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ABSTRACT 

 

The biophysical studies of the biological system are far from being conclusive. Not only because 

this science is relatively recent, but also because of the lack of physical data. Also there are a lot 

of contradicting views among researchers as well as the poor theoretical interpretation of the 

reported experimental data. However, the advent of computer science with the considerable 

storage capability and highly vast calculations gives modeling techniques a great advantage and 

opens a real door to better understanding of the complicated biological phenomena. 

The present thesis addressed the problem of ionic penetration through biological tissue under the 

effect of external electric field (DC and AC). This was done by studying the diffusion coefficient 

D as an indicating parameter for such effects. 

The work was based on stochastic computer simulation of the problem such that the tissue was 

considered as a matrix that contains the elements under study. The size of the matrix was up to 

30,000 x 30,000. Two dimensional honey comb cellular pattern was simulated such that it 

allowed six maximum possible element-to-element communications.  

The diffusants were let to diffuse under different electric field strengths in DC forward and 

opposite directions, and AC field with different frequencies. 

The effect of vacancies concentration and annealing time were tested in the absence of electric 

field. Two different vacancies concentrations were studied under the effect of electric field. Fist, 

90% of the tissue was vacant and subjected to DC and AC fields as well as zero field. Second, 

50% of the tissue was vacant and investigated under similar conditions. 

The results showed that for the 90% case, the penetration increased with increasing of electric 

field strength. While in the 50% case, the penetration increases with increasing the current until a 

point at which the diffusion is hindered. 

The DC results of forward current were compared to that of backward direct current and the 

results showed that the backward direction hindered diffusion. 

The effect of alternating current shows that penetration was inversely proportional with the 

frequency which agrees with literature. Comparisons of the effects of sinusoidal and square 

waves were illustrated. The square waves showed to have more ionic penetration and diffusion 

coefficient values than the sinusoidal ones. 

As the frequency of alternating current is decreased, its effect on diffusion became close to that 

of direct current. 

Despite the fact that the results obtained by simulation are in essence virtual and based on 

arbitrary units, yet the effects were clear and indicative. 
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Chapter 1: Introduction 

  1.1. The diffusion process  

Diffusion is one of the fundamental processes by which material moves. It is 

important in biology, chemistry, geology, engineering and physics. It is the movement of 

molecules from a region of higher concentration to one of lower concentration. This 

movement occurs because the molecules are constantly colliding with one another. The 

net movement of the molecules is away from the region of high concentration to the 

region of low concentration.  

Most changes in structure occur by diffusion, any real understanding of phase 

changes must be based on knowledge of diffusion. Also diffusion process plays an 

important role in many surface phenomena including thin film growth, surface chemical 

reactions.  

The dependence of life processes on diffusion mechanisms could not be more 

prevalent. All living things have certain requirements they must satisfy in order to remain 

alive. These include exchanging gases (usually CO2 and O2), taking in water, minerals, 

and eliminating wastes. These tasks ultimately occur at the cellular level, and require that 

molecules move through the membrane that surrounds the cell. This membrane is a 

complex structure that is responsible for separating the contents of the cell from its 

surroundings, for controlling the movement of materials into and out of the cell, and for 

interacting with the environment surrounding the cell. Diffusion is a passive process that 

requires no energy from the cell. 

Osmosis is a special example of diffusion. It is the diffusion of water through a 

semi- permeable membrane from a more dilute solution to a more concentrated solution – 

down the water potential gradient). A semi-permeable membrane lets only certain 

molecules pass through while keeping other molecules out. 

Examples of diffusion in biology are: 

• Absorption of water by plant roots.  

• Re-absorption of water by the proximal and distal convoluted tubules of the nephron.  

 • Re-absorption of tissue fluid into the venule ends of the blood capillaries.  

• Absorption of water by the alimentary canal: stomach, small intestine and the colon.  

•  as exchange at the alveoli: oxygen from air to blood, carbon dioxide from blood to air.  

•  as exchange for photosynthesis: carbon dioxide from air to leaf, oxygen from leaf to 

air.  
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•  as exchange for respiration: oxygen from blood to tissue cells, carbon dioxide in 

opposite direction.  

• Transfer of transmitter substance: acetylcholine from presynaptic to postsynaptic 

membrane at a synapse.  

1.2. Literature review: 

In 1827, Brown noticed that when pollen is dispersed in water, the individual 

particles did not obey Newtonian dynamics and move down in straight lines until they 

settle down. They kept moving around in a lively unpredictable manner. 

Various explanations of the phenomenon were put forward, it was thought to be 

caused by irregular heating for incident light, or electrical forces, or temperature 

differences in the liquid. ln 1877, Delsaux first expressed the theory that the motion was 

caused by collision of the molecules of the liquid on the immersed particles. When a 

heavy particle is immersed in a fluid which consists of light molecules in a constant 

motion due to the heat, the velocity of this particle will vary constantly due to a large 

number of very small collisions each time the particle runs in to a molecule [1].  

In 1905 the, breakthrough occurred when Albert Einstein published a series of 

papers on diffusion and viscosity. His papers on diffusion came from his PhD thesis, 

namely, Diffusion. Einstein’s contribution can be reviewed as following: 

1. Brownian motion of individual jumps of the particle observed at desired time intervals 

show that the particle has undergone many variation in velocity and what we observe is 

the net displacement. 

2. Brownian motion of particles was basically the same process as diffusion. Thus we can 

use the same equations for Brownian motion and diffusion. 

3. The average distance moved in a given time during Brownian motion is given by 

 

 <x
2
> = 2Dt (1.1)  

 

<x
2
> is the average value of the square of the distance, D is the diffusion constant and t is 

the time of diffusion 

4. The equation for the diffusion coefficient of a substance in terms of the radius of the 

diffusing particles or molecules and other known parameters is given by: 

 D =RT/6    av r (1.2)  
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Where R is a gas constant 

           T is the absolute temperature 

           Na is Avogadro’s number (6x10
23

 molecule/mole) 

           V is the viscosity of the solvent 

r is the radius of particle or molecule. 

 

The importance of explanation of Brownian motion was not only a verification of 

molecular theory which at the turn of century wasn’t universally accepted but also a 

confirmation of what is called now a diffusion process. 

There have been several studies on the field of diffusion modeling. Some of them 

has followed a pure mathematical modeling approach, while others used computer 

modeling techniques to avoid the apparent mathematical complications. 

F. Buda and M. Parrinello studied the diffusion of Hydrogen in crystalline Silicon 

using the ab initio molecular dynamics (MD) simulations [2].  

ln this method, they compute numerically the atomic trajectories resulting from 

the interatomic forces. Trajectories appropriate to different temperatures can be generated 

by changing the initial conditions for particle motion. They performed several MD runs at 

different temperatures higher than 1000 °K. The Hydrogen diffusion coefficient was 

obtained by measuring the mean square displacement. 

A very interesting study was performed by Eric Weeks [3] in the field of diffusion 

in fluids. He distinguished between two types of random walks, the normal random walks 

such as those taken by dye molecules diffusing by Brownian motion and a super-

diffusion random walk such as that in the stirred fluid systems. 

Moshfegh [4] developed a 2D computer simulation model to monitor the diffusion 

process for Cu/Si and C/Fe with the use of numerical method called a Finite Element 

Method (FEM). ln the finite element method (FEM), the system under consideration is 

divided into smaller elements, this discretization process based on concentration gradient 

and the physical properties of each element. By applying the equations governing the 

system and imposing boundary conditions (if exist) on each element, a series of linear 

equation can be obtained. Then, they are assembled based on topology and situation of 

element, yielding a system of equations. The system equations are adjusted for boundary 

conditions then solved. This gives the value of c(x,y) at the nodes. 

Moshfegh [4] proposed two different thin film system namely Cu/ Si if and C/Fe. 

In both systems, the variation of Cu concentration was monitored for different 

temperature, time and space. 

 Many theoretical efforts have been devoted to calculating diffusion correlation 

factors. One of them is proposed by Sholl  [5] who used the concept of an atom vacancy 

encounter. 

  An atom-vacancy encounter is the sequence of exchanges between a particular 

atom and a particular vacancy. At low vacancy concentrations a vacancy will undergo a 
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random walk which will result in return visits to a particular atom. The diffusion of an 

atom in three dimensions is due to sequence of distinct encounters with different 

vacancies. The successive steps of the atom within an encounter are correlated but the 

successive encounters are uncorrelated. However, Sholl applied the random walk theory 

of the atom-vacancy encounters to calculate the solute and solvent diffusivity. 

J. A Szpuner developed a two dimensional computer model based on random 

walk theory and applied it in crystalline and polycrystalline solids [6]. The model is 

based on the equation: 

          ⁄  (1.3)  

ln this model, the polycrystalline solid is represented by a number of grains and 

each grain is digitized into number of cells. The cell is small area of the solid and has a 

square shape. Each cell has three parameters. The first one is the label of the cell which is 

used to specify the different regions through the sample such that each region has a 

specific diffusivity. The second set of parameters of the cell is a pair (x,y) to specify the 

coordinates of the cell in two dimensions. The third parameter of the cell is an integer 

used to count the number of diffusing atoms in the cell. This model is capable of 

simulating the effects of texture and microstructure defects. 

 Kuklja and Popov [7] used the modified semi-empirical simulation method of the 

Intermediate Neglect Of Differential Overlap (INDO) for studying the various diffusion 

mechanisms in ionic crystals and calculating the activation energy for diffusion of cation 

and anion vacancies in KCl as an example of these types of crystals. The relevant 

activation energies of 1.19 ev and 1.44 ev respectively agree well with the experimental 

data. 

Liu and Shi [8] developed two-dimensional and three-dimensional FEM models 

to study the transport of ionic species in an externally applied electric field in 

cementitious samples. Electromigration tests were conducted for different mix designs, 

the results of which were utilized for inverse parameterization of diffusion coefficients 

necessary for model predictions. Under the investigated situations, more chlorides are 

driven out of concrete with increasing current density and treatment time. With 

increasing initial chloride content, the residual chloride percentage decreases slightly. 

Bagno et al. [9] present a computer simulation study of the translational diffusion 

of the room-temperature ionic liquid [bmim][BF4]. Molecular dynamics simulations have 

been used, employing a recently developed classical, non-polarizable force field. They 

compare the results of the simulation with experimental data obtained by NMR 

spectroscopy and discuss some shortcomings of the simulations. The strong 

underestimation of calculated diffusion coefficients is traced to artefacts in the simulation 

and deficiencies in non-polarizable force fields. 

The effect of electric field on diffusion of charge carriers in disordered materials 

is studied by Monte Carlo computer simulations and analytical calculations. It is shown 

how an electric field enhances the diffusion coefficient in the hopping transport mode. 

The enhancement essentially depends on the temperature and on the energy scale of the 
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disorder potential. It is shown that in one-dimensional hopping the diffusion coefficient 

depends linearly on the electric field, while for hopping in three dimensions the 

dependence is quadratic. [10] 

Kusnadi, and Sudhir studied the effect of moderate electric fields on salt diffusion 

into vegetable tissue [11]. They determined the effective diffusion coefficients, Dseff, of 

salt into vegetable (celery, mushroom, and water chestnut) tissue under electric field at 

three temperatures (25, 50, and 80 °C) and four electric field strengths (0, 658, 1316, 

and 1842 V/m). Although in an alternating field the electrophoretic driving force either 

aligns with or opposes diffusion during each half cycle, the net result is an increase in ion 

transport over time. This is consistent with the rectification theory as expressed by the 

Nernst–Planck equation. 

Mass transfer in potato slices and strips after Pulsed Electric Fields (PEF) 

treatment was examined by Janositz et al. to evaluate potential application of PEF in 

potato processing [12]. PEF treatment on cell material leads to pore formation in cell 

membrane and thus modifies diffusion of intra- and extracellular media. Results showed 

enhanced release of intracellular molecules from permeabilized tissue as well as 

improved uptake of low molecular substances into the sample. This effect increased with 

the treatment intensity. Furthermore, it was revealed that PEF application leads to a 

distinct reduction of fat content after deep fat frying and thus provides a potential for the 

production of low-fat French fries.  

Krogh [13] stated that the diffusion of gases through animal tissues must take 

place in the same way as their diffusion through fluids or colloidal membranes. The gases 

are dissolved in the tissue fluids and diffuse in a liquid state. The laws governing the 

diffusion of gases through water and watery solutions have been worked out by Exner 

[14], who found that the rates of diffusion for different gases in the same fluid are 

proportional to the absorption coefficients of the gases in the fluid and inversely 

proportional to the square roots of their molecular weights. 

Tachiya studied the relation between the fractal geometry of reactant trajectories 

and the rate of diffusion-controlled reactions [15]. He proposed a possible mechanism for 

the effect of an external electric field on the rate of reactions on the basis of this 

consideration. The proposed mechanism predicts an increase in the rate constant with 

increasing electric field strength.  

Salford [16] studied the effect of electromagnetic fields on the blood-brain barrier. 

He concluded that the man made EMFs, such as those utilized in mobile communication, 

even at extremely low SAR values, causes the users' own albumin to leak out through the 

BBB which is meant to protect the brain. Also other unwanted and toxic molecules in the 

blood may leak into the brain tissue. There they concentrate in, and damage, the neurones 

and glial cells of the brain according to their studies. 

 

Smith and Sansom [17] studied the effective diffusion coefficients of K+ and Cl− 

ions in ion channel models. They found that the diffusion coefficients of both ions are 
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appreciably reduced in the narrower channels, the extent of the reduction being similar 

for both the anionic and cationic species. 

 

Diffusion in the extracellular space (ECS) of the brain was studied by Sykova and 

Nicholson [18]. They found that diffusion in ECS is constrained by the volume fraction 

and the tortuosity and a modified diffusion equation represents the transport behavior of 

many molecules in the brain. Deviations from the equation reveal loss of molecules 

across the blood-brain barrier, through cellular uptake, binding, or other mechanisms. 

They used the real-time iontophoresis (RTI) method to study diffusion of small ions. 

1.3. The aim of the present work: 

In response to the increasing global concern about the biological effects of 

electromagnetic fields (EMF) around us, the present work is to prove some insight on 

such effects. The aim of the present work is to study the diffusion process in biological 

material and the possible effects of electric field on diffusion. A computer model is built 

to simulate the diffusion process.  

The free random walk pattern is simulated. The algorithm follows the free 

movement of a number of particles that start from an origin. After considerable time the 

pattern is predicted and effect of time on mean square displacement is tested. 

The model employs simulation to study the effect of annealing time and vacancies 

concentration on diffusion in thin film method. The penetration distance is tested and the 

diffusion coefficient is calculated. 

The effect of direct current   (both forward and negative directions) and extremely 

low frequency (ELF) on ionic diffusion is tested. The effect is compared by calculating 

the diffusion coefficient in each case. 

The effect of alternating current is investigated. The present model compares the 

effects of sinusoidal and square waves on penetration of positive ions through biological 

tissues.  

The effect of tissue structure on diffusion is investigated under the electric field. 
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CHAPTER 2: DIFFUSION IN BIOLOGICAL MEDIA 

  2.1. Diffusion in matter: 

The elements and their chemical compounds generally exist in three states namely 

the solid, liquid and gaseous states. In solids and liquids the distance between 

neighboring atoms is of order of a few Angstroms, they contain 10
22

-10
23

 atoms per cm
3
 

[19].  

       This may be compared with a density of about 2.7*10
19

 molecules in a gas at room 

temperature under atmospheric pressure, corresponding to an average distance of 

approximately 30°A between molecules. 

There are many models and theories to understand the nature of a gas. In the hard 

sphere model each molecule is considered to be a hard sphere that collides elastically 

with other molecules and with the container wall. The model assumes that the molecules 

do not interact with each other except during collisions and that they are not deformed by 

collisions [20]. 

 Liquid state is the region in which matter is stable at densities and temperatures 

intermediate between the regions of stability of the solid and gaseous states. Brownian 

motion is well observed in liquid state. If a drop of solution such as ink is placed in water, 

it will tend to spread out and the mixture will ultimately become homogeneous. In this 

latter experiment a concentration gradient is present and the flux of the ink molecules 

exists, a diffusion coefficient could be measured. There are many theories about the 

diffusion in liquids [21]. The hole model is accepted by several investigators [22,23]. 

Eyring suggested that atoms which possess enough energy to surmount the potential 

energy barrier, will jump from one hole to another. After making their jumps they should 

stay at the new configuration long enough to dissipate their excess energy.  

The model suggests the applicability of Arrhenius equation to the diffusion 

coefficient in liquids which is given by 

 D=Doe
(-Q/KT)

 (2.1) 

Where D is the diffusion coefficient, Do: is the diffusion coefficient at 0
o
K and Q: is the 

activation energy. 

The Cell model assumes that, firstly, each particle in the liquid is assigned to a 

certain cage made by its nearest neighbors. The central particle spends most of its time 

within this cage. Secondly, the potential energy is constant inside the cage and is 

infinitely at the boundary. Thirdly, the total potential energy of the system is the sum of 

the potential energy of the individual particles. Finally, the model suggests that the 

particles inside their cages move with a gas velocity.  

The temperature dependence of the diffusion coefficient D has been a potent 

source of controversy and a number of relations have been proposed such as, DαT
2 

[24], 
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DαTm [25] and D = a + b×T [26]. Where a, b are characteristic constants which differ 

from one liquid to and Tm is the melting point. 

 The gas model treats the dense liquids and fluids as a continuation of the gaseous 

state; hence the diffusion coefficient of liquid D should be related to that of a perfect gas 

Dg. The mean free path of a liquid is in the same order of magnitude of the atomic 

dimension [27]. 

Generally, the basic laws which govern the diffusion in liquid are Fick’s laws as 

in the solids. In most solids and particularly in crystalline ones, the atoms are more 

tightly bound to their equilibrium positions. However, there still remains an element of 

uncertainty caused by thermal vibration occurring in a solid which permits some atoms to 

move through the lattice at random. A large number of such movements results in a 

significant transport of material. This phenomenon is called solid state diffusion. Even in 

a pure substance a particular atom doesn’t remain at one equilibrium site indefinite, 

rather, it moves from place to place in the material. 

2.2. Examples of diffusion in biology 

2.2.1. Blood filtering in the kidney (glomerular filtration barrier) 

One of the fundamental requirements for life is the ability to eliminate toxic 

metabolic byproducts. This process takes place in the renal corpuscle of the kidney. The 

glomerular filter through which the ultrafiltrate has to pass consists of three layers: the 

fenestrated endothelium, the intervening glomerular basement membrane, and the 

epithelial podocyte foot processes. This filtration barrier behaves as a size-selective sieve 

restricting the passage of macromolecules on the basis of their size, shape, and charge 

[28,29,30]. Podocytes are the visceral epithelial cells of the kidney glomerulus 

[31,32,33]. They elaborate long, regularly spaced, interdigitated foot processes that 

completely enwrap the glomerular capillaries. Interdigitating podocyte foot processes 

form an ~40-nm-wide filtration slit and are connected by a continuous membrane-like 

structure called the slit diaphragm.  

Glomerular Filtration Process 

An almost protein-free ultrafiltrate passes into Bowman’s capsule from the 

glomerular capillaries. Molecular size is the main determinant of whether a substance 

will be filtered or will be retained in the capillaries. However, molecular shape and 

charge also influence the filtration process, although these factors are of significance only 

for large molecules. For example, the rate of filtration of albumin (molecular weight 

68,000), which has a negative charge, is only about 1/20 that of uncharged dextran 

molecules of the same molecular weight. This finding suggests that the glomerular 

filtration barrier has fixed anions, which repel anionic macromolecules and thereby 

hinder or prevent the filtration of such molecules. 

In the glomerulus, the molecular weight cut-off for the filter is about 70,000. 

Plasma albumin, with a molecular weight of 68,000, passes through the filter in minute 



 

21 

 

quantities (retarded also by its charge, as mentioned above). Smaller molecules pass 

through the filter more easily, but the filter is freely permeable only to those molecules 

with a molecular weight less than about 7,000.  

Since the glomerular filter permits the free passage of molecules of molecular 

weight less than 7,000, the initial glomerular filtrate will contain small molecules and 

ions (e.g. glucose, amino acids, urea, sodium, potassium) in almost exactly the same 

concentrations as the afferent arteriolar concentrations, and similarly the efferent 

arteriolar concentrations of such substances will not have been significantly altered by the 

filtration process. 

The permeability of glomerular capillaries is about 100 times greater than the 

permeability of capillaries elsewhere in the body. 

 

 

Figure (2.1) Blood filtering in the glomerulus 
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2.2.2. Blood-air barrier 

The alveolar–capillary barrier or blood–air barrier exists in the gas exchanging 

region of the lungs. It exists to prevent air bubbles from forming in the blood, and from 

blood entering the alveoli. It is formed by the type 1 pneumocytes of the alveolar wall, 

the endothelial cells of the capillaries and the basement membrane between the two cells. 

The barrier is permeable to molecular oxygen, carbon dioxide, carbon monoxide and 

many other gases [34]. 

This blood gas barrier is extremely thin (varying in thickness from 0.4 to 2μm) 

(600–800 nm; in some places merely 200 nm) to allow sufficient oxygen diffusion, yet it 

is extremely strong. 

The diffusion of gases through animal tissues must take place in the same way as 

their diffusion through fluids or colloidal membranes [13]. The gases are dissolved in the 

tissue fluids and diffuse in a liquid state. The laws governing the diffusion of gases 

through water and watery solutions have been worked out by Exner [14] who found that 

the rates of diffusion for different gases in the same fluid are proportional to the 

absorption coefficients of the gases in the fluid and inversely proportional to the square 

roots of their molecular weights. 

Effective pulmonary gas exchange relies on the free diffusion of gases across the 

thin tissue barrier separating airspace from the capillary red blood cells (RBCs). 

Pulmonary pathologies, such as inflammation, fibrosis, and edema, which cause an 

increased blood–gas barrier thickness, impair the efficiency of this exchange.  

The value of D for oxygen diffusing through connective tissue was found by 

Krogh [13] to be 1.5x10
-5 

cm
2
/sec and that for hydrogen will be approximately four fold 

greater, or 6x10
-5 

cm
2
/sec.  

 

 

 

 

 

 

 

Figure (2.2) Blood-air barrier 



 

23 

 

2.2.3. Blood brain barrier 

The mammalian brain is protected from exposure to potentially harmful com- 

pounds in the blood by the blood-brain barrier. Being formed by the vascular endothelial 

cells of the capillaries in the brain, this hydrophobic barrier maintains and regulates the 

very sensitively tuned environment within the mammalian brain [16]. 

The blood-brain barrier is a highly complex system, in which several kinds of 

cells exert a wide range of functions. Some of the main characteristics are described 

below [16]: 

- The cell-to-cell contacts between the capillary endothelial cells are sealed with tight 

junctions, forming a permeability barrier, which is much more selective as compared to 

the fenestrated sealing of other capillaries. 

- The outer surface of the endothelial cells is surrounded by protrusions (end feet) from 

astrocytes. Thereby, the endothelial cells and the neurons are connected and also, a 

second hydrophilic barrier is formed. Also, the astrocytes are implicated in the 

maintenance, functional regulation and repair of the blood-brain barrier. 

- A bilayer basal membrane supports the ablumenal surface of the endothelial cells. This 

membrane might also further restrict the passage of macromolecules into the brain 

parenchyma. 

- Pericytes are other periendothelial accessory structures of the blood-brain barrier. These 

have capacity for phagocytosis as well as antigen presentation and in fact, they seem to 

contribute significantly to the immune mechanisms of the central nervous system.  All 

these characteristics of the blood-brain barrier guarantee that only those molecules, which 

are either hydrophobic (such as oxygen, nitric oxygen and steroid hormones), or bind to 

specific receptors (such as certain amino acids and sugars), can pass freely from the 

blood circulation out into the brain parenchyma. 

Additionally, there is also a weight-selectivity, where particles of a larger 

molecular weight are more electively excluded from passage over the blood-brain barrier. 

In a number of pathological conditions, such as epileptic seizures, sepsis and 

severe hypertension, the integrity of the blood-brain barrier is disturbed. The sensitively 

tuned balance within the brain parenchyma is thereby disrupted. This might lead to 

cerebral oedema, increased intracranial pressure and in the worst case, irreversible brain 

damage. In conclusion, an intact and fully functioning blood-brain barrier is essential for 

the proper function of the mammalian brain. 
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Figure (2.3) Blood-brain barrier    
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2.3. Mathematical description of diffusion: 

2.3.1. The diffusion coefficient and random walk 

There are two equivalent ways in which to think of the average value of any 

intensive property of a statistically large collection of particles in thermal equilibrium. 

One Method consists of performing the desired calculations by assuming the appropriate 

distribution function. Secondly, a more convenient method’s to perform the calculation 

using a single particle which is postulated to have the mean value of the property of 

interest. 

Consider a single particle executing random walk in two dimensions of individual steps 

rn, all jump directions have equal priori probability and are uncorrelated with the 

preceding jumps. 

After executing n elementary jumps, as shown in figure (2.4) the particle has moved an 

absolute distance |Rn| from its origin. Hence, we can write the following vector equation 

   ⃗⃗ ⃗⃗   ∑  ⃗⃗ 

 

   

 (2.2)  

and squaring both sides gives 
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 The average value of     
     is given by (Shewmon, 1989): 
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Where        is the angle between i
th 

and (i+j)
th

 jump. As all jump directions are equally 

probable, the term containing the double sum vanishes as the values of -        and         

occur with the same probability. Hence: 
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 ̅̅̅̅      (2.5) 

 ln order to relate the results of (2.5) to the diffusion coefficient, We begin by 

selecting a specific solution (2.20) which is appropriate for diffusion from an thin planer 

source into a semi-infinite solid. We notice that (2.20) is a solution to Fick’s second law 

by differentiation 

  ( )       ⁄    
    ⁄

 (2.6) 

Where       (  )
  ⁄⁄ , bco is the total amount of diffused material and t is the time 

over which diffusion occurred. The probability p(x) of finding an atom between x and 

x+ x is given by the fraction of atoms between these two points:       

  ( )   
 ( )  

∫  ( )  
  

  

 = 
 

√ 
   

    ⁄
 (2.7) 

The integral in (2.7) is equal to unity and the numerator is the distribution function p(x). 

The average value of x
2
 is calculated in the usual manner using (2.8) 
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Let ζ=     ⁄   we get: 
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we can  identify      with <  
   in one dimension and write it as: 

              (2.11) 

        ⁄  (2.12) 

The similar treatment is for random walk and diffusion in two dimensions and three 

dimensions except that the factor 2 in the denominator is four in the case of the two 

dimensions and six in the case of three dimensions as follows: 

        
    ⁄  (2.13) 

        
    ⁄  (2.14) 
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Figure (2.4) a particle executing a random walk of equal length jumps. The particle 

starts walk at (i) and ends at (f) with total net displacement R 

 2.3.2. Fick’s laws: 

 In 1855, Fick proposed his first law of diffusion namely, 

                                                                                                                       (2.15) 

Where J, the flux , is the number of particles passing through a plane of unit area per unit 

time, c is the concentration and D is the diffusion coefficient along one of the principle 

axis x or y or z. For an isotropic medium, such as a gas or liquid or for a solid with cubic 

symmetry Dx=Dy=Dz 

For crystals that have two perpendicular axes of symmetry, e. g, tetragonal, 

hexagonal, (2.15) becomes 

     x
  

  
  y

  

  
 (2.16) 

    Also, the Fick’s law can be extended to describe the diffusion in three 

dimensions as follows: 

     x
  

  
  y

  

  
   

  

  
 (2.17a) 

Or 

        (2.17b) 

Combination of Fick’s first law together with the law of conservation of mass gives  

 
  

  
      (2.18) 
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The above equation is known as Fick’s second law. lf, D, is independent of concentration 

, c, the latter equation can be written as 

 
  

   
      (2.19) 

The experimenter allows the diffusion to proceed for a fixed period of time, then 

halts it abruptly usually by rapidly lowering the temperature and the concentration 

gradient is directly determined. The detection of the concentration c of the diffusant 

species is carried out by using chemical techniques. The discovery of radioactivity helps 

the measurements. The radioactive tracer could be very small still could be measured 

accurately [36]. This permits calculation of D by solving (2.19) in which the flux at any 

given point is time dependent. 

 2.3.3. Solution of diffusion equation: 

Thin film solution 

A thin planer source of the solute of concentration co is plated on the flat surface 

of long rod of the solvent bar then another solvent bar is welded to the plated end, 

sandwiching the solute between the two rods. The rod is then annealed for a time t so that 

diffusion can occur. 

The concentration of solute along the bar will be given by the equation [35]:     

  (   )  
   

 √   
    [

   

   
] (2.20) 

 where b is the thickness of the film , x is the penetration measured from the boundary 

surface between the diffusant and solvent and t is the time of annealing or the time of 

diffusion . D is the diffusion constant and b is the thickness of the film. 
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Figure (2.5) The time sequence of diffusion profiles displaying the tracer 

concentration against penetration distance 
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2.4. Diffusion Mechanisms: 

  2.4.1. Vacancy mechanism 

 In the material structures some of the sites are unoccupied. These unoccupied 

sites are called vacancies. If one of the atoms on an adjacent site jumps into the vacancy, 

the atom is said to be diffused via vacancy mechanism as shown in figure (2.6). 

 

Figure (2.6) Vacancy mechanism 

 2.4.2. Interstitial mechanism 

An atom is said to diffuse by an interstitial mechanism when it passes from one 

interstitial site to one of its nearest-neighbor interstitial sites without permanently 

displacing any of the matrix atoms. Figure (2.7) shows an interstitial atom in a group of 

packed spheres. Before the atom labeled l can jump to the nearest neighbor site 2 the 

matrix atoms labeled 3 and 4 must move apart enough to let it through. Accordingly, 

local dilation of the structure must occur before the jump can happen. This dilation 

constitutes the barrier to an interstitial atom changing sites. The jump frequency is 

determined by how often this barrier can be surmounted. 

      

 

Figure (2.7) interstitial mechanism 
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2.5. Temperature dependence of diffusion: 

2.5.1. Arrhenius equation 

A simple exponential dependence of specific rate theory upon temperature implies 

the existence of an energy barrier situated between the initial and final configuration 

which can be surmounted by a thermal activation. In fact, diffusion in general is a 

thermally activated process. Thus, the diffusive jump mechanism is characterized by an 

initial configuration which passes through the continuous changes in the coordinates to a 

final equilibrium configuration as shown in figure (2.8). 

There is an intermediate configuration which is decisive to the process so that if the 

system gets this configuration, it has a high probability that the jump will occur. This 

critical configuration is called the saddle point and the particles at the saddle point are 

called activated complex. 

The above configuration is called continuous Boltzmann distribution of energy 

among the individual atoms of the system [35]. 

Consider particle moving in a fixed potential energy curve as shown in figure 

(2.5). Let the potential minimum (I) correspond to the position in which the particle finds 

itself and let (F) correspond to a neighboring vacant position. Assuming the potential to 

be a parabolic, the particle will vibrate as a harmonic oscillator. The frequency of 

vibration  o may be considered as the number of attempts per second made by the 

particle to cross the barrier [36]. However, any attempt can succeed only if the energy of 

the particle larger than or equal to  G*. 

 

 
Figure (2.8) The potential energy curve according to the rate theory [36] 
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The Arrhenius relationship is a valid description of the temperature dependence of 

the diffusion coefficient. The empirical equation is written according to: 

 

      
    ⁄

 (2.21) 

Where Q is the activation energy. 

The fraction of time spent by the particle in energy state larger than or equal to 

 G* is simply given by exp(- G*/Rt). Hence, for probability of a jump from (a) to (b) 

per second is given by: 

      
      ⁄

 (2.22) 

Remembering that D in one dimension is given by: 

   
 

 
    (2.23) 

Where a is the elementary jump distance, substituting for   in the above relation, we 

obtain: 
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 (2.24) 

We note that the same derivation for diffusion in three dimensions for an isotropic or 

isometric medium merely replaces 1/2 by l/6 in the right hand side of equation (2.24). 

ln order for an atom to diffuse via vacancy mechanism, a vacancy must first exist 

as a nearest neighbor to diffusing atom, hence the diffusion coefficient must be multiplied 

by the probability of formation of an adjacent vacancy governed by Boltzmann factor 

which is given by 

    
  
 
        ⁄

 (2.25) 

where    is the number of vacancies through N total lattice sites and   v is the free 

energy of formation of one mole of vacancy . Hence, the diffusion coefficient becomes: 
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Decomposing the free energy terms into its thermodynamical equivalent, we obtain [19]: 
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Where  H*: the enthalpy of motion per mole of activated complexes 

 Hv : enthalpy of formation per mole of vacancies 

 S*: entropy of motion per mole of activated complexes 

 Sv: entropy of formation per mole of vacancies. 

Comparing equation (2.29) with equation (2.23), we find the value of Do which is given 

by: 

    
  

 
     

 (      
 )   ⁄

 (2.28) 

2.6. Correlation factor 

The correlation factor is a numerical correlation which accounts for the fact that 

an atom which diffuses via vacancies doesn't execute a strictly random walk. It was 

pointed out by Bardeen and Herring that even though the vacancies each jump at random, 

successive jumps of any particular atom are not at random [37]. In other words, after 

exchanging sites with a vacancy, the two entities namely particle and vacancy remain 

nearest neighbors. Hence, the next jump of the atom has a greater probability of returning 

to its previous position because the atom has just deposited the vacancy behind it, so the 

directions of successive atomic jumps are correlated. Accordingly, in travelling a given 

distance Rn from the origin, more jumps are required by the atom to achieve Rn than 

would be expected when successive jumps were not correlated, as in interstitial diffusion.  

This means that the expression of the diffusion coefficient D should contain a 

factor less or equal to unity for any correlation 

The correlation factor can be written as [35]; 
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Where cos i, is the average value of cosine the angle between the first jump and the ith 

following jump. 

Accordingly, the diffusion coefficient has the form 
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 (2.31) 

For self diffusion, f is a geometrical factor that depends only on the diffusion 

mechanism and the crystal structure. Thus, values of f for self diffusion in different lattice 

structures by vacancy mechanisms, were obtained experimentally [35]. 

In the case of impurity diffusion, the correlation factor f is a function of the 

relative jump frequencies, thus f can be written as: 

 
  

  
     

 
(2.32) 

Where   ,     are the atomic jump frequencies for the host atom and tracer atom 

respectively. 

2.7. Pressure dependence of diffusion 

The response of D to the application of relatively large pressure is small 

compared to thermal effects. Additionally, almost all diffusive processes of interest to 

material scientists occur near the ambient value of atmospheric pressure. Nevertheless, 

significant information can be derived from the weak pressure dependence of D. Also, 

diffusion under high pressure takes place for raw materials as we do deep below the 

surface of the earth. These materials are subjected to influential effects resulting from 

enormous pressure.  

When a vacancy is formed in a solid, the volume of the crystal increases by the 

volume of one atom. If the hydrostatic pressure is applied to a solid at equilibrium one 

might expect that the equilibrium concentration of vacancies would decrease, allowing 

the external pressure to do work on the system. Thus if the self diffusion occurs by 

vacancy mechanism, one would expect the diffusion coefficient to decrease appreciably 

with increasing pressure. 

 The relation between the diffusion coefficient D and the applied pressure is 

derived by taking the logarithm of (2.28) and differentiating with respect to pressure, P, 

at constant temperature. Finally, the pressure dependence of diffusion is given by 

equation [36]: 
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    (     ⁄
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Where      and      are the change in the volume of the solid due to the vacancy 

creation at non zero pressure and the change in the volume due to atomic migration 

respectively 
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2.8. Electric field dependence of diffusion:  

Charge carrier transport in disordered materials - inorganic, organic and 

biological systems has been in the focus of intensive experimental and theoretical study 

for several decades due to various current and potential applications of such materials in 

modern electronic devices [38]. An essential part of the research is dedicated to the study 

of the mobility of the charge carriers, μ, and their diffusion coefficient, D, as the decisive 

transport coefficients responsible for performance of most devices. Among other features, 

the relation between these two transport coefficients is the subject of intensive research, 

since this relation (called the “Einstein relation”) often provides significant information 

on the underlying transport mechanism. The conventional form: 

   
 

  
  (2.34) 

Where e is the elementary charge, T is the temperature and k is the Boltzmann constant. 

According to Einstein, such a relation between μ and D is valid in the case of thermal 

equilibrium for a non-degenerate system of charge carriers. 

The movement of ions under an electric field occurs because of two driving forces 

[39,40]: the concentration gradient and the electric field. 

    
       

 
       (2.35) 

Where     is the current due to species i,     is the effective diffusivity at zero electric 

field strength,   concentration of species i,    ionic mobility of species i, E is electric 

field strength. This expression is principally applicable for direct current (D.C.). Under 

the alternating conditions, the movement of anions and cations would alternately coincide 

with, or oppose the concentration gradient each half cycle. Thus, the approach has 

limitations, but it can be used to gain understanding of field strength effects.  

2.8.1. Penetration in biological tissues: 

When a conductive material is exposed to an EM field, it is submitted to current 

density caused by moving charges. In solids, the current is limited by the collision of 

electrons moving in a network of positive ions. Good conductors such as gold, silver, and 

copper are those in which the density of free charges is negligible, the conduction current 

is proportional to the electric field through the conductivity, and the displacement current 

is negligible with respect to the conduction current. The propagation of an EM wave 

inside such a material is governed by the diffusion equation, to which Maxwell’s 

equations reduce in this case. Biological materials are not good conductors. They do 

conduct a current, however, because the losses can be significant: They cannot be 

considered as lossless. [41] 

Solving the diffusion equation, which is valid mainly for good conductors, where 

the conduction current is large with respect to the displacement current, shows that the 
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amplitude of the fields decays exponentially inside of the material, with the decay 

parameter 

   
 

(    )⁄
  ⁄

 
(2.36) 

 Where   is the frequency,   is the permeability of the material,   is the conductivity. 

The parameter   is called the skin depth, It is equal to the distance within the material at 

which the fields reduce to 1/2.7 (approximately 37%) of the value they have at the 

interface. One main remark is that the skin depth decreases when the frequency increases, 

being inversely proportional to the square root of frequency. It also decreases when the 

conductivity increases: The skin depth is smaller in a good conductor that in another 

material. Furthermore, it can be shown that the fields have a phase lag equal to z/  at 

depth z. For most biological materials the displacement current is of the order of the 

conduction current over a wide frequency range. When this is the case, a more general 

expression should then be used instead of (2.36) [42] 
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Where p =    ⁄  is the ratio of the amplitudes of the conduction current to the 

displacement current.    is the permittivity of the material. 

It is easily verified that Eqn. (2.37) reduces to Eqn. (2.36) when p is large. 

The following important observations can be deduced from Eqn. (2.36): 

1. The fields exist in every point of the material. 

2. The field amplitude decays exponentially when the depth increases. 

3. The skin depth decreases when the frequency, the permeability, and the conductivity of 

the material increase. For instance, the skin depth of copper is about 10mm at 50Hz, 3mm 

at 1kHz, and 3 m at 1GHz. It is equal to 1.5 cm at 900 MHz and of the order of 1 mm at 

100 GHz in living tissues. 

These results are strictly valid for solids limited by plane boundaries. They are 

applicable to materials limited by curved boundaries when the curvature radius is more 

than five times larger than the skin depth. In the other cases, a correction has to be 

applied. The phenomenon just described is the skin effect: Fields, currents, and charges 

concentrate near the surface of a conducting material. This is a shielding effect: At a 

depth of 3 , the field amplitude is only 5% of its amplitude at the interface, and the 

corresponding power is only 0.25%; at a depth of 5  , the field amplitude reduces to 1% 

and the corresponding power to 10
-4

, which is an isolation of 40dB. This shows that, at 

extremely low frequency, for instance at 50Hz, it is illusory to try to shield a transformer 

with a copper plate: A plate 5 cm thick would be necessary to reduce the field to 1%! 

This is the reason why materials which are simultaneously magnetic and conducting, 
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such as metals, are used for low-frequency shielding. In practice, the skin effect becomes 

significant for humans and larger vertebrates at frequencies above 10MHz. [41] 

Shielding is much easier to achieve at higher frequencies. The skin effect implies 

that, when using microwaves for a medical application, the higher the frequency, the 

smaller the penetration, which may lower the efficiency of the application. Hence, the 

choice of frequency is important. It also implies that if a human being, for instance, is 

submitted to a microwave field, the internal organs are more protected at higher than at 

lower frequencies. As an example, the skin depth is three times smaller at 900MHz, a 

mobile telephony frequency, than at 100MHz, an FM radio frequency, which means that 

the fields are three times more concentrated near the surface of the body at 900MHz than 

at 100MHz. It also means that internal organs of the body are submitted to higher fields 

at lower than at higher frequency. 

Table (2.1) summarizes some skin depth values for human tissues at some frequencies. 

The EM properties of the tissues as well as their variation as a function of frequency have 

been taken into account. 

 
 

Table (2.1) Typical skin depths in human tissue 

Figure (2.9) shows the variation of the power absorbed inside a human body as a 

function of the penetration depth at several microwave frequencies: We are less and less 

transparent to nonionizing EM radiation when the frequency increases. In the optical 

range, skin depth is extremely small: We are not transparent anymore. Variation of the 

dielectric constant as a function of frequency was taken into account in this figure. There 

is a tendency to believe that RFs and microwaves exert more significant biological effects 

at low and extremely low frequencies. This is not necessarily true: The dielectric constant 

of living materials is about 10,000 times larger at ELF than at microwaves. The dielectric 

constant is important because it is the link between the source field and the electric flux 

density (also called the displacement field). A dielectric constant 10,000 larger implies 

the possibility of an electric flux density of a given value with a source field 10,000 times 

smaller. Figure (2.10) shows the dielectric constant of living material (muscle) as a 

function of frequency [43]. There is a level of about 1,000,000 at ELF up to 100Hz, then 

a second level of about 100,000 from 100 Hz to 10kHz, and, after some slow decrease, a 

third level of about 70–80 from 100 MHz to some gigahertz. This last value is that of the 

dielectric constant of water at microwaves. One of the main constituents of human tissues 

is water. Hence, we have about the same microwave properties as water. 
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Figure (2.9) Power absorbed in muscles as a function of the skin depth at various 

frequencies 

 

 

Figure (2.10) Dielectric constant of living material as a function of frequency 
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2.8.2. Conductivity of Biological Tissues 

 At low frequencies, below 100kHz, a cell is poorly conducting compared to the 

surrounding electrolyte, and only the extracellular fluid is available to current flow. A 

typical conductivity of soft, high-water-content tissues at low frequencies is 0.1 or 0.2 

Sm
-1

. It varies strongly on the volume fraction of extracellular fluid, which can be 

expected to vary with physiological changes in the cells. At RFs, from 1 to 100MHz, the 

cell membranes are largely shorted out and do not offer significant barrier to current 

flow. The tissues can be considered to be electrically equivalent to suspensions of 

nonconductive protein (and other solids) in electrolyte. The conductivity of most tissues 

approaches a plateau between 10 and 100MHz. 
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CHAPTER 3: SIMULATION AND MODELING 

3.1. Introduction 

Simulation is the use of a model to develop conclusions that provide insight on 

the behavior of any real world system. Computer simulation uses the same concept but 

require that the model be created through programming on a computer. The process of 

describing many complex real world systems using only analytical or mathematical 

models can be difficult or even impossible in some cases. This necessitates the 

employment of more sophisticated tool such as computer simulation. Simulation of real 

world requires that a set as assumptions taking the form of logical or mathematical 

relationships be developed and shaped into a model. 

Computer simulation is a complicated solving technique. It should be used under 

certain circumstances;- 

l- The real system doesn't exist and it is too costly, time consuming, hazardous, or simply 

impossible to build a prototype. Some examples might be an airplane or a nuclear reactor. 

2- The real system exists but experimentation is expensive or hazardous. Some examples 

might be a material handling system. A military unit or a transportation system. 

3- A forecasting model is required that would analyze long periods of time in a 

compressed format. An example is population growth. 

4- Mathematical modeling of the system has no practical analytical or numeric solutions. 

This might occur in stochastic problems or in nonlinear differential equations or time 

varying of systems elements. 

 The main advantage in using simulation is the reduction of risk involved with 

implementing a new system or modifying an existing one. Several alternatives can be 

tested, and one that gives the best results can be chosen. Proposed solutions can be 

analyzed in less time. ln addition, the best control over experimentation condition can be 

maintained in a simulation. Also it is less expensive and faster than the physically 

constructing the real system. The knowledge gained during the simulation phase will be 

of great value throughout the entire lifetime of a simulation project. Also, computer 

simulation gives control over time that may be compressed or expanded. Simulation may 

gather data on many months of operations in minutes on computers. 

A model is an approximation of the system being studied, it is not always best to 

develop a full scale representation. If the system were modeled down to finest details, 

excessive amounts of time and energy would be required with minimal gain useful 

information. The necessary level of details is a determination of how closely the model 

needs to emulate the real world system to still provide the required information. The 

model scope is defined as that portion of the system that is represented by the model. The 

best approach to model development is to incorporate the least amount of details while 

still maintaining veracity of the simulation. 



 

41 

 

3.2. Modeling 

The simulation procedure can be considered as follows:- 

l) Definition of the problem 

2) Formation of the hypothesis 

3) Testing of the hypothesis by Experimentation 

4) Tabulation of results 

5) Drawing conclusions from results 

The scientific method can be used as a guideline formation setting up simulation 

experiments. The correspondence between simulation method and the scientific method 

can be seen in the following table: 

 

Scientific method Corresponding simulation 

1. Problem definition 

 

2. Hypothesis formulation 

 

 

3. Experimentation 

4. Results 

5. Conclusion 

1. Setting simulation 

objectives 

2. Defining model scope and 

selection of programming  

language 

3. Running  model 

4. Obtain data from model 

5. Using statistics and 

judgment to evaluate 

results 

Table (3.1) simulation vs. scientific method 

3.3. Model inputs 

Input data can take many forms. It can be quantitative or qualitative. Quantitative 

input data takes the form of numeric values. Qualitative input data represents the 

logarithms used to perform certain logical operations. [44]. 

Input data can be obtained in many ways: - 

1-direct observations 

2-estimation 

3-interpolation 

4-expert opinions 

5-projections 

After input data has been collected, two approaches can be taken to use the 

information in the simulation. The first approach is to use data as it is. This is called trace 

simulation .The second approach is to fit a standard statistical distribution to empirical 
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data .The key to this procedure is to find the probability distribution with random samples 

that will be indistinguishable from the collected input data. 

3.3.1. Statistical methods and input data: 

In order to carry out a simulation of a system having inputs (such as interarrival 

times) which are random variables, we have to specify the probability distributions of 

these inputs. There are two general approaches to specify a distribution: - 

l. standard techniques of statistical inference are used to fit a theoretical distribution form, 

e. g., exponential, normal, or Poisson to the data and to perform hypothesis tests to 

determine how good the fit is. The distributions are then used to generate the 

corresponding random variables during the simulation. 

2. The values of the data themselves are used directly to define an empirical distribution 

without relying on one of the common theoretical distribution forms. This empirical 

distribution is then directly used in simulation. 

3.4. Validation 

  Validation is the process of determining that the real world system being studied 

is accurately represented by the simulation model [45]. The validation process should 

begin during the initial stages of a simulation and continue until the end. 

 3.4.1. Validation of simulation inputs: 

Qualitative inputs are the rules and underlying assumption and nonnumeric data. 

This information should be validated through one or several of the following methods: 

1- Observation. If a model of an existing system is being developed, the analyst can 

observe different situations and assure that the assumptions to be used in the model are 

valid. 

2- Expert opinions. If the rules and assumptions are evaluated by experts, the modeler 

should interact with both system experts and model users throughout the life of a 

simulation.  

3- Intuition and experience. If a simulation analyst frequently models systems that share 

many common characteristics, an intuitive feeling develop that will help give the model 

added validity. In addition, quantitative or numeric inputs can be validated in the 

following ways: 

i) Statistical Testing: 

If a theoretical input data distribution is being used to model empirical data, Chi-

square or Kolmogorov goodness-of-fit tests should be used to assess the theoretical data. 

If the fit is close, the theoretical data can be considered a valid representation. 
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ii) Sensitivity Analysis:  

This involves altering the model's input by a small amount and checking the 

corresponding effect on the model's output. If the output varies widely with a small 

change in an input parameter, the input parameter may need to be reevaluated. 

3.4.2. Validation of simulation output: 

If the model's output data closely represents the expected values for the system’s 

real world data, it is considered to be valid. When a model is developed from an existing 

system, a validity test becomes a statistical comparison. Several methods can be used to 

increase the confidence level 

l- Comparison with data from a similar system. If a system exists that is similar in 

nature to the one that is being modeled, an interpolation of system output can be 

considered and compared to the simulation. 

2- Expert opinions. An Expert on the type of the system being modeled can be consulted 

and shown the output data. An expert's opinion will help lend more confidence that 

model is valid. 

3- Calculated expectations. Expected output can be calculated and the model output 

compared to the result. If the model is too complex, it may be possible to analyze 

individual subsystems and perform calculations on each part to help establish validity. 

 

3.5. Classifications of simulation models: 

3.5.1. Deterministic or stochastic models: 

In deterministic models neither the exogenous variables nor the endogenous 

variables are permitted to be random variables, and the operating characteristics are 

assumed to be exact relationships rather than probability density functions. Deterministic 

models are less demanding computationally than stochastic models and can frequently be 

solved analytically by such techniques as the calculus. 

Stochastic models are those models in which at least one of the operating 

characteristics is given by a probability function. Because stochastic models are 

considerably more complex than deterministic models, the adequacy of analytical 

technique for obtaining solutions to the models is quite limited. For this reason simulation 

is much more attractive as a method of analyzing and solving stochastic models than 

deterministic models. Stochastic models are also of interest from the standpoint of 

generating random numbers samples of data to be used in either the "observation" or 

"testing" stages of scientific inquiry. 
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3.5.2. Static or dynamic models: 

Static models are those models, which don’t explicitly take the variable time into 

account. In operation research, with rare exceptions, most of the work in the area of linear 

programming, non-linear programming, and game theory has been concerned with static 

models. Most static models are completely deterministic, and solutions can usually be 

obtained by straight forward analytical techniques such as optimally calculus and 

mathematical programming [44]. 

Mathematical models that deal with time-varying interactions are said to be 

dynamic models. 

3.5.3. Continuous or discrete 

Discrete event simulation concerns about modeling of a system as it evolves over 

time. The state variables change only at certain number of points in time. These points 

are ones at which an event occurs. Continuous simulation represents the system 

experiencing smooth changes in characteristics over time. The objective of the model is 

to plot the simultaneous variations of the different state variables with time. 

Continuous simulation involves differential equations which gives relationships 

for the rates of changes of the state variables with times. These equations may be solved 

analytically or by numerical techniques. 

3.6. Monte Carlo simulation Method 

Monte Carlo methods can be loosely described as statistical simulation methods, 

where statistical simulation is defined in quite general terms to be any method that 

utilizes sequences of random numbers to perform the simulation [46].  

Statistical simulation methods may be contrasted to conventional numerical 

discretization methods, which typically start with the evaluation of mathematical model 

of the physical system, discretizing the differential equations that describe the system and 

solving a set of algebraic equations for the unknown state of the system. In many 

applications of Monte Carlo, the physical process is simulated directly and there is no 

need to even write down the differential equations that describe the behavior of the 

system. The only requirement is that the physical (or mathematical) system be described 

by probability density function (PDF). Once the (PDF) is known, the Monte Carlo 

simulation can proceed by random sampling from the (PDF). Many trails are then 

performed and the desired result is taken as an average over the number of observations. 

In many practical application, one can predict the statistical error in the average result, 

and hence an estimate of the number of Monte Carlo trials that are needed to achieve a 

given error. The most prevalent application of Monte Carlo is for the solution of complex 

problems that are encountered in particle transport applications. For example, the analysis 

of electron transport in a cloudy atmosphere, or the attenuation of neutrons in a biological 

shield and diffusion of atoms in solids. 
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3.7. Pseudo-Random generators: 

Random numbers are stochastic variables which are uniformly distributed on the 

interval (0,1) and show stochastic independence. 

Pseudo-random numbers are generated by applying a deterministic algebraic formula 

which results in producing numbers that for practical purposes are considered to behave 

as random numbers, i.e., they are uniformly distributed and mutually independent. The 

cycle length is the number of pseudo-random numbers that are generated before the same 

sequence of numbers are obtained again. The independence of the generated numbers 

implies that the cycle length is relatively long. A much used formula is the so called 

linear congruential generators methods. 
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CHAPTER 4: COMPUTER MODEL 

4.1. General features of the present model 

The basic modeling aspects can be summarized as following: 

1-The biological tissue is represented as a 2D matrix of N*N elements, such that each 

element of the matrix is represented by a byte. Different types of elements can be found 

in system (biological tissue). Each type of elements is represented in the matrix by a 

specific byte. These are the host particles, vacancies and diffusants. 

2-Each position is specified by two integers i and j. Each position is assumed to represent 

a particle, a vacancy or a diffusant. For any given position, there are six neighbors which 

are occupied by either a host particle, a diffusant or a vacancy. The system structure may 

take several forms. The model that closely represents the biological system is the close 

packed hexagonal shape.  

3-The diffusion process generally expresses a random walk of particles either in space or 

in a constraint medium. A random generator is applied to study the diffusion process. A 

sequence of random numbers is generated to represent the movement of elements that are 

involved in diffusion throughout the matrix. 

4- Matlab and C language use generators that are offered as algorithms in the program 

libraries. In the present work “RAND” and “RANDN” algorithms were proposed to be 

reliable for randomness.  

“rand” function generates pseudorandom numbers drawn from a uniform distribution on 

the unit interval. “randn” algorithm generates pseudorandom numbers drawn from a 

normal distribution with mean 0 and standard deviation 1. 

“randperm”  does random permutation and calls “rand” function.  

“randint” generates a  matrix of uniformly distributed random integers 

Randomization has been utilized in the model in three occasions. Firstly, it was 

used to create the initial uniform distribution of vacancies throughout the host. In order to 

create vacancy of concentration n% overall the whole matrix, a vector with the host 

positions is created, then “randperm” function is used to choose the places of vacancies at 

random among the host. The percentage of vacancies could be changed for each run of 

the model. 

 Secondly, the “rarndint” function is used to determine the element of the matrix to start 

with the jump. Thirdly, “randperm” function is used to determine the direction of the 

jump of the element among the possible six neighbors. 

5-Naturally, the diffusion process takes a very long annealing time. The advance of time 

is expressed as the number of iteration steps in which the model executes the main 
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algorithm.   Therefore, an increasing number of time steps is taken, so that the diffusion 

pattern is realized. 

6-Naturally, the jumping process of the diffusing particle occurs simultaneously and in a 

stochastic manner through the host. Unfortunately, this can’t be achieved by computer 

simulation which goes through ordered sequential method. To overcome this obstacle, the 

time is frozen each time step and all the possible diffusants are let to jump before going 

to next time step . 

Programming of diffusion mechanisms 

The aim of the present model is to simulate the diffusion phenomena in three 

cases: 

1-Free random walk 

2-Diffusion in host in the presence of vacancies 

3-Diffusion under the effect of electric field 

4.2. Free random walk: 

In this model, a single particle executes the random walk in two dimensions. All 

jump directions have equal priori probability and are uncorrelated with the preceding 

jumps. The particle starts its motion from the origin, and then it jumps to a direction at 

random with an angle that takes a value from 0 to 360. 

The choice of the direction is determined by “rand”. Once the particle migrates to the 

new site, the new coordinates are determined according to the equations: 

xi+1 =xi+           

yi+1=yi+r          

Where       is the angle that the vector connecting I,i+1 making with the x-axis and r is 

the average radial displacement and taken as an arbitrary constant value. 

The new coordinates of the particle and the distance from the origin at the end of each 

iteration step is recorded. 

The total x and y displacement along x and y axis can be calculated according to: 

xt=∑       
    

 

yt=∑       
    

 

This type of diffusion resembles the diffusion in gases under the following conditions:  

1-Perfect gas where there is no chemical reaction 
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2-The number of molecules is large and the average separation between them is large 

compared with their dimensions 

3-No potential energy. In other words, the forces between molecules are negligible. 

y

x

(xi,yi)

(xi+1,yi+1)

 
Figure (4.1) The x and y displacements 
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Figure (4.2) Random walk in an empty lattice diagram 
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 4.2.1. Free diffusion in an empty host: 

Free diffusion occurs in infinite space, which means that diffusion doesn’t reach 

the boundaries in the given time. The details of the algorithm constructed to perform the 

free random walk in an empty lattice is shown in figure (4.2) 

4.3. Diffusion in biological tissue via diffusant mechanism: 

The biological tissue was constructed as a two-dimensional matrix.  The matrix 

has a certain percentage of vacancies which present in nature throughout the tissue. The 

spatial distribution of vacancies among the matrix is simulated by using “rand”. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (4.3) Flow chart of the algorithm for creating a matrix of initial distribution 

of vacancies 

Populate the matrix at first to 
be full of host elements

Choose the number (x) from 
the permuted vector to be 
converted into vacancies

Random permutation of the 
host elements vector

Input the percentage of 
vacancies

Put the positions of the host 
elements in a vector

Calculate the total number (x) 
of vacancies according to its 

percentage
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4.3.1. Biological tissue modeling  

The biological tissue could be simply modeled as close-packed spherical array of cells. 

 

a) 

   

 

 

 

b) 

 

c) 

 

 

Figure (4.4) the six neighbors’ structure in a hexagonal matrix. a) shift of rows to 

create hexagonal matrix. b) 1
st
 model to represent the six neighbors in the real 

matrix. c) 2
nd

 model to represent the six neighbors in the real matrix 
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There are maximum six chances around each element inside the two-dimensional matrix. 

The elements at the boundaries have different conditions; they are not allowed to leave 

the matrix. Accordingly, there are maximum four inward directions for boundary matrix 

sides and maximum two inward directions for matrix sites at the corners.  

 

 

 

 

 

 

 

 

Figure (4.5) The boundaries’ jumps 

4.3.2. Dummy boundaries: 

In order to avoid setting boundary conditions for each jump, the matrix is 

surrounded by dummy elements so that it wouldn’t be selected in the 6-choices. For 

instance, if the matrix elements are (0,2,3) the dummy boundary is set to be (4). If the 

diffusant in the corner is to jump, it will look for the possible jumps around it in the six 

assigned places. The vector of selected elements will have only the neighboring 

vacancies excluding the boundaries. 

4.3.3. Random scanning method: 

In order to preserve the stochastic nature of the diffusion the random scanning 

technique was employed. The technique depends on choosing the diffusant elements at 

random for N times at each time step, where N is the number of diffusants. This will 

allow most of the diffusants to jump at the same time step. The probability of choosing an 

element in the matrix at random is  
 

 
 . 
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J=1: number of diffusants

Count the nearest 

neighboring vacancies 

Select one diffusant at 
random

Find the positions of the 
diffusants

i=1: annealing time

Populate the matrix with the 
host and certain percentage 

of vacancies

Number of vacancies ≥1
Choose a vacancy and jump to 

it

Yes No

 

 

Figure (4.6) Flow chart of algorithm “Random selection of diffusants” 
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4.4. Simulation of diffusion of constant surface concentration 

of ions through infinite matrix of biological tissue: 

The matrix consists of two types of elements; the biological elements and the 

diffusing ions.  The biological elements could be cells or tissue or components inside or 

outside the cell according to the application of the model. The diffusant ions are 

represented as a row of elements placed above the matrix. They have different label than 

the host elements. The layer of diffusants is regenerated to represent continuous flow; 

when a diffusant jumps inside the matrix it is replaced by a new diffusant . The rest of the 

matrix consists of the host with a certain distribution of vacancies.  

The diffusion pattern is followed over different long time steps. The initial 

concentration of the tracer could be varied and also the thickness of the host. 

After the diffusion is run for a certain annealing time, the diffusion coefficient is 

calculated by using the “sectioning” algorithm. The whole matrix is sectioned to several 

layers such that each section has a small thickness compared to the sample size. The 

thickness of each layer is represented by the number of layers it includes. The 

concentration in each layer is the count of the diffusants it comprises. As the thickness of 

the layers becomes smaller, the accuracy of the penetration profile which describes the 

diffusion increases. 

The flow chart that simulates the diffusion process in the presence of vacancies 

and calculation of the diffusion coefficient is illustrated in figure (4.8) 

In biological systems, the events occur simultaneously. To overcome the 

disadvantage of sequential simulation, the time is frozen each step and all the diffusants 

are allowed to jump in the same time step. Then the program goes for the next step. 
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Figure (4.7) Sectioning the matrix and calculating the diffusion coefficient 

 

Number of layers=number of rows/ Layer 
thickness

Use basic curve fitting to draw the linear line 
and get its slope

Plot ln(concentration) Vs. (penetration)2

i=1:number of layers

Count the number of diffusants in each layer 
and record it in a vector

Calculate diffusion coefficient

D=1/(4*annealing time*slope)

Plot concentration Vs. layers to give the 
penetration curve
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Figure (4.8) Flow chart of the diffusion in infinite system and constant surface 

concentration 

Populate the matrix with 
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4.5. Simulation of effect of electric field on diffusion in infinite 

biological system with constant surface concentration: 

Most biological membranes are negatively charged, which makes them attract and 

adsorb positive ions. However, these ions are not stuck permanently to the membrane but 

are in dynamic equilibrium with the free ions in the environment. The relative amounts of 

each kind of ion attached at any one time depends mainly on its availability in the 

surroundings, the number of positive charges it carries and its chemical affinity for the 

membrane. Calcium normally predominates since it has a double positive charge that 

binds it firmly to the negative membrane. Potassium is also important since, despite 

having only one charge, its sheer abundance ensures it a good representation (potassium 

is by far the most abundant positive ion in virtually all living cells and outnumbers 

calcium by about ten thousand to one in the cytosol) [49]. 

4.5.1. Direct current: 

The positively charged ions tend to be attracted to move with the direction of a 

negatively charged field. This effect increases with increasing the field’s strength.  

The effect of electric field is represented as bias in the jump to the six nearest 

neighbors. The six neighbors’ choices are not equally probable now. If the field is applied 

on the surface of the matrix, the ions move forward. The 3
rd

 row is the most preferable 

place to go to, then the second. The least preference will be for the 1
st
 row; which means 

movement against the field. The two vacancies on the same row are assumed to have 

equal probability, as they are present at an equal position from the field. 

To introduce the preference in choices after the application of EF, a random 

generator based on uniform distribution was used to create random numbers on the 

interval (0,1). 1 is the maximum strength for the electric field, and the threshold value is 

an input by the user depending on the application. 

Before each jump a number is picked at random from a uniform random distribution. The 

probability of the most probable choice is related linearly to the EF strength according to 

the following equation: Given that: 

 When EF=0 P=0.333 (the choice will be equal for the three rows) 

When EF=max P=1 (total propability) all the choices will be always given for the row in 

the direction of the field (3
rd

 row in forward direction and 1
st
 row in backward direction). 

 

P=(0.667/Emax)*E+(1/3) 
P: probability of choosing the most probable row (3rd in forward and 1st in backward)   

Emax: maximum value of the electric field. It represents the maximum of effect of EF 

E: electric field strength 

 
When the electric field strength is increased, the probability of choosing a vacancy from the 

3rd row is increased. And the rest of the total probability (1) is divided between the second 

and 1st rows according to (3:2). 
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Figure (4.9) Effect of electric field on changing the probabilities of selection of each 

row 

 

 

 

 

 

 

 

 

 

 

 

Figure (4.10) Effect of the direction of electric field on selecting neighbor vacancies 
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Figure (4.11) Flow chart for the direct current effect on diffusion in infinite host 

with constant concentration 
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4.5.2. Alternating current: 

Before they can give biological effects, the electromagnetic fields must generate 

electrical ‘eddy currents’ flowing in and around the cells or tissues. Both the electrical 

and magnetic components of the fields can induce them and they tend to follow low 

impedance pathways. These can be quite extensive; for example in the human body, the 

blood system forms an excellent low resistance pathway for DC and low frequency AC. 

It is an all‐pervading system of tubes filled with a highly conductive salty fluid. Even 

ordinary tissues carry signals well at high frequencies since they cross membranes easily 

via their capacitance. In effect, the whole body can act as an efficient antenna to pick up 

electromagnetic radiation [49]. 

When an alternating electrical field from an eddy current hits a membrane, it will 

tug the bound positive ions away during the negative half‐cycle and drive them back in 

the positive half‐cycle. If the field is weak, strongly charged ions (such as calcium with 

its double charge) will be preferentially dislodged. Potassium (which has only one 

charge) will be less attracted by the field and mostly stay in position. Also, the less 

affected free potassium will tend to replace the lost calcium. In this way, weak fields 

increase the proportion of potassium ions bound to the membrane, and release the surplus 

calcium into the surroundings. [49] 

In the model, the periodic time is input by the user. The frequency is 1/T, number of 

cycles=t/T 

The code switches direction of the field each half cycle (T/2). The minimum T is 2 steps 

(one up and one down).  

Each cycle is cut into half forward, half backward. The EF strength is increased step wise 

(0:1:0). The EF strength in each step is calculated as: 

               (
           

                    
)      

In each step, the EF is assigned with a specific strength. The selection of the surrounding 

vacancies is according to the direction of the half cycle (positive or negative parts). The 

strength per step is applied similar to direct current. 

The effect of square wave can be tested by making the EF strength always maximum (1) 

in the positive and negative parts of the wave. 
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Figure (4.12) Difference between sinusoidal and square waves 
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Figure (4.13) Flow chart of the effect of sinusoidal waves on the diffusion in semi-

infinite system and constant surface concentration 
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CHAPTER 5: RESULTS  

A personal computer (3 GB Ram, Intel core 2 Duo CPU 2 GHz) was used to run the 

simulation model. The simulation was programmed first in Matlab that works under 

windows. The program was then transformed to C language with the help of computer 

science team. The transforming helped in enhancing the speed of running the program 

and expanding the size of the matrix. The analysis was done then by Matlab which has a 

huge library in statistics and graphics. 

5.1. The free random walk pattern in two- dimensions space: 

Simulation of diffusion process as a random walk phenomenon suffers from two 

basic problems, namely the true randomness is almost impossible to achieve and the use 

of the random number generator can only produce a pseudorandom distribution, which 

depends on the seed among other factors. Also, the initial jump direction of a single 

particle imposes an overall bias of the diffusion pattern. Therefore, in the present work, a 

huge number of particles were considered to start from original point and all of them 

perform random walk of different seed numbers. In this case, the overall pattern after 

numerous jumps would take the expected uniform distribution along all possible 

directions. 

5.1.1. Calculation of the radius of the random walk pattern: 

The average radial distance r is a function of the number of jumps. It is computed 

according to the following equations: 

All particles start from the center of the matrix. The final position of the particle is 

recorded after certain number of jumps; then the final radial distance of individual 

particle is calculated according to: 

   √  
    

  

 : The final displacement in the x direction 

 : The final displacement in the y direction 

Hence, the average radial distance of N particles can be written as: 

    ∑
  
 ⁄
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The mean squared radius can be written as: 

     ∑
  
 

 
⁄

 

   

 

The mean square value of the radius of the diffusion pattern is recorded over a number of 

time steps. 

     Vs. time steps is plotted. The straight line is fitted and the diffusion coefficient 

can be calculated from the slope of the line according to:  

    
   

  ⁄  

  



 

65 

 

Results of: 100,000 particles start from the center of 10,000 x 10,000 

matrix and perform free diffusion  

 

 

Figure (5.1) Variation of the mean square displacement with time steps for 100,000 

particles 

 

Figure (5.2) Variation of the diffusion coefficient with time steps for 100,000 

particles 
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a) 

 

 

 

b) 

 

 

 

 

 

c) 

 

 

 

 

 

d) 

 

 

 

 

 

 

Figure (5.3) the pattern for 100,000 particles executing free random walk for a) 500 

steps, b) 1500 steps, c) 2500 steps and d) 3500 steps 
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Results of: 500,000 particles start from the center of 30,000 x 30,000 

matrix and perform free diffusion  

 

 

Figure (5.4) Variation of the mean square displacement with time steps for 500,000 

particles 

 

 

 

a) 

 

 

 

b) 

 

 

 

 

 

Figure (5.5) the pattern for 500,000 particles executing free random walk for a) 5000 

steps, b) 40,000 steps 
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5.2. Simulation of infinite system and continuous flow of 

diffusants from the surface: 

1. A matrix of 10,000x 10,000  is used to simulate a part of the biological tissue. 

Each element is either a host particle or vacancy. The diffusants lie on the surface 

of the matrix. The diffusants are in continuous flow; each particle leaves the 

surface into the matrix is replaced by another particle. 

2. The jumps occur at random. Each time step a diffusant is selected at random to 

perform the jump. 

3. Each diffusant chooses one of the nearest six neighbor vacancies at random. 

4. The matrix is sectioned after the diffusion time into several sections such that the 

thickness of each one is very small compared to the matrix length. Each section is 

five rows. 

5. The counts of diffusants in each section represent the concentration of diffusants. 

6. By following the time steps, the top of the Gaussian distribution of the 

concentration vs. penetration distance is decreased. The diffusants penetrate 

deeper layers as time increases. 

7. The logarithm of concentration against    is plotted for different time steps and 

different vacancies concentration. 

8. The straight line is fitted and D can be calculated from: 

           ⁄  

9. The vacancies concentration is varied from 5% to 80% with constant time steps 

(1,000,000) figures ( 5.8 a:f ) 

10. The annealing time is varied from 1,000 to 1,500,000 time steps with constant 

vacancies concentration (50%) figures (5.11 a :f ) 
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5.2.1. Variation of penetration distance and diffusion coefficient with 

vacancies concentration: 

Results of: Matrix 10,000 x 10,000   time steps=1,000,000 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (5.6) Variation of penetration distance with vacancies concentration 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

Figure (5.7) Variation of diffusion coefficient with the vacancies concentration 
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Figures (5.8 a:f) The relation of concentration vs. penetration distance and ln 

(concentration) vs. penetration
2
 for different vacancies concentration: 

 

 

 

 

 

 

 

 

 

 

 

Figure (5.8 a) penetration profile for 20% vacancies concentration matrix 

 

 

 

 

 

 

 

 

 

 

 

Figure (5.8 a’) Variation of ln (concentration) with penetration distance
2
 for 20% 

vacancies concentration matrix 
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Figure Figure (5.8 b) penetration profile for 30% vacancies concentration matrix 

 

 

 

 

 

 

 

 

 

 

 

(5.8 b’) Variation of ln (concentration) with penetration distance
2
 for 30% vacancies 

concentration matrix 
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Figure (5.8 c) penetration profile for 40% vacancies concentration matrix 

 

 

(5.8 c’) Variation of ln (concentration) with penetration distance
2
 for 40% vacancies 

concentration matrix 
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Figure (5.8 d) penetration profile for 50% vacancies concentration matrix 

 

 

 
(5.8 d’) Variation of ln (concentration) with penetration distance

2
 for 50% vacancies 

concentration matrix 
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Figure (5.8 e) penetration profile for 60% vacancies concentration matrix 

 
 

 

(5.8 e’) Variation of ln (concentration) with penetration distance
2
 for 60% vacancies 

concentration matrix 
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Figure (5.8 f) penetration profile for 80% vacancies concentration matrix 

 

(5.8 f’) Variation of ln (concentration) with penetration distance
2
 for 80% vacancies 

concentration matrix 
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5.2.2. Variation of penetration distance and diffusion coefficient with 

annealing time: 

Results of: Matrix 10,000 x 10,000        vacancies percentage 50% 

 

Figure (5.9) Variation of penetration distance with annealing time 

 

Figure (5.10) Variation of diffusion coefficient with annealing time 
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Figures (5.11 a:f) show the relation of concentration vs. penetration distance and ln 

(concentration) vs. penetration
2
 for different annealing times: 

 

Figure (5.11 a) penetration profile for annealing time=1000 

 

(5.11 a’) Variation of ln (concentration) with penetration distance
2
 for annealing 

time=1000 
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Figure (5.11 b) penetration profile for annealing time=5000 

 

 

(5.11 b’) Variation of ln (concentration) with penetration distance
2
 for annealing 

time=5000 
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Figure (5.11 c) penetration profile for annealing time=10,000 

 

 

(5.11 c’) Variation of ln (concentration) with penetration distance
2
 for annealing 

time=10,000 
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Figure (5.11 d) penetration profile for annealing time=50,000 

 

(5.11 d’) Variation of ln (concentration) with penetration distance
2
 for annealing 

time=50,000 
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Figure (5.11 e) penetration profile for annealing time=100,000 

 

 

(5.11 e’) Variation of ln (concentration) with penetration distance
2
 for annealing 

time=100,000 
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Figure (5.11 f) penetration profile for annealing time=500,000 

 

 

(5.11 f’) Variation of ln (concentration) with penetration distance
2
 for annealing 

time=500,000 
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5.3. Effect of electric field on the penetration of ions: 

5.3.1. Effect of direct current (forward /backward directions): 

Following the algorithm illustrated in figure (4.11), the effect of direct current in the 

forward and backward directions on diffusion of positive ions in biological host is 

examined for different current strengths. Also the effect of different time steps and 

vacancies concentration with the presence of direct current electric field is examined. 

The electric field strength is varied from 0 to 1.  

Results of: Matrix 1000 x 1000, vacancies= 90%, t=1000 time steps 

Figures (5.12) show the penetration profiles for different current strengths in 

forward direction in a matrix of 90% vacancies: 

 

Figure (5.12 a) Penetration profile for EF=0.1 direct current in forward direction in 

a matrix of 90% vacancies 
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Figure (5.12 b) Penetration profile for EF=0.3 direct current in forward direction in 

a matrix of 90% vacancies 

 

 

Figure (5.12 c) Penetration profile for EF=0.5 direct current in forward direction in 

a matrix of 90% vacancie 
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Figure (5.12 d) Penetration profile for EF=0.7 direct current in forward direction in 

a matrix of 90% vacancies 

 

Figure (5.12 e) Penetration profile for EF=0.9 direct current in forward direction in 

a matrix of 90% vacancies 
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Figure (5.12 f) Penetration profile for EF=0 in a matrix of 90% vacancies 

 

Figure (5.12 g) Penetration profile for EF= 0.1 direct current in backward direction 

in a matrix of 90% vacancies 
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Results of: Matrix 1000 x 1000, vacancies=50%, t=1000 time steps 

 

Figure (5.13) Penetration profiles for different direct current strengths in forward 

direction in a matrix of 50% vacancies 

 

 

Figure (5.14) Variation of diffusion coefficient with the electric field strength for the 

direct current in forward direction in a matrix of 50% vacancies 
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Figure (5.15 a) Variation of ln (concentration) with penetration distance
2
 for EF=0.1 

in forward direction in a matrix of 50% vacancies 

 

Figure (5.15 b) Variation of ln (concentration) with penetration distance
2
 for EF=0.3 

in forward direction in a matrix of 50% vacancies 
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Figure (5.15 c) Variation of ln (concentration) with penetration distance
2
 for EF=0.5 

in forward direction in a matrix of 50% vacancies 

 

Figure (5.15 d) Variation of ln (concentration) with penetration distance
2
 for EF=0.7 

in forward direction in a matrix of 50% vacancies 
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Figure (5.15 e) Variation of ln (concentration) with penetration distance
2
 for EF=0.9 

in forward direction in a matrix of 50% vacancies 

 

 

Figure (5.16) Penetration profiles for forward direct current (EF=0.7) at different 

time steps in a matrix with 90% vacancies concentration 
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5.3.2. Effect of alternating electric field on the penetration of ions: 

Matrix 10,000 x 10,000 vacancies percentage 50%   annealing time: 

1,000,000 

 

 

Figure (5.17) variation of penetration distance with periodic time of sinusoidal wave 

in a matrix of 50% vacancies 

 

Figure (5.18) variation of diffusion coefficient with the periodic time of sinusoidal 

wave in a matrix of 50% vacancies 
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Figures (5.19 a:g) show the relation of concentration vs. penetration distance and ln 

(concentration) vs. penetration
2
 for different periodic times in a matrix of 90% 

vacancies 

 

Figure (5.19 a) Penetration profile for sinusoidal wave with periodic time T=2 in a 

matrix of 90% vacancies 

 

Figure (5.19 a’) Variation of ln (concentration) with penetration distance
2
 for 

sinusoidal wave with periodic time T=2 in a matrix of 90% vacancies 



 

93 

 

 

 
Figure (5.19 b) Penetration profile for sinusoidal wave with periodic time T=40 in a 

matrix of 90% vacancies 

 

 

Figure (5.19 b’) Variation of ln (concentration) with penetration distance
2
 for 

sinusoidal wave with periodic time T=40 in a matrix of 90% vacancies 
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Figure (5.19 c) Penetration profile for sinusoidal wave with periodic time T=100 in a 

matrix of 90% vacancies 

 

Figure (5.19 c’) Variation of ln (concentration) with penetration distance
2
 for 

sinusoidal wave with periodic time T=100 in a matrix of 90% vacancies 
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Figure (5.19 d) Penetration profile for sinusoidal wave with periodic time T=200 in a 

matrix of 90% vacancies 

 

 

Figure (5.19 d’) Variation of ln (concentration) with penetration distance
2
 for 

sinusoidal wave with periodic time T=200 in a matrix of 90% vacancies 
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Figure (5.19 e) Penetration profile for sinusoidal wave with periodic time T=300 in a 

matrix of 90% vacancies 

 

Figure (5.19 e’) Variation of ln (concentration) with penetration distance
2
 for 

sinusoidal wave with periodic time T=300 in a matrix of 90% vacancies 
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Figure (5.19 f) Penetration profile for sinusoidal wave with periodic time T=400 in a 

matrix of 90% vacancies 

 

Figure (5.19 f’) Variation of ln (concentration) with penetration distance
2
 for 

sinusoidal wave with periodic time T=400 in a matrix of 90% vacanci 



 

98 

 

 

Figure (5.19 g) Penetration profile for sinusoidal wave with periodic time T=500 in a 

matrix of 90% vacancies 

 

Figure (5.19 g’) Variation of ln (concentration) with penetration distance
2
 for 

sinusoidal wave with periodic time T=500 in a matrix of 90% vacancies 
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5.3.3. Effect of sinusoidal vs. square waves on penetration in biological 

tissues at different vacancies concentration: 

Matrix size 1000 x 1000, vacancies 90%, t=1000 time steps 

a) 

 

 

 

 

 

 

 

 

 

 

b) 

 

 

 

 

 

 

 

 

 

 

Figure (5.20) Penetration profiles at different periodic times in a matrix of 90% 

vacancies for a) sinusoidal waves, b) square waves 
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Figure (5.21) variation of the penetration distance with the periodic time in the 

sinusoidal and square waves 

 

Figure (5.22) variation of the diffusion coefficient with the periodic time in the 

sinusoidal and square waves 
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Figure (5.23) variation of the penetration distance with the frequency in the 

sinusoidal and square waves 

 

 

 

Figure (5.24) variation of the diffusion coefficient with the frequency in the 

sinusoidal and square waves 
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CHAPTER 6: DISCUSSION AND CONCLUSION 

 

6.1. Modeling of the biological tissue: 

Cellular geometry was analyzed by Dormer [47] who considered the cells as a 

system of polygons and came to a conclusion that a central cell may be surrounded with a 

maximum of six neighbors. In the present model a two dimensional honey comb cellular 

pattern is simulated such that it allows six maximum possible communications. 

6.2. Free diffusion in two dimensional empty lattice 

Free diffusion occurs in infinite space, which means that there are no boundaries 

which the diffusants may reach in a given time. For a collection of particles starting from 

the origin, such that each of them executes the random walk, the expected pattern is 

circular pattern. In the present model, the matrix is in hexagonal shape and the particles 

have only six neighbors to choose from. The resulting pattern for 100,000 particles 

executing random walk in an empty lattice as shown in figures (5.3) is more elliptical 

than circular. As the number of particles increase to 500,000 as in figure (5.5) the shape 

is getting more circular. Figures (5.3) and (5.5) show that the random walk pattern 

increases with time. The mean square values of the radius of the pattern were plotted 

against time as illustrated in figures (5.1) and (5.4). 

The results of 100,000 and 500,000 particles show different configurations of the 

six nearest neighbors. The 100,000 particles case follows the configuration shown in 

figure (4.4 c) 

From the analysis of the data in the case of 100,000 particles, the relation of the 

mean square displacement and time steps can be fitted to the equation: 

                         

The 500,000 particles follows the configuration shown in figure (4.4 b). 

The relation of the mean square displacement and time steps can be fitted to the equation: 
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6.3. Simulation of infinite system and constant surface 

concentration: 

Figures (4.8 a:f) show the concentration vs. penetration distance of diffusing ions 

that diffuse through an infinite biological tissue for different vacancies concentration. The 

penetration profile follows the exact Gaussian distribution that obeys the equation: 

 (   )            
   

    

Figures (4.8 a:f) show the logarithmic plot of the diffusing ions concentration 

against square of penetration distance. By application of least square analysis on the data, 

one can obtain the value of diffusion coefficient D. Appendix (B) shows the table of D 

values for different vacancies concentration. The value of D at 40% vacancies 

concentration is 1.63 x 10
-5

 cm
2
/sec which is close to diffusion coefficient of potassium 

ions in the axoplasm given by Hodkin and Keynes [48]. 

In figures (4.6) and (4.7) it is noticed that from 0 to 30% vacancies, the 

penetration of diffusing ions and thereby the diffusion coefficient doesn’t increase much. 

As the vacancies concentration increases more than 30%, the penetration of diffusing 

ions and thereby the diffusion coefficient increase linearly with the vacancies 

concentration. 

Vacancies penetration layer D 

5% 0 0 

10% 1 0 

20% 3 1.45E-07 

30% 49 1.96E-06 

40% 483 1.63E-05 

50% 747 3.09E-05 

60% 1068 4.64E-05 

80% 1524 6.23E-05 

 

The penetration profiles for different annealing times are shown in figures (5.11 

a:f). The penetration of the diffusing ions increases as the time increases. The average 

diffusion coefficient can be driven from the table in appendix (B) to be 1.5 x 10
-4

 

cm
2
/sec. 

Figure (5.9) shows that the penetration distance and the annealing time could be 

expressed as a second degree equation: 

                                  

Figure (5.10) show the relation between the diffusion coefficient and the 

annealing time to be a power equation: 
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6.4. Simulation of direct current effect: 

 A continuous layer of positive ions is positioned above the biological host. Two 

structural compositions of the biological tissues were tested under the effect of direct 

current, the 90% and 50% vacancies concentration. 

Figures (5.12 a:e) show the forward direct current effect on 90% vacancies tissue.  

We can see that the diffusing ions appear to travel as a combined layer from the surface. 

The penetration of this combined layer increases as the electric field strength increases 

for the forward direction current. Figures (5.12 e) and (5.12 f) compare the effect with no 

electric field and the effect of backward direction current on penetration of ions in the 

biological tissue. 

The backward direction seems to hinder the movement of positive ions; they 

remain in the 3
rd

 layer. In the case of EF=0, the ions reached the 20
th

 layer, which is less 

than the effect of the minimum EF strength applied (0.1) that reached the 60
th

 layer. 

The diffusion coefficient couldn’t be calculated from these patterns using our 

model as the taking the logarithm of the penetration profile isn’t applicable for the bell 

shaped profile.  

Another application for the same model with lower vacancies concentration was made. 

The 50% vacancies concentration host allows the positive ions to diffuse more gradually 

than the 90% vacancies host. 

Figure (5.13) show the penetration profile for forward current strengths (0.1, 0.5, 

and 0.9). The variation of the diffusion coefficient with the direct current strengths is 

shown in figure (5.14). 

Figures (5.15 a:e) show the logarithmic plot of the diffusing ions concentration 

against square of penetration distance from which the diffusion coefficient is calculated. 

Appendix (C) gives the table of the diffusion coefficient values in the case of 

direct current. When EF=0.1, D=0.000788445 cm
2
/sec. When EF=0.7, D= 0.001038508 

cm
2
/sec. This is a high value compared with EF=0, D=0.000425409 cm

2
/sec 

EF penetration D 

0.1 25 0.000788445 

0.3 28 0.000889268 

0.5 33 0.000950354 

0.7 31 0.001038508 

0.9 8 0.000286812 
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6.4.1. Comparison of penetration profiles for direct current at 50% and 

90% vacancies concentration: 

In the 50% vacancies configuration, as the EF increases the penetration increase 

up to a point after which it decreases again. This effect is apparent because as the field 

increase, the positive ions are more biased to movement in the direction of the current. In 

comparing 50% vacancies with 90% vacancies matrix, there is no much space for 

movement of the ions, and some of them appear to be hindered in the structure of the 

matrix. On the other hand, in 90% vacancies structure, the positive ions have more space 

to move in and as the strength increases, the penetration increases. 

Figure (5.16) show the penetration profiles for a fixed forward direct current 

strength (EF=0.7) with different time steps in a tissue with 90% vacancies concentration. 

The figure shows that as the time increase, the width of the penetrating layer increase and 

also the penetration distance increase with time.  

6.5. Simulation of alternating current effect 

The model represents the effect of alternating current on the movement of positive 

ions placed above the biological tissue. Two structural compositions, the 90% and 50% 

vacancies concentration, of the biological tissues were tested under the effect of 

sinusoidal waves. 

The minimum periodic time in the present model is 2, which represents a time 

step in upward direction and another downward. This periodic time corresponds to a 

frequency of 0.5. This frequency can be scaled to apply the present model to different 

frequencies. 

In the case of 50% vacancies structure, a matrix of size 10,000x10,000 and 

annealing time of 1,000,000 were used to do the simulation. Appendix (D) illustrates the 

table of values of D under that conditions. Figures (5.17), (5.18) and (5.19) demonstrate 

that the penetration distance and the diffusion coefficient slightly change with increasing 

the periodic time of the wave. The average diffusion coefficient over the different 

periodic times is 3.18x10
-5

cm
2
/sec. This value is close to the no filed effect which is 

3.09x10
-5

cm
2
/sec.  

Why low frequencies have more effect on diffusion? 

Figure (5.24 a) shows the case of 90% vacancies. From the appendix (D), figures 

(5.23) and (5.24), one can notice that the penetration decreases as the frequency 

increases. This is explained in section 2.8.1. (Penetration in biological tissues). At high 

frequencies, the penetration and diffusion coefficient values are close to EF=0 effect. As 

the frequency decrease, the penetration and diffusion coefficient values increase and are 

more like the direct current values.  

An explanation of such phenomenon is given by Goldsworthy [49]. He stated that 

extremely low frequencies (ELF) such as those from power‐lines and domestic appliances 
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are more potent than higher frequencies. There is usually little or no biological response to 

the much higher frequencies of radio waves, unless they are pulsed or amplitude modulated 

at a biologically active lower frequency (i.e. when the radio signal strength rises and falls in 

time with the lower frequency). Regular GSM mobile phones and PDAs emit both pulsed 

radio waves (from the antenna) and ELF (from the battery circuits). 

Bawin et al. [50]  found that exposing brain tissue to weak VHF radio signals 

modulated at 16Hz (16 cycles per second) released calcium ions (electrically charged 

calcium atoms) bound to the surfaces of its cells. Blackman et al. [51] followed this up 

with a whole series of experiments testing different field‐strengths and frequencies and 

came to the surprising conclusion that weak fields were often more effective than strong 

ones. 

Calcium ions bound to the surfaces of cell membranes are important in 

maintaining their stability. They help hold together the phospholipid molecules that are 

an essential part of their make‐up [52]. Without these ions, cell membranes are weakened 

and are more likely to tear under the stresses and strains imposed by the moving cell 

contents. Although the resulting holes are normally self‐healing they still increase 

leakage while they are open and this can explain the bulk of the known biological effects 

of weak electromagnetic fields. 

6.5.1. Comparison of penetration profiles for sinusoidal and square 

waves in a tissue of 90% vacancies concentration: 

T (periodic time) penetration layer D 

2 23 0.000672115 

20 27 0.000749805 

40 30 0.00085118 

100 35 0.001077865 

200 40 0.001501051 

2 (square) 23 0.000784338 

20 (square) 35 0.000869959 

40 (square) 42 0.00102758 

100 (square) 70 0.001971453 

200 (square) 86 0.002941799 

no EF 22 0.000763359 
 

In this application of the model, the effect of square wave was compared to the 

sinusoidal wave. In figures (5.20 a and b), the penetration in the case of square wave is 

more than the sinusoidal one. This effect is illustrated in figures (5.21 :5.24).  
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6.5.2. Why square waves have more effect than sine waves?  

Goldsworthy [49] described the effect of ELF on ions diffusion. He explained why 

pulsed and square waves do more damage than sine waves. 

The electromagnetic fields generate electrical ‘eddy currents’ flowing in and around 

the cells or tissues. Both the electrical and magnetic components of the fields can induce 

them and they tend to follow low impedance pathways. The blood system, filled with highly 

conductive salts, forms an excellent low resistance pathway for DC and low frequency AC.  

Only if the frequency is low will the calcium ions have time to be pulled clear of the 

membrane and replaced by potassium ions before the field reverses and drives them back. 

Pulses and square waves work best because they give very rapid changes in voltage that 

catapult the calcium ions well away from the membrane and then allow more time for 

potassium to fill the vacated sites. Sine waves are smoother, spend less time at maximum 

voltage, and so allow less time for ion exchange. 

Continuous waves are not sharply pulsed, therefore we might expect them to need stronger 

fields and/or longer exposure times if they are to give effects. 

6.5.3. The square wave penetration in 50% vacancies tissue 

The square wave when applied in a 50% vacancies matrix show different effect 

than the 90% vacancies tissue. The diffusion coefficient is this case is less than the 

sinusoidal one. Appendix (D), the value of D=4.58085x10-6. 

The explanation for such a phenomenon comes from that in the square wave the 

current is maximum in upward and downward cycles. Given the maximum effect, all the 

ions will tend to go in the forward/backward direction. If the host doesn’t have much 

space for movement, the diffusing ions will be hindered. On the other hand, 90% 

vacancies concentration in which the diffusants have more space to move in and the 

square wave appears to have more penetration and diffusion coefficient values than the 

sinusoidal ones. 

6.6. Effect of structure on diffusion 

Comparing the 50% and 90% vacancies concentration tissues from the above 

results show that the diffusing ions behave differently if they got more space for 

movement. As the structure is more occupied, the diffusion coefficient decreases. 

A possible explanation of the effect of structure on hindering diffusion is given by 

Sykova´ and Nicholson [18]. In earlier work, Levin et al. [53] showed that small 

molecules such as inulin and sucrose could diffuse through the extracellular space (ECS) 

with an effective diffusion coefficient (D*) that was some two to three times less than the 

free diffusion coefficient (D). 
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Sykova´ and Nicholson [18] studied the effective diffusion coefficient in brain 

extracellular space.  They state the factors affecting the diffusion of a molecule in the 

extracellular space (ECS). These are as follows: 

 a) Geometry of ECS which imposes an additional delay on a diffusing molecule 

compared with a free medium; 

b) Dead-space microdomain where molecules lose time exploring a dead-end  

c) Obstruction in the form of extracellular matrix molecules  

d) Binding sites for the diffusing molecule either on cell membranes or extracellular 

matrix  

 e) Fixed negative charges, also on the extracellular matrix,  that may affect the diffusion 

of charged molecules. 

 

6.7. Possible applications of the present model: 

a) Investigation of the hazards of mobile phones 

During the last century the levels of ELFs and MWs have been hugely increased 

in our environment. Devices such as mobile phones, computers, power lines and 

domestic wiring can be hazardous to humans. The energy of the fields is too low to give 

significant heating; yet, the evidence that electromagnetic fields can have “non‐thermal” 

biological effects is now overwhelming. The non‐thermal biological effects of 

electromagnetic fields have puzzled scientists for decades and, until now, there has been 

no clear explanation. The present model could be used to test the effect of certain 

frequencies on the diffusion in biological tissues. 

 

b) Studying drug delivery in the central nervous system: 

When substances diffuse in the brain, they predominantly move through the 

narrow extracellular space (ECS) that separates one cell membrane from another. 

Measurements of the diffusion properties of the ECS are important from two 

perspectives: first as a means of determining specific diffusion coefficients and second as 

a means of exploring the structure of the ECS. [18] 

To predict the distribution of a substance, it is essential to know the effective 

diffusion coefficient in brain tissue as well as the relative importance of diffusion versus 

clearance processes that may remove that substance from the ECS. The substance may be 

a neurotransmitter spilling over from a synapse to affect adjacent sites or a 

neuromodulator that utilizes the ECS as a conduit for signaling to other cells; this type of 

communication is variously called volume transmission, nonsynaptic or extrasynaptic 
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transmission. Knowledge of effective diffusion coefficients and diffusion properties are 

equally crucial for defining drug delivery within the CNS. 

 

c) Electroconvulsive therapy 

Electroconvulsive therapy (ECT) was introduced as a treatment for psychiatric 

disorders by the Italian neurologist Ugo Cerletti in 1938. Cerletti developed a method of 

electrically inducing seizures in laboratory animals as a means of studying epilepsy. 

Aware of the observation that individuals with epilepsy and depression experienced an 

improvement in mood following a seizure, he postulated that inducing a seizure in a 

depressed individual might improve his or her condition. In 1938, he reported the first 

case of a psychiatric patient treated with ECT with dramatic, positive results 

The present model can help in clinical testing of the effects of the pulse-wave and 

sine-wave ECT apparatus. The pulse wave can be dosed by adjusting the pulse width, the 

amplitude of the wave, the frequency, and the duration. 

D) Food industry 

Mass transfer processes are important unit operations in food industry requiring 

the disintegration of biological material. Especially the processing of plant cells is of 

great commercial interest because of the high amount of health related ingredients, 

pigments and cell liquid in the vacuoles but also due to the diversified potential to be 

further manufactured. 

The newly emerged application of Pulsed Electric Fields (PEF) constitutes an alternative 

to conventional processing of plant cell material, with the main aim of mass transport 

enhancement through permeabilization of the cell membrane [12]. 

Also López et al. [54]   investigated in PEF assisted extraction of sucrose from 

sugar beets and found out that temperature of thermal treatment could be reduced from 

70 °C to 40 °C after PEF pre-treatment.  

The critical external field strength is highly dependent on cell size as well as on 

cell orientation in the field [55]. 

Ohmic heating has been used commercially as a way of rapidly providing 

volumetric heating for sterilization or pasteurization of foods. Kemp and Fryer [56] 

studied the enhancement of diffusion through foods using alternating electric fields. They 

found that electric fields enhance diffusion by 70%. 

The present model can investigate the effects of electric field on different tissues 

which can help in food industry. 

 

 

http://www.sciencedirect.com.library.aucegypt.edu:2048/science/article/pii/S0023643811001319#bib29
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6.8. Future work 

• Build a 3D model of the biological tissue, and study diffusion on it. 

• Represent more than one ion diffusion, and investigate the competition between 

them.  

• Use a computer cluster network to divide the matrix and perform simultaneous 

diffusion of ionic species. 

• Specify the host structure according to application. 

• Use the model in one of the proposed applications. 

 

  



 

111 

 

REFERENCES: 

1.  uttorp, P.,”Stochastic modeling of scientific data”, Chapman and Hall, 

first edition, (1995). 

2. Buda, F., Chiarotti and Car, R., “Hydrogen in crystalline and amorphous 

silicon”, pp 98-103,Italy, physica B, 119, (1991). 

3. Weeks, E. R and Swinny, H.L., “Anomalous diffusion in assymetric 

random walks”, physica D 97, pp 291-310, USA, (1996). 

4. Moshfegh, A. Z., “Computer simulation of diffusion in solids: Cu/Si and 
C/Fe systems”, Materials and manufacturing, 12,1, 95-105, (1997). 

5. Sholl, C.a., Cameron, L.M., “random walk theory of dilute impurity 
effects on diffusion in crystals”, Ber. Bunsenges. Phys. Chem., 9, 

Australia, (1997). 

6. Li, H., S punar, J.A.,”Computer simulation of diffusion process in 
polycrystalline material”, proceedings of the third Int. Conf. of grain 

growth, Canada, TMS publications, 343-348, (1998). 

7. Kuklja, M.M., Kotomin, E.A. and Popov, A.I., “Semi-empirical 

simulations of f-center diffusion in KCl crystals”, 103-106, J.Phys. Chem 

Solids, 58, 1, (1996). 

8. Yajun Liu, Xianming Shi, “Ionic transport in cementitious materials under 

an externally applied electric field: Finite element modeling”, 

Construction and Building Materials 27, 450–460, (2012). 

9. Alessandro Bagno, Fabio D'Amico,  iacomo Saielli “Computer 

simulation of diffusion coefficients of the room-temperature ionic liquid 

[bmim][BF4]: Problems with classical simulation techniques” Journal of 

Molecular Liquids 131–132 ,17–23, (2007). 

10. Jansson, F., Nenashev, A.V., Baranovskii, S.D.,  Gebhard, F.,  Österbacka, 

R., “Effect of electric field on diffusion in disordered materials”, Annalen 

der Physik, 18, 856 – 862, (2010). 

11. Chitra Kusnadi, Sudhir K. Sastry, “Effect of moderate electric fields on 

salt diffusion into vegetable tissue”, Journal of Food Engineering,110, 3, 

329-336, (2012). 

12. A. Janositz, A.-K. Noack, D. Knorr, “Pulsed electric fields and their 

impact on the diffusion characteristics of potato slices”, LWT - Food 

Science and Technology, 44, 9, 1939-1945, (2011). 

13. Krogh A. “The rate of diffusion of gases through animal tissues, with 

some remarks on the coefficient of invasion”. The Journal of physiology, 

52, 391-408, (1919). 

14. Exner. Annalen der Physik, 155. (1875). 

15. Tachiya, M., “Effect of an external electric field on the rate of diffusion-

controlled reactions”,  Journal of Chemical Physics, 87, 8, (1987). 

16.  Leif G. Salford,
 
Henrietta Nittby,

 
Arne Brun, Gustav Grafström,

 
Lars 

Malmgren, Marianne Sommarin, Jacob Eberhardt, Bengt 

Widegren and Bertil R. R. Persson, “The Mammalian Brain in the 

Electromagnetic Fields Designed by Man with Special Reference to 

http://ptp.ipap.jp/cgi-bin/findarticle?journal=PTPS&author=L%2EG%2ESalford
http://ptp.ipap.jp/cgi-bin/findarticle?journal=PTPS&author=H%2ENittby
http://ptp.ipap.jp/cgi-bin/findarticle?journal=PTPS&author=A%2EBrun
http://ptp.ipap.jp/cgi-bin/findarticle?journal=PTPS&author=G%2EGrafstrom
http://ptp.ipap.jp/cgi-bin/findarticle?journal=PTPS&author=L%2EMalmgren
http://ptp.ipap.jp/cgi-bin/findarticle?journal=PTPS&author=L%2EMalmgren
http://ptp.ipap.jp/cgi-bin/findarticle?journal=PTPS&author=M%2ESommarin
http://ptp.ipap.jp/cgi-bin/findarticle?journal=PTPS&author=J%2EEberhardt
http://ptp.ipap.jp/cgi-bin/findarticle?journal=PTPS&author=B%2EWidegren
http://ptp.ipap.jp/cgi-bin/findarticle?journal=PTPS&author=B%2EWidegren
http://ptp.ipap.jp/cgi-bin/findarticle?journal=PTPS&author=B%2ER%2ER%2EPersson


 

112 

 

Blood-Brain Barrier Function, Neuronal Damage and Possible Physical 

Mechanisms”, Prog. Theor. Phys. Supplement, 173, 283-309, (2008). 

17. G.R Smith, M.S.P Sansom, “Effective diffusion coefficients of K+ and 

Cl− ions in ion channel models”, Biophysical Chemistry, 79, 2, 129-151, 

(1999). 

18.  Eva Sykova´ and Charles Nicholson , “Diffusion in Brain Extracellular 

Space” Physiol Rev 88, 1277–1340, (2008). 

19. Dekker, J.A., “Solid state physics”, first edition, London, Macmillan & Co 
LTD, (1958). 

20. Serway, A.R., “Physics for scientists and engineers”, fourth edition, 
Saunders college publishing, (1996). 

21. El-Messiry M.A., “Radio-tracer study of the isotope effect for sodium 

diffusion in liquids”, Master thesis, Scotland, (1976). 

22. Frenkel, J., “Kinetic theory of solids”, Oxford, (1946). 
23. Eyring, H., J.chem.phys., 3, 107, (1935). 

24. Swalin R.A., Acta Met., 7, 736, (1959). 

25. Nachtrieb, N., Ad. Phys., 16, 309, (1967). 

26. Reynic, R.J., Trans. Met. Soc. AIME, 245, (1969).  

27. Larson, S. and Lodding, A., “Diffusion process”, first edition, Sherwood, 
(1977). 

28. Brenner BM, Hostetter TH, Humes HD, “Molecular basis of proteinuria of 

glomerular origin”. N Engl J Med 298, 826–833, (1978). 

29. Brenner BM, Hostetter TH, Humes HD: “Glomerular permselectivity: 

Barrier function based on discrimination of molecular size and charge”. 

Am J Physiol 234, F455–F460, (1978). 

30. Rennke HG, Venkatachalam MA: “Glomerular permeability of 

macromolecules. Effect of molecular configuration on the fractional 

clearance of uncharged dextran and neutral horseradish peroxidase in the 

rat”. J Clin Invest 63, 713–717, (1979). 

31. Kriz W, Lemley KV, “The role of the podocyte in glomerulosclerosis”, 

Curr Opin Nephrol Hypertens 8, 489–497, (1999). 

32. Kreidberg JA, “Podocyte differentiation and glomerulogenesis”, J Am Soc 

Nephrol 14, 806–814, (2003). 

33. Pavenstadt H, Kriz W, Kretzler M, “Cell biology of the glomerular 

podocyte”, Physiol Rev 83, 253–307, (2003). 

34. Sheenan, “Physiology for Health Care and Nursing”, Elsevier Health 

Sciences., 130. ,Kindlen (2003).  

35. Shewmon, P., “Diffusion in solids”, Second edition, A publication of the 
minerals, Metals & materials society, (1989). 

36. Richard, J.B. and Dienes  .J., “An introduction to solid state diffusion”, 
Academic press, USA, (1988). 

37. Slifkin, L., “Tracer diffusion”, Metallurgical Transactions A, 20A, 2577-

2582,  (l989). 

38. S. Baranovski (ed.), “Charge Transport in Disordered Solids with 

Applications in Electronics”, technology & engineering, (2006). 

http://books.google.com/books?id=UmPzgwVbnBoC&pg=PA130&ots=-5bFL4pqz_&dq=%22Alveolar-capillary+barrier%22&as_brr=3&ei=Hqa8RtieNIXy6gKu1KjEBQ&ie=ISO-8859-1&output=html&sig=MWd03S-rw3zcC2KirZWc1Zwmwbc


 

113 

 

39. Bagotzky, V.S., “Fundamentals of Electrochemistry”, Plenum Publishers, 

New York, (1993). 

40. Bockris, J.O., Reddy, A.K.N., “Modern Electrochemistry1: Ionics”, 

Plenum Press, (1998). 

41. Vorst, A. vander , Arye Rosen, Youji Kotsuka “RF/microwave interaction 

with biological tissues” ,(2006).  

42. E. Jordan, K. Balmain,  “Electromagnetic Waves and Radiating Systems”, 

(1968).  

43. A. Gérin, B. Stockbroeckx, A. Vander Vorst, “Champs Micro-ondes et 

Santé, Louvain-la-Neuve”, EMIC-UCL, (1999). 

44. Law, A.M. and Kelton, W.D., “Simulation modeling and analysis”, first 

edition, McGraw-Hill Book company, (1982). 

45. Sargent, Robert  ., “A tutorial on validation and verification of simulation 
models”, Proc.Winter simulation conf. SCS, San Diego, 33-39, ( l988). 

46. Jack, “Statistical technique in simulation”, part 1, Marcel Dekker Inc., 

New York, ( l973). 

47. K.J.Dormer, “Fundamental Tissue Geometry for Biologists”, Cambridge 

University Press, New York, (1980). 

48. A. L. Hodgkin and R. D. Keynes , “the mobility and diffusion coefficient 

of potassium in giant axons from sepia”, j. physiol, II9, 5I3-528,  (1953). 

49. Goldsworthy A. “Effects of electrical and electromagnetic fields on plants 

and related topics”. In: Volkov AG (ed.) Plant Electrophysiology – Theory 

& Methods Springer‐Verlag Berlin Heidelberg, 247‐267, (2006). 

50. Bawin SM, Kaczmarek KL, Adey WR “Effects of modulated VHF fields 

on the central”, (1975). 

51. Blackman CF, Benane SG, Kinney LS, House DE, Joines WT ‘Effects of 

ELF fields on Calcium-Ion Efflux from Brain Tissue in Vitro”, radiation 

research, 92, 510-520 (1982). 

52. Ha B‐Y,  ‘Stabili ation and destabili ation of cell membranes by 

multivalent ions’, (2001). 

53. Levin VA, Fenstermacher JD, Patlak CS.,  “Sucrose and inulin space 

measurements of cerebral cortex in four mammalian species”, Am J 

Physiol 219, 1528–1533, (1970). 

54. N. López, E. Puértolas, S. Condón, J. Raso, I. Álvarez, “Enhancement of 

the solid-liquid extraction of sucrose from sugar beet (Beta vulgaris) by 

pulsed electric fields”, LWT - Food Science and Technology, 42, 10, 

1674–1680, (2009). 

55. V. Heinz, I. Alvarez, A. Angersbach, D. Knorr, “Preservation of liquid 

foods by high intensity pulsed electric fields-basic concepts for process 

design Trends in Food Science and Technology”, 12, 103–111, (2002). 

56. M.R. Kemp, P.J. Fryer, “Enhancement of diffusion through foods using 

alternating electric fields”, Innovative Food Science & Emerging 

Technologies, 8, 143-153, (2007). 

 

 

 



 

114 

 

APPENDIX A 

RESULTS OF FREE RANDOM WALK PATTERN: 

Table (A-1) Results of : 100,000 particles start from the center of 10,000 

x 10,000 matrix  

 

time steps <R^2>=sum/n D=<R^2>/(4t) 

0 0 0 

500 5.00E+03 0.250 

1000 3.10E+04 7.75 

1500 7.89E+04 13.1 

2000 1.51E+05 18.8308 

2500 2.45E+05 24.5 

3000 3.64E+05 30.3173 

3500 5.07E+05 36.2 

4000 6.74E+05 42.1313 

 

 Table (A-2) Results of: 500,000 particles start from the center of 30,000 

x 30,000 matrix: 

 

time steps <R^2> 

0 0 

5,000 3050400 

10,000 16182200 

15,000 29498000 

20,000 53042000 

25,000 83434000 

30,000 120796000 

35,000 165100000 

40,000 2.16E+08 
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APPENDIX B 

RESULTS OF VARIATION OF PENETRATION DISTANCE 

AND DIFFUSION COEFFICIENT WITH VACANCIES 

CONCENTRATION: 

Table (B-1) Results of: Matrix 10,000 x 10,000   time steps=1,000,000 

Vacancies penetration layer D 

5% 0 0 

10% 1 0 

20% 3 1.45E-07 

30% 49 1.96E-06 

40% 483 1.63E-05 

50% 747 3.09E-05 

60% 1068 4.64E-05 

80% 1524 6.23E-05 

 

RESULTS OF VARIATION OF PENETRATION DISTANCE 

AND DIFFUSION COEFFICIENT WITH ANNEALING 

TIME: 

Table (B-2) Results of: Matrix 10,000 x 10,000        vacancies percentage 

50% 

annealing time penetration layer D 

1000 19 0.000485503 

5,000 42 0.000228279 

10,000 60 0.000163335 

50,000 130 7.82387E-05 

100,000 173 5.367E-05 

500,000 552 3.76421E-05 

1000000 747 3.0923E-05 
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APPENDIX C 

RESULTS OF THE EFFECT OF DIRECT CURRENT 

Table (C-1) Results of: Matrix 1000 x 1000, vacancies=50%, 

t=1000 time steps 

 

EF penetration D 

0.1 25 0.000788445 

0.3 28 0.000889268 

0.5 33 0.000950354 

0.7 31 0.001038508 

0.9 8 0.000286812 
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APPENDIX D 

RESULTS OF THE EFFECT OF ALTERNATING 

ELECTRIC FIELD ON THE PENETRATION OF IONS: 

Table (D-1) Results of: Matrix 10,000 x 10,000 vacancies percentage 

50% , annealing time: 1,000,000 

periodic time (T) number of cycles frequency penetration layer D 

2 500,000 0.5 803 3.47377E-05 

40 25,000 0.025 640 2.43451E-05 

100 10,000 0.01 697 2.73167E-05 

200 5,000 0.005 687 3.12664E-05 

300 3333.333333 0.003333 729 3.1608E-05 

400 2,500 0.0025 733 3.43903E-05 

500 2000 0.002 680 3.90637E-05 

200 (square) 2000 0.002 166 4.58085E-06 

No EF - - - 3.09E-05 

 RESULTS OF THE EFFECT OF SINUSOIDAL VS. SQUARE 

WAVES ON PENETRATION IN BIOLOGICAL TISSUES WITH 

DIFFERENT VACANCIES CONCENTRATION: 

Table (D-2) Results of: Matrix size 1000 x 1000, vacancies 90%, t=1000 

time steps 

T (periodic time) 
number of 

cycles 
Frequency 

penetration 
layer D 

2 500 0.5 23 0.000672115 

20 50 0.05 27 0.000749805 

40 25 0.025 30 0.00085118 

100 10 0.01 35 0.001077865 

200 5 0.005 40 0.001501051 

2 (square) 500 0.5 23 0.000784338 

20 (square) 50 0.05 35 0.000869959 

40 (square) 25 0.025 42 0.00102758 

100 (square) 10 0.01 70 0.001971453 

200 (square) 5 0.005 86 0.002941799 

no EF - - 22 0.000763359 
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