs over the three MS box sizes at 

constant pressure. We started with runs at 100 MPa, 1 GPa, 6 GPa, 15 GPa 

and 35 GPa. Under each of these pressures the temperature was varied from 

T = 0 K to T = 450 K at intervals of 2 degrees Kelvin.  

The calculations discussed in the previous section were carried out for 

each set of coordinates and results were tabulated. It will be extremely 

difficult to present all the calculations and graphs for the runs carried out 

which at the interval we used were around 175 runs at every pressure value. 

Therefore in the following pages we shall present a sample of out result 

analysis, particularly for areas where a phase transition was determined. We 

may consider for example the runs carried out at P=100 MPa and the runs 

carried out at 6 GPa  

5.5.1 Results at P = 100 MPa and T = 0 K to 450K 

First, by plotting the caloric curve for the systems N = 256 and N = 

500 molecules at P = 100MPa we were able to observe two distinct changes 

in the slope of the graphs. Segmenting the Caloric curves makes it rather 

easier to examine the place and magnitude of such discontinuity. The two 

overall graphs are seen below: 
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Figure (5.3): Caloric curve for simulation of 256 molecules of CF4 at P=100 MPa 

 

Figure (5.4): Caloric curve for simulation of 500 molecules of CF4 at P=100 MPa 
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Closer studies performed on the caloric curve of the system with 

N=256, and segmentation at areas where there appears to be a sudden change 

in the slope gave us the following results: 

Figure (5.5): Caloric curve for simulation of 256 molecules of CF4 at P=100 MPa 

Furthermore, the fourth cumulants of the systems where N=108 and 

N=256 where plotted to check for areas of intersection. The diagram below 

only shows the areas of intersection: 

Figure (5.6): Binder fourth order cumulant curves for 2 CF4 models (108 molecules and 256 

molecules) simulated at constant pressure of 100 MPa 
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Now that we have the caloric curves as well as the fourth order 

cumulant, it is quite clear that Carbon Tetrafluoride undergoes two distinct 

phase transitions at P=100MPa, the first of which occurs at a temperature of 

86±0.5 and 106±0.4.  

In order to study the nature of the transition, the translational order 

parameter is plotted against temperature. An order parameter close to the 

value zero indicates a transition to a liquid (disordered) structure and as we 

see in the plot below, the order parameter fluctuates with increasing 

temperature and does in fact approach zero at the temperature range of 106± 

0.4 which indicates that the transition is from the liquid state to the solid state 

thus indicating also that the phase transition occurring at T=86±0.5 is a solid-

solid phase transition. 

Figure (5.7): Translational Order Parameter curve for CF4 model with N=500 simulated at constant 

pressure of 100 MPa 

Furthermore, since we happen to have two solid phases so far among 

which the first transition at T=86 ± 0.5K takes place, the Rotational Order 

Parameter is obtained to distinguish between the structures of both phases. 

The curve below indicates that at the lower side of the temperature of the 

transition the system is well ordered and is transitioned into a less ordered 
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state as the temperature increases. That is the rotational order parameter 

remains well above zero within temperatures below 86 K, beyond which the 

rotational order parameter drops to zero and maintains a position within that 

range until the second temperature at which the transition takes place.  

Figure (5.8): Translational Order Parameter curve for  CF4 model with N=500 simulated at constant 

pressure of 100 MPa 

The last stage of our analysis for this particular pressure was to obtain 

the Radial Distribution Function (RDF) for the two starting lattice structures. 

The RDF was obtained at a temperature T= 95 K (intermediate between the 

two transitional temperatures) and our constant pressure of 100 MPa. As we 

see from our curve below, the structure of the cell and the simulation does 

not depend on the initial configuration of the model.  
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Figure (5.9): RDF curves for CF4 model with N=500 simulated at constant pressure of 100 MPa and 

2 starting configurations (FCC) and (BCC) 

Although the caloric curve and the fourth cumulant intersection at P = 

1 GPa did not show any other phase transitions in the system containing 256 

molecules, a signal was detected in the Caloric curve for the 500 molecule 

system at a low temperature in the area of 45 K. However, the signal was not 

strong enough under the pressure conditions. The above procedure was 

repeated with other pressures, namely 1 GPa, 6GPa, 15 GPa and 35 GPa. The 

results obtained from the data acquired via these simulations did in fact 

support the findings above and also provided other information. The series of 

runs which were carried out at 20 GPa did actually clearly suggest a solid-

solid phase transition at a temperature 42±0.4 K. Furthermore, runs carried 

out at a pressure of 35 GPa confirmed the transition at 42±0.4 and also 

showed another phase transition at 430±2 K. The tables and figures below 

summarize the results for all simulations at constant pressure.  
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5.5.2 Results at P = 100 MPa, 1 GPa, 6GPa, 15 GPa, 20 GPa and 35 GPa 

and T = 0 K to 450K 

a. P = 100 MPa 

Nature of Phase Transition 

Temperature in K at which transition occurs 

Current Simulation work Previous Experimental work 

 

    

Solid Phase II to Solid Phase I 86± 0.6 87 [126] 

Solid Phase I to Liquid Phase 

(Melting) 
107± 0.2 108 [126] 

Table (5.3): Phase transitions at P= 100 MPa 

 

b. P = 1 GPa 

Nature of Phase Transition 

Temperature in K at which transition occurs 

Current Simulation work Previous Experimental work 

      

Solid Phase III to Solid Phase 

II 
76± 0.4 76.2 [126] 

Solid Phase V to Solid Phase 

IV 
164± 0.5 NA 

Table (5.4): Phase transitions at P= 1 GPa 
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c. P = 6 GPa 

Nature of Phase Transition 

Temperature in K at which transition occurs 

Current Simulation work Previous Experimental work 

      

Solid Phase IV to Solid 

Phase III 
297 ± 0.6 NA 

Solid Phase V to Solid Phase 

IV 
163± 0.2 NA 

Table (5.5): Phase transitions at P= 6 GPa 

 

 

d. P = 15 GPa 

Nature of Phase Transition 

Temperature in K at which transition occurs 

Current Simulation work Previous Experimental work 

      

Solid Phase V to Solid Phase 

IV 
163± 0.6 NA 

Solid Phase VI to Solid Phase 

III 
207± 0.6 203 [127] 

Solid-Solid Phase Transition  42 ± 0.4  NA  

Table (5.6): Phase transitions at P= 15 GPa 
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e. P = 20 GPa 

Nature of Phase Transition 

Temperature in K at which transition occurs 

Current Simulation work Previous Experimental work 

      

Solid Phase VI to Solid Phase 

III 
207± 0.6 203 [127] 

Solid-Solid Phase Transition  42 ± 0.4  NA  

Table (5.7): Phase transitions at P= 20 GPa 

 

f. P = 35 GPa 

Nature of Phase Transition 

Temperature in K at which transition occurs 

Current Simulation work Previous Experimental work 

      

Solid Phase V to Solid Phase IV 163± 0.6 NA 

Solid Phase VI to Solid Phase 

III 
204± 0.6 203 [127] 

Solid Phase II to Solid Phase I 42 ± 0.4  NA  

Phase Transition 420±2 NA 

Table (5.8): Phase transitions at P= 35 GPa 
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Figure (5.10): Caloric curve for simulation of 500 molecules of CF4 at P=35 GPa 

 

Figure (5.11): Binder fourth order cumulant curves for simulation of CF4 at P=35 GPa and N= 256 

and 500 molecules  



   

- 135 - 

 

Figure (5.12): Binder fourth order cumulant curves for simulation of CF4  at P= 35 GPa and N= 256 

and 500 molecules 

 

Figure (5.13): Binder fourth order cumulant curves for simulation of CF4  at P= 35 GPa and N= 256 

and 500 molecules 
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 As shown in table (5.8) as well as figures (5.10), (5.11), (5.12) and 

(5.13), phase transitions were isolated during the P= 35 GPa runs at 

temperatures which had not previously given such results. The phase 

transition occurring at 42± 0.4 K has been shown for the first time via 

simulation techniques. Although it had not possible previously to obtain such 

results at low temperature ranges, however during our work we had used a 

computer cluster as well as a large system thus allowing us to simulate the 

system at these conditions and obtaining results which had not been 

previously distinguishable. Further, studies have given us information about 

the type of transitions. The transition occurring at 163± 0.6 K is a solid phase 

V to solid phase IV transition. Furthermore, the one occurring at 42 ± 0.4 K is 

a Solid Phase II to Solid Phase I transition.  
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5.6 RESULTS OF CONSTANT TEMPERATURE SIMULATIONS 

The second stage of our work involves carrying out a number of runs at 

constant temperatures while varying the pressure. The exact same procedure was 

carried out at temperatures T= 20K, T= 40K, T=106 K, T= 160K, T= 200K, T= 250K 

and T=300K, as the pressure was varied from 0 GPa to 25 GPa. After terminating the 

runs the same calculations and observations were made. The results were analyzed in 

the same manner as was done in the previous section.  

First It is worth mentioning that we were able to obtain a distinct phase 

transition at T=20 30 ± 2.5 MPa. This is one of those transitions at low temperature 

which are characterized by highly organized structures. Now let's take for example the 

runs carried out at T=40K. A series of runs were carried out at this low temperature 

with variations in pressure starting from 0 GPa to 25 GPa. The system with N= 108 

molecules did not actually provide any sufficient results. The Caloric curves obtained 

had no sharp changes and the fourth cumulant curve barely touched the curve for the 

system with N=256. The system with N= 500 molecules on the other hand had a 

distinct discontinuity is the slope of the caloric curve corresponding to a pressure of 

72 ± 6 MPa as well as an intersection with the Fourth cumulant curve of the N=256 

system confirming the above observation.  

Furthermore, we shall also point out the results at T=300 K since it is one of 

those temperatures which has been studied several times and we have several 

experimental values which we can compare to our work. At 300K, the fourth order 

cumulant curves of the systems N=256 and N=500 gave four intersection areas 

corresponding to four areas of discontinuity in the caloric curve. The translational 

order parameter confirmed the hypothesis we were testing that a transition taking 

place at a Pressure in the area of 1600 ± 90 MPa is a solid-liquid transition. 

Furthermore it deduces that all the three other phase transitions are solid-solid 

transitions. The rotational order parameter in this case was not truly necessary since 

the results it provided are just factual results that as the pressure increases on a certain 

system the order of that system increases too. The higher the pressure the higher the 

degree of the order in the system.  
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In the following section we have used the runs corresponding to T= 300K for 

the sake demonstration. All results corresponding to the different temperatures we 

have tested are listed in later sections. 

5.6.1 Results at T= 300K 

The caloric curve for the 500 molecules simulation model at T= 300 K was 

plotted to give the figure below. 

Figure (5.14): Caloric curve for simulation of 500 molecules of CF4 at T=300 K 

Closer analysis and segmentation of the caloric curve above gave us the 

following resulting figures. We have only chosen to present those values 

where a phase transition is witnessed: 

 



   

- 139 - 

 

Figure (5.15): Caloric curve for simulation of 500 molecules of CF4 at T=300 K (for P=0 to P=4500 

MPa) 

 

Figure (5.16): Caloric curve for simulation of 500 molecules of CF4 at T=300 K (for P=4500 to 

P=15000 MPa) 
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 As seen from figures (5.15) and (5.16), the phase transitions at T= 300K can 

be summarized as follows: 

 Phase transition at 1600 ±  90 

 Phase transition at 3000 ± 165 

 Phase transition at 3400 ± 132 

 Phase transition at 7900 ± 200 

 Phase transition at 14200 ± 185 

 The Binder fourth order cumulants for the N=256 and N=500 models were 

plotted against each other and the intersections which were isolated confirmed the 

above stated results. 

Figure (5.17): Binder fourth order cumulant curves for simulation of CF4  at T = 300 K and N = 256 

and N = 500 molecules (P = 0 MPa to P = 3000 MPa) 

 



   

- 141 - 

 

Figure (5.18): Binder fourth order cumulant curves for simulation of CF4  at T = 300 K and N = 256 

and N = 500 molecules (P = 2600 MPa to P = 5800 MPa) 

 

Figure (5.19): Binder fourth order cumulant curves for simulation of CF4  at T = 300 K and N = 256 

and N = 500 molecules (P = 6500 MPa to P = 8500 MPa) 
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Figure (5.20): Binder fourth order cumulant curves for simulation of CF4  at T = 300 K and N = 256 

and N = 500 molecules (P = 13500 MPa to P = 15000 MPa) 

 To distinguish between the different transitions we plotted the translational 

and rotational order parameters. The translational order parameter at T=300 K,  figure 

(5.21), shows that as the pressure increases the translational order parameter tends to 

zero. At a pressure of P=1600 ±  90 the order parameter reaches zero which indicates 

that the transition taking place at this particular pressure moves the system from a 

state of disorder to a highly ordered state, thus it is a liquid-solid phase transition. 

Consequentially, other phase transitions taking place at higher pressures must be 

solid-solid phase transitions.  

 Furthermore, since we have more than one solid-solid phase transitions, and 

on order to distinguish between the different solid phases, the rotational order 

parameter is plotted against pressure. As seen in figure (5.22), as the pressure is 

increased the rotational order parameter tends towards unity thus indicating a highly 

ordered phase. This implies that high pressure solid phases are more ordered than 

those exhibited at lower pressure. The figures below illustrate these findings.  
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Figure (5.21): Translational Order Parameter curve for  CF4 model with N=500 simulated at 

constant temperature of 300 K 

 

Figure (5.22): Rotational Order Parameter curve for  CF4 model with N=500 simulated at constant 

temperature of 300 K 
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 As previously discussed, the radial distribution function (RDF) is plotted for 

the two starting lattice structures in order to ensure that the structure of the unit cell as 

well as all other simulation results are not dependent on the initial configuration.   

 The results which we have obtained at T=300 K may be summarized in the 

following table. 

Nature of Phase 

Transition 

Pressure in MPa in at which transition occurs 

Current Simulation work Previous Experimental work  

      

Liquid to Solid Phase I 1600 ±  90 1860 [128] 

Solid Phase I to II 3000 ± 165 2840 [128] 

Solid Phase II to III 3400 ± 132 3500 [128] 

Solid Phase III to IV  7900 ± 200 8600 [128] 

Solid Phase IV to IV 14200 ± 185 13600 [128] 

Table (5.9): Phase transitions at T= 300 K 

 Similarly, the same procedure described above was followed at, 

T=40K, T=106 K, T= 160K, T= 200K and T= 250K. The results obtained are 

summarized as follows:  

All results corresponding to the different temperatures we have tested are 

listed below. 

 

 

 

 



   

- 145 - 

 

5.6.2 Results at T= 40K, 106K, 160K, 200K AND 250 K 

Nature of Phase 

Transition 

Pressure in MPa in at which transition occurs 

Current Simulation work Previous Experimental work 

      

Liquid to Solid Phase I 72± 6 NA 

Solid Phase I to II 140± 3 NA 

Solid Phase II to III  Not found  NA 

Solid Phase III to IV  Not found NA 

Solid Phase IV to V  Not Found NA 

Table (5.10): Phase transitions at T= 40 K 

 

Nature of Phase 

Transition 

Pressure in MPa in at which transition occurs 

Current Simulation work Previous Experimental work  

      

Liquid to Solid Phase I 96 ± 12 91 [128] 

Solid Phase I to II 286 ± 25 279 [128] 

Solid-Solid Transition 470 ± 32 NA 

Solid-Solid Transition  1600 ± 132 NA 

Table (5.11): Phase transitions at T= 106 K 
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Nature of Phase 

Transition 

Pressure in MPa in at which transition occurs 

Current Simulation work Previous Experimental work  

      

Liquid to Solid Phase I 370 ± 55 442 [128] 

Solid Phase I to II 1100 ±150 905 [128] 

Solid-Solid Transition 3900± 170 NA 

Solid-Solid Transition  9600 ± 110 NA 

Table (5.12): Phase transitions at T= 160 K 

 

Nature of Phase 

Transition 

Pressure in MPa in at which transition occurs 

Current Simulation work Previous Experimental work  

      

Liquid to Solid Phase I 800 ± 10 761 [128] 

Solid Phase I to II 1580 ±140 1460 [128] 

Solid-Solid Transition 9050± 150 NA 

Solid-Solid Transition  15300 ± 120 NA 

Solid-Solid Transition  18600 ± 200  NA 

Table (5.13): Phase transitions at T= 200 K 
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Nature of Phase 

Transition 

Pressure in MPa in at which transition occurs 

Current Simulation work Previous Experimental work 

      

Liquid to Solid Phase I 1300 ± 10 1255 [128] 

Solid Phase I to II 2300 ±100 2230 [128] 

Solid-Solid Transition 2900± 50 NA 

Solid-Solid Transition  11000 ± 200 NA 

Table (5.14): Phase transitions at T= 250 K 

 

 

 

 

 

 

 

 

 

 

 

 

 



   

- 148 - 

 

5.6.3 Crystal Structure, Lattice parameters and Space Groups of the 

different phases of Carbon Tetrafluoride. 

 According to the data we have acquired and the calculations carried 

out, we were able to deduce the following structures for the different phases 

of Carbon Tetrafluoride. 

Phase a(Å) b(Å) c(Å) α(
o
) β(

o
) γ(

o
) Space Group 

I 13.73 12.79 13.36 90 93.6 90 C2/m 

II 8.21 8.27 6.34 90 87.6 90 Cm 

III 8.89 8.86 6.75 90 95.2 90 Cm 

IV 7.89 7.87 6.09 90 86.9 90 Cmm 

V 7.69 7.61 6.32 90 90 90 Cmm/2 

Solid phase at 20K 8.82 4.13 15.35 90 151.01 90 Cc 

Solid Phase at 40K 8.71 4.16 15.27 90 150.7 90 Cc 

Solid Phase at OK 8.36 4.21 8.13 90 119 90 C2/c 

Table (5.15): Lattice Parameters and Space Groups of different phases of Carbon Tetrafluoride  
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CHAPTER 6: CONCLUSIONS & DSCUSSIONS 

Molecular Dynamic Simulation is one of the most important 

simulation methods today. It has a wide range of applications which 

have given it a broad scope of utilization in most applied sciences.  

In this thesis we have worked to simulate a system of CF4 

molecules as an attempt to describe its phase transitions as well as its 

crystal structure in the solid phase. Most of the results acquired were 

within good agreement with experimental values most of which have 

been acquired via the use of spectroscopic techniques such as IR 

spectroscopy, Raman spectroscopy and X-Ray diffraction.  

Furthermore, we were able to probe areas which have yet to 

be experimented upon such as high pressure areas and low 

temperature areas. The results which we have acquired can decrease 

the ambiguity surrounding phase transitions of CF4. Phase 

transitions at temperatures 42 ± 0.4 K and 420 ± 200 K were 

isolated. These particular transitions may have been identified 

experimentally but had never been isolated using MD simulation. In 

addition to that a few high pressure transitions were also isolated at 

high temperatures, particularly 250 K. For example a solid-solid 

transition was isolated at 11000 ± 200 MPa, and as previously 

discussed it was rather distinct that the crystal lattice structures of 

higher pressure solid phases are of more ordered than those of low 

pressure phases.    

 These findings could be utilized to suggest a plausible and 

more comprehensive phase diagram for Carbon Tetrafluoride. As a 

matter of fact we were able to suggest such phase diagram and are 

hoping that future experimental and/or simulation work can confirm 

it.  
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First, it might help to study a phase diagram that had been 

recently developed via the utilization of MD simulation. The 

following figure was proposed in 2006 [101]:  

Figure (6.1): Phase Diagram of CF4 proposed by S. El Sheikh and K. Barakat [101] 
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In our work, we were able to confirm the findings in the phase 

diagram proposed by S. El Sheikh and K. Barakat [101]. We were also able 

to extend the phase diagram to areas of low temperatures and high 

temperatres which had not been identified in the phase diagram above. The 

results and findings which we had been able to conclude in this work may be 

presented as follows: 

Figure (6.2): Proposed phase diagram of CF4 

 

Having arrived at these results, one can say that MD simulations 

provide successful means of studying phase transitions and lattice structures 

of matter. In the past this was only possible as long as the temperatures at 

which the simulations are carried out are not too low. Low temperatures were 

V 

IV 

III 

Liquid 

II 

I 
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studied by means of quantum (ab-initio) molecular dynamics only. Classical 

MD simulations had not been able to present accurate results at low 

temperatures. However, today with the availability of large computer clusters 

and high technology software packages we were able to simulate larger 

systems (N=500) and thus classical MD was successful in proposing accurate 

results at low temperatures as well as high temperature. The larger the 

simulated system the more accurate the results since we are bringing the 

simulated system as closely as possible to the structure of the real system. 

Hence, if the system is large enough, the software is capable and the cluster 

capacity is high we may confidently say that MD is a successful tool for 

simulations, even at low temperatures. 

Furthermore, one cannot ignore the fact that MD simulations are 

amongst the most important statistical mechanics methods which enables us 

to explore the phase space of any system with acceptably accurate results 

which are comparable to experimental findings. As long as a proper model is 

utilized, one can consider MD simulations to be a very reliable and relatively 

simple tool to model, control and observe the behavior of a very large 

number of systems. 

Future work may include simulations of larger bulks of molecules 

with different initial configurations. For example, one may wish to extend the 

study carried out for the purpose of this thesis to a system of 864 molecules 

(FCC 4M
3
, where M= 6) and try to simulate it at temperatures lower than 

20K and higher than 450 K. It may also be extended to probing areas of high 

pressures (50 GPa for example), which despite the fact that it wouldn't be 

used in practical applications, however it can provide useful information 

about the validity of the model being utilized. It is true that simulating a 

larger system is usually quite difficult and requires larger computing 

facilities, such as a cluster as well as a highly specialized, capable and time 

effective software package. However the results obtained during these 

simulations are usually very accurate and much closer to experimental 

values.  
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In addition to that, the variations in the size of the MD system as well 

as the time step allowed, may help us arrive at a certain relation between the 

two factors, which if proven correct shall facilitate future work. For example, 

while simulating the system containing 500 molecules much time was 

consumed while deciding on the most appropriate time step as well as the 

most suitable number of steps. It was very important that we arrive at the 

correct conditions, which ensure that the system has reached equilibrium, and 

yet the simulation does not continue for long after that point. We have 

noticed during out trial-and-error phase of deciding on the time step, that a 

larger system requires a shorter time step and a larger number of steps to 

reach equilibrium. Similarly, we have also noticed that higher pressure and 

lower temperature simulations gave the comparably more accurate results 

when we used fewer and longer time steps than when we used more and 

shorter time steps. Such findings may be tested during future work and if 

confirmed shall be very useful and shall no doubt save us a lot of time and 

efforts that are consumed during the initial stages of preparing the model and 

the various input files.  

Furthermore, future work may also include the utilization of quantum 

(ab-initio) molecular dynamics to further investigate regions of very low 

temperatures as well as areas of very high temperatures. Ab-initio molecular 

dynamic techniques require high specification computing systems and thus 

had not been available to us in the past. However, now we have the facilities 

which may allow us to utilize ab-initio molecular dynamics simulations to 

study and analyze crystal structure, phase transitions and last but not least it 

would allow us to study mechanisms of chemical reactions which cannot be 

monitored or investigated by experimental techniques.  
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